2018高考理科数学全国2卷_含答案解析汇编

合集下载

2018全国高考II卷理科数学试题和答案解析

2018全国高考II卷理科数学试题和答案解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期(3)由求对称轴,(4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学全国II卷(精校版,含答案)

2018年高考理科数学全国II卷(精校版,含答案)

绝密★启用前2018年全国普通高等学校招生全国统一考试(II 卷)数 学注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3、考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题有12小题,每小题5分,共60分。

1.1+2i 1−2i = A.- 45 - 35I B . - 45 + 35I C . - 35 - 45I D . - 35 - 45i 2.已知集合A={(x ,y )|x ²+y ²≤3,x ∈Z ,y ∈Z },则A 中元素的个数为A. 9B. 8C. 5D. 43.函数f (x )=(e ²-e-x )/x ²的图像大致为B.C.4.已知向量a ,b 满足∣a ∣=1,a ·b=-1,则a ·(2a-b )=A. 4B. 3C. 2D. 05.双曲线 x 2a 2 - y 2b 2 =1(a ﹥0,b ﹥0)的离心率为√3,则其渐进线方程为 A. y=±√2x B. y=±√3x C. y=±√22 D. y=±√32 6.在ΔABC 中,cos C 2 =√55,BC=1,AC=5,则AB= A. 4√2 B.√30 C.√29 D.2√57.为计算s=1-12 + 13 - 14 +…+ 199 -1 100,设计了右侧的程序框图,则在空白框中应填入 A. i=i+1 B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. 112B. 114C. 115D. 1189.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=√3,则异面直线AD 1与DB 1所成角的余弦值为A. 15B. √56C. √55D. √22 10.若f (x )=cosx-sinx 在[-a ,a ]是减函数,则a 的最大值是A. x 4B. π2C. 3π4D. π11.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x )。

2018年高考理科数学(2卷)答案详解(附试卷)

2018年高考理科数学(2卷)答案详解(附试卷)

f (1) f (2) f (3) … f (50)
A. 50
B.0
C.2
D.50
【解析】∵ f (x) 是定义域为 (, ) 的奇函数,∴ f (x 1) f (1 x) f (x 1) ,且 f (0) 0 ,
∴ f (2) f (11) f (11) f (0) 0 , f (3) f (2 1) f (2 1) f (1) 2 ,
【答案】A
3.(函数)函数
f
x

ex
ex x2
的图像大致为
【解析】∵
f (x)
ex ex (x)2

ex
ex x2
f (x) ,∴函数 f(x)为奇函数,排除 A;
又 f (1) e 1 0 ,排除 D;当 x→+∞,f(x)→+∞,排除 C. e
42Biblioteka 244取 k 0 ,得到 f (x) 的一个减区间为 [ π , 3π] . 44
∴ a 3π ,即 a 的最大值为 3π .
4
4
【答案】C 11.(函数)已知 f (x) 是定义域为 (, ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则
5 2 ;长方形的体对角线 DB1=
5 ,OB1= 5 ; 2
所以异面直线 AD1 与 DB1 所成角的余弦值为 cos EOB1
12

5 2
2


21 5
5 2
2

5 .
5
2
【答案】C
图 A9
第 3 页 共 17 页
10.(三角函数)若 f (x) cos x sin x 在 [a, a] 是减函数,则 a 的最大值是

(完整word版)2018年全国2卷理科数学试卷及答案

(完整word版)2018年全国2卷理科数学试卷及答案

2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

2018年高考全国卷2理科数学真题(附含答案解析)

2018年高考全国卷2理科数学真题(附含答案解析)

word 格式整理版2018 年普通高等学校招生全国统一考试理科数学本试卷共23 题,共 150 分,共 5 页。

一、选择题:本题共12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A.B.C.D.2.已知集合 A={( x, y)| x 2 +y 2 ≤ 3, x∈ Z, y∈Z},则 A 中元素的个数为A.9B.8C.5D.43. 函数 f ( x) =e 2 -e-x/x 2 的图像大致为A.B.C.word 格式整理版D.4.已知向量a,b 满足∣ a∣ =1, a· b=-1, 则 a·( 2a-b ) =A.4B.3C.2D.05.双曲线 x 2 /a 2 -y 2 /b 2 =1( a﹥ 0, b﹥0)的离心率为,则其渐进线方程为A.y= ±xB.y=±xC.y= ±D.y=±6.在中, cos=, BC=1,AC=5,则 AB=A.4B.C.D.27.为计算 s=1- + - +⋯ +-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如30=7+23,在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.B.C.D.9. 在长方体ABCD-A1B1 C1D1中, AB=BC=1,AA1=则异面直线AD1与 DB1所成角的余弦值为word 格式整理版A. B.10. 若 f ( x) =cosx-sinx在[-a,a]是减函数,则a 的最大值是A.B.C.D.π11. 已知 f (x)是定义域为( - ∞, +∞)的奇函数,满足 f ( 1-x ) =f ( 1+x)。

若 f (1) =2,则 f ( 1)+ f ( 2) + f ( 3) +⋯ +f ( 50) =A.-50B.0C.2D.5012. 已知 F1,F2是椭圆 C:=1 ( a>b>0)的左、右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为的直线上,△ PF1F2为等腰三角形,∠F1F2P=120°,则 C 的离心率为A..B.C.D.二、填空题:本题共4 小题,每小题5 分,共 20 分。

2018高考全国新课标2卷理科数学版和答案解析

2018高考全国新课标2卷理科数学版和答案解析

WORD 格式整理绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.1 2i1 2iA.4 35 5i B.4 35 5i C.3 45 5i D.3 45 5i2.已知集合 2 2 3A x,y x y ≤,x Z,y Z,则A中元素的个数为A.9 B.8 C.5 D.4x xe e3.函数 2f xx的图像大致为4.已知向量a,b满足|a| 1 ,a b 1 ,则a(2a b)A.4 B.3 C.2 D.02 2x y5.双曲线2 2 1( 0, 0)a ba b的离心率为3,则其渐近线方程为A.y 2x B.y 3x C.2y x D.23y x26.在△ABC 中,cos C52 5,BC 1 ,AC 5 ,则ABA.4 2 B.30 C.29 D.2 5分享专业知识WORD 格式整理1 1 1 1 17.为计算S 1 ⋯,设计了右侧的程序框图,2 3 4 99 100开始N 0,T 0 则在空白框中应填入i 1 A.i i 1B.i i 2 是否i 100C.i i 3D.i i 4 N N 1iS N T 1输出ST Ti 1结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 7 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.112B.114C.115D.1189.在长方体A BCD A1B1C1D1 中,AB BC 1 ,A A ,则异面直线AD1 与1 3 DB 所成角的余弦值为1A.15B.56C.55D.2210.若 f (x) cos x sin x 在[ a, a] 是减函数,则 a 的最大值是A.π4B.π2C.3π4D.π11.已知 f (x) 是定义域为( , ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则f (1) f (2) f (3) ⋯ f (50)A.50 B.0 C.2 D.5012.已知F1 ,2 2x yF 是椭圆:的左,右焦点,A是C 的左顶点,点P 在过A且斜率C 2 2 1(a b 0)2a b为36的直线上,△PF1F2 为等腰三角形,F1 F2 P 120 ,则C 的离心率为A.23B.12C.13D.14二、填空题:本题共 4 小题,每小题 5 分,共20 分。

2018年全国高考理科数学试题及答案-全国卷Ⅱ(精编版)

2018年全国高考理科数学试题及答案-全国卷Ⅱ(精编版)
4
π B.
2
3π C.
4
D. π
11 . 已 知 f (x) 是 定 义 域 为 (, ) 的 奇 函 数 , 满 足 f (1 x) f (1 x) . 若 f (1) 2 , 则
f (1) f (2) f (3) … f (50)
A. 50
B.0
C.2
D.50
12.已知
F1 ,
F2
B
M
已知函数 f (x) ex ax2 .
(1)若 a 1 ,证明:当 x 0 时, f (x) 1 ;
(2)若 f (x) 在 (0, ) 只有一个零点,求 a .
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分.
D. y
3 x
2
D. 2 5
1
7.为计算 S 1 1 1 1 … 1 1 ,设计了右侧的程序框图,
234
99 100
则在空白框中应填入
A. i i 1
B. i i 2
C. i i 3
D. i i 4
开始 N 0, T 0
i 1 是 i 100 否
N N 1 i
15
1 D.
18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1 , AA1 3 ,则异面直线 AD1 与 DB1 所成角的余弦值为
1 A.
5
B. 5 6
C. 5 5
10.若 f (x) cos x sin x 在[a, a] 是减函数,则 a 的最大值是
D.2 ln(x 1) 在点 (0, 0) 处的切线方程为__________.
x 2y 5 0, 14.若 x, y 满足约束条件 x 2 y 3 0 ,则 z x y 的最大值为__________.

2018年高考真题——理科数学(全国卷II)+Word版含解析

2018年高考真题——理科数学(全国卷II)+Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国卷II)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果. 详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

2018年全国高考理科数学2卷-精美解析版

2018年全国高考理科数学2卷-精美解析版

2018 年一般高等学校招生全国一致考试(新课标II 卷)理科数学本试卷 4 页, 23 小题,满分150 分.考试用时120 分钟.一、选择题:此题共12 小题,每题5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.12i()12iA .4 3 i B.4 3 i C.3 4 i D.3 4 i555555551.【分析】12i112i234i34i ,应选D.1 2i2i12i5552.已知会合A.9 2.【分析】A{( x, y) | x2y 23, x Z , y Z} ,则A中元素的个数为()B . 8C. 5D. 4A{( 1,1), ( 1,0), (1, 1), (0,1), (0,0), (0, 1),(1,1), (1,0), (1, 1)},元素的个数为9,应选 A .e x e x的图像大概为()3.函数f (x)2xy yA .1B.1O1x O1xy yC.1 D .1O1x O1xe x e xf ( x) ,即 f ( x) 为奇函数,清除A;由f (1) e1D;由3.【分析】 f ( x)20 清除x ef (4)e4 e 4 1 (e21)(e1)(e1)e1 f (1) 清除C,应选B.1616e2e e e4.已知向量a, b知足a 1 , a b1,则a(2a b)()A .4B . 3C. 2D. 04.【分析】a(2a b)2a b 2 13,应选B.2ax2y 21( a0, b0) 的离心率为 3 ,则其渐近线方程为()5.双曲线b2a2A .y2x B.y3x C.y2x D.y3 2x25.【分析】离心率c3c2 a 2b23 ,所以b2,渐近线方程为y 2 x ,应选A.ea 2a2aa6.在ABC 中,cos C5,BC1, AC5,则 AB()25A.4 2B.30C.29D.2 56.【分析】cosC 2 cos2C13,开始25由余弦定理得AB BC 2AC22BC ACcos4 2 ,N0, T0C应选 A.i17.为计算S11111,设计了右边的是i否13499100 21001程序框图,则在空白框中应填入()N Ni S N TA .i i11B .i i2T T输出 Si 1C.i i3结束D .i i47.【分析】依题意可知空白框中应填入i i2.第 1次循环:N1,T 1,i3;第 2次循环:2N 11,T11,i5;;第50 次循环:N111,T111, i101 ,结32439924100束循环得 S11111,所以选 B.1349910028.我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就.哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30723,在不超出30 的素数中,随机选用两个不一样的数,其和等于30的概率是()111D.1A .B.C.181214158.【分析】不超出30的素数有:2,3,5,7,11,13,17,19,23,29 ,共10个.从中选用两个不一样的数,其和等于 30的有: 7 与 23、 11与 19、 13 与 17 ,共3对.则所求概率为31,应选 C.C102159.在长方体ABCD A1B1C1 D1中,AB BC 1,AA1 3 ,则异面直线AD1与 DB1所成角的余弦值为()1552A .B.C.D.56529.【分析】成立以下图的空间直角坐标系,则 A(1,1,0) , D (1,0,3) ,D (1,0,0),B (0,1,3)11所以 AD1(0, 1, 3), DB1( 1,1,3) ,则cos AD1, DB1AD1DB125AD1DB1255C1z,B1D 1A1CByD,应选 C.Ax10.若f ( x)cos x sin x 在 [a,a] 上是减函数,则 a 的最大值是()A .B .3D .C.42410.【分析】由于f ( x)cos x sin x 2 cos( x)在区间 [3] 上是减函数,所以 a 的最大值是,,4444应选 A.11 .已知f (x)是定义域为(,) 的奇函数,满足 f (1x) f (1 x) .若 f (1) 2 ,则f (1) f ( 2) f (3) f (50)()A.50B.0C.2D.5011.【分析】由于 f (x) f ( x) ,所以 f (1 x) f (x1) ,则 f ( x1) f (x1), f ( x) 的最小正周期为T 4.又 f(1)2, f (2) f ( 0)0 , f (3) f (1)2, f (4) f (0) 0,所以f (1) f ( 2) f (3) f (50)12[ f (1) f (2) f (3) f ( 4)] f (49) f (50) f (1) f (2)2,选C.12.已知F1, F2是椭圆C :x2y 21( a b3 a2b20) 的左、右焦点,A是C的左极点,点P在过A且斜率为6的直线上,PF1F2为等腰三角形,F1F2 P 120,则 C 的离心率为()21C.11A .B.3D.32412.【分析】如图,由于PF1F2为等腰三角形,F1F2 P120 且F1F22c ,所以PF1 F2 30 ,则P的坐标为 (2c, 3c) ,故 k PA3c 3,化简得 4c a ,所以离心率 ec 1 ,应选 D .2c a6a 4yPAF 1 O F 2x二、填空题:此题共 4 小题,每题 5 分,共 20 分.13.曲线 y 2ln( x 1) 在点 (0,0) 处的切线方程为 .13.【分析】 y2y |x 02 ,则曲线 y2ln( x 1) 在点 (0,0) 处的切线方程为 y 2x .1xx 2 y 5 014.若 x, y 知足拘束条件x 2 y 3 0 ,则 z x y 的最大值为.x 514.【分析】可行域为 ABC 及其内部,当直线 yxz 经过点 B(5,4) 时, z max9 .15.已知 sin cos 1, cos sin0 ,则y sin().15.【分析】sincos2sin 22 sin cos cos 2 B 1,2cos 2sin2ACcossin2 cos sinO 0 ,5x-3则 sin 22sin coscos 2cos 2 2cos sinsin 2 011,即 2 2 sin cos2cossin1sin()1.216.已知圆锥的极点为 S ,母线 SA, SB 所成角的余弦值为7 ,与圆锥底面所成角为45 ,若SAB 的面8SA积为 5 15 ,则该圆锥的侧面积为.16.【分析】以下图,由于cos ASB 7 ,所以 sinASB15 ,S88SSAB1SA SBsin ASB15 SA 2 5 15 ,所以 SA 4 5 .216又 SA 与圆锥底面所成角为45 ,即SAO 45 ,AO则底面圆的半径 OA 210 ,圆锥的侧面积 SOA SA40 2 .B三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都一定作答.第22、 23 题为选考题,考生依据要求作答.(一)必考题:共 60 分.17.( 12 分)记 S n 为等差数列 a n 的前 n 项和,已知 a 17, S 315.( 1)求 a n 的通项公式;( 2)求 S n ,并求 S n 的最小值.17.【分析】( 1)设等差数列a n 的公差为 d ,则 由 a 1 7 , S 3 3a 1 3d 15 得 d2 ,所以 a n7 (n 1) 22n 9 ,即 a n 的通项公式为 a n 2n 9 ;( 2)由( 1)知 S nn(7 2n 9) n 2 8n ,2由于 S n (n 4)2 16 ,所以 n4 时, S n 的最小值为 16 .18.( 12 分)下列图是某地域 2000 年至 2016 年环境基础设备投资额 y (单位:亿元)的折线图.投资额240220220209200184180 171160148140 122 129120 1006053 5680353742424740192514202000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016年份为了展望该地域 2018 年的环境基础设备投资额,成立了y 与时间变量 t 的两个线性回归模型,依据 2000年至 2016 年的数据(时间变量 t 的值挨次为1,2, ,17)成立模型①: ?30.4 13.5t;依据 2010 年至 2016y年的数据(时间变量t的值挨次为 1,2,,7)成立模型②:y 99 17.5t.?( 1)分别利用这两个模型,求该地域2018 年的环境基础设备投资额的展望值;( 2)你以为哪个模型获得的展望值更靠谱?并说明原因.181t 19y 30.4 13.5 19 226.1 (亿元),.【分析】( )将代入模型①: ?所以依据模型①得该地域2018 年的环境基础设备投资额的展望值为226.1 亿元;将 t?99 17.5 9256.5 (亿元),9 代入模型②: y所以依据模型②得该地域2018 年的环境基础设备投资额的展望值为256.5 亿元.( 2)模型②获得的展望值更靠谱.原因以下:答案一:从折现图能够看出,2010 年至 2016 年的数据对应的点并无密切地均分散布在回归直线y?30.4 13.5t 的上下,2009年至2010年的环境基础设备投资额出现了显然的大幅度增添,这说明模型①不可以很好的反响环境基础设备投资额呈线性增添.而2010 年至 2016 年的数据对应的点密切的散布在回归直线 y? 99 17.5t 的邻近,这说明模型②能更好地反响环境基础设备投资额呈线性增添,所以模型②获得的展望值更靠谱.答案二:从计算结果来看,相关于2016 年的环境基础设备投资额为220 亿元,利用模型①获得的该地域2018 年的环境基础设备投资额的展望值为226.1亿元的增幅显然偏低,而利用模型②获得的该地域 2018 年的环境基础设备投资额的展望值为 256.5 亿元的增幅显然更合理,所以模型②获得的展望值更靠谱.19.( 12 分)设抛物线 C : y24x 的焦点为F,过F且斜率为 k (k 0) 的直线l与C交于 A, B 两点,AB8 .(1)求l的方程;(2)求过点A, B且与C的准线相切的圆的方程.19.【分析】( 1)焦点F为 (1,0) ,则直线 l :y k( x1) ,联立方程组y k( x1),得k 2x2( 224)x k20,yAy24x k令 A( x1 , y1 ), B( x2 , y2 ) ,则 x1x22k 241.k2,x1 x2- 1O F x依据抛物线的定义得AB x1x2 2 8 ,B 即 2k 24 6 ,解得k 1 (舍去k 1 ),k 2所以 l 的方程为y x1;( 2)设弦AB的中点为M,由( 1)知x1x2 3 ,所以M的坐标为(3,2) ,2则弦 AB 的垂直均分线为y x5,令所求圆的圆心为(m,5m) ,半径为 r ,2m5m12依据垂径定理得AB221234,r22m m由圆与准线相切得1221234 ,解得或.m m m m3m 11则所求圆的方程为:( x3) 2( y2) 216 或 ( x11) 2( y6) 214420.( 12 分)如图,在三棱锥P ABC 中,AB BC22,PA PB PC AC4, O 为 AC 的中点.( 1)证明:PO平面 ABC ;( 2)若点M在棱BC上,且二面角M PA C为30,求 PC 与平面 PAM 所成角的正弦值.20.【分析】( 1)证明:连结OB,PPA PC , O 为 AC 的中点,PO AC ,ABBC 2 2, AC 4,AB 2 BC 2AC 2,即 AB BC , OB1 AC2 ,2又 PO2 3,PB 4,则 OB 2PO 2 PB 2,即 OPOB ,AC OB O , PO 平面 ABC ;( 2)由( 1)知 OB,OC , OP 两两相互垂直, z以 O 为坐标原点成立以下图的空间直角坐标系,P则 B(2,0,0) , C(0,2,0) , A(0, 2,0) , P(0,0,2 3) ,BC ( 2,2,0) , AP(0,2,2 3), CP(0, 2,2 3)令 BMBC ,[ 0,1] .AOCy则 OMOBBC(22 ,2 ,0) , AM (22 ,22,0) ,M令平面 PAM 的法向量为 n(x, y, z) ,BxnAP2 y2 3z 0,取 x 31 ,得 n ( 31 , 31 ,1)由n AM(2 2 )x ( 22) y 0易知平面 PAC 的一个法向量为 m (1,0,0) ,所以 cosn, mn m3(1)3(1)3 ,1) 21) 2) 27 2cos302n m3( 3((1 27解得1 (舍去 3),即 n(43,2 3,2), 33 3 3n CP8 3 3 3由于 cosn, CP3.8,所以 PC 与平面 PAM 所成角的正弦值为n CP4 44321.( 12 分)已知函数 f ( x) e x ax 2 .( 1)若 a1,证明:当 x 0 时, f ( x) 1;( 2)若 f ( x) 在 (0,) 只有一个零点,求 a .21.【分析】( 1)方法 1:欲证明当 x 0 时, f ( x)令 g ( x)e x ,则 g ( x)e x (x 2 1) 2xe x2x22x 111,即证明e x 1 .2x 1(x1) 2 e x0 ,x 221则 g ( x) 为增函数, g (x) g (0) 1 ,得证.方法 2:a 1时,f ( x) e x x2,则 f ( x) e x2x ,令 f (x) g( x) ,则 g ( x)e x x [0, ln 2) 时, g (x)0 , g(所以 g( x) min g(ln 2)22ln 所以 f ( x) f (0) 1 ,2 ,x) 为减函数,x (ln 2, ) 时, g ( x)0 , g( x) 为增函数,2 0,即当x0 时, f (x)0 , f (x) 为增函数,所以 a 1 , x0 时, f (x) 1.( 2)方法1:若f ( x)在(0,) 只有一个零点,则方程e xa 只有一个实数根.x 2令 h(x)e xh( x) 的图像与直线y a 只有一个公共点.x2,等价于函数y又 h ( x)x2e x2xe x x 2 e xx4x3,x (0,2) 时, h ( x)0 , h( x) 为减函数, x (2,) 时, h ( x)0 , h( x) 为增函数,所以 h( x) min h(2)e20 时h(x), x时 h( x), x.4e2) 只有一个零点.则 a时, f ( x) 在 (0,4方法 2:若f ( x)在(0,) 只有一个零点,则方程e xax 只有一个实数根.x令 h(x)e xy h(x) 的图像与直线y ax 只有一个公共点.,等价于函数x当直线 y ax 与曲线y h(x) 相切时,设切点为(x0, e x0) ,x0又 h ( x)xe x e x x 1 e x x0 1 e x0e x0x0 2,此时a h ( x0 )e2 x 2x 2,则 h ( x0 )x02x02.4又当 x(0,1) 时, h ( x)0 , h( x) 为减函数,yx (1,) 时, h ( x)0 , h(x) 为增函数,所以 h( x) min h(1)e,且 x0 时h(x), x时 h( x).依据 y h( x) 与y ax 的图像可知,O 1 2xe2时,函数 y h(x) 的图像与直线y ax只有一个公共点,即 f ( x) 在 (0,) 只有一个零点.a4(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答.假如多做,则按所做的第一题计分.22. [选修 4—4:坐标系与参数方程]( 10 分)在 直 角 坐 标 系 xOy 中 , 曲 线 C 的 参 数 方 程 为x 2 cos y( 为 参 数 ) , 直 线 l 的 参 数 方 程 为4sinx 1 t cos y2 (t 为参数 )t sin( 1)求 C 和 l 的直角坐标方程;( 2)若曲线 C 截直线 l 所得线段的中点坐标为(1,2) ,求 l 的斜率.22.【分析】( 1)消去参数,得 C 的直角坐标方程为x 2 y 2 41;16消去参数 t ,得 l 的直角坐标方程为 sin x cos y sin2 cos0 ;( l 的直角坐标方程也可写成:ytan (x 1)2() 或 x 1 .)2x 1 t cos22( 2)方法 1:将 l 的参数方程:(t 为参数 ) 代入 C : xy y 2 t sin4164 1 t cos22 t sin 216 ,即 1 3 cos2t24 2 cossint由韦达定理得 t 1t 24 2cos sin,13 cos2依题意,曲线 C 截直线 l 所得线段的中点对应t 1t 2 0 ,即 2 cossin2所以 l 的斜率为 2 .方法 2:令曲线 C 与直线 l 的交点为 A( x 1 , y 1 ), B(x 2 , y 2 ) ,x 1 2y 121416x 1 x 2 x 1x 2y 1y 2 y 1y 2则由得0 ,此中 x 1 x 22y 2 24161416所以x1x 2 y 1 y 2 0y 1 y 2 2 ,即 l 的斜率为 2 .24x 1 x 223. [选修 4—5:不等式选讲 ]( 10 分)设函数 f (x)5 x a x 2 .( 1)当 a1时,求不等式 f (x)0 的解集;( 2)若 f ( x) 1 ,求 a 的取值范围.23.【分析】( 1) a1时, f ( x)5 x 1 x 2 ,x1时, f( x) 5 x 1 x 2 2x 4 0 ,解得 2 x 1 ;1 x2 时, f ( x) 5x 1x 22 0 ,解得1 x2 ;1得:8 0 ,0 ,得 tan 2 .x 2 2, y 1 y 24 .x 2 时, f ( x) 5 x1x 22x60 ,解得2x 3,综上所述,当 a1时,不等式 f (x)0 的解集为 [2,3] .( 2)f (x)5x a x 2 1,即 x a x24,又 x a x 2 x a x 2 a 2 ,所以 a 2 4 ,等价于 a2 4 或 a24,解得 a 的取值范围为 { a | a2或 a6} .。

2018年高考理科数学全国卷2答案解析

2018年高考理科数学全国卷2答案解析

甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆共10个省份使用的全国2卷2018年高考理科数学全国卷2试题与答案分析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=()A.i B. C. D.【解答】解:==+.选:D.2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.4【解答】解:当x=﹣1时,y2≤2,得y=﹣1,0,1,当x=0时,y2≤3,得y=﹣1,0,1,当x=1时,y2≤2,得y=﹣1,0,1,即集合A中元素有9个,故选:A.3.函数f(x)=的图象大致为()A. B.C. D.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.4.已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.0【解答】解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.6.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.7.为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A. B. C. D.【解答】解:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P==,故选:C.9.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A. B. C. D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,∴A(1,0,0),D1(0,0,),D(0,0,0),B1(1,1,),=(﹣1,0,),=(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ===,∴异面直线AD1与DB1所成角的余弦值为.故选:C .10.若x x x f sin cos )(-=在],[a a -是减函数,则a 的最大值是( )A .B .C .D .π【解答】解:)4sin(2)cos (sin sin cos )(π--=--=-=x x x x x x f 由Zk k x k ∈+≤-≤+-,22422πππππ,得Z k k x k ∈+≤≤+-,24324ππππ,取0=k ,得)(x f 的一个减区间为]43,4[ππ-,由)(x f 在],[a a - 是减函数,得,∴.则a 的最大值是.故选:A .11.已知)(x f 是定义域为(﹣∞,+∞)的奇函数,满足)1()1(x f x f +=-,若)1(f =2,则)1(f +)2(f +)3(f +…+)50(f =( )A .﹣50B .0C .2D .50【解答】解:∵)(x f 是奇函数,且)1()1(x f x f +=-, ∴)1()1()1(--=+=-x f x f x f 、,f (0)=0, 则)()2(x f x f -=+,则)()2()4(x f x f x f =+-=+, 即函数)(x f 是周期为4的周期函数, ∵)1(f =2,∴)2(f =)0(f =0,)3(f =)1()1()21(f f f -=-=- =﹣2,)4(f =)0(f =0,则)1(f +)2(f +)3(f +)4(f =2+0﹣2+0=0,则)1(f +)2(f +)3(f +…+)50(f =12[)1(f +)2(f +)3(f +)4(f ]+)49(f +)50(f =)1(f +)2(f =2+0=2,故选:C .12.已知F 1,F 2是椭圆C :=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A .B .C .D .【解答】解:由题意可知:A (﹣a ,0),F 1(﹣c ,0),F 2(c ,0), 直线AP 的方程为:y=(x+a ),由∠F 1F 2P=120°,|PF 2|=|F 1F 2|=2c ,则P (2c ,c ),代入直线AP :c=(2c+a ),整理得:a=4c ,∴题意的离心率e==.故选:D .二、填空题:本题共4小题,每小题5分,共20分。

2018年高考真题理科数学全国卷II含解析

2018年高考真题理科数学全国卷II含解析

适用全国卷Ⅱ(甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆)2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2018年高考全国2卷理科数学带答案解析

(word完整版)2018年高考全国2卷理科数学带答案解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018高考全国新课标2卷理科数学版及答案解析资料讲解

2018高考全国新课标2卷理科数学版及答案解析资料讲解

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y x = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国卷2理科数学真题附含答案解析

2018年高考全国卷2理科数学真题附含答案解析

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。

若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考理科数学全国2卷_含答案解析输出S K=K+1a =aS =S +a ∙K是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31i i+=+() A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有() A .12种 B .18种 C .24种 D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .5 9.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .23310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为() A.C11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。

13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =.14.函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是.15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16.已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =.三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必做题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=.(1)求cos B (2)若6a c += , ABC ∆面积为2,求.b18.(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )其频率分布直方图如下:旧养殖法0.0200.0320.0400.0340.0240.0140.012组距箱产量/kg30354045505560657025O0.0080.0100.0460.0680.0440.0200.004组距箱产量/kg4045505560657035新养殖法O(1) 设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)P ()0.050 0.010 0.001 k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠=E 是PD 的中点. (1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M -AB -D 的余弦值20.(12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数2()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修4-5:不等式选讲](10分) 已知330,0,2a b a b >>+=,证明:(1)55()()4a b a b ++≥; (2)2a b +≤.2017年普通高等学校招生全国统一考试理科数学(Ⅱ)试题答案一、选择题1.D2.C3.B4.B5.A6.D7.D8.B9.A 10.C 11.A 12.B 二、填空题13. 1.96 14. 1 15. 2n1n + 16. 6 三、解答题 17.解:(1)由题设及2sin 8sin 2A B C B ππ++==得,故sin 4-cosB B =(1)上式两边平方,整理得 217cos B-32cosB+15=0 解得 15cosB=cosB 171(舍去),= (2)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆== 又17=22ABC S ac ∆=,则由余弦定理及a 6c +=得2222b 2cos a 2(1cosB)1715362(1)2174a c ac Bac =+-=-+=-⨯⨯+=(+c )所以b=2 18.解:(1)记B 表示事件“旧养殖法的箱产量低于50kg ”,C 表示事件“新养殖法的箱产量不低于50kg ”由题意知()()()()P A P BC P B P C == 旧养殖法的箱产量低于50kg 的频率为0.0400.0340.0240.0140.0125=0.62++++⨯()故()P B 的估计值为0.62新养殖法的箱产量不低于50kg 的频率为0.0680.0460.0100.0085=0.66+++⨯()故()P C 的估计值为0.66因此,事件A 的概率估计值为0.620.660.4092⨯= (2()222006266343815.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为()0.0040.0200.04450.340.5++⨯=<,箱产量低于55kg 的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故新养殖法箱产量的中位数的估计值为0.5-0.3450+2.35kg 0.068()≈5. 19.解:(1)取PA 中点F ,连结EF ,BF .因为E 为PD 的中点,所以EF AD ,12EF AD =,由90BAD ABC ∠=∠=︒得BC AD ∥,又12BC AD =所以EF BC ∥.四边形BCEF 为平行四边形,CE BF ∥.又BF PAB ⊂平面,CE PAB ⊄平面,故CE PAB ∥平面 (2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,AB 为单位长,建立如图所示的空间直角坐标系A-xyz,则则(000)A ,,,(100)B ,,,(110)C ,,,(013)P ,,, (103)PC =,,,(100)AB =,,则(x 1),(x 13)BM y z PM y z =-=-,,,,因为BM 与底面ABCD 所成的角为45°,而(00)=n ,,1是底面ABCD 的法向量,所以0cos ,sin 45BM =n 222z 2(x 1)y z =-++即(x-1)²+y ²-z ²=0 又M 在棱PC 上,设,PM PC λ=则x ,1,33y z λλ==由①,②得x x y y ⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪=-=⎪⎪⎩⎩22=1+=1-22=1(舍去),=166z z 22 所以M 261-,1,⎛⎝⎭,从而261-,1,⎛= ⎝⎭AM 设()000,,x y z m =是平面ABM 的法向量,则(00002-22600即00⎧⎧++==⎪⎪⎨⎨=⎪⎪=⎩⎩x y z AM AB x m m所以可取m =(0,2).于是cos 10==m nm,n m n因此二面角M-AB-D 的余弦值为20.解(1)设P (x,y ),M (x 0,y 0),设N (x 0,0), ()()00,,0,=-=NP x x y NM y由2=NP NM 得00=,=x x y y 因为M (x 0,y 0)在C 上,所以22122+=x y因此点P 的轨迹方程为222+=x y(2)由题意知F (-1,0).设Q (-3,t ),P(m,n),则()()3,1,,33t =-=---=+-OQ ,PF m n OQ PF m tn , ()(),3,==---OP m,n PQ m,t n由1=OP PQ 得22-31-+-=m m tn n ,又由(1)知22+=2m n ,故 3+3m-tn=0所以0=OQ PF ,即⊥OQ PF 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==--由()00,1x ∈得()01'<4f x因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得 ()()120>f x f e e --=所以()2-20<<2e f x -22.解:(1)设P 的极坐标为()(),>0ρθρ,M 的极坐标为()()11,>0ρθρ,由题设知cos 14=,=ρρθOP OM = 由16OM OP =得2C 的极坐标方程()cos =4>0ρθρ因此2C 的直角坐标方程为()()22240x y x -+=≠(2)设点B 的极坐标为()(),>0B B ραρ,由题设知cos =2,=4B ραOA ,于是△OAB 面积1=sin 24cos sin 32sin 232B S OA AOBρπααπα∠⎛⎫=- ⎪⎝⎭⎛⎫=-- ⎪⎝⎭≤+当=-12πα时,S 取得最大值所以△OAB面积的最大值为23.解:(1)()()()()()5565562333344222244++=+++=+-++=+-≥a b a b a ab a b b a b a b ab a b ab a b(2)因为 ()()()()()33223233323+3+3+2++244a +=+++=+≤=+b a a b ab b ab a b a b a b a b 所以()3+8≤a b ,因此a+b≤2.。

相关文档
最新文档