桥梁风振专题(学习课资)
桥梁知识专题讲座PPT动态课件
03
散热器支管过墙时,除应该加设套管 外,还 应注意 支管不 准在墙 内有接 头。支 管上安 装阀门 时,在 靠近散 热器一 侧应该 与可拆 卸件连 接。散 热器支 管安装 ,应在 散热器 与立管 安装完 毕之后 进行, 也可与 立管同 时进行 安装。 安装时 一定要 把钢管 调整合 适后再 进行碰 头,以 免弄歪 支、立 管。
散热器支管过墙时,除应该加设套管 外,还 应注意 支管不 准在墙 内有接 头。支 管上安 装阀门 时,在 靠近散 热器一 侧应该 与可拆 卸件连 接。散 热器支 管安装 ,应在 散热器 与立管 安装完 毕之后 进行, 也可与 立管同 时进行 安装。 安装时 一定要 把钢管 调整合 适后再 进行碰 头,以 免弄歪 支、立 管。
散热器支管过墙时,除应该加设套管 外,还 应注意 支管不 准在墙 内有接 头。支 管上安 装阀门 时,在 靠近散 热器一 侧应该 与可拆 卸件连 接。散 热器支 管安装 ,应在 散热器 与立管 安装完 毕之后 进行, 也可与 立管同 时进行 安装。 安装时 一定要 把钢管 调整合 适后再 进行碰 头,以 免弄歪 支、立 管。
散热器支管过墙时,除应该加设套管 外,还 应注意 支管不 准在墙 内有接 头。支 管上安 装阀门 时,在 靠近散 热器一 侧应该 与可拆 卸件连 接。散 热器支 管安装 ,应在 散热器 与立管 安装完 毕之后 进行, 也可与 立管同 时进行 安装。 安装时 一定要 把钢管 调整合 适后再 进行碰 头,以 免弄歪 支、立 管。
散热器支管过墙时,除应该加设套管 外,还 应注意 支管不 准在墙 内有接 头。支 管上安 装阀门 时,在 靠近散 热器一 侧应该 与可拆 卸件连 接。散 热器支 管安装 ,应在 散热器 与立管 安装完 毕之后 进行, 也可与 立管同 时进行 安装。 安装时 一定要 把钢管 调整合 适后再 进行碰 头,以 免弄歪 支、立 管。
桥梁结构风致振动的探讨
桥梁结构风致振动的探讨孙国明1,张 彬1,周 涛2(1.辽宁工程技术大学土木建筑系,辽宁 阜新 123000,2.枣庄市公路管理局,山东枣庄 277100)[提 要] 风对桥梁的作用是十分复杂的现象。
随着桥梁结构的大跨度发展,桥梁对风作用反应的敏感和复杂逐渐成为设计的控制因素。
文章就桥梁抗风设计的历史和风致振动的研究现状做了分析,同时探讨了特大跨度桥梁待研究的风致振动的控制问题。
[关键词] 特大跨度桥梁;风致振动;抗风设计[中图分类号]T U312+.1 [文献标识码]A [文章编号]1007-9467(2001)03-0029-02一、引言风致振动,自1940年秋,美国华盛顿州建成才4个月的T acoma吊桥在不到20m/s的8级大风作用下发生破坏事故以后,引起了国际桥梁工程界和空气动力界的极大关切,并开展了大量的理论探索和风洞实验研究。
我国自70年代起斜拉桥蓬勃发展,跨度日益增大,与此同步,斜拉桥和吊桥的风致振动理论与实验研究也结合工程实际迅速发展,并取得了一些有价值的研究成果。
二、桥梁结构风致振动理论的发展大跨度桥梁呈现结构轻柔、低频和低阻尼的力学特征,导致桥梁对风的作用更加敏感和对风的反应更加复杂。
40多年来,在结构工程师和空气动力学家及诸多领域专家的共同努力下,基本上弄清了各种风致振动的机理。
风对桥梁的作用是十分复杂的现象,它受到风的自然特征、结构的动力性能以及风与结构的相互作用三方面的制约。
气流绕过一个振动着的物体时将对物体产生气动力,且是非均匀可变的。
桥梁的实际情况要复杂得多,因为近地风是稳流风,而且大多数桥梁都是非流线形的。
紊流风场对振动着的非流线形截面所产生的非定常空气力无法用解析形式表达出来,而只能通过风洞实验来确定。
1935年,Th.Theodors on从理论上研究了薄平板的空气作用力,用势能理论求得了非定常空气力的解析式。
1938年,Th.V on K arman也得出同样结果。
桥梁抗风抗震复习资料
桥梁抗风抗震复习资料第一讲1、《中华人民共和国防震减灾法》的主要内容是什么?答:主要内容包括:1.《防震减灾法》的立法目的2.《防震减灾法》的调整对象及适用范围3.防震减灾工作方针4.对各级人民政府的基本要求。
5.政府各部门在防震减灾工作中的职责6.单位和个人的义务7.群测群防工作8.依靠科学进步提高防震减灾工作水平9.提高政府领导防震减灾工作能力10.提升地震监测能力和社会服务职能11.提高建设工程的抗震设防水平12.提高社会的非工程性地震预防能力13.及时完善地震应急救援等相关规定。
2、地震引起的地表破坏现象有哪几种?答:1.地表断裂 2.滑坡 3.砂土液化 4.软土震陷3、工程结构主要有哪些震害现象?答:建筑结构软弱层机制破坏、钢筋混凝土柱压弯破坏和剪切破坏、梁柱节点破坏、框架填充墙剪切破坏、桥梁结构落梁、整体或部分倒塌、钢筋混凝土桥墩压弯破坏和剪切破坏、桥梁碰撞、节点破坏、现代斜拉桥震害现象等。
4、近年来结构震害的主要经验教训是什么?答:⑴结构抗震设防应采用性能设计原则。
即在综合考虑工程造价、结构遭遇地震作用水平、结构的重要性、耐久性和修复费用等因素下,定义结构允许的损坏程度(性能)。
⑵结构抗震设计应同时考虑强度和延性,尤其注重提高结构整体及延性构件的延性能力。
⑶重视采用减隔震的设计技术,以提高结构的抗震性能。
⑷对体系复杂的结构,强调进行空间非线性动力时程分析的必要性。
⑸对桥梁结构,应重视支座的作用及其设计,同时开发更有效的防落梁装置。
⑹充分认识到按早期规范设计的旧结构的地震易损性,认识到对重要的旧结构进行抗震加固的紧迫性和必要性。
⑺充分认识到城市生命线工程遭受地震破坏可能导致的严重社会后果,认识到保证城市生命线工程抗震安全性的意义。
⑻充分认识到,地震区的一切新建工程都都必须严格按照国家颁布的抗震设计规范进行设防,为此而增加一些基建投资是值得的和必要的。
第二讲1、构造地震的成因是什么?答:构造地震主要是由于断层的错动而造成的。
第十四讲 桥梁风致振动分析
同济大学土木工程防灾国家重点实验室、桥梁工程系
第五节 风振性能检验
5.1 风振稳定性
(1) 驰振临界风速 (2) 扭转颤振临界风速—
* 变号 A2
(3) 耦合颤振临界风速—竖弯和扭转耦合 (4) 涡激共振锁定风速
5.2 风振强度
(1) 抖振引起的强迫力荷载 (2) 涡振引起的自激力荷载 荷载最不利组合
同济大学土木工程防灾国家重点实验室、桥梁工程系
第四节 静风性能验算
4.1 静风稳定性—扭转发散
(1) 二维计算模型 (2) 三维计算模型 扭转发散临界风速
4.2 静风强度
(1) 平均风荷载 (2) 脉动风荷载 荷载最不利组合问题
4.2 静风刚度
(1) 侧向静风位移 (2) 竖向静风位移 (3) 扭转静风位移(较小)
同济大学土木工程防灾国家重点实验室、桥梁工程系
5.3 风振刚度
(1) 抖振位移 (a) 随机振动分析方法 (b) 节段模型试验法 (c) 全桥模型试验法 (2) 涡振位移 (a) 理论模型计算法 (b) 节段模型试验法 (c) 全桥模型试验法
同济大学土木工程防灾国家重点实验室、桥梁工程系
第六节 抗风性能改善
大多数情况下气动导数值
H i*和Ai* (i = 1, 2 , 3, 4 )
同济大学土木工程防灾国家重点实验室、桥梁工程系
第三节 动力特性分析
3.1 结构计算模型
(1) 按施工阶段划分(缆索承重桥梁) (a) 桥塔自立状态 (b) 主要拼梁状态 (c) 全桥成桥状态 (2) 按主梁离散划分 (a) 单梁式 (b) 双梁式 (c) 三梁式
λ — 衰减系数, λ = 7 ~ 21
同济大学土木工程防灾国家重点实验室、桥梁工程系
桥梁风致响应 ppt课件
横风向荷载(cross-wind load) 升力(lift force)
扭矩荷载(torsional moment) 升力矩(pitching moment)
2.2 静风响应
结构(2个水平+1扭转)
位移(2个线位移+1个角位移)
桥梁(水平+竖向+扭转)
风压(局部位置垂直于表面)
结构为主
桥梁较少
中国悬索桥方案 (L=5,000 m)
侧弯: fps0.024H,z fpa0.04H 1 z
竖弯: fhs0.04H8,z fha0.06H 2 z
扭转: fts0.07H 3 z
17
同济大学土木工程防灾国家重点实验室
4.4 结构阻尼(Structural damping )
钢 桥:: s0.5% ~1.0% , s2s3.14~6.28 结合合 梁梁 桥: : s1.0% ~1.5% , s2s6.28~9.42 混凝土桥:: s1.5% ~2.5% , s2s9.42~15.71
Lpp2Lp pLpp
D f D h h D h h D h h D D D D p p D p p D p p
D hh2D h hD hhD 2D D
D pp2D p pD pp
M f M h h M h h M h h M M M M p p M p p M p p
刚度较小—动力作用
颤振(flutter) 振幅较大—自激力
驰振(galloping)
5
同济大学土木工程防灾国家重点实验室
1. 桥梁风效应(续)
风荷载及桥梁风效应
荷载分类
荷载效应
作用机理
平均风荷载引起的内力和变形 风压作用下的阻力、升力和升力矩
桥梁抗震与抗风课程综述
浙江工业大学《桥梁抗风与抗震》课程综述报告姓名:王昭学号:2111406033导师:袁伟斌日期:2015.01.09目录1桥梁的震害及破坏机理 (3)1.1 桥梁震害 (3)1.2破坏机理分析 (6)1.3 抗震设计及加固技术措施 (7)2桥梁抗震分析理论 (9)2.1抗震设计流程 (9)2.2抗震设计基本原理 (10)3延性抗震和减隔震抗震设计 (12)3.1桥梁延性抗震设计 (12)3.2桥梁减隔震抗震设计 (15)3.3减隔震技术与延性抗震设计的比较 (16)4风对桥梁的作用及风致振动 (17)4.1风对桥梁作用的现象及作用机制 (17)4.2风致振动 (18)参考文献 (21)桥梁抗风与抗震课程综述报告1桥梁的震害及破坏机理1.1桥梁震害地震是地球内部某部分急剧运动而发生的传播振动的现象,是迄今人类力量无法控制的自然灾害。
地球上平均每年都要发生近千次的破坏性地震,其中破坏力巨大的灾难性大地震即达十几次,这些地震在它们波及的范围内,均造成惨重的生命财产损失。
桥梁作为重要的社会基础设施,是生命线工程中的关键部分,在地震发生后的紧急救援和抗震救灾、灾后恢复重建中具有极其重要的地位。
强烈地震可能导致桥梁受到严重损伤或倒塌,造成交通中断,使抗震救灾工作受阻,以致造成生命和财产的更大损失,使震害程度扩大。
因此对桥梁震害及其机理的清晰认识,对于桥梁的设计、采取合理有效的抗震对策,保证桥梁在地震中的安全和正常使用具有重要意义。
桥梁结构受到的地震影响从结构抗震设计的角度讲主要有两种形式:即地基失效引起的破坏和结构强烈振动引起的破坏。
两者破坏的原因不同:前者属于静力作用,是由于地基失效产生的相对位移引起的结构破坏;后者属于动力作用,是由于振动产生的惯性力引起的破坏。
根据以往的震害情况分析,桥梁震害主要分为上部结构震害、支座震害、下部结构震害和基础震害[1]。
1.1.1上部结构震害由于受到桥梁墩台、支座的隔离作用,在地震中,桥梁上部结构因直接受惯性力作用而破坏的情况较少在发现的少数此类震害中,主要是钢结构的局部屈曲破坏,如图1(a)。
桥梁颤振理论PPT课件
振型特点 纵漂 L-S-1 V-S-1 V-A-1 V-S-2 L-A-1 V-A-2
主塔横摆 主塔横摆
T-S-1 V-S-3 V-A-3 V-S-4 L-S-2 边跨竖向 T-A-1
1 ln x0
n xn
阻尼比与对数衰减率的关系
2 , 2 1 2
第23页/共68页
结构的频率和振型可以通过结构动力特性分析获得,结构阻尼与材 料、结构形式等多种因素有关,无法通过计算取得。桥梁抗风设计中结构 的阻尼比可以取以下经验值:
桥梁种类 钢桥
结合梁桥 混凝土桥
阻尼比 阻尼比的统计范围
第16页/共68页
a
二、扭转发散
a V
Ka 弹性轴
扭转发散问题的几何位置与参数
令扭转弹簧刚度为Ka ,其含义为梁段发生单位转角所需的气动 力矩。扭转角为a,平均风速为V,桥面宽为B,则单位长度的气
动力矩为 :
Ma
1 2
V
2 B 2C M
a
式中:CM a 为绕扭转轴转动的气动力参数。
第17页/共68页
桥梁的风毁事故最早可以追溯到1818年,苏格兰的Dryburgh Abbey桥首 先因风的作用而遭到毁坏。之后,英国的Tay桥因未考虑风的静力作用垮掉, 造成75人死亡的惨剧。一系列桥梁的风毁事故,使人们开始重视风的作用, 最初人们只认识到考虑静风载的必要性,直到1940年美国Tacoma悬索桥的 风毁事故(图8-1),才使工程界注意到桥梁风致振动的重要性。
0.005
0.5%~1.0%
0.01
1.0%~1.5%
0.02
2.0%~3.0%
第24页/共68页
二、采用有限元方法计算桥梁结构动力特性
《桥梁结构抗风与抗震》教学大纲-桥梁工程教学团队
道路桥梁与渡河工程专业《桥梁结构抗风与抗震》教学大纲一、课程基本信息二、课程简介《桥梁结构抗风与抗震》是道路桥梁与渡河工程专业方向的选修课程。
本课程的主要任务是通过课堂教学、专题研讨、课后作业、期末考试等环节,使学生掌握地震基本知识、桥梁震害特点、桥梁抗震与抗风的基础知识、计算理论和分析方法。
通过本课程的教学活动,使学生能够运用结构力学、结构动力学与桥梁工程等课程基础知识,初步具有分析或设计桥梁结构合理的抗风与抗震体系、地震作用与风荷载的力学特征、计算分析方法,初步具备解决实际桥梁结构抗风与抗震设计的能力。
三、课程教学目标本课程的教学目标及能力要求具体如下:课程目标1. 了解有关地震的基本知识和桥梁结构的震害特点,掌握单自由度体系自由振动和地震作用下强迫振动的数值计算方法;掌握反应谱的概念和反应谱分析方法;了解多自由度体系地震反应地震反应时程分析法的概念;掌握桥梁抗震设防和抗震验算要求;了解桥梁延性抗震设计的方法,桥梁减隔震设计的概念与流程;了解空气动力学基础知识及风对桥梁的动力作用。
课程目标2. 掌握桥梁工程抗震与抗风设计的基本原理和分析方法,熟悉桥梁抗震与抗风设计规范。
通过文献或资料研究,掌握桥梁抗震与抗风理论的发展历程与最新研究成果,了解最新的桥梁抗震与抗风设计理念,能够利用结构力学、桥梁工程及相关规范的要求进行设计和分析。
在提出解决复杂结构或环境下桥梁抗风与抗震设计方案时具有创新意识。
课程目标对毕业要求的支撑关系四、课程教学内容与学时分配五、课程教学方法1.采用以问题为导向的启发式教学,培养和激发学生主动学习的兴趣,培养学生独立思考、分析问题和解决问题的能力,引导学生主动通过实践和自学获得自己想学到的知识。
2.课程采用PPT教学模式,增强课程的信息量和感性认识。
3. 理论教学与工程实践相结合,引导学生应用数学、自然科学和工程科学的基本原理,采用现代设计方法和手段,进行机构分析、综合与仿真,培养其识别、表达和解决土木类专业相关工程问题的思维方法和实践能力。
浅谈桥梁结构的风振控制
浅谈桥梁结构的风振控制现代桥梁结构趋于轻、柔的特点给结构本身抗风抗震性能提出了考验。
由此可见,通过对大跨度桥梁的抗风问题进行理论研究,采取有效的措施把风对桥梁的危害控制在容许范围内,具有十分重要的理论价值和实际意义。
上世纪80年代以来,桥梁风振控制理论研究发展迅速,并且得到了实际应用。
随着大跨度桥梁的普遍兴建和高效能建桥材料的广泛应用,现代桥梁的结构形态逐渐向大跨、轻、柔方向发展。
虽然这对于美观及经济性方面是有益的,但是却给结构设计、施工甚至运营提出了更高更严格的要求。
大跨度桥梁作为生命线工程的重要组成部分,在政治、经济领域占据着重要的地位,对于它们的安全性应给予格外的重视。
现代桥梁结构趋于轻、柔的特点给结构本身抗风抗震性能提出了考验。
随着大跨度柔性桥梁的出现,风荷载往往成为结构上的支配性荷载。
风是空气从气压大的地方向气压小的地方流动而形成的。
风在行进中遇到结构,就形成风压力,使结构产生振动和变形。
桥梁受风力的作用后,结构物振动与风场间产生的互制现象—空气弹力效应所引起的气动力不稳定现象机率大为增加,强风、弱风都有可能使之整体或局部产生损坏。
例如,1940年11月7日,美国华盛顿州建成才4个月的老塔科马(Tacoma)悬索桥(主跨853m)仅在8级大风作用下就发生强烈的风致振动而破坏的严重事故。
该事件促使了桥梁工程界对结构风致振动的研究,并由此发展了一门新的学科—桥梁风工程学。
近几年来,随着我国大跨度桥梁的建设,桥梁风害也时有发生,江西九江长江公铁两用钢拱桥吊杆的涡激共振;上海杨浦大桥斜拉索的涡振和雨振损坏套索等。
由此可见,通过对大跨度桥梁的抗风问题进行理论研究,采取有效的措施把风对桥梁的危害控制在容许范围内,具有十分重要的理论价值和实际意义。
2、桥梁结构的风致振动桥梁结构风致振动可分为两大类:一类为限幅振动,主要包括抖振和涡激振;另一类为发散性振动,主要包括驰振和颤振。
桥梁的抖振是指桥梁结构在紊流场作用下的随机性强迫振动。
桥梁风振专题
桥梁风振概述
斜拉索表面制造成凹痕或螺旋线,可以减轻斜拉索风 雨振的程度。
桥梁风振概述 •机械减振措施
加阻尼器(如TMD,磁流变阻尼器)。怎样达到很好的减 振效果?
桥梁风振概述
加辅助索,预防拉索风雨振
桥梁风振概述
桥梁风振概述
桥梁风致病害典型案例
桥梁风振的主要形态 桥梁风工程的主要研究方法
桥梁风致振动的减振措施
桥梁风振概述
主要参考资料:
陈政清《桥梁风工程》
项海帆《现代桥梁抗风理论与实践》
项海帆《桥梁概念设计》Fra bibliotek桥梁风振概述
桥梁风致病害典型案例
•塔科马大桥风毁实例
塔科马大桥:1940年建成, 三跨连续加劲梁悬索桥,主跨 853m,宽11.9m,加劲梁为H型板 梁,梁高2.45m。
桥梁风振的主要形态
桥梁风振概述
•气动弹性现象:气流中的弹性体发生变形或振动,从而改变气 流边界条件,引起气流力的变化,反过来又引起弹性体新的变形 与振动,这种气流力与结构相互作用的现象即为气动弹性现象。
•颤振:扭转发散振动或弯扭发散振动。如塔克马桥的桥面扭转 振动,飞机机翼振动
•驰振:细长结构因气流自激作用发生的纯弯曲大幅振动。如结 冰电线振动,塔柱、吊杆、拉索容易产生驰振形象。
桥梁风振概述
•抖振:气流力受结构振动影响较小,气流力是一种强迫力,主 要是大气紊流导致结构强迫振动。 •涡振:大跨度桥梁在低风速下容易发生的一种 风致振动。
桥梁风振概述
桥梁风振的研究方法
•理论分析
《桥梁抗震抗风设计》课程教学大纲(本科)
桥梁抗震抗风设计Design of Bridge Seismic and Wind Resistance课程代码:24410101学分:1.5学时:24(其中:课堂教学学时:24 实验学时:0 上机学时:0 课程实践学时: 0 )先修课程:桥梁工程(I)适用专业:土木工程教材:《桥梁抗震与抗风》,谷岩,天津大学出版社,2015年1月第1版一、课程性质与课程目标(一)课程性质本课程是面向土木工程专业桥梁课群组的选修课。
通过本课程的学习,可培养学生唯物主义世界观及基本工程素质,培养学生将理论与工程实际有机融合、分析和解决工程问题的能力。
通过本课程学习,使学生掌握桥梁抗震、抗风的基本概念;掌握桥梁抗震计算理论和设计方法;掌握桥梁的减震、隔震理论和方法;理解桥梁的抗风稳定性;掌握桥梁静力风荷载计算方法,了解桥梁风工程,熟悉桥梁抗风的概念设计。
通过本课程的学习,可以使学生从事桥梁抗震、抗风工作或开展相关的科学研究创造条件;使学生初步学会应用桥梁抗震、抗风基本知识分析、解决实际工程问题。
(二)课程目标课程目标1:通过该课程的学习使学生掌握桥梁抗震、抗风的基本知识、计算理论和设计方法。
课程目标2:通过该课程的学习,使学生具有应用桥梁抗震、抗风的基本知识和方法解决实际工程中桥梁抵抗地震、风灾等问题的能力;培养学生将桥梁抗震、抗风理论与实际相结合的能力,为今后从事专业工作和进行科学研究打下基础。
课程目标3:通过课堂中介绍桥梁地震、风作用下的破坏事故,使学生树立科学的世界观、价值观和工程伦理,提高学生的工程素质。
通过课堂作业及习题的训练,培养学生思维严谨、认真做事的工作态度,开启学生的创新思维和意识。
(三)课程目标与专业毕业要求指标点的对应关系本课程支撑专业培养计划中毕业要求指标点4、6、8。
1.毕业要求4:具有较宽厚坚实的专业技术理论基础知识,主要包括桥梁工程等;2.毕业要求6: 具有较好的工程科学应用能力,能运用数学、物理、化学等手段解决本专业一般技术问题;3.毕业要求8: 具有一定的工程规划与设计、结构计算、施工组织设计和管理等解决工程实际问题的能力。
第十一讲桥梁风振可靠性分析
σub
U100
2.41
18.44
3.17
22.53
2.85
20.78
2.41
19.27
பைடு நூலகம்
2.34
18.39
3.04
21.75
2.65
19.70
2.56
19.77
2.54
18.55
2.11
15.66
2.43
15.29
2.71
17.84
2.97
20.24
3.32
23.65
3.31
23.13
3.23
22.54
风振 评价
静力 问题
强度——等效静风荷载作用 刚度——等效静风荷载作用 稳定——扭转发散或侧向屈曲
动力 问题
强度——阵风荷载、抖振荷载、涡振荷载 刚度——抖振位移、涡振位移 稳定——颤振发散或驰振发散
¾ 2. 颤振概率性评价 2.1文献综述
1985: M. Ito & Y. Fujino 在明石海峡大桥中首次采用 1992: P. Ostenfeld 等人在大海带桥中再次采用 1995: A Ianenti & A. Zasso 在墨西拿海峡大桥中采用 1997: 葛耀君在江阴大桥和杨浦大桥中采用
ai和bi — 偏差尺度和位置尺度,采用极大似然法估计
z (1) 基准风速(续)
表1 桥址处基准风速基本参数
I
风向
1
N
2
NNE
3
NE
4
ENE
5
E
6
ESE
7
SE
8
SSE
9
S
10
SSW
大跨度悬索桥抗风讲座报告
座报告告(四)姓名:顾尚廉学号;1130519 导师:周志勇浅谈大跨度桥梁的抗风问题——听《大跨度桥梁的极限跨径和抗风挑战》有感听完葛老师《大跨度桥梁的极限跨径和抗风挑战》讲座后,对于在本科期间从未了解过桥梁抗风问题的桥梁系研一学生的我来说,对大跨径桥梁的跨径极限和抗风问题有了一个初步的认识,也使我明确了以后学习和研究的方向。
下面我简单的介绍一下我对桥梁抗风问题的一些浅显认识。
0 前言风灾是自然灾害中发生最频繁的一种,桥梁的风害事故屡见不鲜。
风与结构的相互作用是一个十分复杂的现象,它受风的自然特性、结构的外型、结构的动力特性以及风与结构的相互作用等多方面因素的制约。
当风绕过一般为非流线型作用截面的桥梁结构时,会产生旋涡和流动的分离,形成复杂的空气作用力。
当桥梁结构的刚度较大时,结构保持静止不动,这种空气力的作用只相当于静力作用。
当桥梁结构的刚度较小时,结构振动受到激发,这时空气力的作用不仅具有静力作用,而且具有动力作用。
1 对桥梁抗风问题的重视1940 年,塔科马大桥的风毁事故引起了人们对桥梁抗风问题的重视和研究随着桥梁跨径的不断增大,桥梁结构日趋轻柔化,抗风问题才显得日益突出,特别是大跨度悬索桥的抗风稳定问题已经成为直接影响跨度进一步增大的关键因素。
2 风对桥梁结构的作用2.1. 风的静力作用静力作用指风速中由平均风速部分施加在结构上的静压产生的效应,可分为顺风向风力、横风向风力和风扭转力矩。
在顺风平均风的作用下,结构上的风压值不随时间发生变化,作用与桥梁上的风力可能来自任一方向,其中横桥向水平风力最为危险,是主要的计算对象。
它所造成的桥梁破坏的特点主要是强度破坏或过大的结构变形。
在桥梁的静风作用分析中,通常将风荷载换算成静力风荷载,作用在主梁、塔、缆索、吊杆等桥梁构件上,进行结构的计算分析。
2.2 风的动力作用风的动力作用指结构在风作用下的空气弹性动力响应,它一般可分为两大类。
第一类,自激振动:在风的作用下,由于结构振动对空气的反馈作用,振动的结构从空气中汲取能量,产成一种自激振动机制,如颤振、弛振和涡激振动。
《桥梁抗震与抗风设计》课程复习思考题
一、名词解释(一)与地震工程相关的一些专业术语①地震动:也称地震地面运动,是指由震源释放出来的地震波引起的地表附近土层的振动②地震区划:是按可能遭受的地震影响的危险程度将国土划分若干区,对不同的区规定不同的抗震设防标准,并将其结果以地震区划图的形式表示出来③地震超越概率:是指工程场地在未来一定时间内遭遇到大于或等于给定地震特征值(如地震动加速度峰值PGA 等)的地震的概率,常以年超越概率或设计基准期超越概率表示地震重复周期:地震重复周期是指一定场地大于或等于给定地震特征值的地震重复出现的平均时间间隔④弹性地震反应谱:系指线性单自由度振动系统在给定地震动作用下某种反应量的最大值与系统自振周期之间的关系曲线⑤延性:系指其在强度或承载力没有明显下降情况下的非弹性变形能力。
或者说,延性是指材料、构件或结构在维持材料强度或承载力基本不变的前提下承受塑性变形的能力⑥整体延性与局部延性:通常称结构的延性为整体延性,称构件的延性为局部延性⑦静力延性与滞回延性:静力延性系指结构或构件在单调静力荷载作用下的延性,滞回延性系指结构或构件在反复荷载作用下的延性⑧结构振动控制:系指采用某种措施使结构在动力激励下的响应不超过某一限量,以满足工程要求结构减震控制:系指采用现代控制理论,在结构的某些部位设置振动控制装置,以减小或抑制结构的地震反应,提高结构的抗震能力⑨能力设计原理:在结构体系中的延性构件和能力保护构件之间,确立适当的强度安全性等级差异,确保结构不发生脆性的破坏模式。
从基本概念看,该原理类似于“保险丝”原理⑩约束混凝土:系指受压时的横向变形受到有效约束的混凝土(二)与风工程相关的一些专业术语①基本风速:开阔平坦地貌条件下,地面以上10m 高度处,100 年重现期的10min 平均年最大风速设计基准风速:在基本风速基础上,考虑局部地表粗糙度影响,桥梁结构或结构构件基准高度处100 年重现期的10min 平均年最大风速②风攻角:风的主流方向与水平面产生的夹角③静力扭转发散:在风的静力扭转力矩作用下,当风速达到临界值时,桥梁主梁扭转变形的附加攻角所产生的空气力矩增量超过了结构抵抗力矩的增量,而出现扭转角不断增大的失稳现象静力横向屈曲:横向静风荷载值超过桥梁主梁横向屈曲临界荷载值时出现的失稳现象④颤振:振动的桥梁通过气流的反馈作用不断吸取能量,振幅逐步增大直至使结构破坏的发散性自激振动驰振:振动的桥梁从气流量不断吸取能量,使非扁平截面的细长钝体结构的振幅逐步增大的发散性弯曲自激振动涡激共振:气流绕经钝体结构时产生旋涡脱落,当旋涡脱落频率与结构的自振频率接近或相等时,由涡激力所激发出的结构共振现象抖振:风的紊流成分所激发的结构随机振动,也称为紊流风响应⑤静力三分力:气流绕过桥梁结构所产生的静力作用力的三个分量,阻力、升力和扭转力矩⑥节段模型试验(全桥气动弹性模型试验):将桥梁结构构件的代表性节段做成刚性的模型,在风洞中测定其静力三分力或非定常气动力作用的试验全桥气动弹性模型试验:将桥梁结构按一定几何缩尺并满足各种必要的空气动力学相似条件制成的弹性三维空间模型,在风洞中观测其在均匀流及紊流风场中各种风致效应的试验⑦风振控制:为避免出现发散性风致振动或过大的限幅振动所采取的气动措施、结构措施或机械措施二、简答题1.面对地震灾害,我国当前采取的防震减灾对策是什么?①地震区划(国家地震工作主管部门负责)及地震安全性评价②工程抗震设防标准与抗震设计规范(国家建设主管部门负责)③城市防震减灾规划(各级政府负责)④新建、扩建、改建建设工程抗震设防(设计单位负责)⑤已建建设工程抗震加固(设计单位负责)⑥建设项目的抗震施工质量保证(施工单位和质量监督部门负责)2.地震引起的地表破坏现象有哪几种?①地表断裂②滑坡③砂土液化④软土震陷3.地震动的三要素是什么?①地震动的幅值(最大振幅或峰值)②频谱特性(波形)③持续时间(简称持时)4.工程结构的抗震设防标准是什么?工程结构抗震设计要遵从一定的标准,这就是抗震设防标准。
桥梁风工程讲解
同济大学土木工程防灾国家重点实验室
1.3 风工程国际机构
A. ICWE——International Conference on Wind Engineering. (International Conference or Research Seminar on Wind Effects on Buildings and Structures)
[2]. Journal of Sound & Vibration [3]. Journal of AIAA [4]. Journal of Engineering Mechanics Division, ASCE [5]. Journal of Structural Engineering, ASCE [6]. Journal of Fluid Mechanics [7]. Journal of Wind and Structures, Korea
中国同济大学土木工程防灾国家重点实验室中国空气动力研究中心绵阳北京大学力学系湍流国家重点实验室西南交大桥梁工程系汕头大学湖南大学长安大学广东建科所香港科技大学香港理工大学同济大学土木工程防灾国家重点实验室3
同济大学土木工程防灾国家重点实验室、桥梁工程系
桥梁抗风设计
——桥梁与隧道工程专业硕士生课程
刍议大跨径悬索桥抗风问题及风振措施
刍议大跨径悬索桥抗风问题及风振措施摘要:随着现代桥梁技术的不断提升,大跨径悬索桥的应用越来越多,跨径记录也被不断打破。
悬索桥相对于其他结构形式的桥梁而言,其更容易受到风力的影响,尤其是对于大跨径悬索桥而言,风力作用下引起的各种振动对于桥梁的稳定性会造成极大的影响。
因此,如何提升抗风问题成为了大跨径悬索桥在设计时的重点问题。
文章对悬索桥进行了详细的风振分析,并在此基础上对如何提升大跨径悬索桥抗风能力展开了讨论。
关键词:悬索桥,风振,桥梁稳定性前言在所有桥梁结构中,悬索桥的跨越能力是最突出的,在跨江、跨海、跨山谷等方面有重要的应用。
这种桥梁结构主要依赖于缆索支撑体系,因此其非线性特性非常明显。
正是由于这种特性,因此其在风力荷载的作用下动力响应问题也相较于其他结构桥梁更加明显。
在早期的悬索桥设计中,由于对风载作用的考虑不够全面,因此设计出来的桥梁安全性存在明显的缺陷,引发了众多安全事故,造成了极大的经济损失和人员伤亡。
因此,当前悬索桥设计时尤其是大跨径悬索桥设计的过程中,相关人员非常重视桥梁的抗风问题。
文章以悬索桥风振类型出发,对桥梁自身的结构特征风载响应特征进行了归纳,并在此基础上提出了若干风振减弱措施,强化大跨径悬索桥的抗风设计方法和内容。
1.悬索桥风振分析从结构上来看,悬索桥是一种柔性结构,在风力荷载的情况下,其受力情况和振动方式具有多变性。
在经过了长期的实验探究后,人们对这种柔性结构的振动现象有了较深刻的认识。
并根据各种振动的特性制定了具有针对性的控制措施,具体如下:1.1 抖振抖振的本质是一种结构性强迫振动,其引起的原因是脉动风。
这种振动引起的原因可以概括为两种:(1)风本身的不规则性使得气流的方向和速度较为紊乱,这种紊乱的气流直接作用在桥梁结构上,引起的强迫性振动。
(2)在桥梁周围存在山体、建筑等,气流流经这些遮挡物时产生了紊乱的气流,这些气流简介作用在桥梁结构上,引起强迫性振动。
从振动的幅度上来看,由于抖振的起因是紊乱的气流,其方向是多变的,不会有明显的方向性,因此引起的桥梁振动幅度较小,一般不会直接给桥梁造成非常严重的结构性破坏,但是可能使得桥梁的部分结构变形,影响桥梁上通行人员的舒适度。
《桥梁抗震》课程教学大纲
《桥梁抗震》课程教学大纲一、课程编码及课程名称课程编码:课程名称:桥梁抗震;Bridge Anti-seismic Design二、学时、学分及适用专业总学时数:32 学分:2适用专业:土木工程专业(道路桥梁方向)三、课程教学目标通过桥梁工程抗震设计课程的学习,使学生了解桥梁结构地震破坏的特点,掌握桥梁工程抗震设计的基本原理和基本方法,以及桥梁工程的地震作用计算方法和抗震设计验算,培养一定的桥梁工程抗震设计能力。
四、课程的性质和任务本课程是为全日制本科土木工程专业道桥方向开设的介绍桥梁工程抗震设计的基本理论原理与实用方法的一门专业课;本课程的任务是使学生掌握工程地震基本知识、工程抗震原理以及结构的抗震设计方法,为学生今后解决桥梁结构概念设计和抗震设计等方面的问题奠定基础。
五、课程教学的基本要求要求学生在熟练掌握教材内容的同时,学会查阅与本课程相关的文献资料以及相关规范,使学生能够把理论知识灵活运用到实践当中。
六、课程教学内容第一章绪论(共2学时)(一)本章教学基本要求1.1教学内容:桥梁结构抗震的内容1.2教学内容:桥梁结构抗震设计方法步骤1.3教学内容:桥梁结构的抗震措施(二)重点与难点重点:本课程研究方法;本课程主要包括的内容、特点难点:桥梁结构抗震设计方法步骤(三)小结本章主要介绍桥梁震害的危害性,桥梁结构抗震设计的重要性,本课程所研究的内容容及其发展方向。
第二章地震概述(共2学时)(一)本章教学基本要求2.1教学内容:了解地震成因及其分类,震源、震中、地震波的概念,以及地震波的特点 2.2教学内容:掌握震级、烈度、基本烈度、设防烈度的概念(二)重点与难点重点:地震成因及其分类;震级与烈度的概念难点:基本烈度、设防烈度的概念(三)小结第三章桥梁震害(共2学时)(一)本章教学基本要求3.1教学内容:引起桥梁震害的原因3.2教学内容:上部结构的震害3.3教学内容:支座的震害3.4教学内容:下部结构和基础的震害(二)重点与难点重点:震害的宏观调查与分析难点:分析桥梁震害的原因(三)小结第四章桥梁抗震设计概论(共12学时)(一)本章教学基本要求4.1教学内容:掌握路线等级及构造物的重要性分级、抗震设防目标、抗震设防标准、抗震设计的基本要求4.2教学内容:掌握公路工程抗震设计中场地分类与地基抗震验算方法4.3教学内容:了解单自由度弹性体系在地震作用下的强迫振动4.4教学内容:掌握地震反应谱的概念和特点,地震系数、动力系数的概念,以及应用反应谱曲线计算地震荷载4.5教学内容:了解多自由度弹性体系的自由振动和地震反应4.6教学内容:了解振型、主振型的正交性等概念,振型分解反应谱方法的原理和计算(二)重点与难点重点:抗震设防标准、抗震设计的基本要求;地震反应谱的概念和特点,地震系数、动力系数的概念,以及应用反应谱曲线计算地震荷载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公开课资
16
桥梁风振概述
公开课资
17
桥梁风振概述
加装风嘴、中央开槽、稳定板,使桥梁截面接近流线型, 避免或推迟漩涡脱落发生,增大竖向振动空气阻尼。
公开课资
18
桥梁风振概述
斜拉索表面制造成凹痕或螺旋线,可以减轻斜拉索风 雨振的程度。
公开课资
19
桥梁风振概述 •机械减振措施
加阻尼器(如TMD,磁流变阻尼器)。怎样达到很好的减 振效果?
公开课资15桥梁源自振概述桥梁风振的减振措施•空气动力学措施
引起桥梁振动的风荷载性质与桥梁外形有关。在不改变桥 梁结构与使用性能的前提下,适当改变桥梁外形或附加一些导 流装置,往往可以减轻桥梁风振。如:
加装风嘴、中央开槽、稳定板,使桥梁截面接近流线型, 避免或推迟漩涡脱落发生,增大竖向振动空气阻尼。
公开课资
6
桥梁风振概述 •斜拉索风雨振
日本名港西大桥(MeikoNishi)、洞庭湖大桥均实测到拉 索在风雨共存的条件下,发生风雨振。称为影响最大的一种桥 梁病害。
公开课资
7
桥梁风振概述
桥梁风振的主要形态
公开课资
8
桥梁风振概述
•气动弹性现象:气流中的弹性体发生变形或振动,从而改变气 流边界条件,引起气流力的变化,反过来又引起弹性体新的变形 与振动,这种气流力与结构相互作用的现象即为气动弹性现象。
•颤振:扭转发散振动或弯扭发散振动。如塔克马桥的桥面扭转 振动,飞机机翼振动
•驰振:细长结构因气流自激作用发生的纯弯曲大幅振动。如结 冰电线振动,塔柱、吊杆、拉索容易产生驰振形象。
公开课资
9
桥梁风振概述
•抖振:气流力受结构振动影响较小,气流力是一种强迫力,主 要是大气紊流导致结构强迫振动。
•涡振:大跨度桥梁在低风速下容易发生的一种 风致振动。
公开课资
20
桥梁风振概述
加辅助索,预防拉索风雨振
公开课资
21
公开课资
10
桥梁风振概述
桥梁风振的研究方法
•理论分析
运用空气动力学原理,建立各类风荷载的数学模型,应 用结构动力学的方法,求解各类风致振动及其稳定性。
西奥多尔森(Theodorsen)理想平板颤振自激力理论;斯 坎伦(Scanlan)桥梁断面颤振理论;达文波特(Davenport) 抖振准定常理论。
桥梁风振概述 1818-1840年风毁桥梁案例
公开课资
5
桥梁风振概述 •日本东京湾通道桥的涡激共振
主桥为10跨一联的钢箱梁 连续梁桥,最大跨度240m,宽 22.9m, 梁高6-11.5m。
在16-17m/s的风速作用下, 发生竖向涡激振动,跨中振幅 达50 cm。
安装16台可调质量阻尼器 (TMD),涡激振动振幅只有5 cm。
桥梁风工程的进一步发展,有待于基本理论框架的新突 破。
公开课资
11
桥梁风振概述 •风洞试验
目前,风洞试验是一个十分重 要且不可替代的手段。风洞试验包括: 节段模型试验,全桥模型试验等。
公开课资
12
第六章 桥梁风振概述 •风洞试验
目前,风洞试验是一个十分重 要且不可替代的手段。风洞试验包括: 节段模型试验,全桥模型试验等。
公开课资
13
中南大学桥梁工程系
桥梁风振概述 •现场观测
实桥测量风振特征与参数,是一种很好的研究手段,尤 其是桥梁发生风致病害时,研究价值更大。塔克马桥的实况 录像为桥梁事故原因分析以及桥梁风工程发展起到了重要的 推动作用。
公开课资
14
桥梁风振概述 •数值模拟
应用计算流体力学 方法,在计算机上实现桥 梁风振全过程,称为数值 风洞技术。
桥梁风振概述
桥梁风振概述
❖ 桥梁风致病害典型案例
❖ 桥梁风振的主要形态
❖ 桥梁风工程的主要研究方法
❖ 桥梁风致振动的减振措施
公开课资
1
桥梁风振概述
主要参考资料:
❖ 陈政清《桥梁风工程》 ❖ 项海帆《现代桥梁抗风理论与实践》 ❖ 项海帆《桥梁概念设计》
公开课资
2
桥梁风振概述
桥梁风致病害典型案例
•塔科马大桥风毁实例
塔科马大桥:1940年建成, 三跨连续加劲梁悬索桥,主跨 853m,宽11.9m,加劲梁为H型板 梁,梁高2.45m。
建成4个月后,在18m/s的 风速(8级)作用下,发散振动持 续70min。最后,吊杆断裂,加 劲梁坠落河中。
原因:颤振失稳。
公开课资
3
桥梁风振概述 •塔科马大桥风毁实例
公开课资
4