第8章 回归分析

合集下载

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

回归分析方法

回归分析方法

第八章 回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。

如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。

本章讨论其中用途非常广泛的一类模型——统计回归模型。

回归模型常用来解决预测、控制、生产工艺优化等问题。

变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。

另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。

例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。

回归分析就是处理变量之间的相关关系的一种数学方法。

其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。

应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。

运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。

MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。

MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。

运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。

本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

《SPSS数据分析与应用》第8章 逻辑回归分析

《SPSS数据分析与应用》第8章 逻辑回归分析
准确率=TP TN / TP TN FP FN
➢ TPR—在所有真实值为阳性的样本中,被正确地判断为阳性的样本所占的比例。
TPR=TP / TP FN
➢ FPR—在所有真实值为阴性的样本中,被正确地判断为阳性的样本所占的比例。
FPR=FP / FP TN
Part 8.2
逻辑回归分析模型 的实现与解读
定性变量 (3水平)
定量变量
定性变量
取值范围 1代表幸存 0代表死亡 1=男、2=女 [0.42,80]
1代表一等舱, 2代表二等舱, 3代表三等舱
[0, 512.3292]
C = 瑟堡港, Q =昆士敦,S = 南安普顿
定性变量
0代表无家庭成员,1代表成员为1~3人的中 型家庭,2代表成员为4人及以上的大型家庭
2.逻辑回归分析模型
逻辑回归分析模型
在经过Logit变换之后,就可以利用线性回归模型建立因 变量与自变量之间的分析模型,即
经过变换,有
Sigmoid函数 (S型生长曲线)
逻辑回归分析模型
Sigmoid函数
➢ Sigmoid函数,表示概率P和自变量之间 的非线性关系。通过这个函数,可以计 算出因变量取1或者取0的概率。
总计
混淆矩阵
预测值
Y=0(N)
Y=1(P)
TN
FP
FN
TP
总计 TN+FP FN+TP TP+FP+FN+TN
➢ TP:预测为1,预测正确,即实际1; ➢ FP:预测为1,预测错误,即实际0; ➢ FN:预测为0,预测错确,即实际1; ➢ TN:预测为0,预测正确即,实际0。
4.模型评价
➢ 准确率

第8章 相关与回归分析

第8章 相关与回归分析

32
估计标准误差
估计标准误差(standard error of estimate)是 对各观测数据在回归直线周围分散程度的一个度 量值,它是对误差项ε的标准差σ的估计。 估计标准误差Sy可以看作是在排除了X对Y的线性 影响后,Y随机波动大小的一个估计量。
33
从估计标准误差的实际意义看,它反映了用估计 的回归方程预测因变量Y时预测误差的大小。若 各观测数据越靠近回归直线,Sy越小,回归直线 对各观测数据的代表性就越好,根据估计的回归 方程进行预测也就越准确。
当一个变量取一定数值时,另一个变量有确定值 与之相对应,这种关系称为确定性的函数关系。 当一个变量取一定数值时,与之相对应的另一变 量的数值虽然不确定,但它仍按某种规律在一定 的范围内变化,这种关系称为不确定性的相关关 系。
7
变量间的关系: 函数关系
y


ห้องสมุดไป่ตู้





x
是一一对应的确定关系 记为 y = f (x), x 称为自变 量,y 称为因变量 – 某种商品的销售额(y)与 销售量(x)之间的关系可 表示为 y = p x (p 为单 价) – 圆的面积(S)与半径之间 的关系: S = R2
19
复相关系数和偏相关系数
复相关系数反映一个变量Y与其他多个变量X1, X2,…Xk之间的线性相关程度 偏相关系数 反映在X2,…Xk不变的情况下,变量 Y与X1之间的线性相关程度
20
第三节 简单线性回归分析
回归分析的内容
回归分析的特点
相关分析与回归分析的区别与联系
21
相关分析研究变量之间相关的方向和相关的程度, 但是相关分析不能指出变量间相互关系的具体形 式,也无法从一个变量的变化来推测另一个变量 的变化情况。 回归分析则是研究变量之间相互关系的具体形式, 它对具有相关关系的变量之间的数量联系进行测 定,确定一个回归方程,根据这个回归方程可以 从已知量来推测未知量,从而为估算和预测提供 了一个重要的方法。

第8章--回归分析预测法概要

第8章--回归分析预测法概要

其表达F式 S余 为 ( /S回 n /m : m1)
20
❖ 将通过上式计算F的值,与F分布表查到的Fc 临界值比较,从而判断回归方程是否具有显 著性。
❖ ①当 F> Fc (α,m,n-m-1),则回归方程与实际 直线方程拟和的程度好,x和y之间的变化是 符合回归模型;
❖ ②当F ≤ FC(α,m,n-m-1)时,则回归模型与 实际直线方程拟和程度不好,x和y之间的变 化不符合实际直线的变化,预测模型无效。
i1
i1
i1
min (3)
即对(3)求极值,有:
Q
a
2
n i1
(
yi
a
bxi
)
0
Q
b
n
2
i1
( yi
a
bxi )xi
0
(4) (5)
15
由( 4 )得:
n
n
n
y i a bx i 0
i1
i1
i1
y i na b x i
由( 5)得:
n
n
n
x i y i ax i x i bx i 0
❖ ②确定变量之间的相关密切程度,这是相关 分析的主要目的和主要内容。
7
3、建立回归预测模型 ❖ 就是依据变量之间的相关关系,用恰当的数
学表达式表示出来。 4、回归方程模型检验 ❖ 建立回归方程的目的是预测,但方程用于预
测之前需要检验回归方程的拟合程度和回归 参数的显著性,只有通过了有关的检验后, 回归方程才可用于预测。常用的检验方法有 相关系数r检验、F检验、t检验等。
36
二、多元线性回归预测法 ❖ 一般形式:ŷi=a+b1X1+b2X2+……+bnXn ❖ 其中: X1,X2,……,Xn 为自变量, ❖ a, b1, b2, ……, bn为回归方程的参数 ❖ 存在两个自变量条件下的多元线性回归方程

[课件]第八章 直线回归与相关分析PPT

[课件]第八章 直线回归与相关分析PPT
Q SS U 283 176 . 4 106 . 6 y
(2)F检验:
U 176 . 4 F ( n 2 ) ( 5 2 ) 4 . 96 Q 106 . 6
因为 F , 4 . 96 F 10 . 13 0 . 05 ( 1 , 3 ) .05 。说明小白鼠体重和日龄间 所以, p 0 的直线关系不显著。
相关分析(correlation analysis)3
研究“一因一果”,即一个自变量与一个依 变量的回归分析称为一元回归分析;
直线回归分析 曲线回归分析
研究“多因一果”,即多个自变量与一个依 变量的回归分析称为多元回归分析。
多元线性回归分析
多元非线性回归分析
第二节:直线回归
Linear Regression
回归和相关分析结果仅适用于自变量的试验取值 范围。
9
2. 进行直线回归分析时应符合的基本条件 (基本假定) (1)x是没有误差的固定变量;而y是随机 变量,具有随机误差。 (2)x的任一值都对应着一个y的总体,且 呈正态分布。
(3)随机误差是相互独立的,且呈正态分
布。
10
对两个变量间的线性关系的显著性进行检验时, 采用的方法是 F 检验或 t 检验。 直线回归中,只有一个自变量,所以回归平方和 的自由度为1,离回归平方和的自由度为n-2 。 1. 计算回归平方和U和离回归平方和Q:
序号 日龄 x 体重 y 1 6 12 2 9 17 3 12 22 4 15 25 5 18 29
13
(一)求回归方程: (1)由观测值计算6个一级数据
n 5
x 6 9 12 15 18 60 x 6 9 12 15 18 810

第八章 方差分析与回归分析

第八章 方差分析与回归分析

第八章 方差分析与回归分析§8.1 方差分析8.1.1 问题的提出举例说明概念因子和水平。

因子:对研究对象产生影响的因素。

水平:因子所处的状态。

8.1.2 单因子方差分析的统计模型在研究中只考察一个因子则称为单因子试验,其中,记因子为A ,设其有r 个水平,记为r A A ,,1 ,在每一水平下考察的指标可以看成一个总体,现有r 个水平,故有r 个总体,假定:(1)每一总体均为正态总体,记为r i N i i ,,2,1),,(2;(2)各总体的方差相同,记222221 r ;(3)从每一总体中抽取的样本是相互独立的,即所有的试验结果ij y 都相互独立。

这些假定都可以用统计方法进行验证。

首先比较各水平下的均值是否相同,即要对如下的一个假设进行检验,不全相等r rH H ,,,::211210在不会引起误解的前提下,1H 通常可以省略不写。

若0H 成立,则称因子A 不显著,否则,称因子A 显著。

对如上的假设进行检验,需要从每一水平下的总体抽取样本,设从第i 个水平下的总体获得m 个试验结果(各个水平下相同),记ij y 表示第i 个总体的第j 次重复试验结果。

共得如下m r 个试验结果:m j r i y ij ,,1,,,1,其中r 为水平数,m 为重复数,i 为水平编号,j 为重复编号。

在水平i A 下的试验结果ij y 与该水平下的指标均值i 一般总是有差距的,记i ij ij y ,ij 称为随机误差,于是有ij i ij y上式称为试验结果ij y 的数据结构式。

把三个假定用于数据结构式就可以写出单因子方差分析的统计模型:),0(,,1,,,1,2 N m j r i y ij ij i ij 相互独立,且都服从诸为了能更好地描述数据,常引入总均值和效应的概念:总均值:诸i 的平均 ri i r r 11 ;称第i 水平下的均值i 与总均值 的差i i a ,r i ,,1为因子A 的第i 水平的主效应,简称为i A 的效应。

第8章 相关与回归分析

第8章 相关与回归分析

4、在相关关系中,变量之间是平等关系,不存在自变量和因变量。 、在相关关系中,变量之间是平等关系,不存在自变量和因变量。
而在回归分析中必须明确划分自变量和因变量。 而在回归分析中必须明确划分自变量和因变量。
8-9
统计学
STATISTICS
8.2 简单线性相关与回归分析
8 - 10
STATISTICS
8-5
统计学
STATISTICS
(三)从变量相关关系变化的方向看 从变量相关关系变化的方向看 变化的方向 正相关: A 正相关:变量同方向变化 , 即同增同减 (A) 同增同减 负相关:变量反方向变化, 负相关:变量反方向变化, 即一增一减 (B) B 一增一减 从变量相关的程度 相关的程度看 (四)从变量相关的程度看
完全相关 (B) 不完全相关 (A) 不相关 (C)
8-6
25 20 15 10 5 0 0 2 4 6 8 10 12
25 20 15 10 5 0 0 2 4 6 8 10 12
C
35 30 25 20 15 10 5 0 0 5 10 15
统计学
STATISTICS
三、回归分析
回归一词的由来: 回归一词的由来:
8 - 13
见第218页例题 页例题 见第 页例
统计学
STATISTICS
相关系数的特点: 相关系数的特点:
1、r 的取值范围是 − 1 ≤ r ≤ 1 。 、 2、r<0时,β<0 为负相关;r>0时, β>0 为正相关。 为负相关; 为正相关。 、 时 时 3、|r|=1,为完全相关。r =1,为完全正相关;r = -1, 、 ,为完全相关。 ,为完全正相关; , 为完全负正相关。 为完全负正相关。 4、r = 0,不存在线性相关。 、 线性相关。 ,不存在线性相关 5、|r|越趋于 表示两变量线性关系越密切;|r|越趋于 、 越趋于 表示两变量线性关系越密切; 越趋于 越趋于1表示两变量线性关系越密切 越趋于0 表示两变量线性关系越不密切。 表示两变量线性关系越不密切。 线性关系越不密切 6、r是一个随机变量。 、 是一个随机变量 是一个随机变量。

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

第8章 回归分析-ns

第8章 回归分析-ns

二、SPSS提供的回归分析方法 SPSS提供的回归分析方法
包括:
Linear: 线性回归分析 Curve Estimation: 曲线拟合估计 Binary Logistic:二维logistic回归分析 Multinomial Logistic:多维logistic回归分析 Ordinal: Ordinal回归分析 Probit:概率单位回归分析 Nonline:非线性回归分析 Weight Estimation:加权估测分析 2-Stage least Squares:两阶最小二乘法分析 本章主要介绍Linear Regression线性回归分析,包括一元线性回归 和多元线性回归。
第八章 回归分析
(Regression Analysis) )
基本概念与SPSS SPSS提供的回归分析方法 第一节 基本概念与SPSS提供的回归分析方法
一、基本概念 回归分析和相关分析的区别 区别主要是模型的假设以及研究的目的有所不同。 概括地说,线性回归分析是处理两个或两个以上变量间线性依存关 系的统计方法。 (1)回归分析: 两个变量一个是非随机变量,而另一个是随机变量。 (2)相关分析: 两个变量都是不能控制的随机变量,形成一个二维 分布。
5.单击"Statistics"按钮,打开Statistics对话框。
(1)Regression Coefficient栏,在此栏内选择回归系数。 A. Estimates 默认复选项,输出回归系数估计值(B)及其标准误, 标准化回归系数(Beta);B的t值及双侧显著性水平等相关测量。 B.Confident Interval复选项,输出回归系数的95%的置信区间。 C.Covariance复选项,输出协方差和相关矩阵。 (2)Model fit复选项,默认选项,列出进入或从模型中剔除的变量, 输出复相关系数R,测定系数R2,调整R2 ,估计值的标准误,方差表。 (3)R squared change复选项,R2,F值的改变及方差分析P值的改变。 (4)Descriptive复选项,它显示了变量均值、标准差,单侧检验及相 关系数矩阵。 ( 5 ) Part and partial correlation 复 选 项 , 输 出 零 阶 相 关 系 数 (Zero-order, 即Pearson相关)、偏相关系数,要求方程中至少有2个 自变量。

spss在财务管理中的应用 第8章 回归分析

spss在财务管理中的应用 第8章 回归分析

8.2 一元线性回归方程
8.2.2一元线性回归方程拟合度检验
1.回归模型的有效性检验
回归模型的有效性检验,就是对求得的回归方程进行显著性检验,看是否真
实地反映了变量间的线性关系。线性回归模型的有效性检验通常使用方差分
析的思想和方法进行。总平方和SST反应了因变量y的波动程度或者不确定 性,它可以分解成回归平方和SSR和误差平方和SSE,即SST=SSR+SSE。
内平方和的大小(SSE,残差);从“df”一栏可以知道各个部分的自由度。各自的平方和
除以其自由度便得到了“均方”一栏的数据,F值就是组间(回归)均方除以组内(残差) 均方的取值。从结果上看F=1037.144,其检验的概率水平p=0.000,小于0.05的显著性水 平,说明一元线性回归模型在0.05的显著水平上有统计意义。

(公式8.15) 式中,SSR为回归平方和,SSE为误差平方和,n为样本数,k为自变量个数。F统 计量服从第一个自由度为k,第二个自由度为n-k-1的F分布。同样的,如果F值到达 显著水平,说明构建的回归方程是成立的,即自变量和因变量间存在线性关系。
8.3 多元线性回归方程
2.回归系数的显著性检验
步骤4:对回归方程进行参数检验。
SPSS会根据样本数据估算出回归模型的参数,同时对估算出的回归模型中的参数
进行检验,研究者需要根据检验的结果对参数做出取舍。

步骤5:利用回归方程进行预测。 有了回归模型后,便可以依照回归模型在某种条件下对因变量取值进行预测了。
8.2 一元线性回归方程
在一元线性回归方程中,只有两个变量,一个为因变量,另一个为自变量,
前言
回归分析可以用下列方程表示,即

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。

8.回归分析方法

8.回归分析方法

2.一元线性回归分析法

2.一元线性回归分析法
实际值
Syy
Q U
理论值
一元线性回归分析法
2.一元线性回归分析法
a y bx
x y x y b x x x
i i 2 i i i
2.一元线性回归分析法
2.一元线性回归分析法
相关性检验 X,y之间是否真的有回归模型描述的关系? 回归方程的可信性:回归方差占总方差的比重:
ˆ 4、将 a, b 两个参数值代入 y a bx
5、根据
ˆ 中求出 y
值;
ˆ y 值正负或大小,说明相关程度
6、如有要求;编制相关分析图。
2.一元线性回归分析法
张秀
等 运用布拉德福定律测定检索工具的完整性 情 报科学 2006,24(1):69-73 CNKI期刊数与发表论文数的分布
0.8539
f n2927
查相关系数临界值表 因为 所以回归方程在
R0.01 0.7977
R R0.01
的检验水平下有统计意义。 0.01
即可以认为大豆的蛋白质含量与脂肪含量有线性相关性。
第一节 简单线性回归方法 二、多元线性回归模型
1. 多元线性回归模型
2. 多元线性回归系数的确定
儿子身高与父母身高发现父母的身高可以预测子女的身高两者近乎一条直线当父母越高或越矮时子女的身高会比一般儿童高或矮儿子与父母身高的这种现象拟合出一种线形关系其回归直线方程为33730516x这种趋势及回归方程表明
第八章 回归分析法
1.概述:回归的概念
Francis
Galton:神童,与达尔文 同一个外祖父。 特立独行、知识渊博而又毁誉不一。 人体测量学、实验心理学、生物统计学、地理学、遗 传学…… 优生学:“种族主义者和法西斯蒂的精神领袖和鼻

第8章 回归分析-SPSS操作方法

第8章 回归分析-SPSS操作方法
y 33.73 0.516x
4
这一回归方程表明父母身高每增加一个单位时,其成年儿子 的身高也平均增加0.516个单位。这个结果表明,虽然高个子父 辈有生高个子儿子的趋势,但父辈身高增加一个单位,儿子身 高仅增加半个单位左右。反之,矮个子父辈的确有生矮个子儿 子的趋势,但父辈身高减少一个单位,儿子身高仅减少半个单 位左右。 平均来说,一群高个子父辈的儿子们在同龄人中平均仅为略 高个子;一群矮个子父辈的儿子们在同龄人中平均仅为略矮个 子,即父辈偏离中心的部分在子代被拉回来一些。 正是因为子代的身高有回到同龄人平均身高的这种趋势,才 使人类的身高在一定时间内相对稳定,没有出现父辈个子高, 其子女更高,父辈个子矮,其子女更矮的两极分化现象。 高尔顿引进了回归这个词来描述父辈身高与子代身高的关系。
6
8.1 回归分析的基本原理
8.1.1 回归线
前一章介绍了相关散点图,可以发现各点不都在一条直 线上。但如果散点的分布有明确的直线趋势,我们就可以 配置一条最能代表散点图上分布趋势的直线,这条最优拟 合线就称为回归线。 常用的拟合这条回归线的原则,就是使各点与该线纵向 距离的平方和最小。
7
8.1
8
8.1.2 回归方程
回归分析的数学模型是:
y f (x1, x2, x3,…, xk )
基本假设:因变量 y 受到我们已知的的 k 个自变
量 x1,x2,x3,…,xk 的影响,同时还受到一些
未知因素或随机因素的影响。
9
每一组实际观察值yi,x1i,x2i,x3i,…,xki
yi f (x1i , x2i , x3i ,…, xki ) i
5
当然,如今的回归分析已远远超过当年高尔顿使用该词 时的涵义,已成为统计学中一个专用的名词。其根本目的, 是要借助于因变量和自变量的分类,在概率统计的意义上, 把变量间的相关关系用精确的数学公式伴以其他手段加以 进一步的定量刻画。 回归分析的应用非常广泛,建立了变量之间关系的数学 模型,实际上就等于确定了自变量与因变量的关系模型, 利用这个数学模型,可以从一个变量的变化来预测或估计 另一个变量的变化。 在实际应用中,根据变量的个数、变量的类型以及变量 之间的相关关系,回归分析有很多种类型。我们主要介绍 比较常用的一元线性回归分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.1 回归分析简介 (3)回归分析的一般步骤
第1步 确定回归方程中的因变量和自变量。 第2步 确定回归模型。 第3步 建立回归方程。 第4步 对回归方程进行各种检验。
拟合优度检验 回归方程的显著性检验 回归系数的显著性检验
第5步 利用回归方程进行预测。
4
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
主要内容
8.1 回归分析简介 8.2 线性回归分析 8.3 曲线回归分析 8.4非线性回归分析 8.4 二元Logistic回归分析
5
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
11
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.2 线性回归分析
方差分析表
模型 1 回归 残差 总计 a. 因变量:财政收入 b. 预测变量:(常量),国内生产总值 平方和 1557492999.819 34187286.770 1591680286.589 自由度 1 13 14 均方 1557492999.819 2629791.290 F 592.250 显著性 .000b
8.2线性回归分析 8.2.1 基本概念及统计原理
1.基本概念
线性回归假设因变量与自变量之间为线性关系,用一定的 线性回归模型来拟合因变量和自变量的数据,并通过确定模型 参数来得到回归方程。根据自变量的多少,线性回归可有不同 的划分。当自变量只有一个时,称为一元线性回归,当自变量 有多个时,称为多元线性回归。
电子工业出版社
8.1 回归分析简介
(1)确定性关系与非确定性关系
变量与变量之间的关系分为确定性关系和非确定性关系, 函数表达确定性关系。研究变量间的非确定性关系,构造变量 间经验公式的数理统计方法称为回归分析。
(2)回归分析基本概念
回归分析是指通过提供变量之间的数学表达式来定量描述 变量间相关关系的数学过程,这一数学表达式通常称为经验公 式。我们不仅可以利用概率统计知识,对这个经验公式的有效 性进行判定,同时还可以利用这个经验公式,根据自变量的取 值预测因变量的取值。如果是多个因素作为自变量的时候,还 可以通过因素分析,找出哪些自变量对因变量的影响是显著的 ,哪些是不显著的。
15
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.3 曲线回归分析 8.3.1 基本概念及统计原理
(1) 统计原理 在曲线估计中,有很多的数学模型,选用哪一种形式的回归 方程才能最好地表示出一种曲线的关系往往不是一个简单的问 题,可以用数学方程来表示的各种曲线的数目几乎是没有限量 的。在可能的方程之间,以吻合度而论,也许存在着许多吻合 得同样好的曲线方程。因此,在对曲线的形式的选择上,对采 取什么形式需要有一定的理论,这些理论是由问题本质决定的 。 (3) 分析步骤 首先,在不能明确究竟哪种模型更接近样本数据时,可在上 述多种可选择的模型中选择几种模型; 其次,SPSS自动完成模型参数的估计,并输出回归方程显著 性检验的F值和概率P值、决定系数R2等统计量; 最后,以判定系数为主要依据选择其中的最优模型,并进行 预测分析等。
1986
1987 1988 1989 1990
45.8
71.04 109.5 142.6 178.5
10201.4
11954.5 14922.3 16917.8 18598.4
1997
1998 1999 2000 2001
1080
1247.3 1393.22 1595.9 2109.36
73142.7
12
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.2 线性回归分析
回归系数表
未标准化系数 模型 1 (常量) 国内生产总值 a. 因变量:财政收入 B 4993.281 .197 标准误差 919.356 .008 .989 标准化系数 Beta t 5.431 24.336 显著性 .000 .000
8
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.2 线性回归分析
第1步 分析:这是一个因变量和一个自变量之间的问题,故应 该考虑用一元线性回归解决。 第2步 数据组织:定义三个变量,分别为“year”(年份)、 “x”(国内生产总值)、“y”(财政收入)。 第3步 作散点图,观察两个变量的相关性:依次选择菜单“图 形→旧对话框→散点/点状→简单分布”,并将“国内生产总值 ”作为x轴,“财政收入”作为y轴,得到如下所示图形。
,将所有模型全部选上,看哪种模型拟合效果更好(主要看决定系数 R2),其所有模型的拟合优度R2如下表所示。
因变量: 保费收入 模型摘要 方程 线性 对数 逆 二次 三次 复合 幂 S 增长 指数 R 方 .941 .772 .481 .973 .990 .789 .972 .946 .789 .789 F 316.551 67.889 18.572 336.771 617.659 74.788 700.929 347.778 74.788 74.788 自由度 1 1 1 1 2 3 1 1 1 1 1 自由度 2 20 20 20 19 18 20 20 20 20 20 显著性 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 常量 -154.292 -4576.241 966.105 23.846 -166.430 23.315 2.521E-6 7.069 3.149 23.315 参数估算值 b1 .019 508.979 6138735.913 .003 .029 1.000 1.796 27064.140 5.450E-5 5.450E-5 1.756E-7 5.364E-7 5.022E-12 b2 b3
电子工业出版社
8.2线性回归分析
8.2.2 SPSS实例分析
【例8-1】现有1992年-2006年国家财政收入和国内生产总值的 数据如下表所示,请研究国家财政收入和国内生产总值之间的 线性关系。
年份 1992 1993 1994 1995 1996 1997 1998 1999 财政收入 国内生产总值 (单位:亿元) (单位:亿元) 26923.5 35333.9 48197.9 60793.7 71176.6 78973.0 84402.3 89677.1 3483.37 4348.95 5218.10 6242.20 7407.99 8651.14 9875.95 11444.08 年份 2000 2001 2002 2003 2004 2005 2006 财政收入 国内生产总值 (单位:亿元) (单位:亿元) 99214.6 109655.2 120332.7 135822.8 159878.3 183867.9 210871.0 13395.23 16386.04 18903.64 21715.25 26396.47 31649.29 38760.20
10
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.2 线性回归分析
第5步 主要结果及分析: 变量输入和移去表
模型 1 输入的变量 国内生产总值 移去的变量 . 方法 输入
表中显示回归模型编号、进入模 型的变量、移出模型的变量和变 量的筛选方法。可以看出,进入 模型的自变量为“国内生产总 值” 。
16
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.3 曲线回归分析
8.3.2 SPSS实例分析
【例8-3】 表8.16是1989~2001年国家保费收入与国内生产总值的数据, 试研究保费收入与国内生产总值的关系。
年度 1980 保费收入 4.6 国民生产总值 4517.8 年度 1991 保费收入 239.7 国民生产总值 21662.5
表中显示回归模型的常数项、非标准化的回归系数B值及其标准误差、标 准化的回归系数值、统计量t值以及显著性水平(Sig.)。从表中可看出, 回归模型的常数项为-4993.281,自变量“国内生产总值”的回归系数为 0.197。因此,可以得出回归方程:财政收入=-4993.281 + 0.197 × 国内生 产总值。 回归系数的显著性水平为0.000,明显小于0.05,故应拒绝T检验的原假设, 这也说明了回归系数的显著性,说明建立线性模型版)统计分析实用教程(第2版)
电子工业出版社
主要内容
8.1 回归分析简介 8.2 线性回归分析 8.3 曲线回归分析 8.4非线性回归分析 8.4 二元Logistic回归分析
14
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.3 曲线回归分析 8.3.1 基本概念及统计原理
可以看出两变量具有较强 的线性关系,可以用一元 线性回归来拟合两变量。
9
SPSS 23(中文版)统计分析实用教程(第2版)
电子工业出版社
8.2 线性回归分析
第4步 一元线性回归分析设置: 选择菜单“分析→回归→线性”,打开“线性回归”对话框 ,将变量“财政收入”作为因变量 ,“国内生产总值”作为 自变量。 打开“统计量”对话框,选上“估计”和“模型拟合度”。 单击“绘制(T)…”按钮,打开“线性回归:图”对话框 ,选用DEPENDENT作为y轴,*ZPRED为x轴作图。并且选择“直 方图”和“正态概率图” 作相应的保存选项设置,如预测值、残差和距离等。
保费收入y随国内生产总值 x的提高而逐渐提高,而且 当国内生产总值达到一定 水平后,保费收入的增幅 更加明显。因此用线性回 归模型表示x,y的关系是 不恰当的。于是应找拟合 效果好的模型。
18
SPSS 23(中文版)统计分析实用教程(第2版)
相关文档
最新文档