【整理】最后冲刺系列:解析几何专题系列一圆锥曲线的基本量问题

【整理】最后冲刺系列:解析几何专题系列一圆锥曲线的基本量问题
【整理】最后冲刺系列:解析几何专题系列一圆锥曲线的基本量问题

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

平面向量在解析几何中的应用

平面向量在解析几何中的应用 -----高三专题复习课教学案例 福建省福州格致中学宋建辉 一、引言: 平面向量是高中数学的新增内容,也是新高考的一个亮点。正因为如此,在2004年3月25日在校教学公开周中开设了《平面向量在解析几何中的应用》高三专题复习公开课,以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识。 二、背景: 向量知识在许多国家的中学数学教材中,早就成了一个基本的教学内容。在我国全面实施新课程后,向量虽然已进入中学,但仍处于起步的阶段。向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。但实际情况是很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题,学生应用向量的意识不强。鉴于这种情况,结合我校开展的构建“探究-合作”型教学模式研究的课题,开设本节《平面向量在解析几何中的应用》高三专题复习公开课,通过问题的探究、合作解决,旨在进一步探索“探究-合作”型教学模式,使学生树立并增强应用向量的意识。 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。正因为如此,本节课这样设计: 1、教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中”。因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性。 2、通过例 3、例4两个问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 三、问题:

立体几何与解析几何综合题训练

A C E 立体解析综合题练习1 1.如图,正方形ADEF 与梯形ABCD 所在平面互相垂直,已知//,AB CD AD CD ⊥,1 2 AB AD CD ==. (Ⅰ)求证:BF //平面CDE ; (Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值; (Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面 BDF ?若存在, 求出EM EC 的值;若不存在,说明理由. 2.已知1(2,0)F -,2(2,0)F 两点,曲线C 上的动点P 满足12123 ||||||2 PF PF F F +=. (Ⅰ)求曲线C 的方程; (Ⅱ)若直线l 经过点(0,3)M ,交曲线C 于A ,B 两点,且12 MA MB = ,求直线l 的方程. 立体解析综合题练习2 1. 在如图所示的多面体中,EA ⊥平面ABC ,DB ⊥平面ABC ,BC AC ⊥, 且22====AE BD BC AC ,M 是AB 的中点. (Ⅰ)求证:CM ⊥EM ; (Ⅱ)求平面EMC 与平面BCD 所成的锐二面角的余弦值; (Ⅲ)在棱DC 上是否存在一点N ,使得直线MN 与平面EMC 所成的角为60?.若存在,指出点N 的位置;若不存在,请说明理由. 2.椭圆C:22 221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过圆M: x 2+y 2+4x-2y=0的圆心,交椭圆C 于,A B 两点,且A 、B 关于点M 对称, 求直线l 的方程. 立体解析综合题练习3 1.在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA //BE ,AB =PA =4,BE =2. (Ⅰ)求证:CE //平面PAD ; (Ⅱ)求PD 与平面PCE 所成角的正弦值; (Ⅲ)在棱AB 上是否存在一点F ,使得 平面DEF ⊥平面PCE ?如果存在,求AF AB 的值; 如果不存在,说明理由. 2.已知抛物线C :2 2y px =(0p >)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上 异于O 的两点. (Ⅰ)求抛物线C 的方程; (Ⅱ)若直线OA ,OB 的斜率之积为1 2 - ,求证:直线AB 过x 轴上一定点. A B F E D C

解析几何与平面几何选讲

1.已知△ABC的顶点B、C在椭圆x2/4+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( ) A.2B.6 C.8D.12 2.抛物线上的点到直线距离的最小值是() A.B.C.D. 3.已知以椭圆的右焦点F为圆心,a为半径的圆与椭圆的右准线交于不同的两 点,则该椭圆的离心率的取值范围是() A.B.C.D. 4.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为 M,则点M的轨迹是() A.圆B.椭圆C.直线D.双曲线的一支 5.如图,已知点B是椭圆的短轴位于x轴下方的端点,过B 作斜率为1的直线交 椭圆于点M,点P在y轴上,且PM//x轴,,若点P的坐标为(0,t),则t的取值范围 是() A.0

①AD+AE=AB+BC+CA; ②AF·AG=AD·AE ③△AFB ~△ADG 其中正确结论的序号是 A.①②B.②③C.①③D.①②③ 7. 如图2,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD 相交与点F,则AF的长 为____________。 8.如图,已知圆中两条弦与相交于点,是延长线上一点,且 若与圆相切,则线段的长为__________. 9.已知点,动点满足条件.记动点的轨迹 为.则的方 程是____________. 10. 矩形的两条对角线相交于点,边所在直线的方程为

,点在边所在直线上. (I)求边所在直线的方程; (II)求矩形外接圆的方程; (III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程. 11. 已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足. (I)求动点P的轨迹C的方程; (II)若A、B是轨迹C上的两不同动点,且. 分别以A、B为切点作轨迹C 的切线,设其交点 Q,证明为定值. 【参考答案】 1.C 解析:由椭圆定义知,△ABC的周长=4a。 2.A 解析:由几何知识知道,平移直线与抛物线相切, 切点到直线的距离最小。 3.C 解析:

【高考精品复习】第九篇 解析几何 第8讲 直线与圆锥曲线的位置关系

第8讲 直线与圆锥曲线的位置关系 【高考会这样考】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 基础梳理 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程. 即??? Ax +By +C =0,F (x ,y )=0, 消去y 后得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交; Δ=0?直线与圆锥曲线C 相切; Δ<0?直线与圆锥曲线C 无公共点. (2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)圆锥曲线的弦长 直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高中数学立体几何解析几何 判定&性质&公式整理(全)

高中数学必修二复习 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系: 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

立体与平面解析解析几何(研究生整理)

立体与平面解析解析几何 1. 常见多面体:棱柱,棱锥,棱台 常见的旋转体:圆柱,圆锥,圆台,球 平面的表示:通常用希腊字母α、β、γ表示,如平面α 直线一般用小写英语字母a, b, l或者大写字母直线上的两个点AB表示。 点与平面的关系:点A在平面内,记作;点不在平面内, 记作 点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作A l; 直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。 4. 四个公理 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 符号语言 公理2:经过不在同一条直线上的三点,有且只有一个平面。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a,记作α∩β=a。 公理4:平行于同一条直线的两条直线互相平行 5. 直线和平面之间的位置关系 ★线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此 平面平行 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平

面的交线与该直线平行 ★面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行 ★线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 ⑶性质:垂直于同一个平面的两条直线平行。 ★面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直 ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 6. 思考途径 证明直线与直线的平行的思考途径 (1)转化为二直线同与第三条直线平行; (2)转化为线面平行; 证明直线与平面的平行的思考途径 (1)转化为线线平行; (2)转化为面面平行. 证明平面与平面平行的思考途径 (1)转化为线面平行; (2)转化为线面垂直. 证明直线与直线的垂直的思考途径 (1)转化为线面垂直; (2)转化为线与另一线的射影垂直; 证明直线与平面垂直的思考途径 (1)转化为该直线与平面内相交二直线垂直; (2)转化为该直线与平面的一条垂线平行; (3)转化为该直线垂直于另一个平行平面; 证明平面与平面的垂直的思考途径

2017高考试题分类汇编之解析几何和圆锥曲线文科(word解析版)

2017年高考试题分类汇编之解析几何(文) 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2017课表I 文)已知F 是双曲线:C 13 2 2 =-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点 A 的坐标是)3,1(,则APF ?的面积为( ) .A 13 .B 1 2 .C 2 3 .D 3 2 【解答】解:由双曲线C :x 2﹣=1的右焦点F (2,0), PF 与x 轴垂直,设(2,y ),y >0,则y=3, 则P (2,3), ∴AP ⊥PF ,则丨AP 丨=1,丨PF 丨=3, ∴△APF 的面积S=×丨AP 丨×丨PF 丨=, 同理当y <0时,则△APF 的面积S=, 故选D . 【点评】本题考查双曲线的简单几何性质,考查数形结合思想,属于基础题. 2.(2017课标II 文)若1a >,则双曲线2 221x y a -=的离心率的取值范围是( ) .A 2,)+∞ .B 2,2) .C 2) .D (1,2) 【分析】利用双曲线方程,求出a ,c 然后求解双曲线的离心率的范围即可.

【解答】解:a >1,则双曲线﹣y 2=1的离心率为:==∈(1,). 故选:C . 【点评】本题考查双曲线的简单性质的应用,考查计算能力. 3.(2017浙江)椭圆22 194 x y +=的离心率是( ) . A 13 3 . B 53 . C 23 . D 59 【分析】直接利用椭圆的简单性质求解即可. 【解答】解:椭圆 + =1,可得a=3,b=2,则c= = , 所以椭圆的离心率为:=. 故选:B . 【点评】本题考查椭圆的简单性质的应用,考查计算能力. 4.(2017课标II 文)过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ) .A 5 .B 22 .C 23 .D 33 【分析】利用已知条件求出M 的坐标,求出N 的坐标,利用点到直线的距离公式求解即可. 【解答】解:抛物线C :y 2=4x 的焦点F (1,0),且斜率为的直线:y= (x ﹣1), 过抛物线C :y 2=4x 的焦点F ,且斜率为的直线交C 于点M (M 在x 轴上方),l 可知:,解得M (3,2 ). 可得N (﹣1,2 ),NF 的方程为:y=﹣ (x ﹣1),即, 则M 到直线NF 的距离为:=2 . 故选:C .

怎样学好圆锥曲线

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,

平面向量及解析几何

六、平面向量 考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2、掌握向量的加法和减法。3、掌握实数与向量的积,理解两个向量共线的充要条件。4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。 1、已知向量与不共线,且0||||≠=,则下列结论中正确的是 A .向量-+与垂直 B .向量-与垂直 C .向量b a +与a 垂直 D .向量b a b a -+与共线 2.已知在△ABC 中,?=?=?,则O 为△ABC 的 A .内心 B .外心 C .重心 D .垂心 3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC = ,则AD 用b a ,表 示为 。 4、已知21,e e 是两个不共线的向量,而→→→ →→ → +=-+=2121232)2 51(e e b e k e k a 与是两个共线 向量,则实数k = . 5、设→ i 、→ j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且 →→+=j i 24,→ →+=j i 43,则△OAB 的面积等于 : A .15 B .10 C .7.5 D .5 6、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 , 将向量按逆时针方向旋转90°得到向量,则向量的坐标是 . 7、已知)3,2(),1,(==k ,则下列k 值中能使△ABC 是直角三角形的值是 A . 2 3 B .21- C .-5 D .31- 8、在锐角三角形ABC 中,已知ABC ?==,1||,4||的面积为3,则=∠BAC ,?的值为 . 9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量与的位置关系是 A. 平行 B. 垂直 C. 相交但不垂直 D. 无法判断 10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围

高中数学立体几何解析几何常考题汇总

新课标立体几何解析几何常考题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证11A C AD ⊥, 又 1111 D B AD D ?= A 1 E D 1 C 1 B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

平面解析几何知识点总结.doc

基本要求① .掌握两条直线平行、垂直的条件,能根据直线方程判断两条直线的位置关系; ②.掌握两条直线的夹角公式、到角公式和点到直线的距离公式。 ③ . 掌握圆的标准方程和一般方程 . ④ . 掌握圆的方程的两种形式,并能合理合理运用; ⑤. 灵活运用圆的几何性质解决问题 . 1 直线方程的五种形式 点斜式:y y0k ( x x0 ) ,(斜率存在 ) 斜截式:y kx b (斜率存在 ) 两点式: y y1 x x 1, (不垂直坐标轴 ) y2 y1 x2 x1 截距式:x y 1 (不垂直坐标轴 ,不过原点 ) a b 一般式: Ax By C 0 2.直线与直线的位置关系: ( 1)有斜率的两直线 l1:y=k 1x+b1; l2:y=k 2x+b2;有:① l1∥ l2 k1=k2且 b1≠ b2;② l 1⊥ l2 k1·k2 =-1 ; ③ l 1与 l 2相交k 1≠ k2 ④l 1与 l 2重合k1=k2 且 b1=b2。( 2)一般式的直线l : A x+B y+C =0, l : A x+B y+C =0 有:① l ∥ l 2 AB-A B=0;且 BC-B 2 C ≠ 0 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 1 ② l1⊥ l2A1A2+B1B2=0 ③ l1与 l2相交 A 1B2-A 2B1≠ 0 ④ l1与 l2重合 A 1B2-A 2B1=0 且 B1C2-B 2C1=0。 3.点与直线的位置关系: 点 P( x , y )到直线 Ax+By+C=0的距离: d Ax0 By0 C 。 00 A2 B 2 平行直线 Ax+By+C1=0 与 Ax+By+C2=0 之间的距离为 d C1 C2 A2 B 2 两点间距离公式:| PP | (x x )2 ( y y )2 1 2 1 2 1 2 .4 直线系方程 ①过直线 l 1:A1x+B1y+C1=0, l 2:A2x+B2y+C2=0交点的直线系方程为:A1x+B1y+C1+λ( A2x+B2y+C2)=0(λ∈R)( 除l2外 ) 。 ②过定点 M ( x0 , y0 ) 的直线系方程为 y y0 k( x x0 ) (其中不包括直线x x0) ③和直线 Ax By C 0 平行的直线方程为Ax By C ' 0 (C C ') ④和直线 Ax By C 0 垂直的直线方程为Bx Ay C ' 0 5.圆的定义 : 平面内与定点距离等于定长的点的集合( 轨迹 ) 叫圆 . 在平面直角坐标系内确定一个圆需要三个独立条件: 如三个点 , 半径和圆心 ( 两个坐标 ) 等 . 2 2 2 6. 圆的方程 (1)标准式: (x-a) +(y-b) =r (r>0),其中 r 为圆的半径, (a, b)为圆心。 2 2 2 2 D E 1 D 2 E 2 4F (2)一般式: x +y +Dx+Ey+F=0(D+E -4F>0),其中圆心为( , ) ,半径为 2 2 2 (3) 参数方程 : x r cos , x a r cos (是参数) . 消去θ可得普通方程y r sin y b r sin ( 4) A(x 1, y1)B(x 2,y2)为直径的圆: (x-x1)(x-x 2)+(y-y 1)(y-y 2)=0; (5) .过圆与直线(或圆)交点的圆系方程: i)x2+y2+Dx+Ey+F+λ (Ax+By+C)=0,表示过圆与直线交点圆的方程

高考数学平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22 PA PB +的最大值和最小值。 分析:因为O 为AB 的中点,所以2,PA PB PO += 故可利用向量把问题转化为求向量OP 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=

高三数学立体几何,解析几何复习建议

高三数学《立体几何》、《解析几何》的复习建议 仙居中学赵娅芳 《立体几何》 一、2009年浙江(文科)考题分析 紧张又期待的2009年新高考已过去,为迎接不久到来的2010年高考,我们又得时刻准备着,整装待发……大家都十分关注新高考考什么?怎么考?非常疑惑高三复习教什么?怎么教?我想:2009年的浙江省高考试题为我们所有高三数学老师的复习起了一定的导向作用.2009年的浙江文科数学试题仍保持“1+1+1”的题型,即一道选择题,一道填空题和一道解答题组成,分值23分,占全卷的15.3%.从考查内容来看:线线、线面、面面的平行与垂直关系是立体几何的主干知识,还是今年新高考考查的重点.如浙江文(4)、文(19)第(Ⅰ)题;求角的问题主要考了直线与平面所成的角(应该是重点考查对象),如浙江文(19)第(Ⅱ)题;值得我们眼睛一亮和重视的是填空题第12题对新增内容——三视图的考查.从考查要求看:试题均可用常规常法和通性通法来解决,淡化特殊技巧,但是考生要完整准确地解答,则需要有扎实的双基和良好的数学素养.方法能力上:在考查空间想象能力的同时,又考查了推理论证能力、运算能力和分析问题、解决问题的能力. 二、几点复习建议 1. 重视对《考试说明》的研究,并结合对2009年高考题的认真分析,深化对新课程高考题的认识. 《考试说明》是高考命题的指挥棒,它规定了考试的性质、考试的要求、考试的内容、考试形式及试卷结构等各方面的要求,而且对考查不同的知识提出了明确的层次要求.因此认真研究《考试说明》,并以此为复习备考的依据,也为复习的指南,做到复习既不超纲,又能有针对性、有重点地进行复习,切实提高复习的效率. (1)细心推敲对考试内容三个不同层次的要求.准确掌握哪些内容是了解,哪些是理解,哪些是掌握.这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容.如2009年《考试说明》(文科)对求角的的问题指出:了解两条异面直线所成角及二面角的概念,理解并会求直线与平面所成角.因此复习时就没有必要在求两条异面直线所成角及二面角的问题上进行过于复杂的探讨,应重点放在求直线与平面所成角的问题上.今年文科第19题的第(Ⅱ)题就

解析几何-- 圆锥曲线的概念及性质

4.2 解析几何-- 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2 -2y 2 =1,则它的右焦点坐标为 ( ) A. ????22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为????6 2 ,0. 答案:C 2.(2010·天津)已知双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2 =24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2 108-y 2 36=1 D.x 2 27-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴PA∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4, ∴F A=8,∴P A=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为() A.圆B.椭圆C.双曲线D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆 顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,BA P A DC PC ,从而 PC=2P A.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2),则A(-5,0),C(5,0),设P(x,y),得(x-5)2+y2=2(x+5)2+y2 化简得x2+y2+50 3 x+25=0,显然,P点的轨迹为圆.

高考解析几何与立体几何复习的几点思考

高考解析几何与立体几何复习的几点思考 北师大昆明附中 宋祖发 第一部分 解析几何 解析几何是初等数学与高等数学的衔接点,是中学数学的重要内容.解析几何的核心思想是“ 坐标思想”,即通过坐标系,使点对应到数对,直线与曲线对应于方程,从而把几何问题转化为代数问题,通过代数方程来表示和研究曲线,从而使代数和几何之间建立实质性的联系,可以说,解析几何是各种数学思想方法的综合点,是主干知识的交汇点。 一、解析几何命题的特点 题型相对稳定,一般考查三个小题,一 个大题,文理科差异主要体现在小题上。 三个小题着重考查基本概念与性质,一般会出现一个较难的题目,但入口较容易。 二、解析几何的命题趋势(从内容上来看) 1.直线以倾斜角、斜率、夹角、距离、平行与垂直、线性规划等有关的问题为基本问题,其中要重视“对称问题”的解答方法; 2.与圆的位置有关的问题,一是研究方程组,二是充分利用平面几何知识,后者是常用方法; 3.求曲线的方程或轨迹问题,涉及圆锥曲线的概念和几何性质问题; 4.直线与圆椎曲线的位置关系问题,如参数的取值范围、最值问题等,这是高考的重点内容之一;(学科内的小综合) 5.以圆锥曲线为载体在知识网络的交汇点设计问题,其目的是加强联系、注重应用,以考查学生的应变能力以及分析问题和解决问题的能力。(大综合) 三、需要突破的几个难点: (一)直线与圆的位置关系问题 取值范围是 的倾斜角的则直线的交点位于第一象限,与直线若直线例l y x kx y l 06323:. 1=-+-=?? ??????? ????? ????????2,6D. 2,3C. 2,6B. 3,6A.ππππππππ 得到 由的两侧必在与点点线性规划的另用方法旋转得出结果绕点让的直线系看成过点把直线直线旋转法方法再求倾斜角的范围的范围由交点的坐标解出求交点方法0)32)(3(-3k .l (0,2)(3,0) .:3.G l ,)3(0,-l ,:2. ,k , :1<++∴G

解析几何与平面几何选讲

解析几何与平面几何选讲

1 ?已知△ ABQ的顶点B、C在椭圆x/4+ y = 1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ ABC的周长是() A. 2 B. 6 C. 8 D. 12 2.抛物线' -:;±的点到直线-- 11距离的最小值是() A. 3?已知以椭圆的右焦点F为圆心,a为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是() 4.已知椭圆的焦点是F1、F2, P是椭圆上的一个动点,过点F2向/ F1PF2的外角平分线作垂线,垂足为 M,则点M的轨迹是() D ?双曲线的一支 B.

H 2 5.如图,已知点B是椭圆;;厂…”的短轴位于x 轴下方的端点,过B作斜率为1的直线交 椭圆于点M,点P在y轴上,且PM// x 轴,丽.踰=9,若点P的坐标为(0,t),则t的取值范围是() 0

① AD+AE=AB+BC+CA ; ② AF ?AG=A D AE ③ 厶AFB ?△ ADG 其中正确结论的序号是 A ?①② B ?②③ D ?①②③ 7.如图2,A,E 是半圆周上的两个三等分点, 直径 BC=4,AD 丄BC,垂足为D,BE 与AD 相交 与点F ,则AF 的长 为 ______________ 。 8如图,已知圆中两条弦丄与上相交于点」, ,是 丄延长线上一点,且 C .①③ n D

m 71 -「若二与圆相切,则 线段翅的长为_____________ . 9 .已知点门,动点/满足条件宀‘记动点」的轨迹为丁.则丁的方 程是_______________ . 10.矩形一匸?的两条对角线相交于点』-1, 旳边所在直线的方程为点丁(-1,1)在曲边 所在直线上. (I)求丄:边所在直线的方程; (II )求矩形」二外接圆的方程; (III )若动圆」过点--■■,且与矩形—二的外 接圆外切,求动圆「的圆心的轨迹方程. 11.已知平面上两定点M(0,—2)、N(0,