(新高考专用)专题 导数(含详细解析)

合集下载

新高考导数知识点

新高考导数知识点

新高考导数知识点导数是高中数学中的重要概念,它在数学和科学中有广泛的应用。

导数的概念和方法是新高考数学中需要掌握的知识点之一。

本文将介绍导数的概念、性质以及一些常用的求导法则。

一、导数的概念导数是函数在某一点处的变化率,也可以理解为函数图像上某一点的切线斜率。

设函数y=f(x),则函数在某点x=a的导数记作f'(a),其定义为:f'(a) = lim┬(h→0)⁡(f(a+h)-f(a))/h其中,h为自变量x的增量。

这一定义可以解释为函数图像上某一点处的切线斜率。

二、导数的性质1. 导数的存在性:如果函数在某一点处可导,则导数存在;反之,如果导数存在,则函数在该点可导。

2. 导数的代数运算:导数具有线性性质,具体表现为:(1) (cf(x))' = cf'(x),其中c为常数;(2) (f(x)+g(x))' = f'(x)+g'(x);(3) (f(x)g(x))' = f'(x)g(x)+f(x)g'(x);(4) (f(x)/g(x))' = (f'(x)g(x)-f(x)g'(x))/[g(x)]^2,其中g(x)≠0。

3. 导数的乘法法则:设函数u(x)和v(x)都在点x处可导,则(uv)' = u'v+uv'。

4. 导数的链式法则:设函数y=f(u)和u=g(x)都在某一点x处可导,则复合函数y=f(g(x))在该点可导,且其导数为:(f(g(x)))' = f'(g(x))g'(x)。

三、常用的求导法则在求解导数时,有一些常用的求导法则是非常有用的。

下面介绍几种常见的求导法则:1. 幂函数求导法则:设常数a和自然数n,函数y = xⁿ,则有y' = nxⁿ⁻¹。

2. 指数函数求导法则:设常数a,函数y = aˣ,则有y' = aˣlna。

专题13 导数的概念及其意义、导数的运算(解析版)

专题13 导数的概念及其意义、导数的运算(解析版)
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
6.(2020年高考数学课标Ⅲ卷理科)若直线l与曲线y= 和x2+y2= 都相切,则l的方程为( )
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【答案】D
解析:设直线 在曲线 上的切点为 ,则 ,函数 的导数为 ,则直线 的斜率 ,设直线 的方程为 ,即 ,
【小问2详解】 ,则 在点 处的切线方程为 ,整理得 ,设该切线与 切于点 , ,则 ,则切线方程为 ,整理得 ,则 ,整理得 ,令 ,则 ,令 ,解得 或 ,
令 ,解得 或 ,则 变化时, 的变化情况如下表:
0
1
0
0
0
则 的值域为 ,故 的取值范围为 .
4.(2022·新高考Ⅰ卷T22)已知函数 和 有相同 最小值.
2.函数f(x)的导函数:函数f′(x)= 为f(x)的导函数.
基本题型:
1.设 为可导函数,且满足 ,则 为()
A.1B.
C.2D.
【答案】B
【分析】利用导数的定义进行求解.
【详解】因为 ,所以 ,即
所以 .
2.已知函数 ,且 ,则 的值为()
A. B.2C. D.
【答案】D
【分析】利用导数定义,可求得 ,代入 ,即得解
②当P点不是切点时,设切点为A(x0,y0),由定义可求得切线的斜率为k=3x .
∵点A在曲线上,∴y0=x ,∴ =3x ,∴x -3x +4=0,∴(x0+1)(x0-2)2=0,
解得x0=-1或x0=2(舍去),∴y0=-1,k=3,此时切线方程为y+1=3(x+1),即3x-y+2=0.
故经过点P的曲线的切线有两条,方程为12x-y-16=0或3x-y+2=0.

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

2 时,等号成立,
所以 m 2 2 2 ,即 m , 2 2 2 .
故选:C.
【点睛】关键点睛:本题突破口是理解“隐对称点”的定义,将问题转化为 g(x) 与 f (x) 在 0, 上有交点的
问题,从而得解.
5.(2023·高二单元测试)能够把椭圆 x2 y2 1的周长和面积同时分为相等的两部分的函数称为椭圆的“可 4
f
3 1
2

当t
1 时, 2
f
t
max
f
1 2
21 8.
所以
f
x
的值域为
1 2
,
21 8
.
当 1 f x 0 时, y INT f x 1,
2
当 0 f x 1时, y INT f x 0 ,
当1 f x 2 时, y INT f x 1, 当 2 f x 21 时, y INT f x 2 ,
对选项
B:
f
x
ln
5 5
x x
,函数定义域满足
5 5
x x
0 ,解得
5
x
5 ,且
f
x
ln
5 5
x x
f
x ,函数为
奇函数,满足;
对选项 C: f x sin x 为奇函数,满足;
对选项 D: f x ex ex , f x ex ex f x ,函数为偶函数,且 f 0 2 0 ,不满足.
f
x
ex ex
1 1
,得
ex
f
1
x 1 f x
.
因为 ex
f x1 0 ,所以 1 f x
0 ,解得 1
f

新高考数学(理)函数与导数 专题12 导数的概念及运算(解析版)

新高考数学(理)函数与导数 专题12 导数的概念及运算(解析版)

2020年高考数学(理)函数与导数12 导数及其应用 导数的概念及运算一、具体目标:1.导数概念及其几何意义:(1)了解导数概念的实际背景;(2)理解导数的几何意义.2.导数的运算:(1)根据导数定义,求函数y c y x ==,,2y x =,1y x=的导数; (2)能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数. 【考点透析】 【备考重点】(1) 熟练掌握基本初等函数的导数公式及导数的四则运算法则; (2) 熟练掌握直线的倾斜角、斜率及直线方程的点斜式. 二、知识概述: 1.由0()()'()limx f x x f x f x x∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限.2.基本初等函数的导数公式及导数的运算法则原函数导函数 f (x )=c (c 为常数)f ′(x )=0()()Q n x x f n ∈= ()1-='n nx x f()x x f sin = ()x x f cos =' ()x x f cos =()x x f sin -=' ()x a x f =()a a x f x ln ='()x e x f = ()x e x f ='()x x f a log =()ax x f ln 1=' 【考点讲解】1)基本初等函数的导数公式2)导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x );(和或差的导数是导数的和与差)(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(积的导数是,前导后不导加上后导前不导) (3)2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(g (x )≠0).(商的导数是上导下不导减去上不导下导与分母平方的商)(4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.函数()y f x =在0x x =处的导数几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).【温馨提示】1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.()x x f ln =()xx f 1='2.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; 第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =. 【提示】解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.1. 【2019年高考全国Ⅲ卷】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【解析】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D . 【答案】D2.【2019年高考全国Ⅱ卷】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【解析】本题要注意已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.【真题分析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【答案】C3.【2018年高考全国Ⅰ卷】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x = 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得.故选D. 【答案】D4.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )【解析】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.原函数先减再增,再减再增,且0x =位于增区间内,因此选D . 【答案】D5.【2019年高考全国Ⅰ卷】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【解析】223(21)e 3()e 3(31)e ,x x xy x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【答案】30x y -=6.【变式】【2018年理数全国卷II 】曲线()1ln 2+=x y在点()00,处的切线方程为__________. 【解析】本题主要考查导数的计算和导数的几何意义,先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.由题中条件可得:12+='x y ,所以切线的斜率为2102=+=k ,切线方程为()020-=-x y ,即x y 2=.【答案】x y 2=7.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【解析】∵1sin 2y x '=--,∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=. 【答案】220x y +-=8.【2018年高考天津文数】已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 【解析】由函数的解析式可得,则.即的值为e.【答案】e9.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y , 则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,将点()e,1--代入,得00e 1ln 1x x ---=-,即00ln e x x =, 考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+, 当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1. 【答案】(e, 1)10.【2018年全国卷Ⅲ理】曲线()()x e ax x f 1+=在点()10,处的切线的斜率为2-,则=a ________.【解析】本题主要考查导数的计算和导数的几何意义,并利用导数的几何意义求参数的值.由题意可知:()()x x e ax ae x f 1++=',则()210-=+='a f ,所以3-=a ,故答案为-3.【答案】3-【变式】已知函数错误!未找到引用源。

高考数学最新真题专题解析—导数及其应用(新高考卷)

高考数学最新真题专题解析—导数及其应用(新高考卷)

高考数学最新真题专题解析—导数及其应用(新高考卷)【母题来源】2022年新高考I 卷【母题题文】已知函数f(x)=x 3−x +1,则( ) A. f(x)有两个极值点 B. f(x)有三个零点C. 点(0,1)是曲线y =f(x)的对称中心D. 直线y =2x 是曲线y =f(x)的切线 【答案】AC 【分析】本题考查利用导数研究函数的极值与零点以及曲线上一点的切线问题,函数的对称性,考查了运算能力以及数形结合思想,属于中档题. 【解答】解: f(x)=x 3−x +1⇒f′(x)=3x 2−1 ,令 f′(x)=0 得: x =±√33,f′(x)>0⇒x <−√33 或 x >√33 ; f′(x)<0⇒−√33<x <√33,所以 f(x) 在 (−∞,−√33) 上单调递增,在 (−√33,√33) 上单调递减,在 (√33,+∞)上单调递增,所以 f(x) 有两个极值点 (x =−√33 为极大值点, x =√33为极小值点 ) ,故 A正确 ;又 f(−√33)=−√39−(−√33)+1=1+2√39>0 , f(√33)=√39−√33+1=1−2√39>0 ,所以 f(x) 仅有 1 个零点 ( 如图所示 ) ,故 B 错 ;又 f(−x)=−x 3+x +1⇒f(−x)+f(x)=2 ,所以 f(x) 关于 (0,1) 对称,故 C 正确 ;对于 D 选项,设切点 P(x 0,y 0) ,在 P 处的切线为 y −(x 03−x 0+1)=(3x 02−1)(x −x 0) ,即 y =(3x 02−1)x −2x 03+1 ,若 y =2x 是其切线,则 {3x 02−1=2−2x 03+1=0,方程组无解,所以 D 错. 【母题来源】2022年新高考II 卷【母题题文】曲线y =ln|x|经过坐标原点的两条切线方程分别为 , . 【答案】y =x e y =−xe 【分析】本题考查函数切线问题,设切点坐标,表示出切线方程,带入坐标原点,求出切点的横坐标,即可求出切线方程,为一般题. 【解答】解:当 x >0 时,点 (x 1,lnx 1)(x 1>0) 上的切线为 y −lnx 1=1x 1(x −x 1).若该切线经过原点,则 lnx 1−1=0 ,解得 x =e , 此的切线方程为 y =xe .当 x <0 时,点 (x 2,ln(−x 2))(x 2<0) 上的切线为 y −ln (−x 2)=1x 2(x −x 2) .若该切线经过原点,则 ln(−x 2)−1=0 ,解得 x =−e , 此时切线方程为 y =−xe . 【命题意图】考察导数的概念,考察导数的几何意义,考察导数求导法则求导公式,导数的应用,考察数学运算和逻辑推导素养,考察分类讨论思想,函数和方程思想,化归与转化的数学思想,分析问题与解决问题的能力。

导数高中试题及解析答案

导数高中试题及解析答案

导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。

解析:首先,我们需要找到函数 \( f(x) \) 的导数。

根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。

2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。

解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。

因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。

3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。

解析:这是一个复合函数,我们可以使用链式法则来求导。

首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。

对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。

新高考导数知识点归纳

新高考导数知识点归纳

新高考导数知识点归纳导数是数学中的一个重要概念,主要用于描述函数的变化率。

在新高考中,导数是数学考试中的一个重要知识点。

本文将对新高考导数知识点进行归纳和总结。

一、导数的定义导数的定义是函数的变化率的极限,表示函数在某一点处的切线斜率。

对于函数y=f(x),其导数可以表示为f'(x)或者dy/dx。

导数的定义公式为:f'(x) = lim(h→0) [f(x+h)-f(x)] / h二、导数的求法1. 基本函数的导数求法①常数函数的导数为0;②幂函数的导数为其指数乘以底数的幂函数;③对数函数的导数为其自变量在底数的导数乘以1/x;④指数函数的导数为其底数的自然对数乘以指数函数本身。

2. 基本运算的导数求法①和差的导数等于各项的导数之和;②积的导数等于各项的导数分别乘积再求和;③商的导数等于分子的导数乘以分母减去分子的导数乘以分母的导数再除以分母的平方。

3. 复合函数的导数求法复合函数的导数求法可以使用链式法则。

设有函数y=f(g(x)),则其导数可以表示为:dy/dx = dy/du * du/dx4. 反函数的导数求法反函数的导数可以通过反函数与原函数的斜率互为倒数来求得。

5. 隐函数的导数求法隐函数的导数可以通过对函数方程两边同时求导,并将未知函数的导数视作隐函数的导数来求得。

三、导数的应用导数在各个学科都有广泛的应用。

以下列举几个常见的应用:1. 切线和法线导数可以用来求函数在一点处的切线和法线。

切线的斜率等于函数在该点的导数值,法线的斜率等于切线斜率的相反数。

2. 函数的极值点函数的导数可以用来求函数的极值点。

当导数在某一点处为0时,该点可能为函数的极值点。

通过求导数的一阶和二阶导数判断极值类型。

3. 函数的增减性和凸凹性函数的导数可以用来判断函数的增减性和凸凹性。

当导数大于0时,函数单调递增;当导数小于0时,函数单调递减;当导数的符号变化时,函数可能存在极值点;当导数的二阶导数大于0时,函数凸;当导数的二阶导数小于0时,函数凹。

新高考数学导数专题讲义第02讲 函数图象(学生版+解析版)

新高考数学导数专题讲义第02讲 函数图象(学生版+解析版)

第2讲 函数图象1.已知函数32()f x ax bx c =++,其导数()f x '的图象如图所示,则函数()f x 的极大值是( )A .a b c ++B .84a b c ++C .32a b +D .c2.设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x ='可能为( )A .B .C .D .3.函数sin 21cos xy x=-的部分图象大致为( )A .B .C .D .4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||xf x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x =5.函数2||()1xln x f x x =+的图象大致为( )A .B .C .D .6.函数22,01()(),01xlnxx x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( )A .B .C .D .7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D .8.函数1()()cos (f x x x x xππ=--且0)x ≠的图象可能为( )A .B .C .D .9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是( ) A . B .C .D .10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .28913.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109 C .89D .28914.函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >15.函数2()()ax bf x x c +=+的图象大致如图所示,则下列结论正确的是()A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D.0a>,0b>,0c<16.函数32()f x ax bx cx d=+++的图象如图所示,则下列结论成立的是()A.0a>,0b<,0c>,0d>B.0a>,0b<,0c<,0d> C.0a<,0b<,0c>,0d>D.0a>,0b>,0c>,0d<17.函数22||(2)sinxxy x ex=-在[2-,2]的图象大致为()A.B.C.D.18.函数2||=-+在区间[2-,2]上的图象大致为()y x e2xA.B.C.D .19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =- 21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()xln x f x e = B .()||x f x e ln x = C .||()ln x f x x=D .()(1)||f x x ln x =-24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin2x f x ex π= B .1||()cos2x f x ex π= C .()||sin 2f x ln x x π=D .()||cos2f xln xxπ=第2讲函数图象1.已知函数32=++,其导数()()f x ax bx cf x的极大值是()f x'的图象如图所示,则函数()A.a b ca b+D.ca b c++C.32++B.84【解析】解:由导函数的图象知,f x在(1,2)递增;在(2,)+∞上递减()所以当2x=时取得极大值,极大值为:f(2)84=++a b c则函数()f x的极大值是84++a b c故选:B.2.设函数()y f x=的图象如图所示,则导函数()='可能为() y f xy f x=可导,()A.B.C.D.【解析】解:根据()x x≠,y f x=的图象可知其定义域为{|0}故其导函数的定义域也为{|0}x x≠,又从原函数()=的单调性是:y f xy f x=的图象可知,函数()函数()y f x =在(,0)-∞,(0,)a 上是增函数,在(,)a b 上是减函数,在(,)b +∞是增函数,即()y f x =是先增后减再增,得出导函数是先正后负再正,根据选项中的函数()f x 的单调性知选D .故选:D .3.函数sin 21cos x y x=-的部分图象大致为( ) A .B .C .D .【解析】解:函数sin 21cos x y x =-, 可知函数是奇函数,排除选项B , 当3x π=时,2()1312f π==-A , x π=时,()0f π=,排除D .故选:C .4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||x f x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x = 【解析】解:函数图象关于原点对称,函数为奇函数,排除B ,C ,又f (1)0=,则()2||x f x ln x =无意义,排除A , 故选:D .5.函数2||()1xln x f x x =+的图象大致为( ) A . B .C .D . 【解析】解:因为2||()()()1xln x f x f x x ---==--+,所以()f x 为奇函数,图象关于原点对称,排除C ,D , 因为f (1)0=,01x <<时,()0f x <,所以排除B .故选:A .6.函数22,01()(),01xlnx x x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( ) A . B .C .D .【解析】解:若0x >,则0x -<, 则2()()1xlnx f x f x x --==-+, 若0x <,则0x ->, 则2()()()1xln x f x f x x ---==-+, 综上()()f x f x -=-,即()f x 是奇函数,图象关于圆的对称,排除C ,D ,当0x >,且0x →时,()0f x <,排除B ,故选:A .7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D . 【解析】解:|()|||()()||||x ln x xln x f x f x x x ----===--,()f x ∴是奇函数,图象关于原点对称,故A ,C 错误;又当1x >时,||0ln x lnx =>,()0f x ∴>,故D 错误,故选:B .8.函数1()()cos (f x x x x x ππ=--且0)x ≠的图象可能为( )A .B .C .D . 【解析】解:11()()cos()()cos ()f x x x x x f x x x -=-+-=--=-,∴函数()f x 为奇函数,∴函数()f x 的图象关于原点对称,故排除A ,B ,当x π=时,11()()cos 0f ππππππ=-=-<,故排除C ,故选:D .9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .【解析】解:由2211()sin()cos 424f x x x x x π=++=+, 1()sin 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D . 又1()cos 2f x x ''=-,当33x ππ-<<时,1cos 2x >,()0f x ∴''<, 故函数()y f x ='在区间(3π-,)3π上单调递减,故排除C . 故选:A . 10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④【解析】解:根据()0f x '>时,()f x 递增;()0f x '<时,()f x 递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选:B .11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞【解析】解:由函数()f x 的图象可得,当(,1)x ∈-∞-,(1,)+∞时,()0f x '>,当(1,1)x ∈-时,()0f x '<. 由()0(2)()020f x x f x x '>⎧-'>⇔⎨->⎩①或()020f x x '<⎧⎨-<⎩② 解①得,2x >,解②得,11x -<<,综上,不等式(2)()0x f x -'>的解集为(1-,1)(2⋃,)+∞, 故选:D .12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .289【解析】解:32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=, 0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--.由题意有1x 和2x 是函数()f x 的极值点,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,1223x x =-. 则2221212124416()2939x x x x x x +=+-=+=, 故选:C .13.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109C .89D .289【解析】解:32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=, 8420b c d +++=,0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--. 由题意有1x 和2x 是函数()f x 的极值,故有1x 和2x 是()0f x '=的根,1223x x ∴+=, 故选:A .14.函数2()()ax b f x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >【解析】解:依题意,函数()f x 的定义域为{|}x x c ≠-,从函数图象上看,0c ->,故0c <, 当0x =时,()0f x <,所以20b c<,所以0b <, 根据函数图象,当x →∞时,0ax b +>,故0a >,故选:B .15.函数2()()ax b f x x c +=+的图象大致如图所示,则下列结论正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D .0a >,0b >,0c < 【解析】解:函数2()()ax b f x x c +=+, x c ∴=-时,函数值不存在,结合函数图象得0c >,排除B 和D ; 当0x =时,(0)f b =,结合函数图象得0b >,排除C . 故选:A .16.函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d < 【解析】解:由图可知,(0)0f d =>, 32()f x ax bx cx d =+++,2()32f x ax bx c '∴=++, 从图象可知,()f x 先递增,后递减,再递增,且极大值点和极小值点均大于0, 其导函数的图象大致如下:0a ∴>,03ba ->,△2(2)430b ac =->,(0)0f '>,0a ∴>,0b <,0c >.故选:A .17.函数22||(2)sin x x y x e x =-在[2-,2]的图象大致为() A .B .C .D .【解析】解:根据题意,函数22||(2)sin x x y x e x=-在[2-,2]中,必有0x ≠;又由222||2||()()[2()](2)()sin()sin x x x x f x x e x e f x x x ---=--=--=--,函数为奇函数,排除B ,f (1)12(2)1sin1sin1e e -=-=≈-,排除D , f (2)224(22)2sin 2e =⨯-≈,排除C ; 故选:A .18.函数2||2x y x e =-+在区间[2-,2]上的图象大致为( )A .B .C .D .【解析】解:根据题意,函数2||()2x y f x x e ==-+,有f (2)280e =-+<,排除A ,又由(0)1f =,11()122f =-+>,f (1)21e =-+<,排除C 、D ,故选:B .19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .【解析】解:函数2||22x y x =-在[2-,2]是偶函数,排除选项B 、D , 当2x =时,f (e )40=>,排除选项A . 故选:C .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =- 【解析】解:由图可知,函数()f x 为偶函数,于是只需考查0x >的情况即可, 且当0x >时,()f x 的极大值点小于1.选项A ,2()f x lnx x =-,1()2f x x x'∴=-,令()0f x '=,则x =,当x ∈时,()0f x '>,()f x 单调递增;当x ∈,)+∞时,()0f x '<,()f x 单调递减,()f x ∴在(0,)+∞上的极大值点为1x =<,符合题意; 同理可得,选项B 中函数对应的极大值点为1x =, 选项C 中函数对应的极大值点为1x =,选项D 中函数对应的极大值点为21x =>,均不符合题意, 故选:A .21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+【解析】解:选项A ,f (1)1=-与图象矛盾,故A 错误; 选项C ,1()10f e e=-<与图象矛盾,故C 错误;选项D ,(1)1f -=与图象矛盾,故D 错误. 故选:B .22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解析】解:由图象可知,函数的定义域为R ,故排除C ; 由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ; 故选:B .23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()x ln x f x e = B .()||x f x e ln x = C .||()ln x f x x=D .()(1)||f x x ln x =-【解析】解:由图象可知,当x →+∞时,()0f x →,当x →-∞时,()f x →+∞ 对于A :满足要求,对于B :当x →+∞时,()||x f x e ln x =→+∞,不满足, 对于C :当x →-∞时,()||0x f x e ln x =→,不满足, 对于D :当x →-∞时,()(1)||f x x ln x =-→+∞,不满足, 故选:A .24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-【解析】解:由函数的图象可知函数是偶函数,选项A 函数是奇函数不成立.0x =,函数没有意义,所以选项C 的函数不成立; 1x >时,11()11||||f x x x x x==--,函数是减函数,所以选项D 不成立;故选:B .25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+【解析】解:由图可知()02f π>,故可排除A ,B ;对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C . 故选:D .26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin2x f x ex π= B .1||()cos2x f x ex π= C .()||sin2f x ln x x π= D .()||cos2f x ln x x π=【解析】解:由图可知,函数()f x 为偶函数,可排除选项A 和C ; 对于选项B 和D ,都有f (1)0=, 当(0,1)x ∈时,1||()cos02x f x e x π=>,与函数图象不符;()||cos02f x ln x x π=<,与函数图象符合,所以选项B 错误. 故选:D .。

【新高考数学】导数的概念及计算导数的概念及计算(含答案)

【新高考数学】导数的概念及计算导数的概念及计算(含答案)

【新高考数学】导数的概念及计算【套路秘籍】一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx = 0lim x ∆→ ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ΔyΔx =0limx ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 二.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函3.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. 数f ′(x )=0lim x ∆→ f (x +Δx )-f (x )Δx 称为函数y =f (x )在开区间内的导函数. 【套路修炼】考向一 导数的概念【例1】设)(x f 是可导函数,且3)2()(lim 000=∆∆+-∆-→∆xx x f x x f x ,则=')(0x f 。

导数的概念及应用(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)

 导数的概念及应用(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)

考向14导数的概念及应用【2022·全国·高考真题】曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】1ey x = 1e y x =-【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1ey x =;1e y x =-【2022·全国·高考真题】若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-, ∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞,故答案为:()(),40,-∞-+∞1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线()y f x =“在”点00(,)P x y 处的切线与“过”点00(,)P x y 的切线的区别:曲线()y f x =在点00(,)P x y 处的切线是指点P 为切点,若切线斜率存在,切线斜率为()0k f x '=,是唯一的一条切线;曲线()y f x =过点00(,)P x y 的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩. 2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.一、导数的概念和几何性质1.概念函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.二、导数的运算 1.求导的基本公式 基本初等函数 导函数 ()f x c =(c 为常数) ()0f x '= ()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠, ()ln x f x a a '=()log (01)a f x x a a =>≠, 1()ln f x x a'=()x f x e =()x f x e '=()ln f x x = 1()f x x'=()sin f x x = ()cos f x x '= ()cos f x x =()sin f x x '=-2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:1.(2022·青海·海东市第一中学模拟预测(理))曲线2e x y x -=在2x =处的切线方程为( ) A .34y x =+ B .43y x =+ C .34y x =- D .43y x =-【答案】C【解析】()21e x y x -'=+,2|3x y ='=,曲线2x y xe -=在点(2,2)处的切线方程为()232y x -=-,即34y x =-.故选:C.2.(2022·湖南·长沙县第一中学模拟预测)函数()2ln 1sin y x x =++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310 B .±310C .35D .±35【答案】C【解析】因为()2ln 1sin y x x =++ 所以2cos 1y x x '=++ 当0x =时,3y ,此时tan 3α=,∴2222sin cos 2tan 63sin 22sin cos sin cos tan 1915ααααααααα⋅=⋅====+++.故选:C.3.(2022·湖南·模拟预测)已知P 是曲线)2:ln 3C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)3,0⎡⎣ B .)22,0⎡⎣C .(,23-∞D .(,22-∞【答案】D【解析】因为)2ln 3y x x a x =++,所以123y x a x'=++, 因为曲线在M 处的切线的倾斜角ππ,32θ⎡⎫∈⎪⎢⎣⎭,所以πtan33y ≥'0x >恒成立,即1233x a x++-≥对任意0x >恒成立, 即12a x x≤+,又1222x x +≥,当且仅当12x x =,即22x =时,等号成立,故22a ≤, 所以a 的取值范围是(,22⎤-∞⎦. 故选:D .4.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( )A .1-B .23-C .12D .1【答案】A【解析】由切点()1,b 在曲线上,得23ab +=①; 由切点()1,b 在切线上,得60k b -+=②; 对曲线求导得()242ay x -'=+,∴2143x ay k ='-==,即49a k -=③, 联立①②③236049a b k b a k+⎧=⎪⎪-+=⎨⎪-=⎪⎩,解之得1351a b k =⎧⎪=⎨⎪=-⎩故选:A.1.(2022·广东·模拟预测)如图是网络上流行的表情包,其利用了“可倒”和“可导”的谐音生动形象地说明了高等数学中“连续”和“可导”两个概念之间的关系.根据该表情包的说法,()f x 在0x x =处连续是()f x 在0x x =处可导的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由“连续不一定可导”知,“()f x 在0x x =处连续”不能推出“()f x 在0x x =处可导”, 比如函数()f x x =在0x =处连续,但是()f x x =在0x =处不可导;由“可导一定连续”知,“()f x 在0x x =处可导”可以推出“()f x 在0x x =处连续”. 因此()f x 在0x x =处连续是()f x 在0x x =处可导的必要不充分条件 答案选:B2.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<- B .3n m >- C .0n < D .30n m <=-【答案】A【解析】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A3.(2022·全国·模拟预测(理))过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0 B .1 C .2 D .3【答案】D【解析】设切点为(),e mm m ,()1e x y x '=+,∴切线斜率()1e m k m =+, ∴切线方程为:()()e 1e m m y m m x m -=+-;又切线过()0,P b ,()2e 1e e m m mb m m m m ∴=-+=-;设()2e m f m m =-,则()()2e mf m m m '=-+,∴当()(),20,m ∈-∞-+∞时,()0f m '<;当()2,0m ∈-时,()0f m '>;()f m ∴在(),2-∞-,()0,∞+上单调递减,在()2,0-上单调递增,又()242e f -=-,()00f =,()0f m ≤恒成立,可得()f m 图象如下图所示,则当240e b -<<时,y b =与()f m 有三个不同的交点, 即当240eb -<<时,方程2e m b m =-有三个不同的解,∴切线的条数为3条. 故选:D.4.(2022·湖北·黄冈中学模拟预测)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则14a b+的最小值为( ) A .8B .9C .10D .13【解析】设切点为00(,)x y ,ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,令0011,1x b x b ==-+,则0ln(1)0y b b =-+= ,故切点为(1,0)b -, 代入y x a =-,得1a b +=, a 、b 为正实数,则141444()()5529b a b a a b a b a b a b a b+=++=++≥+⋅, 当且仅当13a =,23b =时,14a b +取得最小值9,故选:B5.(2022·四川省内江市第六中学模拟预测(理))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .eC eD .2e【答案】B【解析】()2f x x '=,()2a g x x'=,设公切线与()21f x x =+的图象切于点()211,1x x +,与曲线:()2ln 1C g x a x =+切于点()22,2ln 1x a x +,∴()()2221211221212ln 1122ln 2a x x a a x x x x x x x x +-+-===--,故12a x x =,所以212211212ln 2x x x x x x x -=-,∴122222ln x x x x =-⋅,∵12a x x =,故2222222ln a x x x =-,设22()22ln (0)h x x x x x =-⋅>,则()2(12ln )h x x x '=-,∴()h x 在e)上递增,在(e,)+∞上递减,∴max ()(e)e h x h ==, ∴实数a 的最大值为e 故选:B.6.(2022·云南师大附中模拟预测(理))若函数()y f x =的图象上存在两个不同的点A ,B ,使得曲线()y f x =在这两点处的切线重合,则称函数()y f x =为“自重合”函数.下列函数中既是奇函数又是“自重合”函数的是A .ln y x x =+B .3y x =C .cos y x x =-D .sin y x x =+【答案】D【解析】对于A ,C ,函数都不是奇函数,故排除. 若曲线()y f x =在这两点处的切线重合,则首先要保证两点处导数相同;对于B ,23y x '=,若斜率相同,则切点300()A x x ,,300()B x x --,,代入解得切线方程分别为230032y x x x =-,230032y x x x =+;若切线重合,则00x =,此时两切点A ,B 为同一点,不符合题意,故B 错误;对于D ,1cos y x '=+,令1cos 1y x '=+=,得π()2k x k =∈Z ,则取ππ5π5π112222A B ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,,,,切线均为1y x =+,即存在不同的两点A ,B 使得切线重合,故D 正确. 故选:D .7.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e em -<< B .250e m -<< C .10em -<<D .e m <【答案】B【解析】由()e xf x x =,()()1e x f x x '=+,故当1x <-时,()0f x '<,()f x 单调递减,且()0f x <;当1x >-时,()0f x '>,()f x 单调递增,结合图象易得,过点()()1,P m m ∈R 至多有3条直线与函数()xf x xe =的图像相切,故3n =.此时,设切点坐标为()00,x y ,则切线斜率()001e x k x =+⋅,所以切线方程为()()00000e e 1x xy x x x x -=+⋅-,将()1,P m 代入得()0201e x m x x =-++⋅,存在三条切线即函数()21e x m x x =-++⋅有三个不同的根,又()()()1e 2x g x x x '=--+⋅,易得在()2,1-上,()0g x '>,()g x 单调递增;在(),2-∞-和()1,+∞上,()0g x '<,()g x 单调递减,画出图象可得当()20g m -<<,即250e m -<<时符合题意故选:B8.(多选题)(2022·辽宁·渤海大学附属高级中学模拟预测)已知0a >,0b >,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是( ) A .219ab+≥ B .19ab ≤C 225a b +D 22a b ≤【答案】ACD【解析】设切点为()00,x y ,因为1e x y -'=,所以0010010e 12e 1x x y x a y b --⎧=⎪=+⎨⎪=-+⎩,解得01x =, 122a b +=-,即21a b +=,对于A ,2121(2)a b a b a b ⎛⎫+=++ ⎪⎝⎭2255249b a a b=++≥+=,当且仅当13a b ==时,等号成立,故A 正确; 对于B ,122a b ab =+≥18ab ≤,当且仅当14a =,12b =时,等号成立,故B 不正确;对于C 2222(12)a b a a ++-2541a a -+2215555a ⎛⎫=-+ ⎪⎝⎭,当且仅当25a =,15b =时,等号成立,故C 正确;对于D ,由2222a b a b ++≥⎝⎭22a b ⇒≤D 正确. 故选:ACD9.(多选题)(2022·山东潍坊·模拟预测)过平面内一点P 作曲线|ln |y x =两条互相垂直的切线12,l l ,切点为P 1、P 2(P 1、P 2不重合),设直线12,l l 分别与y 轴交于点A ,B ,则下列结论正确的是( ) A .P 1、P 2两点的横坐标之积为定值 B .直线P 1P 2的斜率为定值 C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(0,1] 【答案】ABC【解析】因为ln ,01ln ln ,1x x y x x x -<<⎧==⎨≥⎩,所以,当01x <<时,1y x '=-;当1≥x 时,1y x'=, 不妨设点1P ,2P 的横坐标分别为12,x x ,且12x x <, 若1201x x <<≤时,直线1l ,2l 的斜率分别为111k x =-,221k x =-,此时121210k k x x =>,不合题意; 若211x x >≥时,则直线1l ,2l 的斜率分别为111k x =,221k x =,此时121210k k x x =>,不合题意. 所以1201x x <≤<或1201x x <<≤,则111k x =-,221k x =,由题意可得121211k k x x =-=-,可得121=x x , 若11x =,则21x =;若21x =,则11x =,不合题意,所以1201x x <<<,选项A 对; 对于选项B ,易知点()111,ln P x x -,()222,ln P x x ,所以,直线12PP 的斜率为()1212212121ln ln ln 0P P x x x x k x x x x +===--,选项B 对;对于选项C ,直线1l 的方程为()1111ln y x x x x +=--,令0x =可得11ln y x =-,即点10,1ln A x , 直线2l 的方程为()2221ln y x x x x -=-,令0x =可得21ln 1ln 1y x x =-=--,即点()10,ln 1B x --, 所以,()()111ln 1ln 2AB x x =----=,选项C 对;对于选项D ,联立112211ln {1ln 1y x x x y x x x =-+-=+-可得1212121221P x x xx x x x ==++, 令()221xf x x =+,其中()0,1∈x ,则()()()2222101x f x x -'=>+,所以,函数()f x 在0,1上单调递增,则当()0,1∈x 时,()()0,1f x ∈, 所以,()121210,121ABP P x S AB x x =⋅=∈+△,选项D 错. 故选:ABC.10.(多选题)(2022·江苏·模拟预测)设函数()()()2e R xf x x ax a a -=++∈的导函数()f x '存在两个零点1x 、()212x x x >,当a 变化时,记点()()11,x f x 构成的曲线为1C ,点()()22,x f x 构成的曲线为2C ,则( )A .曲线1C 恒在x 轴上方B .曲线1C 与2C 有唯一公共点C .对于任意的实数t ,直线y t =与曲线1C 有且仅有一个公共点D .存在实数m ,使得曲线1C 、2C 分布在直线y x m =-+两侧 【答案】AD【解析】对于A 选项,因为()()()2e R x f x x ax a a -=++∈,则()()22e x f x a x x -'⎡⎤=--⎣⎦,令()0f x '=可得0x =或2x a =-,因为函数()f x '存在两个零点1x 、()212x x x >,则20a -≠,即2a ≠. 当20a -<时,即当2a >时,10x =,则()12f x a =>,当20a ->时,即当2a <时,12x a =-,则()()()()121124e 2e x a f x f a a x --=-=-=+,则曲线1C 为函数()()()2e0xg x x x -=+>的图象以及射线()02x y =>,且当0x >时,()()2e 0xg x x -=+>,所以,曲线1C 在x 轴上方,A 对;对于B 选项,当20a -<时,即当2a >时,22x a =-,则()()()()222224e 2e x a f x f a a x --=-=-=+,当20a ->时,即当2a <时,20x =,则()22f x a =< 所以,曲线2C 为函数()()()2e0xh x x x -=+<的图象以及射线()02x y =<,由图可知,曲线1C 、2C 无公共点,B 错; 对于C 选项,对于函数()2e x x g x +=,()()1210e exx x x g x -++'==-<, 此时函数()g x 在()0,∞+上单调递减,且()0g x >,结合图象可知,当0m ≤时,直线y t =与曲线1C 没有公共点,C 错;对于D 选项,对于函数()2e x x x ϕ+=,()1ex x x ϕ+'=-,则()01ϕ'=-, 又因为()02ϕ=,所以,曲线()y x ϕ=在0x =处的切线方程为2y x -=-,即2y x =-+. 构造函数()()2222e e x xx x p x x x ++=--+=+-,则()00p =, ()1e 11e e x x xx x p x +--'=-=,令()e 1xm x x =--,则()e 1x m x '=-,当0x <时,()0m x '<,此时函数()m x 单调递减,当0x >时,()0m x '>,此时函数()m x 单调递增,所以,()()00m x m ≥=,所以,()e 10ex xx p x --'=≥且()p x '不恒为零, 所以,函数()p x 在R 上为增函数, 当0x <时,()()00p x p <=,即22e xx x +<-+, 当0x >时,()()00p x p >=,即22e xx x +>-+, 所以,曲线1C 、2C 分布在直线2y x =-+的两侧,D 对.故选:AD.11.(2022·全国·南京外国语学校模拟预测)己知函数22f xx ,()3ln g x x ax =-,若曲线()y f x =与曲线()y g x =在公共点处的切线相同,则实数=a ________. 【答案】1【解析】设函数22f xx ,()3ln g x x ax =-的公共点为()00,x y ,则()()()()0000,,f xg x f x g x ''⎧=⎪⎨=⎪⎩即200000023,32,0,x lnx ax x a x x ⎧-=-⎪⎪=-⎨⎪⎪>⎩则2003ln 10x x +-=.令()23ln 1h x x x =+-,易得()h x 在()0,∞+上单调递增,所以以由2003ln 10x x +-=,解得01x =,所以切点为()1,1-,所以13ln1a =-,则1a =.故答案为:1.12.(2022·江苏·阜宁县东沟中学模拟预测)已知0a >,0b >,直线y x a =+与曲线1e 21x y b -=-+相切,则21a b+的最小值为___________. 【答案】8【解析】设直线y x a =+与曲线121x y e b -=-+相切于点()00,x y 由函数121x y e b -=-+的导函数为1x y e -'=,则001|e 1x x x k y -='===解得01x =所以0122y a b =+=-,即21a b +=则()21214424428b a b a a b a b a b a b a b ⎛⎫+=++=++≥+⨯ ⎪⎝⎭当且仅当4b aa b =,即11,24a b ==时取得等号. 故答案为:813.(2022·山东泰安·模拟预测)已知函数32()f x x ax =-+,写出一个同时满足下列两个条件的()f x :___________.①在[1,)+∞上单调递减;②曲线()(1)y f x x =≥存在斜率为1-的切线. 【答案】32()f x x x (答案不唯一)【解析】若()f x 同时满足所给的两个条件,则2()320f x x ax '=-+≤对[1,)x ∈+∞恒成立,解得:min32a x ⎛⎫≤ ⎪⎝⎭,即32a ≤, 且2()321f x x ax '=-+=-在[)1,+∞上有解,即3122x a x=-在[)1,+∞上有解,由函数的单调性可解得:31122x a x=-≥. 所以312a ≤≤.则32()f x x x (答案不唯一,只要()f x 满足32()f x x ax =-+(312a ≤≤即可) 故答案为:32()f x x x14.(2022·山东潍坊·模拟预测)已知()e 1xf x =-(e 为自然对数的底数),()ln 1g x x =+,请写出()f x 与()g x 的一条公切线的方程______. 【答案】e 1y x =-或y x =【解析】设公切线与()f x 相切于点(),e 1mm -,与()g x 相切于点(),ln 1n n +,()e x f x '=,()1g x x '=,∴公切线斜率1e mk n==; ∴公切线方程为:()e 1e m m y x m -+=-或()1ln 1y n x n n--=-, 整理可得:()e 1e 1m my x m =---或1ln y x n n=+, ()1e 1e 1ln m m n m n⎧=⎪∴⎨⎪-+=-⎩,即()ln 1e 1ln mm n m n =-⎧⎨-+=-⎩, ()()()1e 11e 10m m m m m ∴-+-=--=,解得:1m =或0m =, ∴公切线方程为:e 1y x =-或y x =.故答案为:e 1y x =-或y x =.15.(2022·山东师范大学附中模拟预测)已知函数()()2e ,xf xg x x a==,若存在一条直线同时与两个函数图象相切,则实数a 的取值范围__________.【答案】2e (,0),4∞∞⎡⎫-⋃+⎪⎢⎣⎭【解析】数形结合可得:当0a <,存在一条直线同时与两函数图象相切;当0a >,若存在一条直线同时与两函数图象相切, 则,()0x ∈+∞时,2e xx a=有解,所以21,(0,)ex x x a ∞=∈+,令2(),(0,)ex x h x x ∞=∈+,因为22(2)()e e x x x x x x h x --==', 则当(0,2)x ∈时,()0h x '>,()h x 为单调递增函数; 当(2,)x ∈+∞时,()0h x '<,()h x 为单调递减函数; 所以()h x 在2x =处取得极大值,也是最大值, 最大值为24(2)eh =,且()0h x >在,()0x ∈+∞上恒成立, 所以2140,e a ⎛⎤∈ ⎥⎝⎦,即2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭. 故答案为:2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭16.(2022·广东佛山·模拟预测)已知函数()()211ln 21,4212,2x x f x x x a x ⎧->⎪⎪=⎨⎪++≤⎪⎩,函数在1x =处的切线方程为____________.若该切线与()f x 的图象有三个公共点,则a 的取值范围是____________. 【答案】 210x y --=【解析】切点坐标为()1,0,()142f x x '=-,()112k f '==,所以切线l 方程为1122y x =-. 函数5124f a ⎛⎫=+ ⎪⎝⎭,即()f x 过点15,24a ⎛⎫+ ⎪⎝⎭,当切线l 过点15,24a ⎛⎫+ ⎪⎝⎭时,切线l 与函数()f x 的图象有三个公共点,将其代入切线l 方程得32a =-;当切线l 与()22f x x x a =++(12x ≤)相切时直线与函数()f x 的图象只有两个公共点, 设切线l :1122y x =-与()22f x x x a =++(12x ≤)在0x x =处相切,()001222k f x x '==+=,034x =-,所以切点坐标为315,416a ⎛⎫-- ⎪⎝⎭,代入切线方程解得116a =,因此直线与曲线有三个交点时,31216a -<≤.故答案为:32-;31,216⎡⎫-⎪⎢⎣⎭1.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【解析】 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-, 由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.2.(2020·全国·高考真题(理))若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l 在曲线y x =(00x x ,则00x >,函数y x =2y x'=,则直线l 的斜率02k x , 设直线l 的方程为)0002y x x x x =-,即0020x x x -+=,由于直线l 与圆2215x y +=00145x + 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.3.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B. 【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 4.(多选题)(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,()231f x x '=-,令()0f x '>得3x >3x <, 令()0f x '<得33x <<, 所以()f x 在33(上单调递减,在3(,-∞,3()+∞上单调递增,所以3x =是极值点,故A 正确; 因323(10f =>,323(10f =>,()250f -=-<, 所以,函数()f x 在3,⎛-∞ ⎝⎭上有一个零点, 当3x ≥()30f x f ≥>⎝⎭,即函数()f x 在3⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误. 故选:AC.5.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】 1e y x = 1ey x =- 【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1e y x =;1ey x =- 6.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++,切线方程为:()()()0000e 1e x xy x a x a x x -+=++-,∵切线过原点,∴()()()0000e 1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞, 故答案为:()(),40,-∞-+∞7.(2021·全国·高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 【答案】0,1 【解析】 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1211x e A x M +,2221x e B x N =+,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11xxxxe e x x e AM e y M x -+=---+,所以()112221111x x x e x e x AM ++,同理2221x e B x N +, 所以()1111212222122221110,1111x x x x x x x e x e e e e e e Nx AM B -===+⋅++∈+++⋅=. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 8.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 【答案】520x y -+= 【解析】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=.9.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x =【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =. 【点睛】本题考查导数的几何意义,属于基础题.10.(2022·全国·高考真题(文))已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线. (1)若11x =-,求a ; (2)求a 的取值范围. 【答案】(1)3 (2)[)1,-+∞ 【解析】 【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围. (1)由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;(2)2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y xx x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭, 令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >, 令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭ 13-1,03⎛⎫- ⎪⎝⎭0 ()0,11 ()1,+∞()h x '-+-0 +()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.11.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+, 导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上 单调递增,在113113,33a a ⎡⎤⎢⎥⎣-+-⎦-上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+, 则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根. 12.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)[方法一]:导数法显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样), 则()423241441144(24)44t t S t t t t t++==++, 所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()St 在()0,2上递减,在()2,+∞上递增,所以2t =时,()St 取得极小值,也是最小值为()16162328S ⨯==. [方法二]【最优解】:换元加导数法()()2222121121()12(0)2|2|4||t t S t t t t t ++=⋅⋅+=⋅≠.因为()S t 为偶函数,不妨设0t >,221()4S t t =⋅,令a t 2,0t a a =>.令412()a g a a +=,则面积为21[()]4S g a =,只需求出412()a g a a +=的最小值.34422412312()a a a a g a a a ⋅---='=()()()222223223(2)(2)2a a a a a a a -++==. 因为0a >,所以令()0g a '=,得2a =随着a 的变化,(),()g a g a '的变化情况如下表: a()0,22()2,+∞()g a '-0 +()g a减 极小值增所以min [()](2)822g a g === 所以当2a =2t =时,2min 1[()](82)324S t =⨯=. 因为[()]S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==. 综上,当2t =±时,()S t 的最小值为32. [方法三]:多元均值不等式法同方法二,只需求出412()(0)a g a a a+=>的最小值. 令433412444444()482a g a a a a a a a a a a+==+++≥⋅⋅⋅= 当且仅当34a a=,即2a = 所以当2a =2t =时,2min 1[()](82)324S t =⨯=.因为()S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==.综上,当2t =±时,()S t 的最小值为32. [方法四]:两次使用基本不等式法同方法一得到()()()()()22222222222121241646464()41626416324||444tt t t S t t t t t t ++++++=≥==+++≥=+++ ,下同方法一. 【整体点评】(Ⅱ)的方法一直接对面积函数求导数,方法二利用换元方法,简化了运算,确定为最优解;方法三在方法二换元的基础上,利用多元均值不等式求得最小值,运算较为简洁;方法四两次使用基本不等式,所有知识最少,配凑巧妙,技巧性较高.。

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。

高考数学最新真题专题解析—函数与导数:函数性质(新高考卷)

高考数学最新真题专题解析—函数与导数:函数性质(新高考卷)

高考数学最新真题专题解析—函数与导数:函数性质(新高考卷)【母题来源】2022年新高考I卷【母题题文】设a=0.1e0.1,b=19,c=−ln0.9,则()A. a<b<cB. c<b<aC. c<a<bD. a<c<b【答案】C【分析】本题考查了利用导数比较大小,关键是构造合适的函数,考查了运算能力,属于较难题.【解答】解:a=0.1e0.1,b=0.11−0.1,c=−ln(1−0.1), ①lna−lnb=0.1+ln(1−0.1),令f(x)=x+ln(1−x),x∈(0,0.1],则f′(x)=1−11−x =−x1−x<0,故f(x)在(0,0.1]上单调递减,可得f(0.1)<f(0)=0,即lna−lnb<0,所以a<b; ②a−c=0.1e0.1+ln(1−0.1),令g(x)=xe x+ln(1−x),x∈(0,0.1],则g′(x)=xe x+e x−11−x (1+x)(1−x)e x−11−x,令k(x)=(1+x)(1−x)e x−1,所以k′(x)=(1−x2−2x)e x>0,所以k(x)在(0,0.1]上单调递增,可得k(x)>k(0)>0,即g′(x)>0,所以g(x)在(0,0.1]上单调递增,可得g(0.1)>g(0)=0,即a−c>0,所以a>c.故c<a<b.【母题来源】2022年新高考I卷【母题题文】已知函数f(x)及其导函数f′(x)的定义域为R,记g(x)=f′(x).若f(32−2x),g(2+x)均为偶函数,则( )A. f(0)=0B. g(−12)=0C. f(−1)=f(4)D. g(−1)=g(2)【答案】BC 【解析】本题主要考查导函数与原函数的关系,函数的对称性及奇偶性,属于难题. 【解答】解:由f(32−2x)为偶函数可知f(x)关于直线x =32对称, 由g(2+x)为偶函数可知g(x)关于直线x =2对称,结合g(x)=f′(x),根据g(x)关于直线x =2对称可知f(x)关于点(2,t)对称, 根据f(x)关于直线x =32对称可知:g(x)关于点(32,0)对称,综上,函数f(x)与g(x)均是周期为2的周期函数,所以有f(0)=f(2)=t ,所以A 不正确;f(−1)=f(1),f(4)=f(2),f(1)=f(2),故f(−1)=f(4),所以C 正确. g(−12)=g(32)=0,g(−1)=g(1),所以B 正确;又g(1)+g(2)=0,所以g(−1)+g(2)=0,所以D 不正确. 【母题来源】2022年新高考II 卷【母题题文】若函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( ) A. −3 B. −2C. 0D. 1【答案】A解: 令 y =1 得 f(x +1)+f(x −1)=f(x)⋅f(1)=f(x)⇒f(x +1)=f(x)−f(x −1)故 f(x +2)=f(x +1)−f(x) , f(x +3)=f(x +2)−f(x +1) , 消去 f(x +2) 和 f(x +1) 得到 f(x +3)=−f(x) ,故 f(x) 周期为 6; 令 x =1 , y =0 得 f(1)+f(1)=f(1)·f(0)⇒f(0)=2 , f(2) =f(1)−f(0)=1−2=−1 , f(3)=f(2)−f(1)=−1−1=−2 , f(4)=f(3)−f(2)=−2−(−1)=−1 , f(5)=f(4)−f(3)=−1−(−2)=1 , f(6)=f(5)−f(4)=1−(−1)=2 ,故 ∑f 22k=1(k)=3[f(1)+f(2)+⋯+f(6)]+f(19)+f(20)+f(21)+f(22) =f(1)+f(2)+f(3)+f(4)=1+(−1)+(−2)+(−1)=−3 即 ∑(22k=1k)=−3 . 【命题意图】(1) 考察函数的性质,考察函数对称性,周期性,考察函数的单调性。

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。

2024届新高考数学大题精选30题--导数(解析版)

2024届新高考数学大题精选30题--导数(解析版)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。

2024年新高考版数学专题1_4.2 导数的应用

2024年新高考版数学专题1_4.2 导数的应用


a,
a
2b 3
上单调递减,此时需a<
a
2b 3
,得0<a<b,∴a2<ab.

(ii)若a<0,要使函数f(x)在x=a处取得极大值,则需f(x)在
a
2b 3
,
a
上单调递
增,在(a,+∞)上单调递减,此时需满足a> a 2b ,得b<a<0,∴a2<ab.综上可知,
3
a2<ab,故选D.
1.函数的极值
考点二 导数与函数的极(最)值
极值 极小值点与极小值
极大值点与极大值
极值与极值点
满足条件
函数y=f(x)在点x=a处的函数值f(a)比它在点x=a 附近其他点处的函数值都小, f '(a)=0;在点x=a附 近的左侧f '(x)<0,右侧f '(x)>0,就把a叫做函数y= f(x)的极小值点, f(a)叫做函数y=f(x)的极小值
时, f '(x)>0;当x∈(e,+∞)时, f '(x)<0,所以f(x)在[2,e)上单调递增,在(e,+∞)
上单调递减,若2≤t<e,则f(t)与f(t+1)的大小关系不确定,即 ln(t 1) 与 ln t 的
t 1 t
大小关系不确定,从而C错误
对于D,log(t+1)(t+2)-log(t+2)(t+3)=
对于C,当t=2时,1+ 1 -log23= 3 - ln 3 = 3ln 2 2ln 3 = ln 8 ln 9 <0,故C错误; 或假
2

导数与函数的单调性-高考数学重难点题型(新高考地区专用)(解析版)

导数与函数的单调性-高考数学重难点题型(新高考地区专用)(解析版)

专题3.3 导数与函数的单调性-重难点题型精讲1.函数的单调性与导数的关系条件 恒有 结论函数y =f (x )在区间(a,b)上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数2一般地,如果一个函数在某一范围内导数的绝对值较大,那么在这个范围内函数值变化得快,这时,函数的图象就比较“陡峭”(向上或向下);如果一个函数在某一范围内导数的绝对值较小,那么在这个范围内函数值变化得慢,函数的图象就“平缓”一些. 常见的对应情况如下表所示.【题型1 不含参函数的单调性】 【方法点拨】确定不含参函数的单调性、单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间;(4)由此可得出函数f (x )的单调性;【例1】(2022•扬州开学)下列函数中,在(1,+∞)上为增函数的是( ) A .y =x 3﹣3xB .y =lnx ﹣xC .y =x +4xD .y =x 2﹣3x +1【解题思路】根据题意,依次分析选项中函数的单调性,即可得答案. 【解答过程】解:根据题意,依次分析选项:对于A ,y =x 3﹣3x ,其导数y ′=3x 2﹣3,在区间(1,+∞)上,y ′>0,函数为增函数,符合题意, 对于B ,y =lnx ﹣x ,其导数y ′=1x −1=1−xx ,在区间(1,+∞)上,y ′<0,函数为减函数,不符合题意,对于C ,y =x +4x,其导数y ′=1−4x 2,在区间(1,2)上,y ′<0,函数为减函数,不符合题意, 对于D ,y =x 2﹣3x +1是二次函数,在区间(1,32)上为减函数,不符合题意, 故选:A .【变式1-1】(2022春•湖北期末)函数f (x )=−12x 2﹣lnx 的递减区间为( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)【解题思路】先对函数求导,然后结合导数与单调性关系可求. 【解答过程】解:f ′(x )=﹣x −1x<0,x >0, 故函数的单调递减区间为(0,+∞). 故选:D .【变式1-2】(2022春•长寿区期末)函数f(x)=x −6x −5lnx 的单调递减区间为( ) A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)【解题思路】求出函数的导数,解关于导函数的不等式,求出函数的递减区间即可.【解答过程】解:∵f(x)=x −6x−5lnx ,定义域是(0,+∞),∴f ′(x )=1+6x 2−5x =x 2−5x+6x 2=(x−2)(x−3)x 2,令f ′(x )<0,解得2<x <3, 故f (x )的递减区间是(2,3), 故选:B .【变式1-3】(2022春•吉林期末)函数f (x )=﹣lnx +x 的递增区间是( ) A .(﹣∞,0)∪(1,+∞) B .(﹣∞,0)和(1,+∞)C .(1,+∞)D .(﹣1,+∞)【解题思路】先写出函数的定义域,求导后,再解不等式f '(x )>0,即可.【解答过程】解:因为f (x )=﹣lnx +x ,所以f '(x )=−1x +1,定义域为(0,+∞), 令f '(x )>0,则−1x +1>0,解得x >1, 所以f (x )的递增区间为(1,+∞). 故选:C .【题型2 含参函数的单调性】 【方法点拨】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 【例2】(2022春•巴宜区校级期末)已知函数f (x )=2x 3﹣ax 2+b . (1)若函数f (x )在x =1处取得极小值﹣4,求实数a ,b 的值; (2)讨论f (x )的单调性. 【解题思路】(1)根据题可得{f ′(1)=0f(1)=−4,解得a ,b .(2)求导并令f ′(x )=0,得x =0或x =a 3,分三种情况:当a =0时,当a <0时,当a >0时,讨论f (x )的单调性.【解答过程】解:(1)f ′(x )=6x 2﹣2ax , 则{f ′(1)=0f(1)=−4,即{6−2a =02−a +b =−4,解得{a =3b =−3.(2)f ′(x )=6x 2﹣2ax =2x (3x ﹣a ), 令f ′(x )=0,得x =0或x =a 3,当a =0时,f ′(x )≥0,f (x )在(﹣∞,+∞)上单调递增,当a <0时,在(﹣∞,a3),(0,+∞)上f ′(x )>0,f (x )单调递增,在(a3,0)上f ′(x )<0,f (x )单调递减,当a >0时,在(﹣∞,0),(a3,+∞)上f ′(x )>0,f (x )单调递增,在(0,a3)上f ′(x )<0,f (x )单调递减,综上所述,当a =0时,f (x )在(﹣∞,+∞)上单调递增,当a <0时,f (x )在(﹣∞,a3),(0,+∞)上单调递增,在(a3,0)上单调递减,当a >0时,f (x )在(﹣∞,0),(a 3,+∞)上单调递增,在(0,a3)上单调递减.【变式2-1】(2022春•满洲里市校级期末)已知函数f (x )=x 2﹣(a +2)x +alnx (a ∈R ). (1)a =﹣2,求函数f (x )在(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.【解题思路】(1)当a =﹣2时,求出f (x )的解析式,对f (x )求导,利用导数的几何意义求出切线斜率,求出f (1),利用点斜式即可求得切线方程;(2)对f (x )求导,再对a 分类讨论,利用导数与单调性的关系求解即可. 【解答过程】解:(1)当a =﹣2时,f (x )=x 2﹣2lnx ,f ′(x)=2x −2x切线的斜率k =f ′(1)=0,f (1)=1,则切线方程为y ﹣1=0,即y =1. (2)函数f (x )的定义域为(0,+∞),且f ′(x)=2x −(a +2)+ax =(2x−a)(x−1)x , ①当a ≤0时,a 2≤0,由f ′(x )>0,得x >1;由f ′(x )<0,得0<x <1. 则函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).②当0<a2<1,即0<a <2时,由f ′(x )>0,得0<x <a2或x >1;由f ′(x )<0,得a2<x <1.则函数f (x )的单调递增区间为(0,a2),(1,+∞), 函数f (x )的单调递减区间为(a2,1).③当a 2=1,即a =2时,f ′(x )≥0恒成立,则函数f (x )的单调递增区间为(0,+∞).④当a2>1,即a >2时,由f ′(x )>0,得0<x <1或x >a 2;由f ′(x )<0,得1<x <a2, 则函数f (x )的单调递增区间为(0,1),(a2,+∞),函数f (x )的单调递减区间为(1,a2). 综上所述,当a ≤0时,函数f (x )在(1,+∞)上单调递增,在(0,1)上单调递减; 当0<a <2时,函数f (x )在(0,a2)和(1,+∞)上单调递增,在(a2,1)上单调递减; 当a =2时,函数f (x )在(0,+∞)上单调递增;当a >2时,函数f (x )在(0,1)和(a 2,+∞)上单调递增,在(1,a 2)上单调递减. 【变式2-2】(2022春•蓝田县期末)已知函数f (x )=alnx ﹣ax ﹣3(a ≠0). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)当a =﹣1时,证明:在(1,+∞)上,f (x )+2>0. 【解题思路】(Ⅰ)先求导,再分类讨论导函数的符号即可求解;(Ⅱ)构造函数g (x )=f (x )+2,再利用导数求出g (x )的最值,从而得证. 【解答过程】解:(Ⅰ)∵f ′(x)=a x −a =a(1−x)x ,x >0, ①当a >0时,x ∈(0,1),f ′(x )>0;x ∈(1,+∞),f ′(x )<0, ∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; ②当a <0时,x ∈(0,1),f ′(x )<0;x ∈(1,+∞),f ′(x )>0, ∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.综合可得:当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a <0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (Ⅱ)证明:当a =﹣1时,令g (x )=f (x )+2=﹣lnx +x ﹣1,x >1, ∴g ′(x)=−1x +1=x−1x >0, ∴g (x )在(1,+∞)上单调递增, ∴g (x )>g (1)=0,故在(1,+∞)上,f (x )+2>0.【变式2-3】(2022春•南沙区期末)已知函数f (x )=2lnx ﹣ax 2﹣2(a ﹣1)x +1(a ∈R ).(1)求函数f(x)的单调区间;(2)若函数f(x)有两个不同的零点x1,x2,求实数a的取值范围.【解题思路】(1)先对函数求导,然后结合导数与单调性关系对a进行分类讨论,进而可求函数的单调区间;(2)结合(1)中单调性的讨论及函数零点存在条件可建立关于a的不等式,结合函数的性质解不等式可求a的范围.【解答过程】解:(1)f′(x)=2x−2ax﹣2(a﹣1)=−2ax2−2(a−1)x+2x=−2(ax−1)(x+1)x,因为x>0,x+1>0,故当a≤0时,f′(x)>0,此时f(x)在(0,+∞)上单调递增,当a>0时,x>1a时,f′(x)<0,0<x<1a时,f′(x)>0,故f(x)在(0,1a )上单调递增,在(1a,+∞)上单调递减,综上,当a≤0时,f(x)的单调递增区间为(0,+∞),没有单调递减区间,当a>0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1a,+∞);(2)当a≤0时,f(x)的单调递增区间为(0,+∞),没有单调递减区间,此时函数最多一个零点,不符合题意;当a>0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1a,+∞),又x→+∞时,f(x)→﹣∞,x→0且x>0时,f(x)→﹣∞,若使f(x)有2个零点,则f(1a )=−2lna+1a−1=2ln1a+1a−1>0,令t=1a,则t>0,即2lnt+t﹣1>0,令g(t)=2lnt+t﹣1,则g(t)在t>0时单调递增且g(1)=0,所以t>1,所以0<a<1,故a的取值范围为(0,1).【题型3 利用函数的单调性比较大小】【方法点拨】根据题目条件,构造函数,利用导数研究函数的单调性,利用函数的单调性来比较大小,即可得解. 【例3】(2022春•眉山期末)已知实数x ,y ,z 满足e y lnx ﹣ye x =0,ze x −e x ln 1x =0,若y >1,则( ) A .x >y >zB .y >x >zC .y >z >xD .x >z >y【解题思路】首先根据题中的条件得到e y y+e z z=0,从而得到z <0;再根据x >1时,x >lnx 得到e y y>e xx,结合函数g(x)=e xx (x >1)的单调性得到y >x ,从而得到y >x >z . 【解答过程】解:由e y lnx ﹣ye x =0,得e y y =e x lnx ;由ze x −e zln 1x =0,得e z z =e x ln1x,两式相加得e y y+e z z=0,因为y >1,e y >0,所以e z z <0,又因为e z >0,所以z <0;因为e yy =e x lnx,y >1,所以e xlnx>0,即lnx >0,所以x >1.令f (x )=x ﹣lnx (x >1),则f ′(x)=1−1x =x−1x , 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )=x ﹣lnx 在(1,+∞)内单调递增,即x >lnx , 所以e y y=e x lnx>e x x,即e y y>e x x,又令g(x)=e x x (x >1),则g ′(x)=xe x −e x x 2=(x−1)e xx 2(x >1),当x >1时,g ′(x )>0,所以g(x)=e xx在(1,+∞)内单调递增,所以由e y y>e x x,得到y >x .所以y >x >z . 故选:B .【变式3-1】(2022春•绍兴期末)已知a =e 0.2﹣1,b =ln 1.2,c =tan0.2,其中e =2.71828⋯为自然对数的底数,则( ) A .c >a >bB .a >c >bC .b >a >cD .a >b >c【解题思路】观察a =e 0.2﹣1,b =ln 1.2,c =tan0.2,发现都含有0.2,把0.2换成x ,自变量在(0,1)或其子集范围内构造函数,利用导数证明其单调性,比较a ,b ,c 的大小. 【解答过程】解:令f(x)=e x −1−tanx =cosxe x −cosx−sinx cosx ,0<x <π4,令g(x)=cos xe x﹣cos x﹣sin x,则g′(x)=(e x﹣1)(cos x﹣sin x),当0<x<π4时,g′(x)>0,g(x)单调递增,又g(0)=1﹣1=0,所以g(x)>0,又cos x>0,所以f(x)>0,在(0,π4)成立,所以f(0.2)>0,即a>c,令ℎ(x)=ln(x+1)−x,ℎ′(x)=1x+1−1=−xx+1,ℎ(x)在x∈(0,π2)为减函数,所以h(x)<h(0)=0,即ln(x+1)<x,令m(x)=x−tanx,m′(x)=1−1cos2x,m(x)在x∈(0,π2)为减函数,所以m(x)<m(0)=0,即x<tan x,所以ln(x+1)<x<tanx,x∈(0,π2)成立,令x=0.2,则上式变为ln(0.2+1)<0.2<tan0.2,所以b<0.2<c所以b<c,所以b<c<a.故选:B.【变式3-2】(2022春•渭南期末)已知函数f(x)=sin x+cos x﹣2x,a=f(﹣π),b=f(20),c=f(ln2),则a,b,c的大小关系是()A.a>c>b B.a>b>c C.b>a>c D.c>b>a【解题思路】利用导数判断函数f(x)的单调性,进而可比较函数值的大小.【解答过程】解:因为函数f(x)=sin x+cos x﹣2x,所以f′(x)=cos x﹣sin x﹣2=√2cos(x+π4)﹣2<0,所以f(x)为R上的减函数,因为﹣π<ln2<1=20,所以f(﹣π)>f(ln2)>f(20),即a>c>b.故选:A.【变式3-3】(2022•山东开学)已知0<a<4,0<b<2,0<c<3,且16lna=a2ln4,4lnb=b2ln2,9lnc=c2ln3,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a【解题思路】根据等式关系进行转化,然后构造函数f(x)=lnxx2,研究函数的单调性和图象,利用数形结合进行判断即可.【解答过程】解:由16lna =a 2ln 4,4lnb =b 2ln 2,9lnc =c 2ln 3, 得lna a 2=ln442,lnb b 2=ln222,lnc c 2=ln332,构造函数f (x )=lnxx 2, 得f (a )=f (4),f (b )=f (2),f (c )=f (3), f ′(x )=1x ⋅x 2−2xlnxx 4=x−2xlnx x 4=1−2lnxx 3, 由f ′(x )=0得1﹣2lnx =0,得lnx =12,即x =√e当x >√e 时,1﹣2lnx <0,即f ′(x )<0,则f (x )在(√e ,+∞)上为减函数, 当0<x <√e 时,1﹣2lnx >0,即f ′(x )>0,则f (x )在(0,√e )上为增函数, 则f (2)>f (3)>f (4), 即f (b )>f (c )>f (a ), ∵f (x )在(0,√e )上为增函数, ∴√e >b >c >a >0, 故选:D .【题型4 利用函数的单调性解不等式】 【方法点拨】要充分挖掘条件关系,恰当构造函数,与题设形成解题链条,利用导数研究新函数的单调性,从而转化求 解不等式.【例4】(2021秋•重庆月考)已知f (x )是定义在R 上的可导函数,其导函数为f ′(x ),且f '(x )﹣2f (x )>0,f (12)=e (e 为自然对数的底数),则关于x 的不等式f (lnx )<x 2的解集为( )A .(0,e2)B .(0,√e )C .(1e,e2)D .(e2,√e )【解题思路】令F (x )=f(x)e x ,求导分析单调性,不等式f (lnx )<x 2,可转化为f(lnx)e2lnx <f(12)e 2×12,即g (lnx )<g (12),即可得出答案. 【解答过程】解:令g (x )=f(x)e x ,g ′(x )=e 2x f′(x)−2e 2x f(x)e 4x =f′(x)−2f(x)e 2x>0,所以g (x )在R 上单调递增, 不等式f (lnx )<x 2,则f(lnx)x 2<1,又f (12)=e ,所以f(lnx)e 2lnx<f(12)e 2×12,即g (lnx )<g (12),所以lnx <12, 解得0<x <√e , 故选:B .【变式4-1】(2022春•新邵县期末)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f '(x )g (x )﹣f (x )g '(x )>0,且f (2)=0,则不等式f (x )g (x )>0的解集是( ) A .(﹣∞,﹣2)∪(0,2) B .(﹣2,0)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(2,+∞)【解题思路】令F (x )=f(x)g(x),求导分析F (x )的单调性,根据题意可得F (x )的奇偶性,由f (2)=0,得F (2)=0,则不等式f (x )g (x )>0的解集为F (x )>F (2)解集,即可得出答案. 【解答过程】解:令F (x )=f(x)g(x), F ′(x )=f′(x)g(x)−f(x)g′(x)g 2(x),因为当x <0时,f '(x )g (x )﹣f (x )g '(x )>0, 所以当x <0时,F ′(x )>0, 所以F (x )在(﹣∞,0)上为增函数,因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 所以f (﹣x )=﹣f (x ),g (﹣x )=g (x ),所以F(﹣x)=f(−x)g(−x)=−f(x)g(x)=−F(x),所以F(x)在(﹣∞,+∞)上为奇函数,所以F(x)在(0,+∞)上为增函数,因为f(2)=0,所以F(2)=f(2)g(2)=0,所以不等式f(x)g(x)>0的解集为F(x)>0的解集,所以F(x)>F(2),所以x>2或﹣2<x<0,故选:D.【变式4-2】(2022春•辽宁月考)已知函数f(x)在R上存在导函数f'(x),对∀x∈R满足f(x)+f(﹣x)=2x2,在x∈(0,+∞)上,f'(x)<2x若f(2﹣m)﹣f(m)≥4﹣4m,实数m的取值范围是()A.[﹣1,1]B.(﹣∞,1]C.[1,+∞)D.(﹣∞,﹣1]∪[1,+∞)【解题思路】构造函数g(x)=f(x)﹣x2,推出g(x)为奇函数,再由导数判断g(x)的单调性,把不等式f(2﹣m)﹣f(m)≥4﹣4m转化为关于m的一次不等式求解.【解答过程】解:∵f(x)+f(﹣x)=2x2,∴f(x)﹣2x2+f(﹣x)=0,令g(x)=f(x)﹣x2,则g(﹣x)+g(x)=f(﹣x)﹣x2+f(x)﹣x2=0,∴函数g(x)为奇函数.∵x∈(0,+∞)时,g′(x)=f′(x)﹣2x<0,故函数g(x)在(0,+∞)上是单调递减函数,则函数g(x)在(﹣∞,0)上也是单调递减函数.由f(0)=0,得g(0)=0,可得g(x)在R上是单调递减.则f(2﹣m)﹣f(m)≥4﹣4m⇔f(2﹣m)﹣(2﹣m)2≥f(m)﹣m2,即g(2﹣m)≥g(m),∴2﹣m≤m,解得m≥1,∴实数m的取值范围是[1,+∞).故选:C .【变式4-3】(2022春•赣州期末)已知定义在R 上的函数f (x ),其导函数为f '(x ).若f (x )=﹣f (﹣x )﹣cos x ,且当x ≤0时,f ′(x)−12sinx >0,则不等式f (π﹣x )>f (x )+cos x 的解集为( )A .(−∞,π2)B .(π2,+∞) C .(﹣∞,π) D .(π,+∞) 【解题思路】构造函数g(x)=f(x)+12cosx ,然后判断g (x )的奇偶性,然后再由导数分析g (x )的单调性,结合单调性及奇偶性可求.【解答过程】解:设g(x)=f(x)+12cosx ,因为f (x )=﹣f (﹣x )﹣cos x ,所以f (﹣x )=﹣f (x )﹣cos x ,所以g(−x)=f(−x)+12cosx =−f (x )﹣cos x +12cos x =﹣f (x )−12cos x ,即g (x )为奇函数,而g ′(x)=f ′(x)−12sinx >0,则g (x )在R 上单调递增,f (π﹣x )>f (x )+cos x ,即f(π−x)−12cosx >f(x)+12cosx ⇒f(π−x)+12cos(π−x)>f(x)+12cosx ,即g(π−x)>g(x)⇒π−x >x ⇒x <π2,所以x 的范围为(﹣∞,π2). 故选:A .【题型5 函数单调性与导函数图象的关系】【例5】(2022•赫山区校级开学)如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )A .函数f (x )在区间(﹣3,0)上是减函数B .函数f (x )在区间(﹣3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(﹣3,2)上是单调函数【解题思路】根据函数y=f(x)的导函数f′(x)>0时单调递增,f'(x)<0时单调递减,依次判断选项即可.【解答过程】解:由函数y=f(x)的导函数f′(x)的图像知,A.x∈(﹣3,0)时,f'(x)<0,函数f(x)单调递减,故A正确;B.x∈(﹣3,2)时,f'(x)<0或f'(x)>0,所以函数f(x)先单调递减,再单调递增,故B错误;C.x∈(0,2)时,f'(x)>0,函数f(x)单调递增,故C错误;D.x∈(﹣3,2)时,f'(x)<0或f'(x)>0,所以函数f(x)先单调递减,再单调递增,不是单调函数,故D错误.故选:A.【变式5-1】(2022春•平顶山期末)已知函数y=f(x)的部分图象如图所示,且f'(x)是f(x)的导函数,则()A.f'(﹣1)=f'(﹣2)<0<f'(1)<f'(2)B.0>f'(2)>f'(1)>f'(﹣1)=f'(﹣2)C.f'(2)<f'(1)<0<f'(﹣1)=f'(﹣2)D.f'(2)<f'(1)<0<f'(﹣2)<f'(﹣1)【解题思路】根据函数图象的特征,判断函数的单调性,进而判断导数的变化情况,即可得答案.【解答过程】解:由函数图象可知,当x≤0时,函数y=f(x)匀速递增,故f′(x)是一个大于0的常数,当x≥0时,函数y=f(x)递减,且递减幅度越来越快,∴f′(x)<0,且y=f′(x)单调递减,则f′(2)<f′(1)<0<f′(﹣1)=f′(﹣2),故选:C.【变式5-2】(2022春•莆田期末)定义在(﹣1,3)上的函数y=f(x),其导函数y=f'(x)图象如右图所示,则y=f(x)的单调递减区间是()A.(﹣1,0)B.(﹣1,1)C.(0,2)D.(2,3)【解题思路】利用导函数的图像,即可得出答案.【解答过程】解:由f′(x)的图像可知在(0,2)上,f′(x)<0,f(x)单调递减,故选:C.【变式5-3】(2022春•遵义期末)函数f(x)的导函数为f'(x)的图象如图所示,关于函数f(x),下列说法不正确的是()A.函数在(﹣1,1),(3,+∞)上单调递增B.函数在(﹣∞,﹣1),(1,3)上单调递减C.函数存在两个极值点D.函数有最小值,但是无最大值【解题思路】由导函数的图像,分析原函数f(x)的单调性,最值,极值,即可得出答案.【解答过程】解:由图像可知在(﹣∞,﹣1),(1,3)上,f′(x)<0,f(x)单调递减,在(﹣1,1),(3,+∞)上,f′(x)>0,f(x)单调递增,故A、B正确;在x=﹣1,x=3处函数f(x)取得极小值,在x=1处函数f(x)取得极大值,故C错误;函数的最小值为f(﹣1)和f(3)中的最小值,因为x→+∞时,函数f(x)→+∞,所以函数f(x)无最大值,故D正确,故选:C.【题型6 根据函数的单调性求参数】【方法点拨】根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0(f′(x)≤0)且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【例6】(2022•安徽开学)已知函数f(x)=4cosx−13mx3在[3π4,2π]上单调递增,则实数m的取值范围为()A.(−∞,−16√39π]B.(−∞,−16√29π2]C.(−∞,−32√39π]D.(−∞,−32√29π2]【解题思路】由函数的单调性可知导数f′(x)≥0在[3π4,2π]上恒成立,分离参数后,利用导数求g(x)=−4sinxx2的最小值即可得解.【解答过程】解:由题意得,f′(x)=﹣4sin x﹣mx2,又f′(x)≥0在[3π4,2π]上,则﹣4sin x﹣mx2≥0,∴−4sinxx2≥m.令g(x)=−4sinxx2,可知当x∈[3π4,π)时,g(x)<0,当x∈[π,2π]时,g(x)≥0,当x∈[3π4,π)时,g′(x)=4x3(2sinx−xcosx)>0,∴函数g(x)在[3π4,π)上单调递增,∴g(x)min=g(3π4)=−32√29π2,则m≤−32√29π2,∴实数m的取值范围为(−∞,−32√29π2).故选:D.【变式6-1】(2022春•清远期末)已知函数f (x )=alnx +2x 在[1,+∞)上单调递增,则实数a 的最小值为( )A .﹣2B .2C .﹣1D .1【解题思路】求出原函数的导函数,问题转化为a ≥﹣2x 在x ∈[1,+∞)时恒成立,再求出﹣2x 在[1,+∞)上的最大值得答案.【解答过程】解:由f (x )=alnx +2x ,得f ′(x )=a x +2,∵函数f (x )=alnx +2x 在[1,+∞)上单调递增,∴a x +2≥0,即a ≥﹣2x 在x ∈[1,+∞)时恒成立, 而﹣2x 在[1,+∞)上的最大值为﹣2,∴a ≥﹣2,即实数a 的最小值为﹣2.故选:A .【变式6-2】(2022春•中山市校级月考)设函数f(x)=13x 3−27lnx 在区间[a ﹣1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .[4,+∞)C .(﹣∞,2]D .(0,3] 【解题思路】利用导数求函数的单调递减区间,再结合区间的包含关系,列式求实数a 的取值范围.【解答过程】解:f′(x)=x 2−27x =x 3−27x ,x >0,令f '(x )≤0,得0<x ≤3, 因为函数f(x)=13x 3−27lnx 在区间[a ﹣1,a +1]上单调递减,所以{a −1>0a +1≤3,故1<a ≤2, 所以a 的取值范围为(1,2].故选:A .【变式6-3】(2022春•道里区校级月考)若函数f (x )=(x 2﹣ax ﹣a )e x 在区间(﹣2,0)内单调递减,则实数a 的取值范围是( )A .[1,+∞)B .[0,+∞)C .(﹣∞,0]D .(﹣∞,1]【解题思路】结合导数与单调性关系可把问题转化为f ′(x )=[x 2+(2﹣a )x ﹣2a ]e x ≤0在(﹣2,0)上恒成立,分离常数后可求.【解答过程】解:由题意得f ′(x )=[x 2+(2﹣a )x ﹣2a ]e x ≤0在(﹣2,0)上恒成立,因为e x >0,即x2+(2﹣a)x﹣2a≤0在(﹣2,0)上恒成立,所以(x﹣a)(x+2)≤0在(﹣2,0)上恒成立,所以x﹣a≤0在(﹣2,0)上恒成立,所以a≥x在(﹣2,0)上恒成立,所以a≥0.故选:B.。

2023年新高考数学一轮复习4-4 导数的综合应用(知识点讲解)解析版

2023年新高考数学一轮复习4-4 导数的综合应用(知识点讲解)解析版

专题4.4 导数的综合应用(知识点讲解)【知识框架】【核心素养】1. 考查利用导数研究函数的单调性、极值与最值、函数的零点,凸显数学运算、逻辑推理的核心素养.2.考查利用导数不等式的证明、方程等,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)函数零点 1.方程()0f x =有实根函数()y f x =的图象与x 轴有交点函数()y f x =有零点.2.函数()y f x =的零点就是()0f x =的根,所以可通过解方程得零点,或者通过变形转化为两个熟悉函数图象的交点横坐标.(二)导数解决函数的零点问题1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值式结构函数零点个数(或方程根的个数)问题的一般思路(1)可转化为用导数研究其函数的图象与x 轴(或直线y =k)在该区间上的交点问题;(2)证明有几个零点时,需要利用导数研究函数的单调性,确定分类讨论的标准,确定函数在每一个区间上的极值(最值)、端点函数值等性质,进而画出函数的大致图象.再利用零点存在性定理,在每个单调区间内取值证明f (a)·f (b)<0.2.证明复杂方程在某区间上有且仅有一解的步骤第一步,利用导数证明该函数在该区间上单调;第二步,证明端点的导数值异号. 3.已知函数有零点求参数范围常用的方法(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f (x)中分离出参数,然后利用求导的方法求出构造的新函数的最值,最后根据题设条件构建关于参数的不等式,确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围. (三)导数证明不等式(1)直接转化为函数的最值问题:把证明f (x )<g (a )转化为f (x )max <g (a ).(2)移项作差构造函数法:把不等式f (x )>g (x )转化为f (x )-g (x )>0,进而构造函数h (x )=f (x )-g (x ). (3)构造双函数法:若直接构造函数求导,难以判断符号,导函数零点不易求得,即函数单调性与极值点都不易获得,可转化不等式为f (x )>g (x )利用其最值求解.(4)换元法,构造函数证明双变量函数不等式:对于f (x 1,x 2)≥A 的不等式,可将函数式变为与x 1x 2或x 1·x 2有关的式子,然后令t =x 1x 2或t =x 1x 2,构造函数g (t )求解.(5)适当放缩构造函数法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥x +1,ln x <x <e x (x >0),xx +1≤ln(x +1)≤x (x >-1).(6)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数等.把不等式左、右两边转化为结构相同的式子,然后根据“相同结构”,构造函数.(7)赋值放缩法:函数中对与正整数有关的不等式,可对已知的函数不等式进行赋值放缩,然后通过多次求和达到证明的目的.(四)利用导数研究不等式恒(能)成立问题 1.分离参数法一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围. 2.构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.【常考题型剖析】题型一:利用导数研究函数的零点或零点个数例1.(2012·天津·高考真题(理))函数在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【答案】B 【解析】 【详解】2()2ln 23,(0,1)()0x f x x f x +''=>在上恒成立,所以单调递增,(0)10,(1)10,f f =-<=>故函数在区间(0,1)内的零点个数1个.例2.(2019·全国高考真题(理))已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析 【解析】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫ ⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点例3.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x x x x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增即()(1)0g x g >=,所以1ee 0xx x x->令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭ 所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 【总结提升】利用导数研究函数零点或方程根的方法 (1)通过最值(极值)判断零点个数的方法.借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点.对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围. (3)构造函数法研究函数零点.①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.题型二:与函数零点有关的参数(范围)问题例4.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则( ) A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b 1−a<0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .例5.(2015·安徽·高考真题(理))设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】1,3,4,5 【解析】 【详解】令3()f x x ax b =++,求导得2'()3f x x a =+,当0a ≥时,'()0f x ≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以3()f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则2'()333(1)(1)f x x x x =-=+-,易知,()f x 在(,1),(1,)-∞-+∞上单调递增,在[1,1]-上单调递减,所以()=(1)132f x f b b -=-++=+极大,()=(1)132f x f b b =-+=-极小,要使方程仅有一根,则()=(1)1320f x f b b -=-++=+<极大或者()=(1)1320f x f b b =-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实 根的是①③④⑤.例6.(2020·全国高考真题(文))已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞. 【解析】(1)当1a =时,()(2)xf x e x =-+,'()1xf x e =-, 令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e +∞.【总结提升】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.题型三:与不等式恒成立、有解、无解等问题有关的参数范围问题例7.(2019·天津高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A .[]0,1B .[]0,2C .[]0,eD .[]1,e【答案】C【解析】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C.例8.(2021·江苏省前黄高级中学高三开学考试)已知函数2()2sin 341x f x x x =+-+,则(2)(2)f f +-=_________;关于x 的不等式2()(23)2f x f x +-≥的解集为____________.【答案】2 3,12⎡⎤-⎢⎥⎣⎦【分析】根据解析式直接求(2)(2)f f +-的值,易知()f x 关于(0,1)对称,可将题设不等式变形为2(23)()f x f x -≥-,再利用导数判断()f x 的单调性,由单调性列不等式求解集. 【详解】232(2)(2)2sin 262sin 2621717f f +-=+-+-+=, 由()()22222sin 32sin 341414141x x x x f x f x x x x x --+-=+-+-+=+=++++2(41)41x x ++2=, ∴()f x 关于(0,1)对称,故()2()f x f x =--,∴22()(23)2()(23)2f x f x f x f x +-=--+-≥,即2(23)()f x f x -≥-, 又124ln 2()2cos 30(41)x xf x x +'=-+-<+,故()f x 单调递减, ∴223x x -≤-,即223(23)(1)0x x x x +-=+-≤,解得312x -≤≤.∴不等式解集为3,12⎡⎤-⎢⎥⎣⎦. 故答案为:2;3,12⎡⎤-⎢⎥⎣⎦. 例9.(2021·全国高三月考)已知函数2()ln f x x mx =+.(1)探究函数()f x 的单调性;(2)若关于x 的不等式()1(12)f x m x ≤++在(]0,e 上恒成立,求实数m 的取值范围.【答案】(1)答案见解析;(2)12e 2⎡⎤-⎢⎥-⎣⎦,. 【分析】(1)求导,对参数m 分类讨论,由导函数的符号可得函数的单调性;(2)将不等式()1(12)f x m x ≤++化为()2ln 1210x mx m x +-+-≤,再构造函数()2()ln 121g x x mx m x =+-+-,利用导数求出函数()g x 的最大值,由max ()0g x ≤可求出结果.【详解】(1)由2()ln f x x mx =+,得2121()2(0)mx f x mx x x x +'=+=>, ①若0m ≥,则()0f x '>,()f x 在()0,∞+上单调递增;②若0m <,则2121()22x x mx f x mx m x x x⎛ +⎝⎭⎝⎭'=+==⋅,当0x <<时,()0f x '>;当x >()0f x '<; 所以()f x在区间0,⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. 综上所述:当0m ≥时,()f x 在()0,∞+上单调递增;当0m <时,()f x在区间⎛⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. (2)不等式()1(12)f x m x ≤++在(]0,e 上恒成立,相当于()2ln 1210x mx m x +-+-≤在(]0,e 上恒成立,令()2()ln 121g x x mx m x =+-+-, 则212(21)1(21)(1)()221mx m x mx x g x mx m x x x-++--'=+--==, ①当0m ≤时,210mx -<,由()0g x '<,得1e x <≤,由()0g x '>,得01x <<,所以()g x 在(0,1)上单调递增,在(1,e]上单调递减,所以max ()(1)2g x g m ==--,所以20m --≤,解得20m -≤≤. ②当102em <≤时,因为022e x <≤,所以021mx <≤,所以210mx -≤, 所以当01x <<时,()0g x '≥,当1e x <≤时,()0g x '≤,所以()g x 在(0,1)上递增,在(1,e]上递减,所以max ()(1)20g x g m ==--≤,解得2m ≥-,又102e m <≤,所以102em <≤; ③当112e 2m <<时,1(1)()2()2x x m g x m x--'=⋅,此时11e 2m <<, 由()0g x '>,得01x <<或1e 2x m <≤,由()0g x '<,得112x m <<, 所以()g x 在(0,1)和1(,e]2m 上递增,在1(1,)2m 上递减,所以11,2x x m==分别是函数()g x 的极大值点和极小值点, 因此有()(1)2011(e)e e 1202e 21122g m g m m m m e⎧⎪=--≤⎪=--≤⇒<<⎨⎪⎪<<⎩; ④当12m =时,()21()0x g x x-'=≥,所以()g x 在(]0,e 上单调递增,所以(e)0g ≤, 即1e 2m ≤-,所以12m =; ⑤当12m >时,1(1)()2()2x x m g x m x--'=⋅,此时1012m <<, 由()0g x '>,得102x m <<或1e x <≤,由()0g x '<,得112x m <<, 所以()g x 在1(0,)2m 和(1,e]上递增,在1(,1)2m 上递减, 所以112x x m==,分别是函数()g x 的极大值点和极小值点,因此有()1()02(e)e e 12012g m g m m m ⎧≤⎪⎪=--≤⇒⎨⎪⎪>⎩1ln 22041e 212m m m m ⎧---≤⎪⎪⎪≤⎨-⎪⎪>⎪⎩112e 2m ⇒<≤-; 综上可知,实数m 的取值范围是12e 2⎡⎤-⎢⎥-⎣⎦,. 【总结提升】1.不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.()f x a >:min max max ()()()f x a f x a f x a ⇔>⎧⎪⇔>⎨⎪⇔≤⎩恒成立有解无解2.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.题型四:利用导数证明不等式例10.(2022·北京·高考真题)已知函数.(1)求曲线在点处的切线方程;(2)设,讨论函数在上的单调性;(3)证明:对任意的,有.【答案】(1)(2)在上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,()e ln(1)x f x x =+()y f x =(0,(0))f ()()g x f x '=()g x [0,)+∞,(0,)s t ∈+∞()()()f s t f s f t +>+y x =()g x [0,)+∞()()()m x f x t f x =+-(,0)x t >()(0)m x m >()m x即得证.(1)解:因为,所以,即切点坐标为,又, ∴切线斜率∴切线方程为:(2)解:因为, 所以, 令, 则, ∴在上单调递增,∴∴在上恒成立,∴在上单调递增.(3)解:原不等式等价于,令,,即证,∵,, 由(2)知在上单调递增, ∴,∴∴在上单调递增,又因为, ()e ln(1)x f x x =+()00f =()0,01()e (ln(1))1x f x x x=+++'(0)1k f '==y x =1()()e (ln(1))1x g x f x x x=++'=+221()e (ln(1))1(1)x g x x x x =++-++'221()ln(1)1(1)h x x x x =++-++22331221()01(1)(1)(1)x h x x x x x +=-+=>++++'()h x [0,)+∞()(0)10h x h ≥=>()0g x '>[0,)+∞()g x [0,)+∞()()()(0)f s t f s f t f +->-()()()m x f x t f x =+-(,0)x t >()(0)m x m >()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+e e ()e ln(1)e ln(1)()()11x t xx t x m x x t x g x t g x x t x++=+++-+-=+-++'+1()()e (ln(1))1x g x f x x x =++'=+[)0,∞+()()g x t g x +>()0m x '>()m x ()0,∞+,0x t >∴,所以命题得证.例11.(2021·全国·高考真题(理))设函数,已知是函数的极值点. (1)求a ;(2)设函数.证明:. 【答案】(1);(2)证明见详解【解析】【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,,又是函数的极值点,所以,解得;(2)[方法一]:转化为有分母的函数由(Ⅰ)知,,其定义域为. 要证,即证,即证. (ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以. (ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.综合(ⅰ)(ⅱ)有.[方法二] 【最优解】:转化为无分母函数由(1)得,,且, ()(0)m x m >()()ln f x a x =-0x =()y xf x =()()()x f x g x xf x +=()1g x <1a ='y a ()()ln 1()ln 1x x g x x x +-=-1x <0x ≠()0,1x ∈(),0x ∈-∞()1g x <()()ln 1ln 1x x x x +->-()0,1x ∈(),0x ∈-∞()()()n 1'l a f x a x f x x ⇒==--()()'ln x y a x x ay xf x ⇒=-=+-0x =()y xf x =()'0ln 0y a ==1a =ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x (,0)(0,1)-∞()1g x <111ln(1)+<-x x 1111ln(1)-<-=-x x x x(0,1)x ∈10ln(1)<-x 10x x-<ln(1)1->-x x x ()ln(1)1=---x F x x x 2211()01(1)(1)--=-=>--'-x F x x x x ()F x (0,1)()(0)0F x F >=(,0)x ∈-∞10ln(1)>-x 10x x ->ln(1)1->-x x x ()F x (,0)-∞()(0)0F x F >=()1g x <()()ln 1f x x =-()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-1x <0x ≠当 时,要证,, ,即证,化简得;同理,当时,要证,, ,即证,化简得;令,再令,则,, 令,,当时,,单减,故;当时,,单增,故;综上所述,在恒成立.[方法三] :利用导数不等式中的常见结论证明令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以. (ⅰ)当时,,所以,即,所以. (ⅱ)当时,,同理可证得. 综合(ⅰ)(ⅱ)得,当且时,,即. 【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定()0,1x ∈()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x >-<()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->(),0x ∈-∞()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x <->()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->()()()1ln 1h x x x x =+--1t x =-()()0,11,t ∈+∞1x t =-()1ln t t t t ϕ=-+()1ln 1ln t t t ϕ'=-++=()0,1t ∈()0t ϕ'<()t ϕ()()10t ϕϕ>=()1,t ∈+∞()0t ϕ'>()t ϕ()()10t ϕϕ>=()()ln 1()1ln 1x x g x x x +-=<-()(),00,1x ∈-∞()ln (1)ϕ=--x x x 11()1x x x x ϕ-'=-=()ϕx (0,1)(1,)+∞()(1)0x ϕϕ≤=ln 1≤-x x 1x =1x <0x ≠101x >-111x≠-11ln 111<---x x ln(1)1--<-x x x ln(1)1->-x x x (0,1)x ∈0ln(1)1>->-x x x 1111ln(1)-<=--x x x x 111ln(1)+<-x x ()1g x <(,0)x ∈-∞ln(1)01->>-x x x ()1g x <1x <0x ≠ln(1)1ln(1)+-<-x x x x ()1g x <(0,1)x ∈ln(1)1->-x x x (,0)x ∈-∞ln(1)1->-x x x ()0,1x ∈()()1ln 10x x x +-->(),0x ∈-∞()()1ln 10x x x +-->()ln (1)ϕ=--x x x ln 1≤-x x 1x =ln(1)1->-x x x的巧合性.例12.(2021·全国高考真题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【答案】(1)的递增区间为,递减区间为;(2)证明见解析.【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设,原不等式等价于,前者可构建新函数,利用极值点偏移可证,后者可设,从而把转化为在上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为,又,当时,,当时,,故的递增区间为,递减区间为.(2)因为,故,即, 故, 设,由(1)可知不妨设. 因为时,,时,,故.先证:,若,必成立.若, 要证:,即证,而,故即证,即证:,其中.()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<()f x ()0,1()1,+∞1211,x x a b==122x x e <+<21x tx =12x x e +<()()1ln 1ln 0t t t t -+-<()1,+∞()0,∞+()1ln 1ln f x x x '=--=-()0,1x ∈()0f x '>()1,+x ∈∞()0f x '<()f x ()0,1()1,+∞ln ln b a a b a b -=-()()ln 1ln +1b a a b +=ln 1ln +1a b a b+=11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1211,x x a b ==1201,1x x <<>()0,1x ∈()()1ln 0f x x x =->(),x e ∈+∞()()1ln 0f x x x =-<21x e <<122x x +>22x ≥122x x +>22x <122x x +>122x x >-2021x <-<()()122f x f x >-()()222f x f x >-212x <<设,则,因为,故,故,所以,故在为增函数,所以,故,即成立,所以成立,综上,成立.设,则,结合,可得:, 即:,故,要证:,即证,即证, 即证:,即证:, 令,则, 先证明一个不等式:.设,则, 当时,;当时,,故在上为增函数,在上为减函数,故,故成立由上述不等式可得当时,,故恒成立, 故在上为减函数,故,故成立,即成立.综上所述,. 【总结提升】1.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最()()()2,12g x f x f x x =--<<()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦12x <<()021x x <-<()ln 20x x -->()0g x '>()g x ()1,2()()10g x g >=()()2f x f x >-()()222f x f x >-122x x +>122x x +>21x tx =1t >ln 1ln +1a b a b +=1211,x x a b==()()11221ln 1ln x x x x -=-()111ln 1ln ln x t t x -=--11ln ln 1t t t x t --=-12x x e +<()11t x e +<()1ln 1ln 1t x ++<()1ln ln 111t t t t t --++<-()()1ln 1ln 0t t t t -+-<()()()1ln 1ln ,1S t t t t t t =-+->()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭()ln 1x x ≤+()()ln 1u x x x =+-()1111x u x x x -'=-=++10x -<<()0u x '>0x >()0u x '<()u x ()1,0-()0,+∞()()max 00u x u ==()ln 1x x ≤+1t >112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭()0S t '<()S t ()1,+∞()()10S t S <=()()1ln 1ln 0t t t t -+-<12x x e +<112e a b<+<值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.2.利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.3.不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.。

高三数学导数试题答案及解析

高三数学导数试题答案及解析

高三数学导数试题答案及解析1.若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】因为的定义域为,又,由,得.当时,,当时,据题意,,解得.故选B.【考点】应用导数研究函数的单调性2.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.3.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.4.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直. (Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.5.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。

从而在上单调递减,在上单调递增. 6分(Ⅱ)由(Ⅰ)知在上单调递增,故在上的最大值为最小值为 10分从而对任意有,而当时,,从而12分【考点】1.利用导数研究函数的单调性;2.利用导数求函数的最值;3.正余弦函数的取值范围.6.曲线在点处的切线方程为 .【答案】【解析】∵,∴,∴,∴切线方程为,即.【考点】用导数求切线方程.7.过坐标原点与曲线相切的直线方程为 .【答案】【解析】设切点坐标为,∵,∴,∴,∴切线方程为,又∵在切线上,∴即,又∵在曲线上,∴,∴,∴切线方程为即.【考点】过点求切线.8.已知函数,则函数的图象在点处的切线方程是 .【答案】【解析】,由得,切线斜率为,所以切线方程为,即.【考点】1.直线方程;2.导数的几何意义.9.已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.(Ⅰ)求a,b,c的值;(Ⅱ)求证:.【答案】(Ⅰ),,;(Ⅱ)详见解析.【解析】(Ⅰ)利用导数的几何意义求、,利用导数导数法判断单调性,用函数的最值积恒成立求;(Ⅱ)构造新函数,利用导数法求的最小值,利用结合(Ⅰ)中的结论进行证明.试题解析:(Ⅰ),,,,. (2分),由于,所以当时,是增函数,当时,是减函数,,由恒成立,,即恒成立,①(4分)令,则,在上是增函数,上是减函数,,即,当且仅当时等号成立 .,由①②可知,,所以. (6分)(Ⅱ)证法一:所求证不等式即为.设,,当时,是减函数,当时,是减函数,,即. (8分)由(Ⅰ)中结论②可知,,,当时,,从而 (10分).(或者也可)即,原不等式成立. (12分)【考点】导数法判断函数的单调性,恒成立,不等式的证明.10.曲线C:在x=0处的切线方程为________.【答案】【解析】因为,,所以,,曲线在点处的切线的斜率为,曲线在点处的切线的方程为,故答案为.【考点】导数的几何意义11.已知,根据函数的性质、积分的性质和积分的几何意义计算的值为()A.B.C.D.【答案】B【解析】因为是奇函数,由定积分的性质【考点】考查定积分的简单计算.12.已知函数的导函数为(其中为自然对数的底数,为实数),且在上不是单调函数,则实数的取值范围是()A.B.C.D.【答案】D【解析】当时,,,在上恒成立,此时函数在上是单调递增函数,与题设条件矛盾,排除A、B选项,由于,故,函数的导函数,令,解不等式得,解不等式得,故函数在区间上单调递减,在上单调递增,故函数在处取得极小值,亦即最小值,由于函数在上不是单调函数,故函数存在变号零点,,由于,解得.【考点】函数的单调性与导数13.已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值;(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(Ⅰ)由,得.又曲线在点处的切线平行于轴,得,即,解得.(Ⅱ),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值;当,在处取得极小值,无极大值.(Ⅲ)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解,解得的取值范围是.综上,得的最大值为.此题的一二问考查的是最基本的函数切线问题及对极值含参情况的讨论,所以导数公式必需牢记,对于参数的讨论找到一个合理的分类标准做到不重不漏即可,可这往往又是学生最容易出现问题的地方.而第三问对于曲线是否无交点要懂得转化成函数零点或方程根的个数问题处理,这也是常规处理含参就比较麻烦,平时要多加练习.【考点】本小题主要考查函数与导数,两数的单调性、极值、零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想.属综合要求比较高的难题.14.设,则的值为( )A.B.C.D.【答案】C【解析】根据题意,由于,那么可知,故选C.【考点】定积分的运算点评:主要是考查了分段函数的解析式以及定积分的计算,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中数学学习资料的店 第 1 页 共 13 页
专题12 导数
1.已知函数()()211ln ,022
f x x a x a R a =--∈≠. (1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程;
(2)求函数()f x 的单调区间;
(3)若对任意的[)1,x ∈+∞,都有()0f x ≥成立,求a 的取值范围.
【答案】(1)22y x =-+(2)当0a <时,函数()f x 的递增区间为()0,∞+; 当0a >时,函数()f x
的递增区间为
)+∞
,递减区间为(; (3)()(],00,1-∞
【解析】(1)3a =时,()2113ln 22f x x x =
--,()10f =()3f x x x '=-,()12f '=- ∴()y f x =在点()()
1,1f 处的切线方程为22y x =-+故答案为:22y x =-+; (2)()()20a x a f x x x x x -'=-=>①当0a <时,()20x a f x x
-'=>恒成立,函数()f x 的递增区间为()0,∞+ ②当0a >时,令()0f x '=
,解得x =
x =
所以函数()f x 的递增区间为+∞,递减区间为( 当0a <时,()20x a f x x -'=>恒成立,函数()f x 的递增区间为()0,∞+; 当0a >时,函数()f x 的递增区间为)+∞,递减区间为(. (3)对任意的[)1,x ∈+∞,使()0f x ≥成立,只需任意的[)1,x ∈+∞,()min 0f x ≥ ①当0a <时,()f x 在[)1,+∞上是增函数,所以只需()10f ≥而()111ln1022f a =--= 所以0a <满足题意;。

相关文档
最新文档