高分子液晶解析

合集下载

第四章液晶高分子详解

第四章液晶高分子详解
10
3.根据形成液晶的条件

固体

液晶
固体
+溶剂 液晶
- 溶剂Biblioteka 热冷 +溶剂 - 溶剂
液体 液体
溶液型液晶(lyotropic liquid crystal)(溶致液晶)
液晶分子在溶解过程中在溶液中达到一定浓度 时形成有序排列,产生各向异性特征。
热熔型液晶(thermotropic liquid crystal)(热致液晶)
9
(3)胆甾醇型液晶(cholesteric liquid crystal)
构成液晶的分子基本是扁平型的, 依靠端基的相互作用,彼此平行 排列成层状结构。它们的长轴与 层面平行,而不是垂直。
分子的长轴取向在旋转360度以 后复原,两个取向度相同的最近 层间距离称为胆甾醇型液晶的螺 距。
这类液晶可使被其反射的白光发生色散,透射光发生偏 转,因而胆甾醇型液晶具有彩虹般的颜色和很高的旋光 本领等独特的光学性质,
刚性部分只保持着一维有序性, 液晶分子在沿其长轴方向可以相 对运动,而不影响晶相结构。因 此在外力作用下可以非常容易沿 此方向流动,是三种晶相中流动 性最好的一种液晶。
8
(2)近晶型晶相液晶(smectic liquid crystal) 通常用符号S表示。
在这类液晶中分子刚性部分互相 平行排列,并构成垂直于分子长 轴方向的层状结构。在层内分子 可以沿着层面相对运动,保持其 流动性;这类液晶具有二维有序 性。由于层与层之间允许有滑动 发生,因此这种液晶在其粘度性 质上仍存在着各向异性。
4
一、高分子液晶的分类与命名
1.根据液晶分子特征分类
柔性部分多由可以自 由旋转的σ键连接起 来的饱和链构成。

高分子液晶

高分子液晶

第十一章 高分子液晶
(3)胆甾型液晶(Cholesteric liquid crystals,Ch) 在这类液晶中,分子是长而扁平的。它们依靠 端基的作用,平行排列成层状结构,长轴与层片平 面平行。
第十一章 高分子液晶
层内分子排列与向列型类似,而相邻两层间, 分子长轴的取向依次规则地扭转一定的角度,层层 累加而形成螺旋结构。分子长轴方向在扭转了360° 以后回到原来的方向。两个取向相同的分子层之间 的距离称为螺距,是表征胆甾型液晶的重要参数。 由于扭转分子层的作用,照射在其上的光将发生偏 振旋转,使得胆甾型液晶通常具有彩虹般的漂亮颜 色,并有极高的旋光能力。
DMA, LiCl
PBA属于向列型液晶。用它纺成的纤维称为B 纤维,具有很高的强度,可用作轮胎帘子线等。
第十一章 高分子液晶
PPTA具有刚性很强的直链结构,分子间又有 很强的氢健,因此只能溶于浓硫酸中。用它纺成的 纤维称为Kevlar纤维,比强度优于玻璃纤维。 在我国,PBA纤维和PPTA纤维分别称为芳纶 14和芳纶1414。
NH2
Br2
KOH
KS H2N
NH2 SK
HCl
KS ClH3N
NH3Cl SK
KS n ClH3N
NH3Cl + n HOOC SK COOH
缩聚
S [ N
N ]n S
第十一章 高分子液晶
顺、反式的聚双苯并噁唑苯(PBO)的制备:
Cl Cl
HNH4SCN
Cl
Cl O2N
Cl Cl NO2
NaOH
第十一章 高分子液晶
1.4 高分子液晶的表征 热台偏光显微镜法(POM法) 示差扫描量热计法(DSC法) X射线衍射法 核磁共振光谱法 介电松弛谱法 相容性判别法 光学双折射法

高分子液晶及复合材料新概念

高分子液晶及复合材料新概念
Tsai通过合成ABPBI/PBT/ABPBI的ABA型嵌段共聚物, 使PBT达到更佳的分散状态,从而使模量保持在相同的 范围内(100~120GPa),强度提高到1.7GPa.
这种分子复合材料的概念已被用以通过加入少量的刚 性分子来显著提高普通柔性的热塑性和热固性聚合物, 甚至橡胶一类弹性体的力学性能。
二、分子复合材料
(一)新概念提出的背景
1979:Husman etal. 美国空军材料研究室首先提出了“分子复
合材料”的构想。 所谓分子复合材料是指将刚性棒状分子分
散到柔性链分子基体中,使它们尽可能达到分 子分散的水平。
提出“分子复合材料”的构想基本基于以下考虑:
1.孤立伸直链分子的强度要比同种聚合体纺制的纤维 强度高一个甚至几个数量级。原因是我们很难制得完 全取向和无疵点的纤维。
I + H2N
+
ClCO
NH2 COCl
N6 PPTA N6
2)无规共聚
O
(N
O
NC
H
H
O
C )x ( N H
O NC H
O PPOT
C )y (x:y=50:50)
[O
O NC H
OH
] C N
[ C OH
Cure
O
O
O NC H
O
] C N
C
n
O
MC制备:
PPOT NMP+ CaCl2 溶解
两相体系中分散相形态是如何形变的? 分散相液滴的形变和破裂是分散相粘度和介质粘
度 比 ( λ = μα/μm ) 及 Weber 准 数 或 表 面 张 力 数 (capillary number)的函数。Weber准数是作用在液 滴上的粘性应力和两相间的界面应力之比,即

高分子液晶

高分子液晶

高分子液晶高分子液晶是一种新型高分子材料,具有强度高、模量大的特点。

液晶是某些小分子有机化合物或某些高分子在熔融态或在液体状态下,形成的有序流体,既具有晶体的各向异性,又具有液体的流动性,是一种过渡状态,这种中间态称为液晶态,处于这种状态下的物质称为液晶,高分子液晶材料即为一类新型的特种高分子材料,已经以纤维、复合材料和注模制件等应用于航空、航海和汽车工业等部门。

液晶就是液态和晶态之间的一种中间态,它既有液体的易流动特性,又具有晶体的某些特征。

各向同性的液体是透明的,而液晶却往往是浑浊的,这也是液晶区别于各向同性的液体的一个主要特征。

液晶之所以混浊是因为液晶分子取向的涨落而引起的光散射所致,液晶的光散射比各向同性液体要强达100万倍[3]。

总之,液晶科学获得了许多重要的发展,研究领域遍及物理、化学、电子学、生物学各个学科,发展成了液晶化学、分子物理学、生物液晶及液晶分子光谱等重要学科[5]。

高分子液晶具有独特的性能:(1)在电场和磁场中,高分子液晶排列取向所需的电场强度或磁场强度要比低分子液却大的多,热致性液品的热转变温度高,而粘度大。

(2)奇偶性,所胃奇偶性是指在介晶态的TM,TN,△S,△H随柔性间隔的不同存在着奇低偶高的现象。

不仅主链上有奇偶性效应,而侧链也有奇偶性效应。

(3)高分子液晶的流变行为高分子液晶的流变行为对聚合物材料的应用影响很大。

如粘度是温度的函数,而且在某一温度下,粘度变小。

粘度对剪层影响较大在低剪切速度下,偏离牛顿流体液品的有序性降低一粘度随分子准的增加,粘度下降。

(4)液品相的转变:在一定浓度,液晶转变温度随聚合度的增长而升高。

在各向同性挤剂中,聚合物浓度下降,则相转变温度也下降。

在一定温度下,聚合度越大,则介晶相出现的临界浓度越低。

(5)液品的电光效应.所谓电光效应是指液晶在电场的作用下产生光学的变化,具体如下:相畴的形成,电场可引起向列相,液晶产生威廉姆士相畴;动态散射,液晶中的离子,交变电场作用下对液晶分子施以作用下,随电压增大而增大,当超过弹性界限时就产生湍流;宾一主相互作用液晶中存在其它各向异性分子时施加电场,两者进行相互影响的运动排列[6]。

液晶高分子聚合物

液晶高分子聚合物

液晶高分子聚合物液晶高分子聚合物(Liquid Crystal Polymer,简称LCP)是一种具有特殊结构和性能的高分子材料。

它在常温下具有液晶的特性,同时又具备高分子材料的机械性能和热稳定性。

液晶高分子聚合物的发展为新型材料的研究和应用开辟了新的方向。

液晶高分子聚合物是一种具有无定形液晶结构的高分子材料,其分子链的构象在混合剂的作用下呈现出有序排列。

这种有序排列的形态使得液晶高分子聚合物具有一些特殊的性质。

首先,它具有高分子材料的机械性能,比如强度、韧性等;其次,液晶高分子聚合物的玻璃化转变温度较高,可达到200℃以上,具有较好的热稳定性;此外,液晶高分子聚合物还具有优异的电绝缘性能、低摩擦系数、低线膨胀系数等特性,使得它在电子器件、通信、汽车、航空航天等领域得到了广泛的应用。

1.合成方法:液晶高分子聚合物的合成通常采用高分子合成中的传统方法,如聚合、缩聚、交联等。

但是由于其特殊结构和性能,合成过程中需要控制反应条件和配方,以获得期望的液晶性能。

2.液晶性质:液晶高分子聚合物的液晶性质是其最重要的特征之一、研究人员通过控制分子结构、引入侧链等方法,制备具有不同液晶相的液晶高分子聚合物。

研究涉及到液晶相的形成、相变行为、热稳定性等方面。

3.应用领域:液晶高分子聚合物具有优异的性能,被广泛应用于电子器件、通信、汽车、航空航天等领域。

例如,在电子器件领域,液晶高分子聚合物可制备高分子液晶显示器、电子屏蔽材料等;在通信领域,液晶高分子聚合物可作为光纤材料的包覆剂;在汽车领域,液晶高分子聚合物可用于制备汽车零件等。

4.研究进展:液晶高分子聚合物的研究已取得了一系列的进展。

例如,研究人员通过改变分子结构、引入侧链等方法,制备出具有不同液晶相的液晶高分子聚合物。

此外,研究人员还开展了液晶高分子聚合物与其他材料的共混研究,以提高其性能和应用范围。

总结起来,液晶高分子聚合物是一种具有特殊结构和性能的高分子材料,具有机械性能好、热稳定性高、电绝缘性能优异等特点。

第四章液晶高分子详解

第四章液晶高分子详解

(2)机械性质
特别是拉伸强度和硬度与聚合物分子的取向度有密切 关系。沿长轴方向的拉伸程度越高,聚合物分子的取 向度也越高,因此机械强度也越高。
由于结晶程度高,液晶聚合物的吸潮率很低。
良好的热尺寸稳定性
透气性非常低
4.热熔型主链聚合物的应用
在电子工业中得到应用,制作高精确度的电路多接点 接口部件。
目前大多数热熔型主链液晶是通过酯交换反响制备的,如 乙酰氧基芳香衍生物与芳香羧酸衍生物反响脱去乙酸,反 响在聚合物的熔点以上进行。最典型的代表是聚酯液晶。
例:PET/PHB共聚酯的制备
先合成对乙酰氧基苯甲酸〔PABA〕:
在 275℃和惰性气氛下,PET在PABA的作用下酸解,然后脱去乙 酸,与PABA缩合成共聚酯。
聚 合 反 应 C H 2 C H C (H 2 )C 8O O H
C HC H 2 n C H 2 C (H 2 )C 7O O H
② 接枝共聚
③ 缩聚反响
2.溶液型侧链聚合物液晶的晶相结构与性质
溶液型高分子液晶 在溶液中通常可以 形成三种晶相,即 近晶相的层状液晶 (lamellar)、向列型 六角型紧密排列液 晶(hexagonal)和立 方晶相液晶(cubic)。
谢谢大家!
最重要的两种是聚对苯酰胺〔PBA〕和聚对苯二甲酰对苯二胺 〔PPTA〕。在我国分别被称为芳纶14和芳纶1414。
例如:PBA的制备
H N 2
OS O C l2 O S N O H
O H C l N
O H H
O
PBA溶液属于向列型液晶,用它纺成的纤维具有很高的强度,用作 轮胎帘子线。
PPTA具有刚性很强的直链结构,分子间具有很强的氢键, 因此只能溶于浓硫酸中,用它纺成的纤维就是著名的Kevlar 纤维。

高分子液晶

高分子液晶

液晶态:晶态和液态之间的中间相态(部分或全部地丧失平移有序,保留取向有序)液晶:具有液晶态的物质(可以流动,拥有结晶的光学性质, 双折射效应、旋光效应)高分子液晶:具有液晶态的高分子材料,又叫聚合物液晶1888年,奥地利植物学家Reinitzer观察到胆甾醇苯甲酸酯出现了“双熔点”现象。

德国物理学家Otto Lehmann用偏光显微镜观察到了双折射现象。

1889年,将其命名为”liquid crystals(液晶,LCs)”1923年,德国化学家D. Vörlander提出了液晶高分子的科学设想,1 9 3 7 年Bawden等在烟草花叶病毒的悬浮液中观察到液晶态,1972年第一个由液晶高分子纺成的纤维商品化液晶是相态的一种,因为其特殊的物理、化学、光学特性,20世纪中叶开始被广泛应用在轻薄型的显示技术上。

人们熟悉的物质状态(又称相)为气、液、固,较为生疏的是电浆和液晶。

液晶相要具有特殊形状分子组合才会产生,它们可以流动,又拥有结晶的光学性质。

液晶的定义,现在已放宽而囊括了在某一温度范围可以实现液晶相,在较低温度为正常结晶之物质。

而液晶的组成物质是一种有机化合物,也就是以碳为中心所构成的化合物。

同时具有两种物质的液晶,是以分子间力量组合的,它们的特殊光学性质,又对电磁场敏感,极有实用价值。

分子排列易受外场影响(电场、磁场、温度、光和声)应用1.液晶显示:•小分子液晶•高分子铁电液晶2.先进材料:(a) 结构材料:Kevlar、Xydar (b) 非线性光学材料:光信息技术(光通信、光信息处理、光信息存储、全息技术、光计算机等)高分子液晶分子排列有序,没有对称中心,具有宏观偶极矩(c) 光电子器件(分子导线、OLED、OTFT、有机太阳能电池等)具液晶性的导电高分子分子排列有序,导电性更好3. 精密温度指示材料(通过光的颜色变化)微温传感器检测正常皮肤与肿瘤皮肤温度差(1.6~2.0 C),诊断早期肿瘤无损检测机器零件裂缝4、分子生物化学方面生物体组织由溶致性大分子液晶构成,从液晶态转变为液态导致病变。

高分子的液晶态结构课件

高分子的液晶态结构课件
高分子材料在特定条件下 呈现的一种有序介态,兼 具液体的流动性和晶体的 部分有序性。
形成条件
需要达到一定的分子量和 溶剂条件,才能使高分子 材料形成液晶态。
分类
根据形成方式和结构特点 ,高分子液晶态可分为多 种类型,如近晶型、向列 型和胆甾型等。
高分子液晶态的分类
近晶型液晶
高分子链在晶格中以平面方式排 列,具有高度的有序性和稳定性
添加剂和填料
在高分子材料中添加特定的添加剂和填料可以促进或抑制液晶态的形成 。这些添加剂和填料可以改变高分子间的相互作用力和排列方式。
03
加工条件
高分子液晶态的形成还受到加工条件的影响。例如,温度、压力、剪切
速率等加工条件可以改变高分子材料的结晶度和液晶态结构。
高分子液晶态形成的研究进展
新材料设计
高分子液晶态的理论研究
总结词
通过理论计算和模拟,深入理解高分子液晶态的形成机制和 结构特性。
详细描述
理论研究者利用计算机模拟和数学模型,对高分子液晶态的 形成机制、相变行为和结构特性进行深入研究。这些理论研 究不仅有助于揭示高分子液晶态的本质,还能为实验研究和 应用提供理指导。
高分子液晶态的应用拓展
有助于推动相关领域的发展。
01
高分子液晶态的结 构
高分子液晶态的微观结构
分子排列
高分子液晶中的分子以一定的方式排列,形成有 序的结构。
分子取向
高分子液晶中的分子具有特定的取向,通常沿着 某个方向排列。
分子间相互作用
高分子液晶中的分子间存在相互作用,这些相互 作用对液晶态的结构和性质产生影响。
高分子液晶态的介晶结构
介晶单元
高分子液晶中的介晶单元是由多个分子组成的,这些分子以特定 的方式排列,形成有序的结构。

高分子液晶材料概念、表征方法与应用

高分子液晶材料概念、表征方法与应用
另外,高分子链上或者致晶单元上带有不同结构和性质 的基团,都会对高分子液晶的偶极矩、电、光、磁等性质 产生影响。
23
高分子液晶材料概念、表征方法和应用
刚性连接单元
致晶单元中的刚性连接单元的结构和性质直接 影响液晶的稳定性。
3
高分子液晶材料概念、表征方法和应用
液晶的发现
4
高分子液晶材料概念、表征方法和应用
分类
按分子排列的形式和有序性的不同,液晶有三种结 构类型:近晶型、向列型和胆甾型。
近晶型
向列型
胆甾型
此外,液晶高分子中还有少数分子的形状呈盘状,
这些液晶相态归属于盘状液晶
5
高分子液晶材料概念、表征方法和应用
近晶型液晶
胆甾型
由于扭转分子层的作用,照射在其上的光将发生偏
振旋转,使得胆甾型高分液子液晶晶材通料概常念、具表征有方法彩和应虹用 般的漂亮颜色
8
9
高分子液晶材料概念、表征方法和应用
按形成条件分
热致性液晶
依靠温度的变化,在某一温度范围形成 的液晶态物质
溶致性液晶
依靠溶剂的溶解分散,在一定浓度范围 形成的液晶态物质
高分子液晶的分子结构特征
液晶是某些物质在从固态向液态转换时形成的 一种具有特殊性质的中间相态或过渡相态。显然过 渡态的形成与分子结构有着内在联系。分子结构在 液晶的形成过程中起着主要作用,决定着液晶的相 结构和物理化学性质。
12
高分子液晶材料概念、表征方法和应用
液晶的分子结构
研究表明,能够形成液晶的物质通常在分子结 构中具有刚性部分,称为致晶单元。从外形上看, 致晶单元通常呈现近似棒状或片状的形态,这样有 利于分子的有序堆砌。这是液晶分子在液态下维持 某种有序排列所必须的结构因素。在高分子液晶中 这些致晶单元被柔性链以各种方式连接在一起。

液晶高分子材料

液晶高分子材料

液晶高分子材料液晶高分子材料是一种具有特殊结构和性能的材料,它在液晶状态下具有液体的流动性,同时又具有固体的有序性。

液晶高分子材料通常由高分子主链和液晶基团组成,通过特殊的加工工艺可以制备成具有特定性能的材料,广泛应用于显示器件、光学材料、传感器等领域。

本文将从液晶高分子材料的结构特点、制备工艺和应用领域等方面进行介绍。

首先,液晶高分子材料的结构特点。

液晶高分子材料的主链通常是由碳、氢等元素组成的高分子链,而液晶基团则是具有液晶性质的分子单元。

这些液晶基团在高分子主链上的排列方式和空间取向对材料的性能具有重要影响。

通常液晶高分子材料可以分为低分子液晶高分子和高分子液晶高分子两类,它们的结构特点和性能表现有所不同。

其次,液晶高分子材料的制备工艺。

液晶高分子材料的制备通常包括原料选择、聚合反应、加工成型等步骤。

在原料选择方面,需要选择具有液晶性能的液晶基团和适合的高分子主链,通过化学合成或物理混合的方式将它们组装成液晶高分子材料。

在聚合反应中,需要控制反应条件和聚合度,以获得理想的分子结构和分子量。

在加工成型中,需要利用特殊的加工设备和工艺,将液晶高分子材料制备成薄膜、纤维、片材等形式,以满足不同领域的需求。

最后,液晶高分子材料的应用领域。

液晶高分子材料具有优异的光学性能、电学性能和机械性能,因此在显示器件、光学材料、传感器等领域有着广泛的应用。

在液晶显示器件中,液晶高分子材料作为液晶材料可以实现信息的显示和传输,广泛应用于电视、电脑显示屏等设备中。

在光学材料领域,液晶高分子材料可以制备成具有特殊光学性能的材料,用于制备偏光片、光学波片等光学元件。

在传感器领域,液晶高分子材料可以利用其对外界环境的敏感性,制备成温度传感器、压力传感器等传感器元件。

总之,液晶高分子材料具有特殊的结构和性能,通过合理的制备工艺可以制备成具有特定性能的材料,广泛应用于显示器件、光学材料、传感器等领域。

随着科学技术的不断发展,相信液晶高分子材料在未来会有更广阔的应用前景。

液晶高分子材料

液晶高分子材料

液晶高分子材料一、概述液晶 LCD(Liquid Crystal Display)对于许多人而言已经不是一个新鲜的名词。

从电视到随身听的线控,它已经应用到了许多领域。

液晶现象是1888年奥地利植物学家F.Reintizer在研究胆甾醇苯甲酯时首先发现的。

研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键结合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。

二、分类1、主链型液晶高分子主链型高分子液晶是指介晶基元处于主链中的一类高分子材料。

在20世纪70 年代中期以前,它们多是指天然大分子液晶材料。

自从Dupont 公司首次获得聚芳香酰胺的溶液型主链型高分子液晶性质的应用以来,主链型高分子液晶材料的合成、结构与性能关系和应用等都得以很大发展。

按液晶形成过程,主链型高分子液晶可以分为溶液型主链高分子液晶和热熔型主链高分子液晶。

(1)溶液型主链高分子液晶其研究最多的则是聚芳香酰胺类和聚芳香杂环类聚合物。

酰胺为代表的一类溶液型高分子液晶而言,就必须借助于极强的溶剂,例如,通常使用质量分数大于99%的浓硫酸等。

除了聚肽、聚芳香酰胺和聚芳香杂环类溶液主链高分子液晶以外,纤维素及其衍生物也能形成溶液型液晶。

主要用于制备超高强度、高模量的纤维和薄膜。

材料的高强度、高模量来源于聚合物链在加工过程中,在一些特殊的溶剂中形成了各向异性的向列态液晶。

(2)热熔型主链高分子液晶其高分子液晶材料与普通的高分子材料相比,有较大的性质差别。

良好的热尺寸稳定性;透气性非常低;对有机溶剂的良好耐受性和很强的抗水解能力。

基于热熔型主链液晶高分子的上述性质,它特别适用于上述各性质综合在一起的场合。

在电子工业中制作高精度电路的多接点部件,另外,易流动和低曲翘也使得它能制成较复杂的精密铸件,同时能抗强溶剂。

除了电子工业中的应用以外,它还可用于制备化学工业中使用的阀门等。

高分子液晶

高分子液晶
液晶特性
高分子液晶同时表现出液晶的光学性 质和流动性。
高分子液晶简介
• 结构多样性:由于高分子化合物的结构多样性,高分子液 晶可以呈现出丰富的相态和性质。
高分子液晶简介
功能材料
如光学薄膜、光导纤维等 ,利用高分子液晶的光学 性质和加工性能制备具有 特定功能的材料。
生物医学
如生物相容性材料、药物 载体等,利用高分子液晶 的生物相容性和可降解性 进行生物医学应用。
03
高分子液晶合成与制备方法
传统合成方法回顾
01
熔融共混法
将高分子和液晶材料在高温下熔融共混,然后冷却固化得到高分子液晶
。这种方法简单易行,但液晶相分离和取向控制较难。
02 03
溶液共混法
将高分子和液晶材料溶解在共同溶剂中,通过挥发溶剂或沉淀得到高分 子液晶。这种方法可以实现较好的相分离和取向控制,但需要选择合适 的溶剂和沉淀条件。
稳定性增强
高分子液晶具有较高的稳定性和耐久性,能够抵抗外部环境如温度、湿度、紫外线等因素的影响,提高 显示器件的使用寿命和稳定性。
典型案例分析:TFT-LCD显示技术
TFT-LCD显示技术原理
TFT-LCD(Thin Film Transistor Liquid Crystal Display)即薄膜晶体管液晶显示技 术,是一种主动矩阵式液晶显示技术。它采 用薄膜晶体管作为开关元件,控制液晶分子 的排列和取向,从而实现对光的透过与阻挡 。
精确控制反应温度、时间、压力等 参数,确保高分子液晶的合成顺利 进行并达到预期效果。
后续处理工艺
对合成得到的高分子液晶进行必要 的后处理,如热处理、拉伸、退火 等,以改善其性能或实现特定功能 。
04
高分子液晶在显示技术领域应 用

液晶高分子的性质及应用

液晶高分子的性质及应用

液晶高分子的性质及应用
液晶高分子(Liquid Crystal Polymers, LCP)是一种广泛用于制造量
子点、LED、柔性电子、家电产品、传感器和其它高科技产品的高性能材料。

它是一种拥有灵活的结构和强大的性能的高分子,有着独特的液晶分
子链结构,它可以拥有比传统高分子更高的分子量和分子权重,以及更强
的抗热性和耐化学性。

液晶高分子材料是一种高分子材料,它有着拥有液晶分子链结构的独
特性能,以及均匀耐热性和韧性,可以说,液晶高分子材料拥有更高的分
子量和分子权重,以及更强的抗热性和耐化学性,因此非常适合用在复杂
而对性能要求极高的高科技产品中。

液晶高分子材料的最大优点之一是它拥有良好的力学性能。

它的力学
性能比其他高分子材料更高,更耐热,拥有良好的抗冲击和抗拉伸性能,
而且它在-50℃~200℃度之间的机械性能也极其稳定,在高温状态下也比
一般的高分子材料更加稳定。

这也是LPC材料用于高科技领域的原因。

此外,LPC材料还具有良好的电绝缘性能,这使它更适合应用于电子
产品,如手机、电脑以及其它家电产品,其电绝缘性比一般的高分子更佳,它具有较低的介电常数和高的耐电强度,可以有效的保护产品免受静电放
电损伤。

高分子液晶解析

高分子液晶解析
高分子液晶
(Liquid Crystal Polymer, LCP)
1
用途广泛的液晶高分子
对位芳香族聚酰胺Kevlar
2
用途广泛的液晶高分子
Wine Thermometer Collar
3
用途广泛的液晶高分子
显示材料
4
液晶的基本概念
物质在自然界中通常以固态、液态和气态形式 存在,即常说的三相态。在外界条件发生变化时 (如压力或温度发生变化),物质可以在三种相态 之间进行转换,即发生所谓的相变。大多数物质发 生相变时直接从一种相态转变为另一种相态,中间 没有过渡态生成。例如冰受热后从有序的固态晶体 直接转变成分子呈无序状态的液态。
构成上面三种液晶的分子其刚性部分均呈长棒型。现在发 现,除了长棒型结构的液晶分子外,还有一类液晶是由刚性部 分呈盘型的分子形成。在形成的液晶中多个盘型结构叠在一起, 形成柱状结构。这些柱状结构再进行一定有序排列形成类似于 近晶型液晶。这一类液晶通常记为D。
17
高分子液晶及其分类
某些液晶分子可连接成大分子,或者可通过官能团的 化学反应连接到高分子骨架上。这些高分子化的液晶在一 定条件下仍可能保持液晶的特征,就形成高分子液晶。
此得名。但实际上,许多胆甾型液晶的分子结构与胆甾醇结构毫 无关系。但它们都有导致相同光学性能和其他特性的共同结构。 在这类液晶中,分子是长而扁平的。它们依靠端基的作用,平行 排列成层状结构,长轴与层片平面平行。
16
液晶的分类
层内分子排列与向列型类似,而相邻两层间,分子长轴的 取向依次规则地扭转一定的角度,层层累加而形成螺旋结构。 分子长轴方向在扭转了360°以后回到原来的方向。两个取向 相同的分子层之间的距离称为螺距,是表征胆甾型液晶的重要 参数。由于扭转分子层的作用,照射在其上的光将发生偏振旋 转,使得胆甾型液晶通常具有彩虹般的漂亮颜色,并有极高的 旋光能力。

液晶高分子的分子结构

液晶高分子的分子结构

液晶高分子的分子结构
液晶高分子是一种具有特殊分子结构的高分子材料,其分子结构通常由刚性的芳香环或其他特定结构单元构成。

这些单元之间通过共价键或者非共价键(比如氢键、π-π堆积等)相互作用形成特定的排列结构,使得液晶高分子在一定温度范围内表现出液晶相态。

液晶高分子的分子结构可以分为两种常见类型,主链液晶高分子和侧链液晶高分子。

主链液晶高分子是指液晶性质由高分子主链上的刚性结构单元提供,而侧链液晶高分子则是指液晶性质由侧链上的液晶基团提供。

这两种类型的液晶高分子在分子结构上有所不同,但都具有一定的排列结构和对称性,以及一定的空间取向。

液晶高分子的分子结构对其性能和应用具有重要影响。

例如,液晶高分子的分子结构可以影响其液晶相的稳定性、相转变温度范围、机械性能、光学性能等。

因此,科学家们通过调控液晶高分子的分子结构,可以实现对其性能的精准调控,从而拓展其在液晶显示、光电器件、传感器等领域的应用。

总的来说,液晶高分子的分子结构是其液晶性质的基础,通过
对分子结构的设计和调控,可以实现对液晶高分子性能的优化和定制化,为其在各种领域的应用提供了广阔的发展空间。

液晶高分子材料

液晶高分子材料

液晶高分子材料液晶高分子材料是一种具有液晶结构的高分子材料,具有独特的物理和化学性质,广泛应用于液晶显示器、光学器件、传感器、生物医学材料等领域。

本文将对液晶高分子材料的结构特点、性质和应用进行详细介绍。

液晶高分子材料的结构特点主要表现在分子排列上。

液晶高分子材料分子链通常呈现出有序排列,这种有序排列使得材料具有液晶相。

液晶相是介于固体和液体之间的一种物态,具有流动性和有序性。

液晶高分子材料的分子排列可以分为向列型、扭曲型、螺旋型等不同结构,这些结构决定了材料的性质和应用。

液晶高分子材料具有许多独特的物理和化学性质。

首先,液晶高分子材料具有良好的光学性能,具有双折射、偏振、色散等特点,适用于制造液晶显示器、偏光片、光学棱镜等光学器件。

其次,液晶高分子材料具有流动性和可塑性,可以通过加热或加压改变分子排列,使材料在不同温度、压力下呈现出不同的性质,适用于制造形状记忆材料、变色材料等功能性材料。

此外,液晶高分子材料还具有热稳定性、化学稳定性、生物相容性等优良性质,适用于制造传感器、生物医学材料等高端应用产品。

液晶高分子材料在液晶显示器领域有着广泛的应用。

液晶显示器是一种利用液晶高分子材料的光学特性来显示图像的平面显示设备,广泛应用于电视、电脑、手机等电子产品中。

液晶高分子材料作为液晶显示器的关键材料,其性能直接影响着显示器的分辨率、对比度、色彩饱和度等指标。

目前,随着显示技术的不断发展,对液晶高分子材料的要求也越来越高,需要具有更高的透光率、更快的响应速度、更宽的视角等性能。

除了液晶显示器,液晶高分子材料还在光学器件领域有着重要的应用。

例如,偏光片是一种利用液晶高分子材料的偏振特性来调节光线方向的光学器件,广泛应用于太阳眼镜、相机镜头、液晶投影仪等产品中。

此外,液晶高分子材料还可以制备光学棱镜、偏光镜、光学滤波器等光学器件,用于调节光线的传播方向、波长选择等光学功能。

液晶高分子材料还在传感器领域有着重要的应用。

高分子的液晶态(2)

高分子的液晶态(2)

3.7 高分子的液晶态(1)3.7.1 基本概念液晶态是物质的一种存在形态。

某些物质的结晶受热熔融或被溶剂溶解之后,虽然失去了固态物质的刚性,而获得液态物质的流动性,却仍然部分地保持着晶态物质分子的有序排列,从而在物理性质上呈现各向异性,形成一种兼有晶体和液体的部分性质的过度状态,这种中间状态称为液晶态,处于这种状态下的物质就称为液晶。

小分子液晶现象最早在1885年由奥地利植物学家Reinitzer所发现。

他在研究胆甾醇苯甲酯时,发现当固体物质在145℃熔融后,变成浑浊的各向异性液体,直到温度高于179℃后,才成为各向同性的透明液体。

因此,当时人们用“液晶”这一术语来描述这类兼具晶体的光学性质和液晶流动性质的一类物质。

高分子液晶是在一定条件下能以液晶相态存在的高分子。

在具有高分子材料特性的同时,又拥有液晶相的分子自组织性。

最早的高分子液晶是由E11iott和Ambrose在1950年获得的。

他们在用聚—L—谷氨酸—γ—苄酯(PBLG)氯仿溶液制膜的过程中,发现其溶液具有双折射现象。

以后实验证明这是一种胆甾型液晶。

但是,高分子液晶真正引起人们极大兴趣是从20世纪60年代,由杜邦公司首先从聚对苯二甲酰对苯二胺的硫酸溶液经液晶态纺丝制得了超高强度和模量的“Kevlar”纤维后开始的。

现在,高分子液晶材料不仅在高性能纤维材料方面获得了重要的应用,并在性能优异的光学记录、贮存和显示材料方面,倍受人们的青睐。

因此,近年来关于高分子液晶的基础研究已成为高分子科学中的一个热点。

3.7.2 高分子液晶分子结构特征与分类液晶高分子是由小分子液晶基元键合而成的,液晶基元是指液晶高分子中具有一定长径比的结构单元,通常可分成两亲的和非两亲的两类分子。

两亲分子是指兼具疏水和亲水作用的单体;非两亲分子则是一些几何形状不对称的刚性或半刚性的棒状或碟状单体分子。

由这两大类单体经过聚合,又可形成多种类型的聚合体,其相应的液晶相性能也各不相同,如表3-14所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
液晶的基本概念
小分子液晶的这种神奇状态,引起了人们的浓厚兴趣。 现已发现许多物质具有液晶特性(主要是一些有机化合物)。 形成液晶的物质通常具有刚性的分子结构。导致液晶形成的 刚性结构部分称为致晶单元。分子的长度和宽度的比例R>>l, 呈棒状或近似棒状的构象。同时,还须具有在液态下维持分 子的某种有序排列所必需的凝聚力。这种凝聚力通常是与结 构中的强极性基团、高度可极化基团、氢键等相联系的。
13
液晶的分类
这种结构决定了近晶型液晶的粘度具有各向异性。 但在通常情况下,层片的取向是无规的,因此,宏观上表 现为在各个方向上都非常粘滞。 根据晶型的细微差别, 近晶型液晶还可以再分成9个小类。按发现年代的先后依 次计为SA、 SB 、……SI。
14
液晶的分类
(2)向列型液晶( nematic liquid crystals,N) 在向列型液晶中,棒状分子只维持一维有序。它们互相平 行排列,但重心排列则是无序的。在外力作用下,棒状分子容 易沿流动方向取向,并可在取向方向互相穿越。因此,向列型 液晶的宏观粘度一般都比较小,是三种结构类型的液晶中流动 性最好的一种。
12
液晶的分类
(1)近晶型液晶(smectic liquid crystals,S)
近晶型液晶是所有液晶中最接近结晶结构的一类,因此得 名。在这类液晶中,棒状分子互相平行排列成层状结构。分子 的长轴垂直于层状结构平面。层内分子排列具有二维有序性。 但这些层状结构并不是严格刚性的,分子可在本层内运动,但 不能来往于各层之间。因此,层状结构之间可以相互滑移,而 垂直于层片方向的流动却很困难。
高分子液晶
(Liquid Crystal Polymer, LCP)
1
用途广泛的液晶高分子
对位芳香族聚酰胺Kevlar
2
用途广泛的液晶高分子
Wine Thermometer Collar
3
用途广泛的液晶高分子
显示材料
4
液晶的基本概念
物质在自然界中通常以固态、液态和气态形式 存在,即常说的三相态。在外界条件发生变化时 (如压力或温度发生变化),物质可以在三种相态 之间进行转换,即发生所谓的相变。大多数物质发 生相变时直接从一种相态转变为另一种相态,中间 没有过渡态生成。例如冰受热后从有序的固态晶体 直接转变成分子呈无序状态的液态。
7
液晶的基本概念
研究发现,处于145℃和179℃之间的液体部分 保留了晶体物质分子的有序排列,因此被称为“流 动的晶体”、“结晶的液体”。1889年,德国科学家 将处于这种状态的物质命名为“液晶”(liquid crystals,LC)。研究表明,液晶是介于晶态和液 态之间的一种热力学稳定的相态,它既具有晶态的 各向异性,又具有液态的流动性。
5
液晶的基本概念
某些物质的受热熔融或被溶解后,虽然失去了固态 物质的大部分特性,外观呈液态物质的流动性,但可能 仍然保留着晶态物质分子的有序排列,从而在物理性质 上表现为各向异性,形成一种兼有晶体和液体部分性质 的过渡中间相态,这种中间相态被称为液晶态,处于这 种状态下的物质称为液晶(liquid crystals)。其主要特 征是其聚集状态在一定程度上既类似于晶体,分子呈有 序排列;又类似于液体,有一定的流动性。
10
液晶的分类
除了这两类液晶物质外,人们还发现了在外力 场(压力、流动场、电场、磁场和光场等)作用下 形成的液晶。例如聚乙烯在某一压力下可出现液晶 态,是一种压致型液晶。聚对苯二甲酰对氨基苯甲 酰肼在施加流动场后可呈现液晶态,因此属于流致 型液晶。
Байду номын сангаас
11
液晶的分类
根据分子排列的形式和有序性的不同,液晶有 三种结构类型:近晶型、向列型和胆甾型。
16
液晶的分类
层内分子排列与向列型类似,而相邻两层间,分子长轴的 取向依次规则地扭转一定的角度,层层累加而形成螺旋结构。 分子长轴方向在扭转了360°以后回到原来的方向。两个取向 相同的分子层之间的距离称为螺距,是表征胆甾型液晶的重要 参数。由于扭转分子层的作用,照射在其上的光将发生偏振旋 转,使得胆甾型液晶通常具有彩虹般的漂亮颜色,并有极高的 旋光能力。 构成上面三种液晶的分子其刚性部分均呈长棒型。现在发 现,除了长棒型结构的液晶分子外,还有一类液晶是由刚性部 分呈盘型的分子形成。在形成的液晶中多个盘型结构叠在一起, 形成柱状结构。这些柱状结构再进行一定有序排列形成类似于 近晶型液晶。这一类液晶通常记为D。
9
液晶的分类
按照液晶的形成条件不同,可将其主要分为热致 性和溶致性两大类。 热致性液晶是依靠温度的变化,在某一温度范围 形成的液晶态物质。液晶态物质从浑浊的各向异性的 液体转变为透明的各向同性的液体的过程是热力学一 级转变过程,相应的转变温度称为清亮点,记为Tcl。 不同的物质,其清亮点的高低和熔点至清亮点之间的 温度范围是不同的。 溶致性液晶则是依靠溶剂的溶解分散,在一定 浓度范围形成的液晶态物质。
6
液晶的基本概念
液晶现象是1888年奥地利植物学家莱尼茨尔 (F. Reinitzer)在研究胆甾醇苯甲酯时首先观察到 的现象。他发现,当该化合物被加热时,在145℃ 和179℃时有两个敏锐的“熔点”。在145℃时,晶体 转变为混浊的各向异性的液体,继续加热至179℃ 时,体系又进一步转变为透明的各向同性的液体。
17
高分子液晶及其分类
某些液晶分子可连接成大分子,或者可通过官能团的 化学反应连接到高分子骨架上。这些高分子化的液晶在一 定条件下仍可能保持液晶的特征,就形成高分子液晶。 高分子液晶的结构比较复杂,因此分类方法很多。
18
高分子液晶及其分类
按液晶的形成条件,与小分子液晶一样,可分为溶致 性液晶(lyotropic liquid crystal )、热致性液晶 (thermotropic liquid crystal ) 、压致型液晶、流致型液 晶等。 根据高分子链中致晶单元排列形式和有序性的不同, 高分子液晶可分为近晶型、向列型和胆甾型等。至今为止 大部分高分子液晶属于向列型液晶。 按致晶单元与高分子的连接方式,可分为主链型液晶 和侧链型液晶。主链型液晶和侧链型液晶中根据致晶单元 的连接方式不同又有许多种类型。 主链型液晶大多数为高强度、高模量的材料,侧链型 液晶则大多数为功能性材料。
15
液晶的分类
(3)胆甾型液晶(Cholesteric liquid crystals,Ch)
在属于胆甾型液晶的物质中,有许多是胆甾醇的衍生物,因 此得名。但实际上,许多胆甾型液晶的分子结构与胆甾醇结构毫 无关系。但它们都有导致相同光学性能和其他特性的共同结构。 在这类液晶中,分子是长而扁平的。它们依靠端基的作用,平行 排列成层状结构,长轴与层片平面平行。
相关文档
最新文档