2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)
2016年第二十一届华罗庚金杯少年数学邀请赛初赛全国卷(小学高年级组)(含解析)
+16)=100-16=84,
6.答案: B;
试题分析: 试题分析: 首先在 0 到 2016 这 2016 个数中,数字和最大的为 1999,其和是 1+9×3=28,
数字之和最小是 1;按其和的多少可以方程 28 组,并且根据多少依次编上号, 进而得出答案。
解:数字和是 1 的①号有 1、10、100、1000; 数字和是 2 的②号有 11、101、110、1001、1010、1100、2、20、200、2000; 数字和是 3 的③号有 111、1011、1101、1110、102、120、201、210、1002、··· ······ ······ 在这 28 个数中,除 1999 只有一个数外,其余每组都有 4 个或 4 个以上的数; 如果我们在这些数字和为 4 个或 4 个以上的数的各组中,每组取 4 个数,并且将 1999 也取上,这样共有数:27× 4+1=109(个); 这样,在剩余的数中,任取一个,必然会从这个数相同组中取出的 4 个数的数字和相 等,即产生 5 个数字和相等的情况; 所以,n 的最小值等于:109+1=110; 故选:B.
10.答案: 4029;
试题分析: 试题分析: 由题意可知,题目要求剪出的小梯形,只在梯形的上底和下底以及底角作了要 求,并没有谈及梯形的高的事,可知,要分割的小梯形就是一横排。 因为题中的等腰梯形纸片,上底长度为 2015,下底长度为 2016,下底与上底 之间只相差 2016-2015=1,为了达到分割出的所有的小梯形的上底的和为 1, 且下底也只能比上底多 1, 如果设上底为 x,下底为 x+1,上、下底交错搭配,这样,两个小梯形搭配起来 就是一个小平行四边形,因为所有 x 的和为 1 知,平行四边形最多有 20151=2014(个),另外还有一个符合要求的等腰梯形,如下图:
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)一、填空题(每小题10分,共80分)1.(10分)计算:(98×76﹣679×8)÷(24×6+25×25×3﹣3)=.2.(10分)从1,2,3,4,5这5个数中选出4个不同的数填入下面4个方格中□+□>□+□,有种不同的填法使式子成立.(提示:1+5>2+3和5+1>2+3是不同的填法)3.(10分)将图中左边的大三角形纸板剪3刀,得到4个大小相同的小三角形纸板(第一次操作),见图中间,再将每个小三角形纸板剪3刀,得到16个大小相同的更小的三角形纸板(第二次操作),见图右边,这样继续操作下去,完成前六次操作共剪了刀.4.(10分)一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于.5.(10分)图中的网格是由6个相同的小正方形构成,将其中4个小正方形涂上灰色,要求每行每列都有涂色的小正方形,经旋转后两种涂色的网格相同,则视为相同的涂法,那么有种不同的涂色方法.6.(10分)有若干个连续的自然数,任取其中4个不同的数相加,可得到385个不同的和.则这些自然数有个.7.(10分)在4×4方格网的每个小方格中都填有一个非零自然数,每行、每列及每条对角线上的4个数之积都相等,如图给出了几个所填的数,那么五角星所在的小方格中所填的数是.8.(10分)甲、乙两人在一条长120米的直路上来回跑,甲的速度是5米/秒,乙的速度是3米/秒,若他们同时从同一端出发跑了15分钟,则他们在这段时间内共迎面相遇次(端点除外).二、解答题(共4小题,满分20分)9.(5分)图中有一个边长为6厘米的正方形ABCD与一个斜边长为8厘米的等腰直角三角形AEF,E在AB的延长线上,则图中阴影部分的面积为多少平方厘米?10.(5分)有10个两两不同的自然数,其中任意5个的乘积是偶数,全部10个数的和是奇数,则这10个自然数的和最小是多少?11.(5分)在1到200这200个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的乘积等于238?12.(5分)最初,盒子中有三张卡片,分别写着数1,2,3,每次,从盒子里取出两张卡片,将上面的数之和写到另一张空白卡片上,再把一张卡片放回盒子,如此5次后,除了最后一张写数的卡片外,其他的卡片都至少取出过一次,不超过两次,问:此时盒子里面卡片上的数最大为多少?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:(98×76﹣679×8)÷(24×6+25×25×3﹣3)=1.【分析】有括号,所以先算括号里面的,再算括号外面的,据此解答即可.【解答】解:(98×76﹣679×8)÷(24×6+25×25×3﹣3)=(7448﹣5432)÷(144+1875﹣3)=2016÷2016=1;故答案为:1.【点评】计算四则混合运算时,要按照运算顺序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,如果既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.2.(10分)从1,2,3,4,5这5个数中选出4个不同的数填入下面4个方格中□+□>□+□,有48种不同的填法使式子成立.(提示:1+5>2+3和5+1>2+3是不同的填法)【分析】我们可以从首尾数字入手考虑:比1+5大的组合入手(有1种),就有3+4>1+5比1+4大的组合入手(有2种),就有2+5>1+4,3+5>1+4比1+3大的组合入手(有3种),就有2+4>1+3,2+5>1+3,4+5>1+3以此类推,比1+2大的组合有3种比2+3大的组合有2种比2+4大的组合有1种每种组合有4种不同的填法,依此即可求解.【解答】解:比1+5大的组合入手(有1种),就有3+4>1+5比1+4大的组合入手(有2种),就有2+5>1+4,3+5>1+4比1+3大的组合入手(有3种),就有2+4>1+3,2+5>1+3,4+5>1+3以此类推,比1+2大的组合有3种比2+3大的组合有2种比2+4大的组合有1种(1+2+3)×2×4=12×4=48(种)答:有48种不同的填法使式子成立.故答案为:48.【点评】考查了填符号组算式,关键是得到所有组合的情况数,另外理解每种组合有4种不同的填法.3.(10分)将图中左边的大三角形纸板剪3刀,得到4个大小相同的小三角形纸板(第一次操作),见图中间,再将每个小三角形纸板剪3刀,得到16个大小相同的更小的三角形纸板(第二次操作),见图右边,这样继续操作下去,完成前六次操作共剪了4095刀.【分析】首先分析第二块是剪3刀,变成4块,之后就是每一块上都是3刀,继续计算即可.【解答】解:依题意可知:第一次是剪3刀变成4块.第二次是每一块都被剪3刀共12刀变成16块.第三次为16×3=48(刀);块数是16×4=64(块);第四次为64×3=192(刀);块数是64×4=256(块);第五次为256×3=768(刀);块数是256×4=1024(块);第六次为1024×3=3072(刀).3+12+48+192+768+3072=4095.故答案为:4095【点评】本题考察队找规律的理解和运用,关键问题是找到块数和刀数的关系.问题解决.4.(10分)一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于69.【分析】按题意,此两位数是23的倍数,而使此两位数与109的乘积为四位数,则此两位数能取得数为:23、46、69,而最大的是69.【解答】解:根据分析,此两位数是23的倍数,而使此两位数与109的乘积为四位数,则此两位数能取得数为:23、46、69,综上,这个两位数最大为69,故答案是:69.【点评】本题考查了数的整除特征,突破点是:从能被23整除且商是一位数,推测出此两位数.5.(10分)图中的网格是由6个相同的小正方形构成,将其中4个小正方形涂上灰色,要求每行每列都有涂色的小正方形,经旋转后两种涂色的网格相同,则视为相同的涂法,那么有7种不同的涂色方法.【分析】首先可以根据第一列涂色的数量进行分类讨论,注意考虑旋转后相同的视为相同涂法.【解答】解:①当第一列涂了3个时,涂色情况如下:,有3种情况;②当第一列涂了2个时,涂色情况如下:,有4种情况.共计3+4=7种.故答案为:7.【点评】本题的突破口在于能正确分类,做到不重不漏,难度不大.6.(10分)有若干个连续的自然数,任取其中4个不同的数相加,可得到385个不同的和.则这些自然数有100个.【分析】假设这些连续的自然数中最小的数为a,最大的教为a+n+3,那么任取4个自然数和最小必为a+a+1+a+2+a+3=4a+6,最大的和为a+n+a+n+1+a+n+2+a+n+3=4a+6+4n.且由于连续自然数之间的所有和都能够取到.可得方程4n=385﹣1,解得n=96,依此得到最小的自然数为a.最大的自然数为a+99,共100个数,从而求解.【解答】解:设这些连续的自然数中最小的数为a,最大的教为a+n+3,那么任取4个自然数和最小必为a+a+1+a+2+a+3=4a+6,最大的和为a+n+a+n+1+a+n+2+a+n+3=4a+6+4n.依题意有4n=385﹣1,解得n=96.则最小的自然数为a,最大的自然数为a+99,共100个数.答:这些自然数有100个.故答案为:100.【点评】考查了数字问题,得到4个连续自然数最小和和最大的和是解题关键.7.(10分)在4×4方格网的每个小方格中都填有一个非零自然数,每行、每列及每条对角线上的4个数之积都相等,如图给出了几个所填的数,那么五角星所在的小方格中所填的数是1.【分析】首先分析题中的幻方规律可知可根据比较法求解,不需要求出幻和.【解答】解:依题意可知:根据幻方规律比较法可知:设方格数字如图所示:a×2×16×b=a×8×32×8,∴b=64.再根据c×4×8×128=64×c×五角星×64五角星就是1故答案为:1【点评】本题考查对幻方的理解和运用,关键问题是根据比较法求解,问题解决.8.(10分)甲、乙两人在一条长120米的直路上来回跑,甲的速度是5米/秒,乙的速度是3米/秒,若他们同时从同一端出发跑了15分钟,则他们在这段时间内共迎面相遇23次(端点除外).【分析】根据题意,要明白他们的迎面相遇时,2人一共的行程是2个单程120×2=240(米),用时为240÷(3+5)=30(秒),即每30秒就相遇一次(包括端点的).那端点的相遇用时为:2人单程用时(120÷3=40,120÷5=24)的公倍数,最小公倍数第一次在端点相遇的用时.用120÷30=4可知,他们4次相遇中就有1次为端点相遇.即15分钟内相遇的总次数为:15×60÷30=30,其中在端点相遇的次数为30÷4的整数部分,即7.所以他们在这段时间内共迎面相遇(端点除外)的次数为:30﹣7=23【解答】解:240÷(3+5)=30(秒)120÷3=40(秒)120÷5=24(秒)40与24的最小公倍数120(2人第一次在端点相遇的用时)120÷30=415×60÷30=30(次)30÷4=7 (2)30﹣7=23(次)答:他们在这段时间内共迎面相遇23次(端点除外).【点评】此题的关键是搞明白他们每次相遇的2人行程均为240米和每次在端点相遇的用时为:2人单程用时(120÷3=40与120÷5=24)的公倍数.二、解答题(共4小题,满分20分)9.(5分)图中有一个边长为6厘米的正方形ABCD与一个斜边长为8厘米的等腰直角三角形AEF,E在AB的延长线上,则图中阴影部分的面积为多少平方厘米?【分析】按题意,阴影部分的面积与直角三角形的面积之和,等于正方形的面积加上三角形BGE的面积,故可以先求得三角形BGE的面积,即可求得阴影部分的面积.【解答】解:根据分析,BG=BE=AE﹣AB=8﹣6=2(厘米),故三角形BGE的面积=BG×BE×=×2×2=2(平方厘米),因为三角形AEF为等腰直角三角形,所以由AE2=AF2+FE2得出AF=4,阴影部分的面积+△AEF的面积=正方形ABCD的面积+△BGE的面积⇒阴影部分的面积=正方形ABCD的面积+△BGE的面积﹣△AEF的面积=6×6+2﹣4×4×=22(平方厘米),故答案是:22【点评】本题考查三角形的面积,突破点是:阴影部分的面积与直角三角形的面积之和,等于正方形的面积加上三角形BGE的面积,即可求得阴影部分的面积.10.(5分)有10个两两不同的自然数,其中任意5个的乘积是偶数,全部10个数的和是奇数,则这10个自然数的和最小是多少?【分析】按题意,任意5个的乘积是偶数,说明至多有4个奇数,又全部10个数的和是奇数,则奇数的个数为1个或3个,取奇数里的最小数1或1,3,5,其他几个数可能的情况,分别比较大小,求出最小值.【解答】解:根据分析,10个自然数中奇数的个数为1个或3个,①只有一个奇数时,则奇数最小为1,其他偶数最小的为:0,2、4、6、8、10、12、14、16、18,此时自然数和=0+1+2+4+6+8+10+12+14+16+18=91;②若有三个奇数,则奇数为1、3、5,则其他偶数最小为:0,2、4、6、8、10、12此时自然数和=0+1+3+5+2+4+6+8+10+12=51.综上,这10个自然数的和最小是51.故答案是:51.【点评】本题考查数字和问题,突破点是:求出奇数的个数,和偶数的个数,再求和.11.(5分)在1到200这200个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的乘积等于238?【分析】首先分析238的因数,使其中2个因数相乘得238的共4组,利用最不利原则求出结果.【解答】解:依题意可知:将238分解成小于200的数字积有238=17×14=7×34=2×119共有三组.的两位数相乘的因数有(17,14),(7,34),(2,119)共6个数约数分为3组.最不利原则是其他的194选择了,再从三组因数中每组挑选一个共197个,再选择一个就是组成两个因数的积是238了.共197+1=198;答:至少选出198个才能保证有连个数的乘积是238.【点评】本题是考查对抽屉原来的理解和运用,关键的问题是分组找出最倒霉的情况,问题解决.12.(5分)最初,盒子中有三张卡片,分别写着数1,2,3,每次,从盒子里取出两张卡片,将上面的数之和写到另一张空白卡片上,再把一张卡片放回盒子,如此5次后,除了最后一张写数的卡片外,其他的卡片都至少取出过一次,不超过两次,问:此时盒子里面卡片上的数最大为多少?【分析】由已知可知:最后一共得到8个数,所有得数一共加了2×5=10次,由于每张卡片至少取过1次,不超过两次,有4个数被计算了一次,第七个数只会被第8个数计算一次,因此第7个数只会被计算一次,要想卡片上的数尽可能的大,要让4,5,6个数计算两次,第1,2,3个数计算1次,可以使第8个数最大,分情况讨论即可.【解答】解:由分析可得:要想卡片上的数尽可能的大要让4,5,6个数计算两次,第1,2,3个数计算1次可以使第8个数最大①1,2,3,4,6,10,16,26②1,2,3,3,6,9,15,24③1,2,3,5,6,11,17,28答:此时盒子里面卡片上的数最大为28.【点评】本题可以应用这个方法:为了使最后得到的数字最大,那么尽量保证每次取得的都是交大的两个数相加,在整个过程中还得保证1至少用一次,1可以是任意一次取得的,利用枚举法即可.。
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题6分,共48分)1.(6分)计算:+=.2.(6分)某月里,星期五、星期六和星期日各有5天,那么该月的第1日是星期.3.(6分)大于且小于的真分数有个.4.(6分)哥哥和弟弟各买了若干个苹果,哥哥对弟弟说:“若我给你一个苹果,咱俩的苹果个数一样多”.弟弟想了想,对哥哥说:“若我给你一个苹果,你的苹果数将是我的2倍”,则哥哥与弟弟共买了个苹果.5.(6分)图中,AB=AD,∠DBC=21°,∠ACB=39°,则∠ABC=度.6.(6分)已知抽水机甲和抽水机乙的工作效率比是3:4,如两台抽水机同时抽取某水池,15小时抽干水池,现在,乙抽水机抽水9小时后关闭,再将甲抽水机打开,要抽干水池还需要小时.7.(6分)n为正整数,形式为2n﹣1的质数称为梅森数,例如:22﹣1=3,23﹣1=7是梅森数.最近,美国学者刷新了最大梅森数,n=74207281,这个梅森数也是目前已知的最大的质数,它的个位数是.8.(6分)图中,ABCD是直角梯形,上底AD=2,下底BC=6,E是DC上一点,三角形ABE的面积是15.6,三角形AED的面积是4.8,则梯形ABCD的面积是.二、解答题(共4小题,满分22分)9.(5分)甲、乙两人,在一圆形跑道上同时同地出发,反向跑步,已知甲的速度是每分钟180m,乙的速度是每分钟240m,在30分钟内,它们相遇了24次,问跑道的长度最多是多少米?10.(5分)一筐苹果分成甲乙两份,甲的个数和乙的苹果个数比是27:25,甲多乙少,若从甲中至少取出4个,加入乙中,则乙多甲少,问这筐苹果有多少个?11.(6分)如图是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?12.(6分)三台车床A,B,C各以一定的工作效率加工同一种标准件,A车床比C车床早开机10分钟,C车床比B车床早开机5分钟,B车床开机10分钟后,B,C车床加工的标准件的数量相同,C车床开机30分钟后,A,C两车床加工的标准件个数相同,B车床开机多少分钟后就能与A车床加工的标准件的个数相同?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?14.(15分)数学竞赛,填空题8道,答对1题,得4分,未答对,得0分;问答题6道,答对1道,得7分,未答对,得0分,参赛人数400人,至少有多少人的总分相同?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题6分,共48分)1.(6分)计算:+=.【分析】可以先将原式化简,将分子分母分别计算出结果,然后最后求得结果.【解答】解:根据分析,原式=+======;故答案是:.【点评】本题考查了繁分数,突破点是:可以先将原式化简,将分子分母分别计算出结果,然后最后求得结果.2.(6分)某月里,星期五、星期六和星期日各有5天,那么该月的第1日是星期五.【分析】首先根据1个月最多有31天,可得:1个月最多有4个星期零3天;然后根据该月星期五、星期六和星期日各有5天,可得:该月的第1日是星期五,据此解答即可.【解答】解:因为31÷7=4(个)…3(天),所以1个月最多有4个星期零3天,因为该月星期五、星期六和星期日各有5天,所以该月的第1日是星期五.答:该月的第1日是星期五.故答案为:五.【点评】此题主要考查了年、月、日的特征和判断,要熟练掌握,解答此题的关键是要明确:一年中,1个月最多有31天.3.(6分)大于且小于的真分数有无穷多个.【分析】比较两个分数大小时,要么分子和相同,要么分母相同,才可比较.所以针对此题中的两个分数,先要通分变成分母相同的两个分数再进行比较即可.【解答】解:=,=;比2015大且小于2016的数有无数个,这无数个数都比2015×2016小.以这无数个数中的任何一个数做分子,2015×2016做分母组成的所有分数都是真分数.故:大于且小于的真分数有无穷多个.【点评】只要遇到比较分数大小的题,都要使其分子或分母相同,再做比较.4.(6分)哥哥和弟弟各买了若干个苹果,哥哥对弟弟说:“若我给你一个苹果,咱俩的苹果个数一样多”.弟弟想了想,对哥哥说:“若我给你一个苹果,你的苹果数将是我的2倍”,则哥哥与弟弟共买了12个苹果.【分析】首先分析哥哥比弟弟多几个苹果,同时找到第二次的数量差即可求出一份量.问题解决.【解答】解:依题意可知:哥哥对弟弟说:“若我给你一个苹果,咱俩的苹果个数一样多”.说明哥哥比弟弟多2个苹果.弟弟若给哥哥一个苹果,哥哥的苹果数将是弟弟的2倍”,那么弟弟比哥哥少了4个苹果.此时4÷(2﹣1)=4(个).弟弟此时4个,哥哥8个共4+8=12个.故答案为:12【点评】本题考查对和差倍问题的理解和运用,关键问题是找到一份量的数量,问题解决.5.(6分)图中,AB=AD,∠DBC=21°,∠ACB=39°,则∠ABC=81度.【分析】如果想求出∠ABC的度数,那么需要求出∠ABD度数,根据AB=AD可知底角相等.再根据外角即可求解.【解答】解:依题意可知:∠DBC=21°,∠ACB=39°根据外角等于不相邻的内角和可知∠ADB=∠C+∠DBC=21°+39°=60°.∵AB=AD.∴∠ADB=∠ABD=60°.∠ABC=∠ABD+∠DBC=60°+21°=81°.故答案为:81【点评】本题考查对长度和角度的立即和运用,关键是找到角之间的等量关系.问题解决.6.(6分)已知抽水机甲和抽水机乙的工作效率比是3:4,如两台抽水机同时抽取某水池,15小时抽干水池,现在,乙抽水机抽水9小时后关闭,再将甲抽水机打开,要抽干水池还需要23小时.【分析】根据“工作量=工作效率×工作时间”.由已知条件设出甲、乙的工作效率分别是、1,可得工作总量(+1)×15=26.25,工作总量减去乙已经完成的工作量就得出乙要完成的工作量,再有公式即可算出甲的工作时间.【解答】解:设甲、乙的工作效率分别是、1.(+1)×15=26.2526.25﹣1×9=17.2517.25÷=23(小时)故:要抽干水池还需要23小时.【点评】解题就是重复利用公式“工作量=工作效率×工作时间”.7.(6分)n为正整数,形式为2n﹣1的质数称为梅森数,例如:22﹣1=3,23﹣1=7是梅森数.最近,美国学者刷新了最大梅森数,n=74207281,这个梅森数也是目前已知的最大的质数,它的个位数是1.【分析】根据题意,此梅森数为2n﹣1=274207281﹣1,要求梅森数的个位数,只需求得274207281的个位数,而274207281的个位数可以根据周期规律求得.【解答】解:根据分析,此梅森数为2n﹣1=274207281﹣1,∵21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;29=512;210=1024…由此可知,2n个位数字为:2、4、8、6、2、4、8、6、2…即n=1,5,9,…时,个位数字为2;n=2,6,10,…时,个位数字为4;n=3,7,11,…时,个位数字为8;n=4,8,12,…时,个位数字为6;综上,2n个位数字按周期循环出现,周期为4,而74207281=4×18551820+1,故274207281的个位数与21的个位数相同,可以断定274207281的个位数为2,274207281﹣1的个位数为:2﹣1=1.故答案是:1.【点评】本题考查了质数与合数,突破点是:利用个位数字循环出现的周期性,最后求得梅森数的个位数.8.(6分)图中,ABCD是直角梯形,上底AD=2,下底BC=6,E是DC上一点,三角形ABE的面积是15.6,三角形AED的面积是4.8,则梯形ABCD的面积是24.【分析】按题意,可以先求得三角形ADE底边AD上的高,再求得三角形BEC的底边BC上的高,即可求得三角形ECB的面积,不难求得梯形ABCD的面积.【解答】解:根据分析,先求得三角形ADE底边AD上的高=4.8÷(×AD)=4.8÷1=4.8,如图,过E作EG⊥BC,EF⊥AB,显然EG=EF,由梯形的面积可知,×(AD+BC)×AB=×(2+6)×(AF+FB)=4×(4.8+EG),梯形的面积=S△ADE +S△ABE+S△BCE=15.6+4.8+=20.4+=20.4+3EG,4×(4.8+EG)=20.4+3EG,解得:EG=1.2,故梯形ABCD的面积=4×(4.8+EG)=4×(4.8+1.2)=24.故答案是:24.【点评】本题考查了三角形的面积,突破点是:先求得三角形ADE底边AD上的高,再求得三角形BEC的底边BC上的高,即可求得三角形ECB的面积,不难求得梯形ABCD的面积.二、解答题(共4小题,满分22分)9.(5分)甲、乙两人,在一圆形跑道上同时同地出发,反向跑步,已知甲的速度是每分钟180m,乙的速度是每分钟240m,在30分钟内,它们相遇了24次,问跑道的长度最多是多少米?【分析】每相遇一次,两人就跑一个跑道的全长,先把两人是反向跑步,所以先求出两人的速度的和,再乘跑步的时间30分钟,即可求出24圈的长度,再除以24即可求出跑道的长度.【解答】解:(180+240)×30÷24=420×30÷24=12600÷24=525(米)答:跑道的长度最多是525米.【点评】解决本题关键是理解每相遇一次,两人就跑了一个跑道的全长,根据路程=速度和×时间,求出一共跑了多少米,再除以圈数即可.10.(5分)一筐苹果分成甲乙两份,甲的个数和乙的苹果个数比是27:25,甲多乙少,若从甲中至少取出4个,加入乙中,则乙多甲少,问这筐苹果有多少个?【分析】“从甲中至少取出4个,加入乙中,则乙多甲少”这句话的意思是,如果从甲中取出3个,加入乙中,则乙不比甲多.【解答】解:依题意可知:从甲中取出4个,加入乙中,则乙比甲多;从甲中取出3个,加入乙中,则乙不比甲多.设甲有27n,乙有25n,则:得3≤n<4,所以n=3,苹果共有:27n+25n=156个,这筐苹果有156个.【点评】重点是理解题目中“至少”两个字的含义,确定不等关系式.11.(6分)如图是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?【分析】共分为两大类情况,只使用1种颜色、使用两种颜色,分类讨论得出结果.【解答】解:①只是用一种颜色:有1+1=2种情况,②两种颜色的点数比为1:5,有2+2=4种,③两种颜色的点数比为2:4,有2×(1+1+3)=10种,④两种颜色的点数比为3:3,有有1+3+3+1=8种,共有凃法:2+4+10+8=24种.【点评】难点在于辨别旋转后相同的涂色方法,做到不重不漏.12.(6分)三台车床A,B,C各以一定的工作效率加工同一种标准件,A车床比C车床早开机10分钟,C车床比B车床早开机5分钟,B车床开机10分钟后,B,C车床加工的标准件的数量相同,C车床开机30分钟后,A,C两车床加工的标准件个数相同,B车床开机多少分钟后就能与A车床加工的标准件的个数相同?【分析】首先根据工作量相同时,效率和时间是反比关系,找到时间比即可求出效率比,时间可求.【解答】解:依题意可知:A开机10分钟C开机,再过5分钟B开机.当B开机10分钟时,C开机15分钟,时间比为:2:3,那么效率比为3:2.当C开机30分钟时,A开机40分钟,时间比为3:4,效率比为4:3.效率化连比A:B:C=3:6:4.根据B的效率是A的2倍.那么时间差是15分钟,再过15分钟即可使工作数量相同.答:B车床开机15分钟后B与A车床工作数量相同.【点评】本题是考察对工程问题的理解和综合运用,关键是根据工作量一定,找出时间的比例关系.问题解决.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?【分析】首先分析第一问擦去1,2,3,4,5,6但是写上了21数字和没有变化.剩下的数字和就是所有的数字和.第二问中发现数字是等差数列枚举即可.【解答】解:依题意可知:(1)擦去1,2,3,4,5,6但是写上了21数字和没有变化.最后的数字和是1+2+3+…+100的数字和为5050.(2)第一次擦下去的数字是1,2,3,4,5,6写上去的是21,第二次擦去的是7,8,9,10,11,12写上的数字是57.那么21与57的数字差为36.100÷6=16…4.说明擦去96个数字填上了16 个数字,这16个数字是以21位首项公差为36的等差数列.后来共20个数字.这20个数字为:97,98,99,100,21,57,93,129,165,201,237,273,309,345,381,417,453,489,525,561.然后20÷6=3…2.说明最后两个数字剩下了,新添加了3个数字,那么最后写的数字就是309,345,381,417,453,489的数字和为2394.答:(1)最后黑板上剩下的这些数的和是5050.(2)最后所写的那个数是2394.【点评】本题考查对数字串问题的理解和运用,关键问题是找到等差数列的规律和鑫增加数字的规律,问题解决.14.(15分)数学竞赛,填空题8道,答对1题,得4分,未答对,得0分;问答题6道,答对1道,得7分,未答对,得0分,参赛人数400人,至少有多少人的总分相同?【分析】首先找出有多少种情况的结果,然后用400看每一组有多少人看看有没有余数,就是平均分的最大值.【解答】解:方法一:设4分题答对a道,7分题答对b道,则a可取0到8共9种,b可取0到6共7种,得分情况共有9×7=63种,再考虑得分重复情况,当a′=a+7,b′=b﹣4时,两次分数相同,即(a,b)=(0,6)和(7,2),(0,5)和(7,1),(0,4)和(7,0),(1,6)和(8,2),(1,5)和(8,1),(1,4)和(8,0);共6种情况下,分数会相同.所以不同分数共63﹣6=57(种),400÷57=7…1.7+1=8,至少有8人分数相同,故答案为:8方法二:依题意可知:8道填空和6道问答题共8×4+6×7=74(分)没有答对问答时:共有9种情况:0,4,8,12,16,20,24,28,32.答对1个问答时;共有9种情况:7,11,15,19,23,27,31,35,39.答对2个问答时:共9种情况:14,18,22,26,30,34,38,42,46.答对3个问答时:共9种情况:21,25,29,33,37,41,45,49,53.答对4问答时:共9种情况:28,32,36,40,44,48,52,56,60.重复2个共7个.答对5问答时:共9种情况:35,39,43,47,51,55,59,63,67.重复2个共7个.答对6问答时:共9种情况:42,46,50,54,58,62,66,70,74.重复2个共7个.共有4×9+7×3=57.400÷57=7…1.7+1=8.故答案为:8.【点评】本题是考查对抽屉原理的理解与运用,关键问题的找出有多少个结果.然后平均分中的最大值即可,问题解决.。
第21届华罗庚金杯少年数学邀请赛小高组决赛(A)卷
第二十一届华罗庚金杯少年数学邀请赛决赛(A )卷【小高组】一、填空题(每小题10分,共80分)1.计算:.______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-2. 中国北京在2015年7月31日获得了2022年第24届冬季奥林匹克运动会的主办权.预定该届冬奥会的开幕时间为2022年2月4日,星期_______.(今天是2016年3月12日,星期六)3.右图中,AB=5厘米,o 85=∠ABC ,o 45=∠BCA ,o 20=∠DBC ,则AD=_______厘米.4.在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有_______个“好点”.5.对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如n=102时, =12,那么满足 <n , 且是n 的约数的三位数n 有_______个6. 共有12名同学玩一种扑克游戏,每次4人参加,且任意2位同学同时参加的次数不超过1.那么他们最多可以玩_______次.7. 如果832 能表示成k 个连续正整数的和,则k 的最大值为_______.对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102时=12.那么满足<n 且是n 的约数的三位数n 有个_______.对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102时n=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=1022.那么满足n<n 且n 是n 的约数的三位数n 有个_______.对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102时n=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.n 对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102时n=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.对于任意一个三位数n,用表示删掉n 中为时=12.那么满足<n 且是n 的约数的对于任意一个三位数n,用表示删掉n 中时n=12.那么满足n<n 且n 是n 的约数的三对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如时n=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.对于任意一个三位数n,用表示删掉n 中为0的时n=12.那么满足n<n 且n 是n 的约数的三位数n n 对于任意一个三位数n,用表示删掉n 时n=12.那么满足n<n 且n 是n 的约数的对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102时=12.那么满足<n 且是n 的约数的三位数n 有个_______.对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102时n=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.,用表示删掉n 中为0的数位得到的数.例如n=102且n 是n 的约数的三位数n 有个_______.任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=10212.那么满足n<n 且n 是n 的约数的三位数n 有个_______.n对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102时n=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102=12.那么满足<n 且是n 的约数的三位数n 有个_______.于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.表示删掉n 中为0的数位得到的数.例如n=102是n 的约数的三位数n 有个_______.个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102么满足n<n 且n 是n 的约数的三位数n 有个_______.n 对于任意一个三位数n,用表示删掉n 中为0的数位得到的数.例如n=102n=12.那么满足n<n 且n 是n 的约数的三位数n 有个_______.8.两把小尺与一把大尺组成套尺,小尺可以沿着大尺滑动.大尺上每一个单位都标有自然数,第一把小尺将大尺上的11个单位等分为10,第二把小尺将大尺上9个单位等分为10,两把小尺的起点都为0,都分别记为1至10.现测量A,B 两点间距离,A 点在大尺的0单位处,B 点介于大尺的18与19单位之间;将第一把小尺的0单位处于B 点时,其单位3恰好与大尺上某一单位相合.如果将第二把小尺的0单位处置于B 点,那么第二把小尺的第_______个单位恰好与大尺上某一单位相合.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.10. 如右图,三角形ABC 中,AB=180厘米,AC=204厘米,D,F 是AB 上的点,E,G 是AC 上的点,连结CD,DE,EF,FG,将三角形ABC 分成面积相等的五个小三角形.则AF+AG 为多少厘米?11.某水池有甲、乙两个进水阀.只打开甲注水,10小时可将空水池注满;只打开乙,15小时可将空水池注满.现要求7个小时将空水池注满,可以只打开甲注水若干小时,接着只打开乙注水若干小时,最后同时打开甲乙注水.那么同时打开甲乙的时间是多少小时?12.将一个五边形沿一条直线剪成两个多边形,再将其中一个多边形沿一条直线剪成两部分,得到了三个多边形,然后将其中一个多边形沿一条直线剪成两部分,…,如此下去.在得到的多边形中要有20个五边形,则最少剪多少次?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)14.设n是正整数.若从任意n个非负整数中一定能找到四个不同的数a,b,c,d使得a+b-c-d能被20整除,则n的最小值是多少?第二十一届华罗庚金杯少年数学邀请赛决赛(A )卷参考答案【小高组】一、填空题(每小题10分,共80分) 1.解析:【知识点】四则混合运算 23163221710151363221710)435512(322=-=⨯-=⨯⨯+-=原式 2.解析:【知识点】周期问题从2016年3月12日到2022年3月12日,所经过的天数为365×6+1=2191天,相比2022年2月4日,多算了36天,则从2016年3月12日到2022年2月4日,经过的天数为2191-36=2155天,2155÷7=307……6,星期六往后数六天是星期五; 所以开幕时间在星期五。
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)算式×的结果中含有()个数字0.A.2017B.2016C.2015D.2014 2.(10分)已知A,B两地相距300米.甲、乙两人同时分别从A,B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.2B.2C.3D.33.(10分)在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773 4.(10分)将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.2885.(10分)在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.646.(10分)从自然数1,2,3,…,2015,2016中,任意取n个不同的数,要求总能在这n个不同的数中找到5个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112二、填空题(每小题10分,共40分)7.(10分)两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.8.(10分)如图,O,P,M是线段AB上的三个点,AO=AB,BP=AB,M是AB的中点,且OM=2,那么PM 长为.9.(10分)设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是.10.(10分)有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出个同样的等腰梯形.2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)算式×的结果中含有()个数字0.A.2017B.2016C.2015D.2014【分析】把变形为﹣1,然后根据乘法的分配律拆分,再进一步解答即可.【解答】解:×=(﹣1)×=×﹣=﹣个位0减9不够减,需要连续退位,个位数得1,所以数字0的个数是:2016﹣1=2015(个)故选:C.【点评】本题考查了数字问题,难点是把算式变形出含数字“0”的形式;本题也可以从最简单的算式入手,找规律,然后根据规律再回到问题中解答.2.(10分)已知A,B两地相距300米.甲、乙两人同时分别从A,B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.2B.2C.3D.3【分析】本题是典型的利用正反比例解行程问题.首先根据不变量判断正反比.两次相遇过程中两人的时间相同路程比等于速度比.两次过程中甲的速度没变.通分比较乙的.即可解决问题.【解答】解:第一次相遇过程中甲乙两人的路程之比为140:(300﹣140)=7:8,时间相同路程比就是速度比.第二次相遇过程中的路程比是(300﹣180):180=2:3,速度比也是2:3.在两次相遇问题中甲的速度是保持不变的,通分得,第一次速度比:7:8=14:16.第二次速度比2:3=14:21.速度从16份增加到21份速度增加每秒1米,即1÷(21﹣16)=.乙原来的速度是16×=3.2米/秒.故选:D.【点评】本题的关键是找到在两次相遇过程中的不变量,甲的速度是不变的时间,判断是正比,再将速度通分到甲的份数相同,乙的前后进行比较即可求解问题解决.3.(10分)在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773【分析】首先根据最大的3位数是11或是13的倍数开始.然后每次向后边推一位数字找出最大的倍数即可.【解答】解:在7位数中,首先分析前三位数字,最大的11的倍数是990,最大13的倍数是988,因为0不能做首位.所以7位数中不能含有数字0,11倍数的第二大数字是979小于988.所以前三位数字是988.第4位根据如果是11的倍数数字就是880.如果是13的倍数就是884.最大是884.第5位根据如果是11的倍数数字就是847,如果是13的倍数就是845.最大是847.第6位根据如果是11的倍数数字就是473,如果是13的倍数在470﹣479没有13的倍数.所以是473第7位根据如果是11的倍数是737,如果是13的倍数没有符合的数字.所以这个7位数是9884737.故选:B.【点评】本题考察是整除特性的理解,突破口是开始的三位数字988,然后根据整除找到最大的满足条件的数字即可.4.(10分)将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.288【分析】首先求出1,2,3,4,5,6,7的和是28,判断出8的两边各数之和都是14;然后分4种情况:(1)8的一边是1,6,7,另一边是2,3,4,5时;(2)8的一边是2,5,7,另一边是1,3,4,6时;(3)8的一边是3,4,7,另一边是1,2,5,6时;(4)8的一边是1,2,4,7,另一边是3,5,6时;求出每种情况下各有多少种不同的排法,即可求出共有多少种不同的排法.【解答】解:1+2+3+4+5+6+7=288的两边各数之和是:28÷2=14(1)8的一边是1,6,7,另一边是2,3,4,5时,不同的排法一共有:(3×2×1)×(4×3×2×1)×2=6×24×2=288(种)(2)8的一边是2,5,7,另一边是1,3,4,6时,不同的排法一共有288种.(3)8的一边是3,4,7,另一边是1,2,5,6时,不同的排法一共有288种.(4)8的一边是1,2,4,7,另一边是3,5,6时,不同的排法一共有288种.因为288×4=1152(种),所以共有1152种不同的排法.答:共有1152种不同的排法.故选:A.【点评】此题主要考查了排列组合问题,考查了乘法原理的应用,要熟练掌握,注意不能多数、漏数.5.(10分)在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.64【分析】如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,构建直角△AFC和直角△BGC,结合勾股定理求得AE2的值.【解答】解:如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,则AF=BG,AB=FG=6,DF=CG=4.在直角△AFC中,AC2=AF2+FC2=AF2+102=AF2+100,在直角△BGC中,BC2=BG2+GC2=AF2+42=AF2+16,又∵CE=CB,∠AEC=90°,∴AE2=AC2﹣EC2=AF2+100﹣(AF2+16)=84,即AE2=84.故选:A.【点评】本题考查了等腰梯形的性质,勾股定理的应用.解题的关键是作出辅助线,构建直角三角形,利用勾股定理来求AE2的值.6.(10分)从自然数1,2,3,…,2015,2016中,任意取n个不同的数,要求总能在这n个不同的数中找到5个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112【分析】首先确定题中要求的是每一个数字中的数字和120的数字和就是3,那么找到最大的就是1999的是28,最小的是1的情况共有几个数字满足情况.都至多选出4个.再选一个就是满足条件的.【解答】解:依题意可知:1﹣2019中最大的数字和是1999数字和为28.数字和最小的为1共有1,10,100,1000共四个.数字和为27的有999,1899,1998,1989共四个.数字和为2﹣26的都超过5个数.那么只要2﹣26的数字和中挑出4个数字,在把数字和为1,27,28的都算上,再来一个就是5个数字了满足情况了.27×4+1+1=110.故选:B.【点评】本题考查是最倒霉的情况,想要找出5个满足条件的,那么就都给最多4个满足条件,再给一个就是满足条件的共最小是110个数字问题解决.二、填空题填空题(每小题10分,共40分)7.(10分)两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有12对.【分析】假设大正方形的边长为x,小正方形的为y,x2﹣y2=(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,据此分解质因数2016=25×32×7,然后解答即可.【解答】解:假设大正方形的边长为x,小正方形的为y,有题意可得:x2﹣y2=2016,因式分解:(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,2016=25×32×7,2016因数的个数:(1+5)×(2+1)×(1+1)=36(个),共有因数36÷2=18对因数,其中奇因数有:(2+1)×2=6对,所以偶数有:18﹣6=12对,即,满足上述条件的所有正方形共有12对.故答案为:12.【点评】本题考查了约数个数的定理和奇偶性问题,关键是得到2016的约数的个数,难点是去掉几个奇因数;本题还可以根据x+y与x﹣y都是偶数,它们的积至少含有4这个偶数,所以2016÷4=504,然后确定504的约数是24个,即12对即可.8.(10分)如图,O,P,M是线段AB上的三个点,AO=AB,BP=AB,M是AB的中点,且OM=2,那么PM 长为.【分析】如果想求出PM那么必须找到和OM的关系,在这些线段中都和AB进行的比较,可以转换为OM,PM和AB的关系即可求解.【解答】解:依题意可知:PM=AM﹣AP=AB﹣(AB﹣BP)=AB﹣AB=AB.OM=MB﹣OB=AB﹣(AB﹣AO)=AB﹣AB=AB=2∴AB=PM=故答案为:【点评】本题的关键是找到如果想求出PM需要转换成求线段AB,再用OM求出AB,都转换成和AB的关系那么问题解决.9.(10分)设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是225.【分析】小于1000的最大P型平方数,33的平方数是1089,这个数需要小于33的平方的平方数.q﹣2和q+2的差是4.只要找到数字相差4的不超过33的质数组合即可.【解答】解:小于33的质数有31,29,23,19,17,13,11,7,5,3,2等数字差是4的两个质数有19和23最大.21﹣2=19,21+2=23.21×21=441.故答案为:441.【点评】本题关键在于找到q﹣2和q+2的差是4的质数,而且小于33的质数.要注意找到的是这两个质数,题中要找的是一个平方数441,不是21.10.(10分)有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出4029个同样的等腰梯形.【分析】由于等腰梯形的纸片,上底长度为2015,下底长度为2016,它们上下底的长度相差1,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则剪出的梯形的下底长度约大于2016﹣2015=1,依此即可求解.【解答】解:(2015﹣1)×2+1=2014×2+1=4028+1=4029(个)答:最多可以剪出4029个同样的等腰梯形.故答案为:4029.【点评】考查了图形划分,本题理解剪出的梯形的下底长度约大于2016﹣2015=1是解题的关键.。
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)算式×的结果中含有()个数字0.A.2017B.2016C.2015D.2014 2.(10分)已知A,B两地相距300米.甲、乙两人同时分别从A,B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.2B.2C.3D.33.(10分)在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773 4.(10分)将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.2885.(10分)在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.646.(10分)从自然数1,2,3,…,2015,2016中,任意取n个不同的数,要求总能在这n个不同的数中找到5个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112二、填空题(每小题10分,共40分)7.(10分)两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.8.(10分)如图,O,P,M是线段AB上的三个点,AO=AB,BP=AB,M是AB的中点,且OM=2,那么PM 长为.9.(10分)设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是.10.(10分)有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出个同样的等腰梯形.2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)算式×的结果中含有()个数字0.A.2017B.2016C.2015D.2014【分析】把变形为﹣1,然后根据乘法的分配律拆分,再进一步解答即可.【解答】解:×=(﹣1)×=×﹣=﹣个位0减9不够减,需要连续退位,个位数得1,所以数字0的个数是:2016﹣1=2015(个)故选:C.【点评】本题考查了数字问题,难点是把算式变形出含数字“0”的形式;本题也可以从最简单的算式入手,找规律,然后根据规律再回到问题中解答.2.(10分)已知A,B两地相距300米.甲、乙两人同时分别从A,B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.2B.2C.3D.3【分析】本题是典型的利用正反比例解行程问题.首先根据不变量判断正反比.两次相遇过程中两人的时间相同路程比等于速度比.两次过程中甲的速度没变.通分比较乙的.即可解决问题.【解答】解:第一次相遇过程中甲乙两人的路程之比为140:(300﹣140)=7:8,时间相同路程比就是速度比.第二次相遇过程中的路程比是(300﹣180):180=2:3,速度比也是2:3.在两次相遇问题中甲的速度是保持不变的,通分得,第一次速度比:7:8=14:16.第二次速度比2:3=14:21.速度从16份增加到21份速度增加每秒1米,即1÷(21﹣16)=.乙原来的速度是16×=3.2米/秒.故选:D.【点评】本题的关键是找到在两次相遇过程中的不变量,甲的速度是不变的时间,判断是正比,再将速度通分到甲的份数相同,乙的前后进行比较即可求解问题解决.3.(10分)在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773【分析】首先根据最大的3位数是11或是13的倍数开始.然后每次向后边推一位数字找出最大的倍数即可.【解答】解:在7位数中,首先分析前三位数字,最大的11的倍数是990,最大13的倍数是988,因为0不能做首位.所以7位数中不能含有数字0,11倍数的第二大数字是979小于988.所以前三位数字是988.第4位根据如果是11的倍数数字就是880.如果是13的倍数就是884.最大是884.第5位根据如果是11的倍数数字就是847,如果是13的倍数就是845.最大是847.第6位根据如果是11的倍数数字就是473,如果是13的倍数在470﹣479没有13的倍数.所以是473第7位根据如果是11的倍数是737,如果是13的倍数没有符合的数字.所以这个7位数是9884737.故选:B.【点评】本题考察是整除特性的理解,突破口是开始的三位数字988,然后根据整除找到最大的满足条件的数字即可.4.(10分)将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.288【分析】首先求出1,2,3,4,5,6,7的和是28,判断出8的两边各数之和都是14;然后分4种情况:(1)8的一边是1,6,7,另一边是2,3,4,5时;(2)8的一边是2,5,7,另一边是1,3,4,6时;(3)8的一边是3,4,7,另一边是1,2,5,6时;(4)8的一边是1,2,4,7,另一边是3,5,6时;求出每种情况下各有多少种不同的排法,即可求出共有多少种不同的排法.【解答】解:1+2+3+4+5+6+7=288的两边各数之和是:28÷2=14(1)8的一边是1,6,7,另一边是2,3,4,5时,不同的排法一共有:(3×2×1)×(4×3×2×1)×2=6×24×2=288(种)(2)8的一边是2,5,7,另一边是1,3,4,6时,不同的排法一共有288种.(3)8的一边是3,4,7,另一边是1,2,5,6时,不同的排法一共有288种.(4)8的一边是1,2,4,7,另一边是3,5,6时,不同的排法一共有288种.因为288×4=1152(种),所以共有1152种不同的排法.答:共有1152种不同的排法.故选:A.【点评】此题主要考查了排列组合问题,考查了乘法原理的应用,要熟练掌握,注意不能多数、漏数.5.(10分)在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.64【分析】如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,构建直角△AFC和直角△BGC,结合勾股定理求得AE2的值.【解答】解:如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,则AF=BG,AB=FG=6,DF=CG=4.在直角△AFC中,AC2=AF2+FC2=AF2+102=AF2+100,在直角△BGC中,BC2=BG2+GC2=AF2+42=AF2+16,又∵CE=CB,∠AEC=90°,∴AE2=AC2﹣EC2=AF2+100﹣(AF2+16)=84,即AE2=84.故选:A.【点评】本题考查了等腰梯形的性质,勾股定理的应用.解题的关键是作出辅助线,构建直角三角形,利用勾股定理来求AE2的值.6.(10分)从自然数1,2,3,…,2015,2016中,任意取n个不同的数,要求总能在这n个不同的数中找到5个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112【分析】首先确定题中要求的是每一个数字中的数字和120的数字和就是3,那么找到最大的就是1999的是28,最小的是1的情况共有几个数字满足情况.都至多选出4个.再选一个就是满足条件的.【解答】解:依题意可知:1﹣2019中最大的数字和是1999数字和为28.数字和最小的为1共有1,10,100,1000共四个.数字和为27的有999,1899,1998,1989共四个.数字和为2﹣26的都超过5个数.那么只要2﹣26的数字和中挑出4个数字,在把数字和为1,27,28的都算上,再来一个就是5个数字了满足情况了.27×4+1+1=110.故选:B.【点评】本题考查是最倒霉的情况,想要找出5个满足条件的,那么就都给最多4个满足条件,再给一个就是满足条件的共最小是110个数字问题解决.二、填空题填空题(每小题10分,共40分)7.(10分)两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有12对.【分析】假设大正方形的边长为x,小正方形的为y,x2﹣y2=(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,据此分解质因数2016=25×32×7,然后解答即可.【解答】解:假设大正方形的边长为x,小正方形的为y,有题意可得:x2﹣y2=2016,因式分解:(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,2016=25×32×7,2016因数的个数:(1+5)×(2+1)×(1+1)=36(个),共有因数36÷2=18对因数,其中奇因数有:(2+1)×2=6对,所以偶数有:18﹣6=12对,即,满足上述条件的所有正方形共有12对.故答案为:12.【点评】本题考查了约数个数的定理和奇偶性问题,关键是得到2016的约数的个数,难点是去掉几个奇因数;本题还可以根据x+y与x﹣y都是偶数,它们的积至少含有4这个偶数,所以2016÷4=504,然后确定504的约数是24个,即12对即可.8.(10分)如图,O,P,M是线段AB上的三个点,AO=AB,BP=AB,M是AB的中点,且OM=2,那么PM 长为.【分析】如果想求出PM那么必须找到和OM的关系,在这些线段中都和AB进行的比较,可以转换为OM,PM和AB的关系即可求解.【解答】解:依题意可知:PM=AM﹣AP=AB﹣(AB﹣BP)=AB﹣AB=AB.OM=MB﹣OB=AB﹣(AB﹣AO)=AB﹣AB=AB=2∴AB=PM=故答案为:【点评】本题的关键是找到如果想求出PM需要转换成求线段AB,再用OM求出AB,都转换成和AB的关系那么问题解决.9.(10分)设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是225.【分析】小于1000的最大P型平方数,33的平方数是1089,这个数需要小于33的平方的平方数.q﹣2和q+2的差是4.只要找到数字相差4的不超过33的质数组合即可.【解答】解:小于33的质数有31,29,23,19,17,13,11,7,5,3,2等数字差是4的两个质数有19和23最大.21﹣2=19,21+2=23.21×21=441.故答案为:441.【点评】本题关键在于找到q﹣2和q+2的差是4的质数,而且小于33的质数.要注意找到的是这两个质数,题中要找的是一个平方数441,不是21.10.(10分)有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出4029个同样的等腰梯形.【分析】由于等腰梯形的纸片,上底长度为2015,下底长度为2016,它们上下底的长度相差1,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则剪出的梯形的下底长度约大于2016﹣2015=1,依此即可求解.【解答】解:(2015﹣1)×2+1=2014×2+1=4028+1=4029(个)答:最多可以剪出4029个同样的等腰梯形.故答案为:4029.【点评】考查了图形划分,本题理解剪出的梯形的下底长度约大于2016﹣2015=1是解题的关键.。
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每题10分,共80分)1.(10分)计算:(﹣)×÷﹣2.4=.2.(10分)如图,有30个棱长为1米的正方体堆成一个四层的立体图形.请问:这个立体图形的表面积等于多少?3.(10分)有一片草场,10头牛8天可以吃完草场上的草;15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够头牛吃一天.4.(10分)如图所示,将一个三角形纸片ABC折叠,使得点C落在三角形ABC 所在平面上,折痕为DE.已知∠ABE=74°,∠DAB=70°,∠CEB=20°,那么CDA 等于.5.(10分)甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.6.(10分)如图,正方形ABCD的边长为5,E,F为正方形外两点,满足AE=CF=4,BE=DF=3,那么EF2=.7.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为.8.(10分)现有算式:甲数□乙数○1,其中□,○是符号+,﹣,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见表格,那么,A○B=.二、解答下列各题(每题10分,共40分)9.(10分)计算:(++…+)+(++…+)+(++…+)+…+(+)+.10.(10分)商店春节促销,顾客每次购物支付现金时,每100元可得一张价值50元的代金券.这些代金券不能兑成现金,但可以用来购买商品,规则是:当次购物得到的代金券不能当次使用;每次购物支付的现金不少于购买商品价值的一半.李阿姨只有不超过1550元的现金,她能买到价值2300元的商品吗?如果能,给她设计一个购物方案;如果不能,说明理由.11.(10分)如图,等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,BD=2,EC=4,求三角形ABC的面积.12.(10分)试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,正方形ABCD的面积为1,M是CD边的中点,E,F是BC 边上的两点,且BE═EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.14.(15分)现有如图左边所示的“四连方”纸片五种,每种的数量足够多.要在如图右边所示的5×5方格网上,放“四连方”,“四连方”可以翻转,“四连方”的每个小方格都要与方格网的某个小方格重合,任意两个“四连方”不能有重叠部分.那么最少放几个“四连方”就不能再放了?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)计算:(﹣)×÷﹣2.4= 4.1.【分析】先从括号里算起,先化简,将原式进行巧算,最后求得原式结果.【解答】解:根据分析,原式=(﹣)×÷﹣2.4=()×﹣2.4=()×11×=()×﹣2.4=﹣2.4=﹣2.4==﹣2.4=﹣2.4=﹣2.4=6.5﹣2.4=4.1故答案是:4.1.【点评】本题考查了分数的巧算,突破点是:利用分数的巧算,将分数化简,最后求得结果.2.(10分)如图,有30个棱长为1米的正方体堆成一个四层的立体图形.请问:这个立体图形的表面积等于多少?【分析】这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题.【解答】解:图中几何体露出的面有:10×4+16×2=72(个)所以这个几何体的表面积是:1×1×72=72(平方米)答:这个立体图形的表面积等于72平方米.【点评】此题考查了观察几何体的方法的灵活应用;应抓住这个几何体的表面积是露出的小正方体的面的面积之和是解决此类问题的关键.3.(10分)有一片草场,10头牛8天可以吃完草场上的草;15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够5头牛吃一天.【分析】转换思想,将15头牛,如果从第二天开始每天少一头,可以5天吃完转换成13头牛吃5天即可解决问题.【解答】解:依题意可知:10×8﹣(15+14+13+12+11)=15(份).15头牛,如果从第二天开始每天少一头,可以5天吃完可以转换成13头牛吃5天.15÷(8﹣5)=5(份)故答案为:5【点评】本题考查对牛吃草问题的理解和运用,关键问题是找到转换过程,问题解决.4.(10分)如图所示,将一个三角形纸片ABC折叠,使得点C落在三角形ABC 所在平面上,折痕为DE.已知∠ABE=74°,∠DAB=70°,∠CEB=20°,那么CDA 等于92°.【分析】在折叠前,可利用三角形内角和,求得∠C的度数,折叠后,利用三角形外角和以及四边形的内角和求得∠CDA.【解答】解:根据分析,折叠前,由三角形内角和,∠C=180°﹣74°﹣70°=36°,折叠后,∠EOD=∠C+∠CEO=36°+20°=56°;∠BOD=180°﹣∠DOE=180°﹣56°=124°,∠CDA=360°﹣∠ABE﹣∠BAE﹣∠BOD=360°﹣70°﹣74°﹣124°=92°.故答案是:92°.【点评】本题考查了剪切和拼接,突破点是:利用折叠前三角形内角和,求得∠C的度数,折叠后,利用三角形外角和以及四边形的内角和求得∠CDA5.(10分)甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是126分钟.【分析】甲剩下的路程就是乙已走的路程,那么甲走25分钟路程与乙走45分钟的路程相同,两者的速度与时间成反比例;行完全程时,再根据速度比,求出乙行完全程的时间.【解答】解:70﹣45=25(分钟),甲走25分钟路程与乙走45分钟的路程相同,那么甲的速度:乙的速度=45:25,行完全程两者所用的时间比就是:25:45;乙走一圈用的时间是:70÷25×45=126(分).答:乙走一圈的时间是126分钟.故答案为:126.【点评】本题的关键是根据两者的行走的路程相同,找出速度的比和时间的比,再根据甲的时间和时间的比求解.6.(10分)如图,正方形ABCD的边长为5,E,F为正方形外两点,满足AE=CF=4,BE=DF=3,那么EF2=98.【分析】可以将EA、FD、FC、EB分别延长这样就把图形扩展成一个大的正方形,再利用勾股定理,不难求得EF2.【解答】解:根据分析,如图:将EA、FD、FC、EB分别延长,这样就把图形扩展成一个大的正方形,∵AE=CF=4,BE=DF=3,∴CM=OA=DF=EB=3,BM=OD=CF=AE=4又∵DF2+CF2=CD2,AE2+EB2=AB2,OA2+OD2=AD2,CM2+BM2=BC2∴∠AEB=∠DFC=∠AOD=∠BMC=90°,∴EO=FO=3+4=7∴EF2=OE2+OF2=72+72=98故答案是:98【点评】本题考查了勾股定理,突破点是:利用正方形的边长和勾股定理,求得EF27.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为108.【分析】首先可将k个连续的正整数设出来,求其和,抓住k取最大进行求解.【解答】解:设k的连续整数分别是n+1,n+2,n+3,…,n+k,则和==,由于k最大,则n最小,且k<2n+k+1,=2×38,即k×(2n+k+1)=22×38=(22×34)×34=35×(22×33),因此k的最大值为34=108.故答案为:108.【点评】本题的突破口在于能根据题目要求正确地将和的式子进行分解.8.(10分)现有算式:甲数□乙数○1,其中□,○是符号+,﹣,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见表格,那么,A○B=.【分析】可以根据已知,先根据表格中的数字规律求得□,○是哪个运算符号,然后再算A○B的结果.【解答】解:根据分析,由表格中的数字可得:□○1=13;2□2○1=5,⇒□○1=13;由2□2○1=5,可知2+2+1=5,2×2+1=5,若2+2+1=5,则++1=13不成立,故排除,所以2×2+1=5;综上,□为“×”,○为“+”,由表可知,A=2□○1=2×+1=;B=□2○1==,A○B=A+B=+=.故答案是:.【点评】本题考查了定义新运算,本题突破点是:根据表格中的数字规律,求得□和○的符号,再求A○B.二、解答下列各题(每题10分,共40分)9.(10分)计算:(++…+)+(++…+)+(++…+)+…+(+)+.【分析】先根据算式找规律,把同分母的分数合成一组,然后根据高斯求和公式解答即可.【解答】解:(++…+)+(++…+)+(++…+)+…+(+)+=+(+)+(++)+…+(++…+)+(++…+)=+1++…++=+++…++==1015560【点评】本题考查了分数的巧算,关键是把分数分组,难点是利用高斯求和公式求出分子.10.(10分)商店春节促销,顾客每次购物支付现金时,每100元可得一张价值50元的代金券.这些代金券不能兑成现金,但可以用来购买商品,规则是:当次购物得到的代金券不能当次使用;每次购物支付的现金不少于购买商品价值的一半.李阿姨只有不超过1550元的现金,她能买到价值2300元的商品吗?如果能,给她设计一个购物方案;如果不能,说明理由.【分析】此题首先看一下1550最多能得多少代金券,即1500÷2=750,而2300=1550+750刚好不多不少,也就是说,1550现金必须和所有能得到的750代金券全部消费掉才能买到价值2300的商品.怎样才能把代金券和现金一起消费掉?我们从最后一次消费考虑就不难得出结论了.经过分析,如果最后一次消费是100或150以上均无法买到价值2300的商品,原因是后面所换的代金券不能单独用,题目是要求代金券必须和现金一起用.由此推断,要想买到价值2300的商品,最后一次消费必须是50现金+50代金券(为什么是50代金券,而不是100代金券,也是题意要求,现金不少于支付商品价值的一半)由50元代金券可知上次消费的现金是100,而和同步用的代金券也必须是100,如是推理,请看如下所示:50+50(代金券)100+100(代金券)200+200(代金券)400+400(代金券)800左边是现金800+400+200+100+50=1550元,右边是代金券400+200+100+50=750元,这样能买到的商品价值是1550+750=2300元,故能买到.据此解答即可.【解答】解:根据题意可知:(1)由于最后一次购买东西换的代金券是不能使用的,因为有1500元的钱需要换750元的购物券,到最后一次最多可以用50元现金;(2)为了尽可能多的使用代金券,每次尽量用到一半的代金券,每一次的代金券由上一次购物获得;(3)第一次只能用现金.这样最后一次用50元现金和50元代金券;倒数第二次用100元现金和100元代金券;倒数第三次用200元现金和200元代金券;倒数第四次用400元现金和400元代金券;倒数第五次用800元现金.满足条件的答案为:第一次用800元现金;第二次用400元现金和400元代金券;第三次用200元现金和200元代金券;第四次用100元现金和100元代金券;第五次用50元现金和50元代金券.总共:800+400+400+200+200+100+100+50+50=2300(元)所以用不超过1550元的现金,她能买到价值2300元的商品.【点评】本题为复杂的统筹方法问题,需要全面考虑.11.(10分)如图,等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,BD=2,EC=4,求三角形ABC的面积.【分析】可以利用等积变形,将△DEF向B点平移,△DEF的形状大小不变,平移后△DEF的DF与AB重合,此时等腰直角三角形ABC与等腰直角三角形DEF 之间的面积仍不变,而此时EC的长从原来的4变成了6,此时不难计算出三角形ABC的面积.【解答】解:根据分析,利用等积变形,将△DEF向B点平移,△DEF的形状大小不变,平移后△DEF的DF与AB重合,此时等腰直角三角形ABC与等腰直角三角形DEF 之间的面积仍不变,而此时EC的长从原来的4变成了6,如图所示:过E作EG⊥AC交AC于G,Rt△EGC中,不难得知,EG=GC=,又∵等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,即梯形ACEF 的面积为20,∴(EF+AC)×EG×=(EF+AG+GC)×EG×=(2×EF+3)×3×=20⇒EF=,则BF=,△BEF的面积=BF×EF==,三角形ABC的面积=△BEF的面积+20==.故答案是:.【点评】本题考查了三角形的面积,突破点是:利用等积变形,平移后三角形的面积不变,形状不变,再利用面积公式算得三角形ABC的面积.12.(10分)试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.【分析】五位数的最大数,根据被11整除的特征,奇数位上的数字和与偶数位数字和的差是11的倍数,因此五位数不能被11整除,可以先确定万位上的数字,再逐个确定其它数字【解答】解:根据分析,设此五位数为,最大的五位数,则a=9,若此五位数为90000,显然不能被11整除,故符合题意的最大的五位数必大于90000,若b=9,则划去后为99,能被11整除,故b≠9,若b=8,则划去后为98,不能被11整除,∴b=8,若c=9或8,则划去8再划去后,为99,不和题意,划去再划去9后为88,不合题意,∴c=7,划去若干数字后不能被11整除,若d=9,8,或7,均不合题意,d=6时划去若干数后不能被11整除,∴d=6若e=9,8,7或6,均不合题意,故e=5,综上所述,此五位数为:98765【点评】本题考查了被11整除的特征,本题突破点是:根据11整除的特征,需要逆向思维算出哪些数不能被11整除,求出最大值三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,正方形ABCD的面积为1,M是CD边的中点,E,F是BC 边上的两点,且BE═EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.【分析】过M做MQ平行BC交DF于Q,过E作EP平行AB交BM于P,利用线段之间的比例关系,求得三角形之间的面积之比,最后求得阴影部分的面积.【解答】解:根据分析,如图,过M做MQ平行BC交DF于Q,过E作EP平行AB交BM于P,∵M为CD中点,所以QM:PC=1:2,∴QM:BF=1:4,所以GM:GB=1:4,∴BG:BM=4:5;又因为BF:BC=2:3,;∵E为BC边上三等分点,所以EP:CM=1:3,∴EP:AB=1:6,∴BH:HP=6:1,∴BH:HM=6:15=2:5,BH:BG=2:7,又∵GM:GB=1:4,∴BH:BG=5:14,∴,∴.故答案是:.【点评】本题考查了三角形的面积,突破点是:利用比例关系,求得三角形的面积比,从而最后求得阴影部分的面积.14.(15分)现有如图左边所示的“四连方”纸片五种,每种的数量足够多.要在如图右边所示的5×5方格网上,放“四连方”,“四连方”可以翻转,“四连方”的每个小方格都要与方格网的某个小方格重合,任意两个“四连方”不能有重叠部分.那么最少放几个“四连方”就不能再放了?【分析】此题与常规填充题不同的是,本题要求放置几个“四连方”之后,没有空间再放置任何一个“四连方”.【解答】解:本题需要尽可能“不合理”利用空间,使用尽可能少的“四连方”占据空间,使余下的空白方格不能容下任何一个“四连方”,如下图所示,放入3个之后,再没有空间放任何一个“四连方”,而如果只放2个的话,还余下25﹣2×4=17块,必然会存在连续的空间可以放下“四连方”.所以:最少放3个“四连方”就不能再放了.【点评】要尽可能“不合理”利用空间,就使被放置的“四连方”分隔的空白部分尽量大又不能连成4块.。
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题6分,共48分)1.(6分)计算:+=.2.(6分)某月里,星期五、星期六和星期日各有5天,那么该月的第1日是星期.3.(6分)大于且小于的真分数有个.4.(6分)哥哥和弟弟各买了若干个苹果,哥哥对弟弟说:“若我给你一个苹果,咱俩的苹果个数一样多”.弟弟想了想,对哥哥说:“若我给你一个苹果,你的苹果数将是我的2倍”,则哥哥与弟弟共买了个苹果.5.(6分)图中,AB=AD,∠DBC=21°,∠ACB=39°,则∠ABC=度.6.(6分)已知抽水机甲和抽水机乙的工作效率比是3:4,如两台抽水机同时抽取某水池,15小时抽干水池,现在,乙抽水机抽水9小时后关闭,再将甲抽水机打开,要抽干水池还需要小时.7.(6分)n为正整数,形式为2n﹣1的质数称为梅森数,例如:22﹣1=3,23﹣1=7是梅森数.最近,美国学者刷新了最大梅森数,n=74207281,这个梅森数也是目前已知的最大的质数,它的个位数是.8.(6分)图中,ABCD是直角梯形,上底AD=2,下底BC=6,E是DC上一点,三角形ABE的面积是15.6,三角形AED的面积是4.8,则梯形ABCD的面积是.二、解答题(共4小题,满分22分)9.(5分)甲、乙两人,在一圆形跑道上同时同地出发,反向跑步,已知甲的速度是每分钟180m,乙的速度是每分钟240m,在30分钟内,它们相遇了24次,问跑道的长度最多是多少米?10.(5分)一筐苹果分成甲乙两份,甲的个数和乙的苹果个数比是27:25,甲多乙少,若从甲中至少取出4个,加入乙中,则乙多甲少,问这筐苹果有多少个?11.(6分)如图是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?12.(6分)三台车床A,B,C各以一定的工作效率加工同一种标准件,A车床比C车床早开机10分钟,C车床比B车床早开机5分钟,B车床开机10分钟后,B,C车床加工的标准件的数量相同,C车床开机30分钟后,A,C两车床加工的标准件个数相同,B车床开机多少分钟后就能与A车床加工的标准件的个数相同?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?14.(15分)数学竞赛,填空题8道,答对1题,得4分,未答对,得0分;问答题6道,答对1道,得7分,未答对,得0分,参赛人数400人,至少有多少人的总分相同?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题6分,共48分)1.(6分)计算:+=.【分析】可以先将原式化简,将分子分母分别计算出结果,然后最后求得结果.【解答】解:根据分析,原式=+======;故答案是:.【点评】本题考查了繁分数,突破点是:可以先将原式化简,将分子分母分别计算出结果,然后最后求得结果.2.(6分)某月里,星期五、星期六和星期日各有5天,那么该月的第1日是星期五.【分析】首先根据1个月最多有31天,可得:1个月最多有4个星期零3天;然后根据该月星期五、星期六和星期日各有5天,可得:该月的第1日是星期五,据此解答即可.【解答】解:因为31÷7=4(个)…3(天),所以1个月最多有4个星期零3天,因为该月星期五、星期六和星期日各有5天,所以该月的第1日是星期五.答:该月的第1日是星期五.故答案为:五.【点评】此题主要考查了年、月、日的特征和判断,要熟练掌握,解答此题的关键是要明确:一年中,1个月最多有31天.3.(6分)大于且小于的真分数有无穷多个.【分析】比较两个分数大小时,要么分子和相同,要么分母相同,才可比较.所以针对此题中的两个分数,先要通分变成分母相同的两个分数再进行比较即可.【解答】解:=,=;比2015大且小于2016的数有无数个,这无数个数都比2015×2016小.以这无数个数中的任何一个数做分子,2015×2016做分母组成的所有分数都是真分数.故:大于且小于的真分数有无穷多个.【点评】只要遇到比较分数大小的题,都要使其分子或分母相同,再做比较.4.(6分)哥哥和弟弟各买了若干个苹果,哥哥对弟弟说:“若我给你一个苹果,咱俩的苹果个数一样多”.弟弟想了想,对哥哥说:“若我给你一个苹果,你的苹果数将是我的2倍”,则哥哥与弟弟共买了12个苹果.【分析】首先分析哥哥比弟弟多几个苹果,同时找到第二次的数量差即可求出一份量.问题解决.【解答】解:依题意可知:哥哥对弟弟说:“若我给你一个苹果,咱俩的苹果个数一样多”.说明哥哥比弟弟多2个苹果.弟弟若给哥哥一个苹果,哥哥的苹果数将是弟弟的2倍”,那么弟弟比哥哥少了4个苹果.此时4÷(2﹣1)=4(个).弟弟此时4个,哥哥8个共4+8=12个.故答案为:12【点评】本题考查对和差倍问题的理解和运用,关键问题是找到一份量的数量,问题解决.5.(6分)图中,AB=AD,∠DBC=21°,∠ACB=39°,则∠ABC=81度.【分析】如果想求出∠ABC的度数,那么需要求出∠ABD度数,根据AB=AD可知底角相等.再根据外角即可求解.【解答】解:依题意可知:∠DBC=21°,∠ACB=39°根据外角等于不相邻的内角和可知∠ADB=∠C+∠DBC=21°+39°=60°.∵AB=AD.∴∠ADB=∠ABD=60°.∠ABC=∠ABD+∠DBC=60°+21°=81°.故答案为:81【点评】本题考查对长度和角度的立即和运用,关键是找到角之间的等量关系.问题解决.6.(6分)已知抽水机甲和抽水机乙的工作效率比是3:4,如两台抽水机同时抽取某水池,15小时抽干水池,现在,乙抽水机抽水9小时后关闭,再将甲抽水机打开,要抽干水池还需要23小时.【分析】根据“工作量=工作效率×工作时间”.由已知条件设出甲、乙的工作效率分别是、1,可得工作总量(+1)×15=26.25,工作总量减去乙已经完成的工作量就得出乙要完成的工作量,再有公式即可算出甲的工作时间.【解答】解:设甲、乙的工作效率分别是、1.(+1)×15=26.2526.25﹣1×9=17.2517.25÷=23(小时)故:要抽干水池还需要23小时.【点评】解题就是重复利用公式“工作量=工作效率×工作时间”.7.(6分)n为正整数,形式为2n﹣1的质数称为梅森数,例如:22﹣1=3,23﹣1=7是梅森数.最近,美国学者刷新了最大梅森数,n=74207281,这个梅森数也是目前已知的最大的质数,它的个位数是1.【分析】根据题意,此梅森数为2n﹣1=274207281﹣1,要求梅森数的个位数,只需求得274207281的个位数,而274207281的个位数可以根据周期规律求得.【解答】解:根据分析,此梅森数为2n﹣1=274207281﹣1,∵21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;29=512;210=1024…由此可知,2n个位数字为:2、4、8、6、2、4、8、6、2…即n=1,5,9,…时,个位数字为2;n=2,6,10,…时,个位数字为4;n=3,7,11,…时,个位数字为8;n=4,8,12,…时,个位数字为6;综上,2n个位数字按周期循环出现,周期为4,而74207281=4×18551820+1,故274207281的个位数与21的个位数相同,可以断定274207281的个位数为2,274207281﹣1的个位数为:2﹣1=1.故答案是:1.【点评】本题考查了质数与合数,突破点是:利用个位数字循环出现的周期性,最后求得梅森数的个位数.8.(6分)图中,ABCD是直角梯形,上底AD=2,下底BC=6,E是DC上一点,三角形ABE的面积是15.6,三角形AED的面积是4.8,则梯形ABCD的面积是24.【分析】按题意,可以先求得三角形ADE底边AD上的高,再求得三角形BEC的底边BC上的高,即可求得三角形ECB的面积,不难求得梯形ABCD的面积.【解答】解:根据分析,先求得三角形ADE底边AD上的高=4.8÷(×AD)=4.8÷1=4.8,如图,过E作EG⊥BC,EF⊥AB,显然EG=EF,由梯形的面积可知,×(AD+BC)×AB=×(2+6)×(AF+FB)=4×(4.8+EG),梯形的面积=S△ADE +S△ABE+S△BCE=15.6+4.8+=20.4+=20.4+3EG,4×(4.8+EG)=20.4+3EG,解得:EG=1.2,故梯形ABCD的面积=4×(4.8+EG)=4×(4.8+1.2)=24.故答案是:24.【点评】本题考查了三角形的面积,突破点是:先求得三角形ADE底边AD上的高,再求得三角形BEC的底边BC上的高,即可求得三角形ECB的面积,不难求得梯形ABCD的面积.二、解答题(共4小题,满分22分)9.(5分)甲、乙两人,在一圆形跑道上同时同地出发,反向跑步,已知甲的速度是每分钟180m,乙的速度是每分钟240m,在30分钟内,它们相遇了24次,问跑道的长度最多是多少米?【分析】每相遇一次,两人就跑一个跑道的全长,先把两人是反向跑步,所以先求出两人的速度的和,再乘跑步的时间30分钟,即可求出24圈的长度,再除以24即可求出跑道的长度.【解答】解:(180+240)×30÷24=420×30÷24=12600÷24=525(米)答:跑道的长度最多是525米.【点评】解决本题关键是理解每相遇一次,两人就跑了一个跑道的全长,根据路程=速度和×时间,求出一共跑了多少米,再除以圈数即可.10.(5分)一筐苹果分成甲乙两份,甲的个数和乙的苹果个数比是27:25,甲多乙少,若从甲中至少取出4个,加入乙中,则乙多甲少,问这筐苹果有多少个?【分析】“从甲中至少取出4个,加入乙中,则乙多甲少”这句话的意思是,如果从甲中取出3个,加入乙中,则乙不比甲多.【解答】解:依题意可知:从甲中取出4个,加入乙中,则乙比甲多;从甲中取出3个,加入乙中,则乙不比甲多.设甲有27n,乙有25n,则:得3≤n<4,所以n=3,苹果共有:27n+25n=156个,这筐苹果有156个.【点评】重点是理解题目中“至少”两个字的含义,确定不等关系式.11.(6分)如图是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?【分析】共分为两大类情况,只使用1种颜色、使用两种颜色,分类讨论得出结果.【解答】解:①只是用一种颜色:有1+1=2种情况,②两种颜色的点数比为1:5,有2+2=4种,③两种颜色的点数比为2:4,有2×(1+1+3)=10种,④两种颜色的点数比为3:3,有有1+3+3+1=8种,共有凃法:2+4+10+8=24种.【点评】难点在于辨别旋转后相同的涂色方法,做到不重不漏.12.(6分)三台车床A,B,C各以一定的工作效率加工同一种标准件,A车床比C车床早开机10分钟,C车床比B车床早开机5分钟,B车床开机10分钟后,B,C车床加工的标准件的数量相同,C车床开机30分钟后,A,C两车床加工的标准件个数相同,B车床开机多少分钟后就能与A车床加工的标准件的个数相同?【分析】首先根据工作量相同时,效率和时间是反比关系,找到时间比即可求出效率比,时间可求.【解答】解:依题意可知:A开机10分钟C开机,再过5分钟B开机.当B开机10分钟时,C开机15分钟,时间比为:2:3,那么效率比为3:2.当C开机30分钟时,A开机40分钟,时间比为3:4,效率比为4:3.效率化连比A:B:C=3:6:4.根据B的效率是A的2倍.那么时间差是15分钟,再过15分钟即可使工作数量相同.答:B车床开机15分钟后B与A车床工作数量相同.【点评】本题是考察对工程问题的理解和综合运用,关键是根据工作量一定,找出时间的比例关系.问题解决.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?【分析】首先分析第一问擦去1,2,3,4,5,6但是写上了21数字和没有变化.剩下的数字和就是所有的数字和.第二问中发现数字是等差数列枚举即可.【解答】解:依题意可知:(1)擦去1,2,3,4,5,6但是写上了21数字和没有变化.最后的数字和是1+2+3+…+100的数字和为5050.(2)第一次擦下去的数字是1,2,3,4,5,6写上去的是21,第二次擦去的是7,8,9,10,11,12写上的数字是57.那么21与57的数字差为36.100÷6=16…4.说明擦去96个数字填上了16 个数字,这16个数字是以21位首项公差为36的等差数列.后来共20个数字.这20个数字为:97,98,99,100,21,57,93,129,165,201,237,273,309,345,381,417,453,489,525,561.然后20÷6=3…2.说明最后两个数字剩下了,新添加了3个数字,那么最后写的数字就是309,345,381,417,453,489的数字和为2394.答:(1)最后黑板上剩下的这些数的和是5050.(2)最后所写的那个数是2394.【点评】本题考查对数字串问题的理解和运用,关键问题是找到等差数列的规律和鑫增加数字的规律,问题解决.14.(15分)数学竞赛,填空题8道,答对1题,得4分,未答对,得0分;问答题6道,答对1道,得7分,未答对,得0分,参赛人数400人,至少有多少人的总分相同?【分析】首先找出有多少种情况的结果,然后用400看每一组有多少人看看有没有余数,就是平均分的最大值.【解答】解:方法一:设4分题答对a道,7分题答对b道,则a可取0到8共9种,b可取0到6共7种,得分情况共有9×7=63种,再考虑得分重复情况,当a′=a+7,b′=b﹣4时,两次分数相同,即(a,b)=(0,6)和(7,2),(0,5)和(7,1),(0,4)和(7,0),(1,6)和(8,2),(1,5)和(8,1),(1,4)和(8,0);共6种情况下,分数会相同.所以不同分数共63﹣6=57(种),400÷57=7…1.7+1=8,至少有8人分数相同,故答案为:8方法二:依题意可知:8道填空和6道问答题共8×4+6×7=74(分)没有答对问答时:共有9种情况:0,4,8,12,16,20,24,28,32.答对1个问答时;共有9种情况:7,11,15,19,23,27,31,35,39.答对2个问答时:共9种情况:14,18,22,26,30,34,38,42,46.答对3个问答时:共9种情况:21,25,29,33,37,41,45,49,53.答对4问答时:共9种情况:28,32,36,40,44,48,52,56,60.重复2个共7个.答对5问答时:共9种情况:35,39,43,47,51,55,59,63,67.重复2个共7个.答对6问答时:共9种情况:42,46,50,54,58,62,66,70,74.重复2个共7个.共有4×9+7×3=57.400÷57=7…1.7+1=8.故答案为:8.【点评】本题是考查对抽屉原理的理解与运用,关键问题的找出有多少个结果.然后平均分中的最大值即可,问题解决.。
2016年第21届“华罗庚杯赛”决赛初一组试题及答案
x 2 n ⎪第二十一届华罗庚金杯少年数学邀请赛 决赛试题(初一组) (时间: 2016 年 3 月 12 日 10:00~11:30)一、填空题(每小题 10 分, 共 80 分)1. 已知 n 个数 x 1, x 2 , , x n , 每个数只能取 0, 1, -1中的一个. 若x 1 + x 2 + + x n = 2016 , 则 2015 1 + x 2015 + + x 2015 的值为 .2. 某停车场白天和夜间两个不同时段的停车费用的单价不同.张明 2 月份白天 的停车时间比夜间要多 40% , 3 月份白天的停车时间比夜间要少 40% . 若 3 月 份的总停车时间比 2 月份多 20% , 但停车费用却少了 20% , 那么该停车场白 天时段与夜间时段停车费用的单价之比是 .3. 在 9⨯ 9 的格子纸上, 1⨯1 小方格的顶点叫做格点. 如右图, 三角形 ABC 的三个顶点都是格点. 若一个格点 P 使得三角 形 PAB 与三角形 PAC 的面积相等, 就称 P 点为“好点”. 那 么在这张格子纸上共有 个“好点”.4. 设正整数 x , y 满足 xy - 9x - 9y = 20, 则 x 2 + y 2 = .5. 甲、乙两队修建一条水渠.甲先完成工程的三分之一, 乙后完成工程的三分 之二, 两队所用的天数为 A ; 甲先完成工程的三分之二, 乙后完成工程的三分 之一, 两队所用天数为 B ; 甲、乙两队同时工作完成的天数为 C . 已知 A 比 B 多 5, A 是 C 的 2 倍多 4. 那么甲单独完成此项工程需要 天.6. 已知 x + y + z = 5 , 1 + 1 + 1 = 5 , xyz = 1, 则 x 2 + y 2 + z 2 = . x y z7. 关于 x , y 的方程组⎧ 1 x + y = a ⎨ 2 ⎪⎩| x | - y = 1只有唯一的一组解, 那么 a 的取值为 .总分 密封线内请勿答题学校____________姓名_________参赛证号8.右图是一个骰子的展开图, 每个面是一个单位正方形. 用 四个骰子粘成一个 2⨯ 2⨯1的长方体放到桌面上, 要求每 两个粘在一起的面上的“点数”相同.长方体放到桌面上 的六个面分别记为上、下、左、右、前、后六个面, 两个 长方体不同是指对应六个面的“点”的拼图不同. 不考虑长方体的旋转, 共 可以粘出 种不同的长方体二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9. 在恰有三条边相等的四边形中, 有两条等长的边所夹的内角为直角. 若从 该直角顶点引出的对角线恰好把这个四边形分成两个等腰三角形, 求该直 角所对的角的度数.10. 围着一张可以转动的圆桌, 均匀地放着 8 把椅子, 在桌子上对着椅子放有 8个人的名片. 这 8 个人入座后, 将圆桌顺时针转动, 第一次转 45︒ , 从第二 次开始, 每次转动比上一次多转 45︒ . 每转动一次, 当某人对着自己的名片 时, 取走自己的名片. 如果入座时谁都没有对着自己的名片, 那么桌子至少 转多少度才能保证所有入座可能的情况下 8 个人都拿到了自己的名片?11. 两张 8 ⨯12 的长方形纸片重叠地放置, 有一个顶点重合, 尺寸如右图所示. 问图中阴影部分的面积是多少?12. 证明: 对任何非零自然数 n , 1212323-++n n n ,都是整数, 并用 3 除余 2。
第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每题10分,共80分)1.(10分)计算:7﹣(2.4+1×4)÷1=.2.(10分)中国北京在2015年7月31日获得了2022年第24届冬季奥林匹克运动会的主办权.预定该届冬奥会的开幕时间为2022年2月4日,星期.(今天是2016年3月12日,星期六)3.(10分)如图中,AB=5厘米,∠ABC=85°,∠BCA=45°,∠DBC=20°,AD=厘米.4.(10分)在9×9的格子纸上,1×1小方格的顶点叫做格点.如图,三角形ABC的三个顶点都是格点.若一个格点P使得三角形PAB与三角形PAC 的面积相等,就称P点为“好点”.那么在这张格子纸上共有个“好点”.5.(10分)对于任意一个三位数n,用表示删掉n中为0的数位得到的数.例如n=102时=12.那么满足<n且是n的约数的三位数n有个.6.(10分)共有12名同学玩一种扑克游戏,每次4人参加,且任意2位同学同时参加的次数不超过1.那么他们最多可以玩次.7.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为.8.(10分)两把小尺子组成套尺,小尺可以沿着大尺滑动.大尺上每一个单位都标有自然数,第一把小尺将大尺上的11个单位等分为10,第二把小尺将大尺上9个单位等分为10,两把小尺的起点都为0,都分别记为1至10.现测量A,B两点间距离,A点在大尺的0单位处,B点介于大尺的18与19单位之间,将第一把小尺的0单位处于B点时,其单位3怡好与大尺上某一单位相合.如果将第二把小尺的0单位处置于B点,那么第二把小尺的第个单位怡好与大尺上某一单位相合.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的,甲胜出.但是,若乙得票数至少増加4票,则可胜甲,请计算甲乙所得的票数.10.(10分)如图,三角形ABC中,AB=180厘米,AC=204厘米,D、F是AB上的点,E,G是AC上的点,连结CD,DE,EF,FG,将三角形ABC分成面积相等的五个小三角形,则AF+AG为多少厘米.11.(10分)某水池有甲、乙两个进水阀,只打开甲注水,10小时可将空水池注满;只打开乙,15小时可将空水池往满.现要求7个小时将空水池注满,可以只打开甲注水若干小时,接着只打开乙注水若干小时,最后同时打开甲乙注水.那么同时打开甲乙的时间是多少小时?12.(10分)将一个五边形沿一条直线简称两个多边形,再将其中一个多边形沿一条直线剪成两部分,得到了三个多边形,然后将其中一个多边形沿一条直线剪成两部分,…,如此下去.在得到的多边形中要有20个五边形,则最少剪多少次?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,有一张由四个1×1的小方格组成的凸字行纸片和一张5×6的方格纸,现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸上的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)14.(15分)设n是正整数,若从任意n个非负整数中一定能找到四个不同的数a,b,c,d使得a+b﹣c﹣d能被20整除.则n的最小值是多少?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)计算:7﹣(2.4+1×4)÷1= 2 .【分析】先算小括号里面的乘法,再算小括号里面的加法,然后算括号外的除法,最后算括号外的减法.【解答】解:7﹣(2.4+1×4)÷1=7﹣(2.4+)÷1=7﹣÷1=7﹣=2故答案为:2.2.(10分)中国北京在2015年7月31日获得了2022年第24届冬季奥林匹克运动会的主办权.预定该届冬奥会的开幕时间为2022年2月4日,星期五.(今天是2016年3月12日,星期六)【分析】首先分析2016年的3月12日到2022年的3月13日是星期几,然后再根据3月12向前推理出2月4日即可.【解答】解:依题意可知:平年365天是52个星期多1天.润年是52个星期多2天.2016年3月12到2022年3月12日经过了5个平年1个闰年,向后推的天数为1+1+1+1+1+2=7.恰好为星期六.那么2022年的2月4日到2022年的3月12日.经过24+12=36天.36÷7=5…1.从星期六前推前天.说明2022年的2月4日是星期五.故答案为:五3.(10分)如图中,AB=5厘米,∠ABC=85°,∠BCA=45°,∠DBC=20°,AD= 5 厘米.【分析】首先根据题意可知∠ABC=85°,∠BCA=45°.那么根据三角形内角和为180度可知∠A=50°.继续推理即可.【解答】解:依题意可知:∠ABC=85°,∠BCA=45°.那么∠A=50°.∠ABD=∠ABC﹣∠DBC=85°﹣20°=65°∠ADB=180°﹣∠A﹣∠ABD=180°﹣50°﹣65°=65°;∠ADB=∠ABD,∴AB=AD=5故答案为:54.(10分)在9×9的格子纸上,1×1小方格的顶点叫做格点.如图,三角形ABC的三个顶点都是格点.若一个格点P使得三角形PAB与三角形PAC 的面积相等,就称P点为“好点”.那么在这张格子纸上共有 6 个“好点”.【分析】如下图这样,经过A点和BC边的中点画一条直线,交方格图于E点和F点,可以证得D、E、F三点都是好点;过AB点作平行线,与原来的三角形组成平行四边形,得到平行四边形ACBI,可以证得I、H、G三点也是好点.【解答】解:(1)△BDA与△CDA等底等高,所以面积相等;(2)△ABE与△ACE的面积都等于平行四边形ABCE的一半,所以面积相等;(3)△ABF的面积=△BDF的面积﹣△BDA的面积,△CAF的面积=△CDF 的面积﹣△CDA的面积,又因为△BDA与△CDA面积相等,所以△ABF的面积=△CAF的面积;(4)△ABI和△ACI的面积都等于平行四边形ACBI面积的一半,所以相等;(5)△ABH的面积是△ABI面积的一半,△ACH的面积是△ACI的面积的一半,所以△ABH与△ACH面积相等;(6)△AGB和△AGC有相同底AG,这条底边上的两个三角形高是相等的,所以这两个三角形面积相等.故此题的好点一共有6个.5.(10分)对于任意一个三位数n,用表示删掉n中为0的数位得到的数.例如n=102时=12.那么满足<n且是n的约数的三位数n有93 个.【分析】按题意,能满足<n且是n的约数的三位数n,有两种:第一种,十位为0,第二种,个位为0,然后再计算个数.【解答】解:根据分析,第一种,十位为0的三位数中,能满足是n的约数的n只有:105、108、405,三个数删掉0后得:15、18、45分别为105、108、405的约数;第二种,个位为0的三位数共有:9×10=90个,删掉0后均能满足是n 的约数,故满足题意的三位数n有90个,综上,满足题意的三位数一共有90+3=93个.故答案是:93.6.(10分)共有12名同学玩一种扑克游戏,每次4人参加,且任意2位同学同时参加的次数不超过1.那么他们最多可以玩9 次.【分析】首先分析可以将同学们进行标好,然后枚举即可.【解答】解:依题意可知:将学生进行编号1﹣12.如果是1﹣4一组,5﹣8一组,9﹣12一组下一组就没有符合题意的了,那么要求尽可能多分组.即第一次是1,2,3,4.第二次是1,5,6,7.第三次是2,5,8,9.第四组是3,6,8,10.第五组是4,5,8,11.第六组是3,5,9,10.第七组是4,6,9,11第八组是1,7,9,12第九组是2,6,10,12.故答案为:97.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为108 .【分析】设k个连续正整数的首项为n,则末项为n+k﹣1.则k个连续正整数的和=(n+n+k﹣1)•k÷2=2×38,利用质因数分解即可解决问题.【解答】解:设k个连续正整数的首项为n,则末项为n+k﹣1.则k个连续正整数的和=(n+n+k﹣1)•k÷2=2×38,所以(2n+k﹣1)•k=22×38,所以k的最大值为108=22×33,此时2n+k﹣1=35,n=68,故k的最大值为108.故答案为108.8.(10分)两把小尺子组成套尺,小尺可以沿着大尺滑动.大尺上每一个单位都标有自然数,第一把小尺将大尺上的11个单位等分为10,第二把小尺将大尺上9个单位等分为10,两把小尺的起点都为0,都分别记为1至10.现测量A,B两点间距离,A点在大尺的0单位处,B点介于大尺的18与19单位之间,将第一把小尺的0单位处于B点时,其单位3怡好与大尺上某一单位相合.如果将第二把小尺的0单位处置于B点,那么第二把小尺的第7 个单位怡好与大尺上某一单位相合.【分析】根据题意可:第一把小尺与大尺的单位比是11:10,第一把小尺的单位3,相当于大尺的单位3.3(根据比例求得)大尺3.3与18.7才能相加得整数,所以小尺的0对的大尺的单位是18.7.耶第二把小尺子以0单位为起点,在1到10之间找的单位对应大尺上的整数,必须是大尺的18.7加上几点3,就是说加上的这个数的小数位是3.根据大尺与第二把小尺的单位比9:10求得第二把小尺是7时,大尺的单位数才出现点3.【解答】解:11:10=?:3?=3.3那B点处在单位18与19之间的应是:18.718.7只有加上一个末位上是3的数(令其为X)才能凑整十数.?是在1一10之间的自然数,所以只有?=7符合条件.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的,甲胜出.但是,若乙得票数至少増加4票,则可胜甲,请计算甲乙所得的票数.【分析】乙得票数至少增加4票,则甲必至少减少4票,此时才能使乙胜甲,可以设一个未知数,列出关系式,求出解.【解答】解:根据分析,设甲得票数为x,则乙的得票数为,由题意得:⇒⇒x<168,又∵x为正整数,且也为正整数∴x=147,x=126,即:①甲得票数是147票,乙的得票数是140票;②甲得票数是126票,乙的得票数是120票.故答案是:甲147票,乙140票.或,甲126票,乙120票.10.(10分)如图,三角形ABC中,AB=180厘米,AC=204厘米,D、F是AB上的点,E,G是AC上的点,连结CD,DE,EF,FG,将三角形ABC分成面积相等的五个小三角形,则AF+AG为多少厘米.【分析】高一定,对应底的比等于面积比,根据五个小三角形面积相等,所以S△ADC=4S△DBC,所以AD=4BD=4×(180÷5)=144(厘米);同理,可求AE、AF、AG的长度,进而求出AF+AG的长度即可.【解答】解:在△ABC中,因为S△ADC=4S△DBC,所以AD=4BD=4×(180÷5)=144(厘米);在△ADC中,因为S△ADE=3S△EDC,所以AE=3EC=3×(204÷4)=153(厘米);在△ADE中,因为S△AFE=2S△EFD,所以AF=2DF=2×(144÷3)=96(厘米);在△AFE中,因为S△AFG=S△GFE,所以AG=GE=153÷2=76.5(厘米);所以,AF+AG=96+76.5=172.5(厘米);答:AF+AG为172.5厘米.11.(10分)某水池有甲、乙两个进水阀,只打开甲注水,10小时可将空水池注满;只打开乙,15小时可将空水池往满.现要求7个小时将空水池注满,可以只打开甲注水若干小时,接着只打开乙注水若干小时,最后同时打开甲乙注水.那么同时打开甲乙的时间是多少小时?【分析】可以先求得甲、乙每小时注的水量,即为、,总时间为7小时,同时开的时候,不难求出时间.【解答】解:根据分析,设水池注满时水的总量为1份,甲、乙每小时注水的速度分别为份/时、份/时,则甲乙同时开的时候总速度为+=,设刚开始只打开甲a小时,接着打开乙b小时,最后同时打开甲乙7﹣a﹣b小时,则:a+b+(7﹣a﹣b)=1,化简得:2a+3b=5,又∵a≥1,b≥1,∴a=1,b=1,∴甲乙同时打开的时间为:7﹣a﹣b=7﹣1﹣1=5(小时).故答案是:5.12.(10分)将一个五边形沿一条直线简称两个多边形,再将其中一个多边形沿一条直线剪成两部分,得到了三个多边形,然后将其中一个多边形沿一条直线剪成两部分,…,如此下去.在得到的多边形中要有20个五边形,则最少剪多少次?【分析】按题意,一个多边形可以被分成两部分,其内角和至多增加360°,剪K次共增加的度数至多为K×360°,所以这(K+1)个多边形的度数和至多是K×360°+540°,另一方面,20个五边形的度数和为20×540°,剩余的(K﹣19)个多边形的度数和最小是(K﹣19)×180°,这样得到:(K﹣19)×180°+20×540°≤K×360°+540°,求解最后得出结果.【解答】解:根据分析,一个多边形被分成两部分,其内角和至多增加360°,剪K次共增加的度数至多为K×360°,所以这(K+1)个多边形的度数和至多是K×360°+540°,另一方面,20个五边形的度数和为20×540°,剩余的(K﹣19)个多边形的度数和最小是(K﹣19)×180°,这样得到:(K﹣19)×180°+20×540°≤K×360°+540°;整理得:K≥38,当K=38时,可以先将五边形切成一个五边形和一个四边形,然后用18次将四边形分成19个四边形,再用19次将每个四边形切成五边形,这样就用38次将其切成20个五边形.综上,则最少剪38次.故答案是:38.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,有一张由四个1×1的小方格组成的凸字行纸片和一张5×6的方格纸,现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸上的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)【分析】可以分情况讨论,把凸字形上面那个小方格称为它的头,粘出的图形可以分为两类:凸字形的头在方格纸的边框上位第一类,凸字形的头在方格纸的内部为第二类.【解答】解:根据分析,把凸字形上面那个小方格称为它的头,粘出的图形可以分为两类:凸字形的头在方格纸的边框上位第一类,凸字形的头在方格纸的内部为第二类.对于第一类,凸字形的头不能粘在方格纸的四个角,边框上(不是角)的小方格共有:2×3+2×4=14(个),有14个图形,第二类,方格纸内部的每一个小方格可以粘凸字形的头,有头朝上,头朝下,头朝左,头朝右之分,所以,这类图形有4×(3×4)=48(个).由加法原理知,共有14+48=62中图形,由于方格纸的每个小方格都与另外一个小方格旋转对称,所以总的不同图形为:62÷2=31(个).故答案是:31.14.(15分)设n是正整数,若从任意n个非负整数中一定能找到四个不同的数a,b,c,d使得a+b﹣c﹣d能被20整除.则n的最小值是多少?【分析】首先说明任意8个非负整数不能满足条件,因为任意取9个非负整数,从中任意取7个,它们的两两之和有21个,这21个和数除以20的余数有21个,因为余数最多有20个不同的值,所以有下面两种情形之一发生:(1)有4个不同的数a、b、c、d,使得a+b与c+d除以20有相同的余数,此时四个数满足条件.(2)有3个不同的数a、c、x,使得a+x与b+x除以20有相同的余数,则(a+x)﹣(c+x)=a﹣c是20的倍数,由此循环,即可解决问题.【解答】解:存在8个数:0,1,2,4,7,12,20,40它们中任何四个数都不能满足条件,所以n的最小值大于等于9.因为任意取9个非负整数,从中任意取7个,它们的两两之和有21个,这21个和数除以20的余数有21个,因为余数最多有20个不同的值,所以有下面两种情形之一发生:(1)有4个不同的数a、b、c、d,使得a+b与c+d除以20有相同的余数,此时四个数满足条件.(2)有3个不同的数a、c、x,使得a+x与b+x除以20有相同的余数,则(a+x)﹣(c+x)=a﹣c是20的倍数,将a、c取出,在剩下的7个数中,同理可得:要么四个不同的数,满足条件,要么有两个数b、d,使得b﹣d是20的倍数,如此一来,总有a、b、c、d,使得a+b﹣c﹣d能被20整除.综上所述,n的最小值为9.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:01:43;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2016年第21届初中数学“华罗庚金杯”决赛初一组试题含答案
x 2 n⎪第二十一届华罗庚金杯少年数学邀请赛决赛试题(初一组)(时间: 2016 年 3 月 12 日 10:00~11:30)一、填空题(每小题 10 分, 共 80 分)1. 已知 n 个数 x 1, x 2 , , x n , 每个数只能取 0, 1, -1中的一个. 若x 1 + x 2 + + x n = 2016 , 则 2015 1 + x 2015 + + x 2015 的值为 .2. 某停车场白天和夜间两个不同时段的停车费用的单价不同.张明 2 月份白天的停车时间比夜间要多 40% , 3 月份白天的停车时间比夜间要少 40% . 若 3 月份的总停车时间比 2 月份多 20% , 但停车费用却少了 20% , 那么该停车场白 天时段与夜间时段停车费用的单价之比是.3. 在 9⨯ 9 的格子纸上, 1⨯1 小方格的顶点叫做格点. 如右图,三角形 ABC 的三个顶点都是格点. 若一个格点 P 使得三角 形 PAB 与三角形 PAC 的面积相等, 就称 P 点为“好点”. 那 么在这张格子纸上共有个“好点”.4. 设正整数 x , y 满足 xy - 9x - 9y = 20, 则x 2 + y 2 = .5. 甲、乙两队修建一条水渠.甲先完成工程的三分之一, 乙后完成工程的三分之二, 两队所用的天数为 A ; 甲先完成工程的三分之二, 乙后完成工程的三分 之一, 两队所用天数为 B ; 甲、乙两队同时工作完成的天数为 C . 已知 A 比 B 多 5, A 是 C 的 2 倍多 4. 那么甲单独完成此项工程需要天.6. 已知 x + y + z = 5 ,1 + 1 + 1= 5 , xyz = 1, 则 x 2 + y 2 + z 2 = .x y z7. 关于 x , y 的方程组⎧ 1x + y = a ⎨ 2 ⎪⎩| x | - y = 1只有唯一的一组解, 那么 a 的取值为.总分密封线内请勿答题学校____________ 姓名_________ 参赛证号8.右图是一个骰子的展开图, 每个面是一个单位正方形. 用四个骰子粘成一个2⨯ 2⨯1的长方体放到桌面上, 要求每两个粘在一起的面上的“点数”相同.长方体放到桌面上的六个面分别记为上、下、左、右、前、后六个面, 两个长方体不同是指对应六个面的“点”的拼图不同. 不考虑长方体的旋转, 共可以粘出种不同的长方体二、解答下列各题(每题10 分, 共40 分, 要求写出简要过程)9. 在恰有三条边相等的四边形中, 有两条等长的边所夹的内角为直角. 若从该直角顶点引出的对角线恰好把这个四边形分成两个等腰三角形, 求该直角所对的角的度数.10. 围着一张可以转动的圆桌, 均匀地放着8 把椅子, 在桌子上对着椅子放有8个人的名片. 这8 个人入座后, 将圆桌顺时针转动, 第一次转45︒ , 从第二次开始, 每次转动比上一次多转45︒ . 每转动一次, 当某人对着自己的名片时, 取走自己的名片. 如果入座时谁都没有对着自己的名片, 那么桌子至少转多少度才能保证所有入座可能的情况下8 个人都拿到了自己的名片?11. 两张8 ⨯12 的长方形纸片重叠地放置, 有一个顶点重合, 尺寸如右图所示. 问图中阴影部分的面积是多少?12. 证明: 对任何非零自然数n, n3 + 3n2 +1n - 1都是整数, 并且用 3 除余2.2 2三、解答下列各题(每小题15 分, 共30 分, 要求写出详细过程)13. 如右图, ABCD 是正方形, F 是其两条对角线的交点, E 在BC 边上, BE : EC = 1: 2 , DE 与对角线AC 的交点为G, 三角形DFG 的面积等于2. 求正方形ABCD 的面积.14. 排成一行的学生, 从左到右1 至3 报数, 最后一个人报2. 从右到左1 至m报数, 最后一个人报1, 这里m 与 3 互质. 现凡报过1 的学生出列, 其余原地不动, 共留下62 名, 其中只有21 对学生原来相邻. 问原来有多少名学生?m 的值是多少?第二十一届华罗庚金杯少年数学邀请赛决赛试题参考答案(初一组)一、填空题(每小题10 分, 共80 分)题号 1 2 3 4 5 6 7 8答案2016 25:1 6 12200 30 15 -1288二、解答下列各题(每小题10 分, 共40 分, 要求写出简要过程)9. 【答案】135︒ , 45︒10. 【答案】126011. 【答案】5412. 【证明】略三、解答下列各题(每小题15 分, 共30 分, 要求写出详细过程)13. 【答案】4014. 【答案】125, 4。
奥赛2016年第二十一届华罗庚金杯少年数学邀请赛初赛试卷小中组a卷
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组A卷)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.计算:124+129+106+141+237﹣500+113=()A.350B.360C.370D.3802.如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.103.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.54.甲、乙、丙、丁四支足球队进行比赛.懒羊羊说:甲第一,丁第四;喜羊羊说:丁第二,丙第三;沸羊羊说:丙第二,乙第一.每个的预测都只对了一半,那么,实际的第一名至第四名的球队依次是()A.甲乙丁丙B.甲丁乙丙C.乙甲丙丁D.丙甲乙丁5.如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.46.在除法算式中,被除数为2016,余数为7,则满足算式的除数共有()个.第1页(共10页).3B.4.65DC.A分)10分,共40二、填空题(每小题条.如果将鸵鸟与梅花鹿的数目互换,则应7.动物园里有鸵鸟和梅花鹿若干,共有腿122 只,梅花鹿有条,那么鸵鸟有有腿106 头.8.某年,端午节距离儿童节和父亲节的天数相同,在月历中与六月最后一天同列,父亲节是六月的第三个星期日,则该年的父亲节是六月日.(如图是某个月的月历示意图)9.在一个六位数中,任何3个连续排列的数字都构成能被6 或7 整除的三位数,则这个六位数最小是.10.小虎用6个边长均为1的等边三角形在桌面上无重叠地拼接图形,每个三角形都至少有一条边与另一个三角形的一条边完全重合,如图是拼接出的两个图形.那么,在所有拼接出的图形中,最小的周长是.第2页(共10页)2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组A卷)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.计算:124+129+106+141+237﹣500+113=()A.350B.360C.370D.380【分析】根据加法的交换律与结合律简算即可.【解答】解:124+129+106+141+237﹣500+113=(124+106)+(129+141)+(237+113)﹣500=230+270+350﹣500=850﹣500=350故选:A.2.如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.10先取的两盆在同侧有①【分析】种搬法;②分两种情况讨论:在异侧有×==24种搬法,所以共有2+4=6种,据此解答即可.【解答】解:根据分析可得,×+=2+4(种)=6答:共有6种不同的搬花顺序.页(共第310页)故选:B.3.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【分析】正六边形每个内角是120°,正三角形每个内角是60°,正六边和正三角形边长都为1,所以它们的边拼组后有两组成为直线段,所以减少了4条边,据此解答即可.【解答】解:180°×(6﹣2)÷6=180°×4÷6=120°180°÷6=60°120°+60°=180°所以,拼接后的图形是:6+3﹣4=5(条)答:得到的新图形的边数为5.故选:D.4.甲、乙、丙、丁四支足球队进行比赛.懒羊羊说:甲第一,丁第四;喜羊羊说:丁第二,丙第三;沸羊羊说:丙第二,乙第一.每个的预测都只对了一半,那么,实际的第一名至第四名的球队依次是()A.甲乙丁丙B.甲丁乙丙C.乙甲丙丁D.丙甲乙丁【分析】可以先假设懒羊羊说的第一句是对的,即甲是第一,则沸羊羊说的乙是第一是错的,则丙是第二是对的,就可以推测出喜羊羊说的丙第三是错的,则喜羊羊说的丁第二是对的,与丙第二矛盾,故假设不成立,然后根据其它几句话判断四人的名次.【解答】解:根据分析,假设懒羊羊说的第一句是对的,即甲是第一,则沸羊羊说的乙是第一是错的,则丙是第二是对的,就可以推测出喜羊羊说的丙第三是错的,则喜羊羊说的丁第二是对的,第4页(共10页)与丙第二矛盾,故假设不成立,故懒羊羊说的甲第一是错的,丁第四是对的;由此可以推测乙是第一,丙是第三,则甲是第二.故排名是:乙甲丙丁.故选:C.5.如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.4【分析】首先根据排除法在第一宫格中必须有4,那么第二行的第二列的数字只能为4.继续使用排除法即可推理成功.【解答】解:依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.6.在除法算式中,被除数为2016,余数为7,则满足算式的除数共有()个.A.3B.4C.5D.6【分析】除数×商=2016﹣7=2009,然后把2009分解因数,再根据余数小于除数,即可确定满足算式的除数共有几个.【解答】解:2016﹣7=2009,第5页(共10页)2009=7×287=49×41=1×2009所以满足算式的除数有:287、49、41、2009,共4个;答:满足算式的除数共有4个.故选:B.二、填空题(每小题10分,共40分)7.动物园里有鸵鸟和梅花鹿若干,共有腿122条.如果将鸵鸟与梅花鹿的数目互换,则应有腿106条,那么鸵鸟有15只,梅花鹿有23头.【分析】一只梅花鹿有4条腿,一只鸵鸟有2条腿,把一只鸵鸟换成一只梅花鹿就少4﹣2=2条腿,把所以鸵鸟与梅花鹿的数目互换共少了122﹣106=16条腿,即有16÷2=8只梅花鹿换成了鸵鸟,原来的梅花鹿比鸵鸟多8头.多加上8只鸵鸟后,则梅花鹿和鸵鸟的数量相同,所以再加上8×2=16条腿,则一共有122+16=138条腿时,梅花鹿和鸵鸟的只数相同,这时一头梅花鹿和一只鸵鸟有4+2=6条腿,据此可求出梅花鹿的数量,进而可求出鸵鸟的数量.【解答】解:122﹣106=16(条)16÷(4﹣2)=16÷2=8(头)(122+8×2)÷(4+2)=(122+16)÷6=138÷6=23(头)23﹣8=15(只)答:鸵鸟有15只,梅花鹿有23头.故答案为:15,23.8.某年,端午节距离儿童节和父亲节的天数相同,在月历中与六月最后一天同列,父亲节是六月的第三个星期日,则该年的父亲节是六月17日.(如图是某个月的月历示意图)第6页(共10页)日中间相差了数个整星期,所以端午节和天,端午节和六月3030【分析】六月一共有所以端午节和六29天,的倍数.而六月30 日和六月1日相差六月30日相差的天数为7天,的倍数加1的倍数加1 天,从而端午节和父亲节也相差了某个7 月1日相差了某个7天.根据父亲节是星期日,可得结论.7所以父亲节和六月1日相差了某个的倍数加2日中间相差了数个整星期,所以端午30【解答】解:六月一共有30天,端午节和六月所以端午节天,日和六月1日相差29而六月节和六月30日相差的天数为7的倍数.30的倍数加7 的倍数加1 天,从而端午节和父亲节也相差了某个和六月1日相差了某个7所以的倍数加2天.又由于父亲节是星期日,1天,所以父亲节和六月1日相差了某个7,从而推断出,六月的第三个星期日为17日,5六月1日是星期故答案为17.整除的三位数,则这个或7 9.在一个六位数中,任何3个连续排列的数字都构成能被 6.112642六位数最小是因为要使六位数.说明这个六位数中无0个连续排列的都是三位数,【分析】因为任何3□□□□,用分类讨论是思想思考问题即可.最小,不妨设,六位数为11.个连续排列的都是三位数,说明这个六位数中无0【解答】解:因为任何311□□□□,因为要使六位数最小,不妨设,六位数为,?①112 ,则有①11x126,,则有?②X②12x26③,则有,?③264107第页(共页),?④④64x,则有642故答案为112642每个三角形都至少有1的等边三角形在桌面上无重叠地拼接图形,个边长均为10.小虎用6一条边与另一个三角形的一条边完全重合,如图是拼接出的两个图形.那么,在所有拼6.接出的图形中,最小的周长是【分析】首先分析最小情况就是重复边数最多的情况.【解答】解:依题意可知:重叠的边数越多面积越小.6故最小周长为:6故答案为:页(共第810页)页(共第910页)第10页(共10页)。
第二十一届华罗庚金杯少年数学邀请赛试题(初一、初二组)
第二十一届华罗庚金杯少年数学邀请赛决赛试题(初一组)(时间:2016年3月12日10:00--11:30)一、填空题(每小题10分,共80分)1.已知n个数x1,x2,……x n,每个数只能取0,1,-1中的一个,若x1+x2+…+x n=2016,则x12015+x22015+…+x n2015的值为__________。
2.某停车场白天和夜晚两个不同时段的停车费用的单价不同,张明2月份白天的停车时间比夜间要多40%,3月份白天的停车时间比夜间要少40%。
若3月份的总停车时间比2月份多20%,但停车费用却少了20%,那么该停车场白天时段与夜间时段停车费用的单价之比是__________。
3.在9×9的格子纸上,1×1小方格的顶点叫做格点,如右图。
三角形ABC的三个顶点都是格点,若一个格点P使得三角形PAB与三角形PAC的面积相等,就称P点为“好点”。
那么,在这张格子纸上共有__________个“好点”。
4.设正整数x,y满足xy―9x―9y=20,则x2+y2=________。
5.甲、乙两队修建一条水渠,甲先完成工程的三分之一,乙后完成工程的三分之二,两队所用的天数为A;甲先完成工程的三分之二,乙后完工程的三分之一,两队所用天数为B;甲、乙两队同时工作完成的天数为C。
已知A比B 多5,A是C的2倍多4,那么甲单独完成此项工程需要__________天。
6.已知x+y+z=5,1x+1y+1z=5,xyz=1,则x2+y2+z2=__________。
7.关于x,y的方程组:只有唯一的一组解,那么a的取值为__________。
8.右图是一个骰子的展开图,每个面是一个单位正方形,用四个骰子粘成一个2×2×1的长方体放到桌面上,要求每两个粘在一起的面上的“点数”相同。
长方体放到桌面上的六个面分别记为上、下、左、右、前、后六个面,两个长方体不同是指对应六个面的“点”的拼图不同,不考虑长方体的旋转,共可以粘出__________种不同的长方体。
第二十一届华罗庚金杯少年数学邀请赛初赛试卷详解
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)详解一、选择题1.答案:A分析:2.答案:分析3.答案:分析:4.答案:D分析:分别把选项代入验算,只有C选项符合要求。
5.答案A分析:如图所示。
6.答案:分析:二、填空题7.答案:15:23 分析:8.答案:17分析:9.答案:11264210.答案:6分析:第二十一届华罗庚金杯少年数学邀请赛初赛B卷(小学中年级组)详解一、选择题1.答案:C分析:(A)(1+3)×2×3=24(B)(5-1÷5)×5=24(D)3×3×3-3=24只有(C)租无法凑成。
2.答案:B分析: 6×37=222,故选B3.答案:A分析:10×10-7×7=51(平方厘米)4.答案:C分析:11×34-333=41(分)5.答案:D分析:6.答案:D分析:二、填空题7.答案:29分析:原式=(1986+1)×2015-1986×(2015+1)=1986×2015+2015-1986×2015-1986=2015-1986=298.答案:10位老师,182名同学。
分析:从整体来看,大巴坐满少3人,公交车坐满多3人,大巴比公交车少2辆,27×2+3=57(人),57+3=60(人),大巴有:60÷(39-27)=5(辆),总人数为:5×39-3=192(人),老师有2×5=10(人),学生有:192-10=182(人)。
9.答案:11分析:到2020年,弟弟或妹妹是2020-2016=4(岁),其余的人长5岁,如果全家人增长的岁数之和是5×7=35(岁),那么全家人岁数之和还是笑笑的7倍,而实际只增长3×5+4=19(岁),所以笑笑2020年是35-19=16(岁),所以今年笑笑是16-5=11(岁)。
2016年21届华杯赛数学初二决赛答案
第二十一届华罗庚金杯少年数学邀请赛决赛试题参考答案(初二组)一、填空题(每小题10 分, 共80分)二、解答下列各题(每小题10 分, 共40分, 要求写出简要过程)9.【答案】【解答】令a=1a.设1x aa=+>,则442242114(2)2124x a a xa a=++++-=+,整理得4222412(6)(2)x x x x--=-+=,解得26x=,即x=10.【证明】延长中线BD到G,使得DG=BD,连结AG.在△BDC和△GAD中,因为AD = CD,BDC ADG∠=∠,BD =DG,所以△BDC≌△GAD.因此BC=AG,=FBE AGD∠∠,又已知AE=BC,所以AE= AG.所以AEG AGE∠=∠.因为BEF AEG∠=∠,所以BEF AEG AGD EBF∠=∠=∠=∠,因此BF=FE.11.【答案】18【解答】由已知得3333223a a abc a b ab b c b ⎧+++=⎪⎨+++=⎪⎩,整理得32200a ab c ab b c ⎧++=⎪⎨++=⎪⎩,两个方程作差得到()()()0a a b a b b a b +-+-=,又a ,b 互不相等,得到()b a a b =-+,即21111a b a a a-==--++,由a ,b ,c 为互不相等的非零整数,得=2a -,4b =,16c =,所以++=18a b c . 12. 【答案】8【解答】如右图由单位方格组成的33⨯的正方形中,以A ,B ,C ,D ,E ,F ,G ,H 八个点为圆心,以半径为1画八个圆可以覆盖住整个边长为3的正方形.下面来说明,当圆形卡片的数目少于等于7时,不能覆盖住边长为3的正方形.由于正方形的周长为12,因为圆心为格点,每个圆的直径为2,只能覆盖住正方形四条边的长度和为2,要想盖住正方形的4条边,至少需要6个圆.如果正方形的4条边上有6个圆心,只能是图中A ,B ,C ,D ,E ,F 的位置,或者除去图中A ,B ,C ,D ,E ,F 的6个点的位置.当6个圆心在图中A ,B ,C ,D ,E ,F 的位置时,此时G ,H并且G ,H1,因此要想盖住G ,H 两点至少还需要两个圆.当6个圆心是除去图中A ,B ,C ,D ,E ,F 的6个点的位置时,同样可以找到另外两个点.显然图中没有标号的8个点任意两个点之间的距离大于1.因此需要至少8个圆才能覆盖住整个正方形.三、解答下列各题(每题 15 分, 共30分, 要求写出详细过程)13. 【答案】12【解答】设正方形ABCD 的边长为a . 又在直角△ABG 中,易知30GAB ∠= ,于是12G Ba =,GA =,OA OB ==.设x GH =,y OH =,得2222223()411()22x a y y a x a ⎧+=⎪⎪⎨⎪+=+⎪⎩,这样12x a +=. 易证△AOF ≌△DOE ,所以OF =OE ,故△FOE是等腰直角三角形.又EF ≥12OE ≥.因为E 在边DC 上移动,当OE DC ⊥时,取最小值,此时1DC =,即正方形的边长为1,此时12x +=.综上,GH 的最小值为12.14. 【答案】12880. 【解答】由已知11353255[]1111k k k k k k S S S k k k k k k +-+++=-=--++++1(3)(2)(3)55(1)(1)1k k k k S k k k k k -+++⨯=--+++2(3)(2)15(3)55[](1)11(1)1k k k k k S k k k k k k k -++++⨯=---+--++2(3)(2)(3)(2)5(3)(2)5(3)(2)5(1)(1)(1)(2)(1)(3)(2)(1)k k k k k k k k k S k k k k k k k k k k k -++++⨯++⨯++⨯=----+-+++++=0(3)(2)(3)(2)5(3)(2)5(3)(2)5(3)(2)521321(1)(1)(2)(1)(3)(2)(1)k k k k k k k k k k Sk k k k k k k k k ++++⨯++⨯++⨯++⨯=-----⨯⨯⨯+-+++++ 111153(2{}2123234(3)(2)(1)k k k k k =++----⨯⨯⨯⨯+++ ())由于111123234(3)(2)(1)k k k +++⨯⨯⨯⨯+++1111111={()()()}212232334(2)(1)(3)(2)111()22(3)(2)k k k k k k -+-++-⨯⨯⨯⨯++++=-++ 所以,,)2)(3(1212)2)(3(5)2)(3(1212121)2)(3(51⎪⎪⎭⎫ ⎝⎛+++++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++--++=+k k k k k k k k S k当1100k +=时,求得10012880S =.。
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每题10分,共80分)1.(10分)计算:7﹣(2.4+1×4)÷1=.2.(10分)中国北京在2015年7月31日获得了2022年第24届冬季奥林匹克运动会的主办权.预定该届冬奥会的开幕时间为2022年2月4日,星期.(今天是2016年3月12日,星期六)3.(10分)如图中,AB=5厘米,∠ABC=85°,∠BCA=45°,∠DBC=20°,AD=厘米.4.(10分)在9×9的格子纸上,1×1小方格的顶点叫做格点.如图,三角形ABC的三个顶点都是格点.若一个格点P使得三角形PAB与三角形PAC的面积相等,就称P点为“好点”.那么在这张格子纸上共有个“好点”.5.(10分)对于任意一个三位数n,用表示删掉n中为0的数位得到的数.例如n=102时=12.那么满足<n且是n的约数的三位数n有个.6.(10分)共有12名同学玩一种扑克游戏,每次4人参加,且任意2位同学同时参加的次数不超过1.那么他们最多可以玩次.7.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为.8.(10分)两把小尺子组成套尺,小尺可以沿着大尺滑动.大尺上每一个单位都标有自然数,第一把小尺将大尺上的11个单位等分为10,第二把小尺将大尺上9个单位等分为10,两把小尺的起点都为0,都分别记为1至10.现测量A,B两点间距离,A点在大尺的0单位处,B点介于大尺的18与19单位之间,将第一把小尺的0单位处于B点时,其单位3怡好与大尺上某一单位相合.如果将第二把小尺的0单位处置于B点,那么第二把小尺的第个单位怡好与大尺上某一单位相合.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的,甲胜出.但是,若乙得票数至少増加4票,则可胜甲,请计算甲乙所得的票数.10.(10分)如图,三角形ABC中,AB=180厘米,AC=204厘米,D、F是AB上的点,E,G是AC上的点,连结CD,DE,EF,FG,将三角形ABC分成面积相等的五个小三角形,则AF+AG为多少厘米.11.(10分)某水池有甲、乙两个进水阀,只打开甲注水,10小时可将空水池注满;只打开乙,15小时可将空水池往满.现要求7个小时将空水池注满,可以只打开甲注水若干小时,接着只打开乙注水若干小时,最后同时打开甲乙注水.那么同时打开甲乙的时间是多少小时?12.(10分)将一个五边形沿一条直线简称两个多边形,再将其中一个多边形沿一条直线剪成两部分,得到了三个多边形,然后将其中一个多边形沿一条直线剪成两部分,…,如此下去.在得到的多边形中要有20个五边形,则最少剪多少次?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,有一张由四个1×1的小方格组成的凸字行纸片和一张5×6的方格纸,现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸上的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)14.(15分)设n是正整数,若从任意n个非负整数中一定能找到四个不同的数a,b,c,d使得a+b﹣c﹣d能被20整除.则n的最小值是多少?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)计算:7﹣(2.4+1×4)÷1=2.【分析】先算小括号里面的乘法,再算小括号里面的加法,然后算括号外的除法,最后算括号外的减法.【解答】解:7﹣(2.4+1×4)÷1=7﹣(2.4+)÷1=7﹣÷1=7﹣=2故答案为:2.【点评】本题考查了分数的四则混合运算,计算时先理清楚运算顺序,根据运算顺序逐步求解即可.2.(10分)中国北京在2015年7月31日获得了2022年第24届冬季奥林匹克运动会的主办权.预定该届冬奥会的开幕时间为2022年2月4日,星期五.(今天是2016年3月12日,星期六)【分析】首先分析2016年的3月12日到2022年的3月13日是星期几,然后再根据3月12向前推理出2月4日即可.【解答】解:依题意可知:平年365天是52个星期多1天.润年是52个星期多2天.2016年3月12到2022年3月12日经过了5个平年1个闰年,向后推的天数为1+1+1+1+1+2=7.恰好为星期六.那么2022年的2月4日到2022年的3月12日.经过24+12=36天.36÷7=5…1.从星期六前推前天.说明2022年的2月4日是星期五.故答案为:五【点评】本题考查对周期问题的理解和运用,关键问题是找到时间差,周期看余数即可,问题解决.3.(10分)如图中,AB=5厘米,∠ABC=85°,∠BCA=45°,∠DBC=20°,AD=5厘米.【分析】首先根据题意可知∠ABC=85°,∠BCA=45°.那么根据三角形内角和为180度可知∠A=50°.继续推理即可.【解答】解:依题意可知:∠ABC=85°,∠BCA=45°.那么∠A=50°.∠ABD=∠ABC﹣∠DBC=85°﹣20°=65°∠ADB=180°﹣∠A﹣∠ABD=180°﹣50°﹣65°=65°;∠ADB=∠ABD,∴AB=AD=5故答案为:5【点评】悲痛考查对长度问题的理解和运用,关键问题是找到角度之间的等量关系,问题解决.4.(10分)在9×9的格子纸上,1×1小方格的顶点叫做格点.如图,三角形ABC的三个顶点都是格点.若一个格点P使得三角形PAB与三角形PAC的面积相等,就称P点为“好点”.那么在这张格子纸上共有6个“好点”.【分析】如下图这样,经过A点和BC边的中点画一条直线,交方格图于E点和F点,可以证得D、E、F三点都是好点;过AB点作平行线,与原来的三角形组成平行四边形,得到平行四边形ACBI,可以证得I、H、G三点也是好点.【解答】解:(1)△BDA与△CDA等底等高,所以面积相等;(2)△ABE与△ACE的面积都等于平行四边形ABCE的一半,所以面积相等;(3)△ABF的面积=△BDF的面积﹣△BDA的面积,△CAF的面积=△CDF的面积﹣△CDA的面积,又因为△BDA与△CDA面积相等,所以△ABF的面积=△CAF 的面积;(4)△ABI和△ACI的面积都等于平行四边形ACBI面积的一半,所以相等;(5)△ABH的面积是△ABI面积的一半,△ACH的面积是△ACI的面积的一半,所以△ABH与△ACH面积相等;(6)△AGB和△AGC有相同底AG,这条底边上的两个三角形高是相等的,所以这两个三角形面积相等.故此题的好点一共有6个.【点评】这种类型的题目一般是从中线入手,或者从平行四边形入手,这些点往往在一条直线上.5.(10分)对于任意一个三位数n,用表示删掉n中为0的数位得到的数.例如n=102时=12.那么满足<n且是n的约数的三位数n有93个.【分析】按题意,能满足<n且是n的约数的三位数n,有两种:第一种,十位为0,第二种,个位为0,然后再计算个数.【解答】解:根据分析,第一种,十位为0的三位数中,能满足是n的约数的n只有:105、108、405,三个数删掉0后得:15、18、45分别为105、108、405的约数;第二种,个位为0的三位数共有:9×10=90个,删掉0后均能满足是n的约数,故满足题意的三位数n有90个,综上,满足题意的三位数一共有90+3=93个.故答案是:93.【点评】本题考查了定义新运算,突破点是:分类讨论,有两种:第一种,十位为0,第二种,个位为0,然后再计算个数.6.(10分)共有12名同学玩一种扑克游戏,每次4人参加,且任意2位同学同时参加的次数不超过1.那么他们最多可以玩9次.【分析】首先分析可以将同学们进行标好,然后枚举即可.【解答】解:依题意可知:将学生进行编号1﹣12.如果是1﹣4一组,5﹣8一组,9﹣12一组下一组就没有符合题意的了,那么要求尽可能多分组.即第一次是1,2,3,4.第二次是1,5,6,7.第三次是2,5,8,9.第四组是3,6,8,10.第五组是4,5,8,11.第六组是3,5,9,10.第七组是4,6,9,11第八组是1,7,9,12第九组是2,6,10,12.故答案为:9【点评】本题考查对排列组合的理解和运用,关键问题是找到对应分组的情况,问题解决.7.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为108.【分析】设k个连续正整数的首项为n,则末项为n+k﹣1.则k个连续正整数的和=(n+n+k﹣1)•k÷2=2×38,利用质因数分解即可解决问题.【解答】解:设k个连续正整数的首项为n,则末项为n+k﹣1.则k个连续正整数的和=(n+n+k﹣1)•k÷2=2×38,所以(2n+k﹣1)•k=22×38,所以k的最大值为108=22×33,此时2n+k﹣1=35,n=68,故k的最大值为108.故答案为108.【点评】本题考查最大与最小、质因数分解等知识,解题的关键是学会利用参数解决问题,灵活应用质因数分解解决问题.8.(10分)两把小尺子组成套尺,小尺可以沿着大尺滑动.大尺上每一个单位都标有自然数,第一把小尺将大尺上的11个单位等分为10,第二把小尺将大尺上9个单位等分为10,两把小尺的起点都为0,都分别记为1至10.现测量A,B两点间距离,A点在大尺的0单位处,B点介于大尺的18与19单位之间,将第一把小尺的0单位处于B点时,其单位3怡好与大尺上某一单位相合.如果将第二把小尺的0单位处置于B点,那么第二把小尺的第7个单位怡好与大尺上某一单位相合.【分析】根据题意可:第一把小尺与大尺的单位比是11:10,第一把小尺的单位3,相当于大尺的单位3.3(根据比例求得)大尺3.3与18.7才能相加得整数,所以小尺的0对的大尺的单位是18.7.耶第二把小尺子以0单位为起点,在1到10之间找的单位对应大尺上的整数,必须是大尺的18.7加上几点3,就是说加上的这个数的小数位是3.根据大尺与第二把小尺的单位比9:10求得第二把小尺是7时,大尺的单位数才出现点3.【解答】解:11:10=?:3?=3.3那B点处在单位18与19之间的应是:18.718.7只有加上一个末位上是3的数(令其为X)才能凑整十数.?是在1一10之间的自然数,所以只有?=7符合条件.【点评】弄清题意是关键,再就是弄清他们(大小尺)的比例关系才能求解.求9:10=X:?时,用猜想法解答.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的,甲胜出.但是,若乙得票数至少増加4票,则可胜甲,请计算甲乙所得的票数.【分析】乙得票数至少增加4票,则甲必至少减少4票,此时才能使乙胜甲,可以设一个未知数,列出关系式,求出解.【解答】解:根据分析,设甲得票数为x,则乙的得票数为,由题意得:⇒⇒x<168,又∵x为正整数,且也为正整数∴x=147,x=126,即:①甲得票数是147票,乙的得票数是140票;②甲得票数是126票,乙的得票数是120票.故答案是:甲147票,乙140票.或,甲126票,乙120票.【点评】本题考查了分数和百分数的应用,本题突破点是:根据列出关系式,以及甲乙的得票数为正整数的范围,得出答案.10.(10分)如图,三角形ABC中,AB=180厘米,AC=204厘米,D、F是AB上的点,E,G是AC上的点,连结CD,DE,EF,FG,将三角形ABC分成面积相等的五个小三角形,则AF+AG为多少厘米.【分析】高一定,对应底的比等于面积比,根据五个小三角形面积相等,所以S =4S△DBC,所以AD=4BD=4×(180÷5)=144(厘米);同理,可求AE、AF、△ADCAG的长度,进而求出AF+AG的长度即可.【解答】解:在△ABC中,因为S=4S△DBC,所以AD=4BD=4×(180÷5)=144△ADC(厘米);=3S△EDC,所以AE=3EC=3×(204÷4)=153(厘米);在△ADC中,因为S△ADE=2S△EFD,所以AF=2DF=2×(144÷3)=96(厘米);在△ADE中,因为S△AFE在△AFE中,因为S=S△GFE,所以AG=GE=153÷2=76.5(厘米);△AFG所以,AF+AG=96+76.5=172.5(厘米);答:AF+AG为172.5厘米.【点评】本题关键是明确高一定,对应底的比等于面积比,据此求出所需线段的长度.11.(10分)某水池有甲、乙两个进水阀,只打开甲注水,10小时可将空水池注满;只打开乙,15小时可将空水池往满.现要求7个小时将空水池注满,可以只打开甲注水若干小时,接着只打开乙注水若干小时,最后同时打开甲乙注水.那么同时打开甲乙的时间是多少小时?【分析】可以先求得甲、乙每小时注的水量,即为、,总时间为7小时,同时开的时候,不难求出时间.【解答】解:根据分析,设水池注满时水的总量为1份,甲、乙每小时注水的速度分别为份/时、份/时,则甲乙同时开的时候总速度为+=,设刚开始只打开甲a小时,接着打开乙b小时,最后同时打开甲乙7﹣a﹣b小时,则:a+b+(7﹣a﹣b)=1,化简得:2a+3b=5,又∵a≥1,b≥1,∴a=1,b=1,∴甲乙同时打开的时间为:7﹣a﹣b=7﹣1﹣1=5(小时).故答案是:5.【点评】本题考查了工程问题,本题突破点是:先求出甲乙单独注水的速度,再求时间.12.(10分)将一个五边形沿一条直线简称两个多边形,再将其中一个多边形沿一条直线剪成两部分,得到了三个多边形,然后将其中一个多边形沿一条直线剪成两部分,…,如此下去.在得到的多边形中要有20个五边形,则最少剪多少次?【分析】按题意,一个多边形可以被分成两部分,其内角和至多增加360°,剪K 次共增加的度数至多为K×360°,所以这(K+1)个多边形的度数和至多是K×360°+540°,另一方面,20个五边形的度数和为20×540°,剩余的(K﹣19)个多边形的度数和最小是(K﹣19)×180°,这样得到:(K﹣19)×180°+20×540°≤K×360°+540°,求解最后得出结果.【解答】解:根据分析,一个多边形被分成两部分,其内角和至多增加360°,剪K次共增加的度数至多为K×360°,所以这(K+1)个多边形的度数和至多是K ×360°+540°,另一方面,20个五边形的度数和为20×540°,剩余的(K﹣19)个多边形的度数和最小是(K﹣19)×180°,这样得到:(K﹣19)×180°+20×540°≤K×360°+540°;整理得:K≥38,当K=38时,可以先将五边形切成一个五边形和一个四边形,然后用18次将四边形分成19个四边形,再用19次将每个四边形切成五边形,这样就用38次将其切成20个五边形.综上,则最少剪38次.故答案是:38.【点评】本题考查剪切和拼接,突破点是:利用剪切和拼接,列出关系式,再求解,得出结果.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,有一张由四个1×1的小方格组成的凸字行纸片和一张5×6的方格纸,现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸上的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)【分析】可以分情况讨论,把凸字形上面那个小方格称为它的头,粘出的图形可以分为两类:凸字形的头在方格纸的边框上位第一类,凸字形的头在方格纸的内部为第二类.【解答】解:根据分析,把凸字形上面那个小方格称为它的头,粘出的图形可以分为两类:凸字形的头在方格纸的边框上位第一类,凸字形的头在方格纸的内部为第二类.对于第一类,凸字形的头不能粘在方格纸的四个角,边框上(不是角)的小方格共有:2×3+2×4=14(个),有14个图形,第二类,方格纸内部的每一个小方格可以粘凸字形的头,有头朝上,头朝下,头朝左,头朝右之分,所以,这类图形有4×(3×4)=48(个).由加法原理知,共有14+48=62中图形,由于方格纸的每个小方格都与另外一个小方格旋转对称,所以总的不同图形为:62÷2=31(个).故答案是:31.【点评】本题考查组合图形的计数,本题突破点是:分类计算不同图形的个数.14.(15分)设n是正整数,若从任意n个非负整数中一定能找到四个不同的数a,b,c,d使得a+b﹣c﹣d能被20整除.则n的最小值是多少?【分析】首先说明任意8个非负整数不能满足条件,因为任意取9个非负整数,从中任意取7个,它们的两两之和有21个,这21个和数除以20的余数有21个,因为余数最多有20个不同的值,所以有下面两种情形之一发生:(1)有4个不同的数a、b、c、d,使得a+b与c+d除以20有相同的余数,此时四个数满足条件.(2)有3个不同的数a、c、x,使得a+x与b+x除以20有相同的余数,则(a+x)﹣(c+x)=a﹣c是20的倍数,由此循环,即可解决问题.【解答】解:存在8个数:0,1,2,4,7,12,20,40它们中任何四个数都不能满足条件,所以n的最小值大于等于9.因为任意取9个非负整数,从中任意取7个,它们的两两之和有21个,这21个和数除以20的余数有21个,因为余数最多有20个不同的值,所以有下面两种情形之一发生:(1)有4个不同的数a、b、c、d,使得a+b与c+d除以20有相同的余数,此时四个数满足条件.(2)有3个不同的数a、c、x,使得a+x与b+x除以20有相同的余数,则(a+x)﹣(c+x)=a﹣c是20的倍数,将a、c取出,在剩下的7个数中,同理可得:要么四个不同的数,满足条件,要么有两个数b、d,使得b﹣d是20的倍数,如此一来,总有a、b、c、d,使得a+b﹣c﹣d能被20整除.综上所述,n的最小值为9.【点评】本题考查最大与最小、整除问题等知识,题目比较抽象,灵活应用所学知识,进行推理是解题的关键.。