八年级下人教版勾股定理2课件

合集下载

人教版八年级下册 17.2 勾股定理的逆定理 课件 (共15张PPT)

人教版八年级下册 17.2 勾股定理的逆定理   课件 (共15张PPT)

知识点一:勾股定理逆定理的实际应用
学以致用
1.我国南宋著名数学家秦九韶的著作《数书九章》里记载有
这样一道题目:“问有沙田块,有三斜,其中小斜五里,中斜
十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一
块三角形沙田,三条边长分别为5里、12里13里,问这块沙
田面积有多大?题中的“里”是我国市制长度单位,1里=
7
• 解:设AD=x,则CD=10-x.
• 在 RtABD 中,

DB2 AB2 AD2
在RtCDQ中,
DB2 CQ2 CD2
62 x2 82 (10 x)2
解得: x 3.6
AD长为6.4n mile
8
知识点二:勾股定理逆定理在几何中的应用
3.如图,在四边形ABCD中,AB=8,BC=6,AC=10,
①若∠C- ∠B= ∠A,则△ABC是直角三角形;
②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;
③若(c+a)(c-a)=b2,则△ABC是直角三角形;
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三
角形.
以上命题中的假命题个数是( A )
A.1个
B.2个
C.3个
D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 c2 +a2 - b2 + c - a = 0 ,则△ABC的形状是
典例讲评
解:根据题意: PQ=16×1.5=24 PR=12×1.5=18 QR=30
∵242+182=302, 即 PQ2+PR2=QR2 ∴∠QPR=90°
由”远航“号沿东北方向航行可知,∠1=45°.所以∠2=45°,

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

人教版八年级数学下册《勾股定理》PPT课件

人教版八年级数学下册《勾股定理》PPT课件

b
a
c b
a
c a
b
证明:∵S大正方形=c2,
cb
S小正方形=(b - a)2,
a b- a
赵爽弦图
∴S大正方形=4·S三角形+S小正方形,
∴c2 4 1 ab b a2 a2 b2.
2
“赵爽弦图”表现了我国古人对数学的钻研精神和
聪明才智,它是我国古代数学的骄傲.因此,这个图案
被选为2002年在北京召开的国际数学家大会的会徽.
分称为“勾”,下半部分称为“股”. 我国古代学者把 直角三角形较短的直角边称为“勾”,较长的直角边 称为“股”,斜边称为“弦”.
勾股
勾2 + 股2 = 弦2
利用勾股定理进行计算
例1 如图,在 Rt△ABC 中, ∠C = 90°.
(1) 若 a = b = 5,求 c;
(2) 若 a = 1,c = 2,求 b.
问题1 试问正方形 A、B、 C 面积之间有什么样的数 量关系?
S正方形A S正方形B S正方形C
AB C
问题2 图中正方形 A、B、C 所围成的等腰直角三 角形三边之间有什么特殊关系?
AB C
一直角边2 + 另一直角边2 = 斜边2
问题3 在网格中一般的直角三角形,以它的三边为 边长的三个正方形 A、B、C 是否也有类似的面积关 系?观察下边两幅图(每个小正方形的面积为单位1):
C A
B
C A
B
左图:SC
4
1 2
2
3
11
13
右图: SC
4
1 2
4
3
11
25
你还有其 他办法求C 的面积吗?
根据前面求出的 C 的面积直接填出下表:

2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版

2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版



【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.


∴CE= AC=

DE=



km.∴AE=


km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=

《勾股定理的逆定理》PPT免费课件(第2课时)

《勾股定理的逆定理》PPT免费课件(第2课时)

田的面积为( A )
A.7.5平方千米
B.15平方千米
C.75平方千米
D.750平方千米
课堂检测 基础巩固题
B
1.五根小木棒,其长度分别为7,15,20,24,25,现将他 们摆成两个直角三角形,其中摆放方法正确的是 ( D )
A.
B.
B
C.
D.
课堂检测
2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东 25°的方向,且到医院的距离为300 m,公园到医院的距离为 400 m,若公园到超市的距离为500 m,则公园在医院的 ( B ) A.北偏东75°的方向上 B.北偏东65°的方向上 C.北偏东55°的方向上 D.无法确定
课堂检测
3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,
同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,
2h后同时停下来,这时A,B两组相距30km.此时,A,B两组
行进的方向成直角吗?请说明理由.
解:∵出发2小时,A组行了12×2=24(km),
A
B组行了9×2=18(km),
Байду номын сангаас
巩固练习
解:由题意得,OB=12×1.5=18海里, OA=16×1.5=24海里, 又∵AB=30海里, ∴182+242=302,即OB2+OA2=AB2, ∴∠AOB=90°. ∵∠DOA=40°, ∴∠BOD=50°. 则另一艘舰艇的航行方向是北偏西50°.
探究新知
知识点 2 利用勾股定理的逆定理解答面积问题
应用 方法
航海问题
与勾股定理结合解决不规 则图形等问题
认真审题,画出符合题意的图 形,熟练运用勾股定理及其逆 定理来解决问题

人教版八年级数学下册课件勾股定理复习课(课2)

人教版八年级数学下册课件勾股定理复习课(课2)

c
(1)如果∠A和∠B是邻补角,那么∠A+∠B=180〫.
重难点3:勾股定理逆定理的应用
Ca B
知识梳理
3. 勾股定理逆定理的应用
② 实质:由“数”到“形”的转化; ③ 应用:判定一个三角形是否为直角三角形.
知识梳理
4. 勾股数
勾股数
正整数
判断一组数是不是勾股数的步骤: 看、找、算、判.
重点解析
反走私艇 B 离走私艇 C 12 海里,若走私艇 C
从边的方面判断:如果已知条件与边有关系,则可以通过勾股定理的逆定理进行判断.
两个角都是40〫
重点解析
1.有些命题在不容易确定题设和结论的情况下,可 以先改写成“如果……那么……”的形式,然后确 定题设和结论. 2.判断一个命题是假命题只需要举出一个反例即可.
重点解析
重难点2:勾股定理的逆定理
判断满足下列条件的三角形是不是直角三角形.如果是, 请指出哪个角是直角. (1)在△ABC中,∠A=25〫、∠B=65〫; 解:(1)在△ABC中,因为∠A=25〫、∠B=65〫,所以 ∠C=180〫-∠A-∠B=90〫,所以这个三角形是直角三角形. ∠C是直角.
重点解析
重难点4:勾股数
判断下列各组数是不是勾股数:
深化练习
1.在△ABC中,∠A、 ∠B 、 ∠C的对边分别是a、b、c,下列判断 错误的是( B ).
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形.
深化练习
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形. 解析:因为∠C- ∠B=∠A,所以 ∠C=∠B+∠A. 因为∠C+∠B+∠A=180〫,所以 ∠C+∠C=180〫. 解得:∠C=90〫,所以△ABC是直角三角形.

勾股定理的逆定理 课件 2022—2023学年人教版数学八年级下册 (2)

勾股定理的逆定理 课件 2022—2023学年人教版数学八年级下册 (2)
知识&回顾☞ 实际应用
1.两军舰同时从港口O出发执行任务,甲舰以30海里/小时的
速度向西北方向航行,乙舰以一定的速度向西南方向航行,
它们离开港口2小时后测得两船的距离为100海里,求轮船B的
速度是多少?
甲(A) 北
西
O

乙(B) 南
知识&回顾☞ 实际应用
2.小明向东走80m后,又向某一方向走60m后,再沿另 一方向又走100m回到原地.小明向东走80m后又向哪个方 向走的?
“中华人民共和国道路交通管理条例”规定:小汽车在城市街 路上行驶的速度不得超过70千米/时,一辆小汽车在一条城市街 路的直道上行驶,某一时刻刚好行驶在路边车速检测仪的北偏 东30°距离30米处,过了2秒后行驶了50米,此时测得小汽车与 车速检测仪间的距离为40米. 问:2秒后小汽车在车速检测仪的 哪个方向?这辆小汽车超速了吗?
(1)城市A是否受到台风影响? 请说明理由。
(2)若城市A受到台风影响, 则持续时间有多长?
(3)城市A受到台风影响的最 大风力为几级?
C A
240 30°
B
(1)城市A是否受到台风影响? 请说明理由。
解:(1)根据题意可知 作 AD⊥BC 于 D 点. 在 Rt△ABD 中,∠B=30°, AB=240 千米, ∴AD=120 千米, ∵25×(12-4)=200>120 ∴城市 A 是受到台风影响。
15km/h的速度沿东北方向前进.甲船航行2小时到达C
处时发现渔具丢在乙船上,于是快速(匀速)沿北偏
东75°方向追赶,结果两船在B处相遇.
(1)甲船从C处追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是多少千米/时?
北 速度 (30 30 B3) 2 15 15 3

八年级数学勾股定理的逆定理课件-应用

八年级数学勾股定理的逆定理课件-应用

人教版
第2课时勾股定理的逆定 理(二) —— 应用
(2)在图2中,画一个三边长分别为3,2, 13的三角形,一共可以画 16 个这样的三角形. 解析:如图2,一共可以画16个这样的三角形.
图2
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
10.在某小区在社区工作人员及社区居民的共同努力之下,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
8.如图,明明在距离水面高度为5 m的岸边C处,用绳子拉船 靠岸,开始时绳子BC的长为13 m.若明明收绳6 m后,船到 达D处,则船向岸边A处移动了多少米?
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
解:∵开始时绳子BC的长为13 m,明明收绳6 m后,船到达D处,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
知识点 勾股定理逆定理的应用 【例题】如图,甲船以5海里/时的速度离开港口O沿南偏东 30°方向航行,乙船同时同地沿某方向以12海里/时的速度 航行.已知它们离开港口2小时后分别到达B,A两点,且AB =26海里.你知道乙船是沿哪个方向航行的吗?
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
第十七章 勾股定理
17.2 勾股定理的逆定理 第2课时勾股定理的逆定理(二) —— 应用
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册

人教版八年级数学下册勾股定理逆定理课件第二课时

人教版八年级数学下册勾股定理逆定理课件第二课时

检测目标
2.如图,在正方形ABCD中,F是CD的中点,E为BC上一 点,且CE=1 CB,试判断AF与EF的位置关系,并说明理由.
4
解:AF⊥EF.理由如下: 设正方形的边长为4a, 则EC=a,BE=3a,CF=DF=2a. 在Rt△ABE中,得AE2=AB2+BE2=16a2+9a2=25a2. 在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2. 在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2. 在△AEF中,AE2=EF2+AF2, ∴△AEF为直角三角形,且AE为斜边. ∴∠AFE=90°,即AF⊥EF.
例1 如图,某港口P位于东西方向的海岸线上. (3) 本题正确的结论是________ 如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向 点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长. 思考1 认真审题,弄清已知是什么?要解决的 在△AEF中,AE2=EF2+AF2,
我们学会了用勾股定理解决生活中的很多问 题,那么勾股定理的逆定理可以解决哪些实际问 题呢?我们一起来探究吧。
人教版八年级数学 下册
沧海可填山可移,男儿志气当如斯。
壮志与毅力是事业的双翼。
母鸡的理想不过是一把糠。
生无一锥土,常有四海心。
远大的希望造就伟大的人物。
志高山峰矮,路从脚下伸。
雄心志四海,万里望风尘。
检测目标
3.已知 △ABC三角形的三边分别为 a,b,c 且a = m2 - n2 ,b = 2mn,c = m2 n2 (m > n,m,n是正整数), △ABC是直角三角形吗?说明理由

勾股定理(第2课时)(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)

勾股定理(第2课时)(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)

勾股定理应用的常见类型
1.已知直角三角形的任意两边求第三边;
2.已知直角三角形的任意一边确定另两边的关系;
3.证明包含有平方(算术平方根)关系的几何问题;
4.求解几何体表面上的最短路径问题;
5.构造方程(或方程组)计算有关线段长度,解决生产、
生活中的实际问题.
课堂练习
1.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯
三角形的面积公式可求BD,再利用
勾股定理便可求CD.
北东
A
C
D
Q
课堂练习
P
解:∵AC10,BC8,AB6,
B
∴AC2AB2BC2
北东
A
即△ABC是直角三角形,
C
D
Q
1
1
而S△ABC BC AB AC BD
2
2
24
解得:BD .
5
2
24

在Rt△BCD中,CD = BC 2 BD 2 82 6.4
路线最短?
B
A
B
A
方案①
B
A
方案②
方案③
针对练习
(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?
你画对了吗?
B
A
B
A
B
∵两点之间线段最短,
∴方案③的路线最短.
A
针对练习
(3)蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是
多少?
解:在Rt△ABC中,
C
B
AC=12 cm,BC=18÷2=9(cm).
在Rt△A′DB中,由勾股定理得

八年级数学下册课件(人教版)勾股定理

八年级数学下册课件(人教版)勾股定理

5 如图,将两个大小、形状完全相同的△ABC 和△A′B′C ′拼在一起,其 中点A′与点A重合,点C ′落在边AB上,连接B′C. 若∠ACB=∠AC′B ′ =90°,AC=BC=3,则B′C 的长为( A )
A.3 3 B.6 C.3 2 D. 21
知识点 2 勾股定理与面积的关系
在一张纸上画4个与图所示的全等的直角三边形,并把它们 剪下来.如图所示,用这四个直角三角形进行拼摆,将得到一个
17.1 勾股定理
第1课时
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
A、B、C 的面积有什么关系?
直角三角形三边有什么关系?
A
B
C
让我们一起探索这个古老的定理吧!
知识点 1 勾股定理
正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
C A
B
图2-1
C A
B
图2-2
(图中每个小方格代表一个单位面积)
分“割”成若干个 直角边为整数的三角形
S正方形c
= 4 133 2
=18(单位面积)
C A
B
图2-1
C A
B
图2-2
(图中每个小方格代表一个单位面积)
(2)在图2-2中,正方形A,B, C 中各含有多少个小方格?
A.3 B.4 C.5 D.7
4 如图,已知△ABC 为直角三角形,分别以直角边AC,BC 为直径 作半圆AmC 和BnC,以AB 为直径作半圆ACB,记两个月牙形阴 影部分的面积之和为S1,△ABC 的面积为S2,则S1与S2的大小关

人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)

人教版数学八年级下册:17.1 勾股定理  课件(共35张PPT)

探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2

S3

1 2


a 2
2

1 2


b 2
2
1 a2 1 b2
8
8
S1

1 2


c 2
2

1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果直角三 角形两直角 边分别为a, b,斜边为c, 那么 a2+b2=c2
a
c
b
3、已知: 如图c =13,a =5, 求阴影总分面积
c
a
• 一个门框的尺寸如图所示,一块长3米,宽2.2米的
薄木板能否从门框内通过
门框能横着或竖着通过 吗
∵ 木板的宽2.2米大于1米
∴横着不能从门框通过
2.2米
∵ 木板的宽2.2米大于2米 ∴竖着也不能从门框通过
1米
• 一个门框的尺寸如图所示,一块长3米,宽2.2
a=46
b=58
由勾股定理得:
c2=a2+b2 =462+582 =5480 而742=5476
58
46
c
在误差范围内
一个3m长的梯子AB,斜 靠在一竖直的墙AO上, 这时AO的距离为2.5m, 如果梯子的顶端A沿墙 下滑0.5m,那么梯子底 端B也外移0.5m吗?
A C
O
B
D
1、放学以后,小红和小颖从学校 分手,分别沿着东方向和南方向回 家,若小红和小颖行走的速度都是 40米/分,小红用15分钟到家,小颖 用20分钟到家,小红和小颖家的距 离为 ( C ) A、600米
a +b =c
⒊勾股定理的主要作用是 在直角三角形 中,已知任意两边求第三边的长
好奇是人的本性! 议一议
探索勾股定理
结论:
1.你能用三角形的边长 表示正方形的面积吗? 2.你能发现直角三角形三 边长度之间存在什么关系 吗? 3.分别以5cm,12cm为直 角边作出一个直角三角形, 并测量斜边的长度,上面 的规律还成立吗?
米的薄木板能否从门框内通过
那么斜着能否通 过?大家试试看
2.2米
1米
例2.飞机在空中水平飞行,某一时刻刚 好飞到一个男孩头顶上方4000米处,过 了20秒,飞机距离这个男孩头顶5000米。 飞机每时飞行多少千米? C B
20秒后
4000米 5000米
A
好奇是人的本性! 想一想
探索勾股定理
我们有:
C、1000米
B、800米
D、不能确定
2、直角三角形两直角边分别为5 厘米、12厘米,那么斜边上的高 是 ( D ) A、6厘米 B、 8厘米 C、 80/13厘米; D、 60/13厘 米;
3、蚂蚁沿图中的折线从A点爬到D点,一 共爬了多少厘米?(小方格的边长为1厘 G A 米)
B
E
C
F
D
⒈ 勾股定理是几何中最重要的定理之 一,它揭示了直角三角形三边之间的 数量关系. ⒉勾股定理: 直角三角形两直角边a、b 平方和, 等于斜边c平方 2 2 2
勾股定理的内容是什么 勾股定理:直角三角形两条直角边 a,b的平方和,等于斜边c的平方
a2+b2=c2
练一练
1、已知:∠C=90°,a:b= 3:4,c=10,求a和b
2、已知:△ABC,AB=AC =17,BC=16,则高 AD=_,S△ABC=___
A
B
C D
Hale Waihona Puke 学以致用1、已知:Rt∆ABC中a=3, b=4, 求c 2、已知: Rt∆ABC中c =10,a=6,求b
相关文档
最新文档