初中数学 第二章 二次函数复习之数形结合课件
合集下载
二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的
解
x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6
人教版九年级年数学上册《二次函数的数形结合问题》精品课件

•
16、业余生活要有意义,不要越轨。* *5/15/2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。*** 21.5.15
谢谢大家
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.5.1521.5.15Saturday, May 15, 2021
•
10、低头要有勇气,抬头要有低气。* **5/15/2021 4:45:38 PM
y a b c 0
y
yabc0
yabc0
o
x
yabc0
X=-1
练 习 : 二 次 函 数 yax2bxc的 图 象 如 图 , 用 (<,>,=)填 空 : a 0, b 0, c 0, a+b+c 0, a-b+c 0,
如遇到 2a+b,2a-b要与 对称轴联系等;
y
-1 o
1x
(5 )二次函数有最大或最小值由a决定。
谢谢大家
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.5.1521.5.15Saturday, May 15, 2021
•
10、低头要有勇气,抬头要有低气。* **5/15/2021 4:45:38 PM
•
11、人总是珍惜为得到。21.5.15**May-2115- May-21
•
12、人乱于心,不宽余请。***Saturday, May 15, 2021
-1 o 1 x
8、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①b>0;②c<0;③4a+2b+c > 0;④ (a+c)2<b2,其中正确的个数是 ( B)
数学中考复习:数形结合思想PPT课件

距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0
中考数学专题《二次函数》复习课件(共18张PPT)

(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件

2
负半轴上,所以不与x轴相交;函数y=
3 2
x2-1与y=
3 (x-1)2的二次项系数相同,所以抛物线的形状相同,
2
因为对称轴和顶点的位置不同,所以抛物线的位置不同;
抛物线y=
1 2
x
1 2
2
的顶点坐标为
1 2
,0
;抛物线y=
1 2
x+
1 2
2
的对称轴是直线x=-
1 2
.
总结
知2-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
y 1 (x 1)2 …
2
-2 -0.5
0 -0.5
-2 -4.5 -8 …
y 1 (x 1)2 … -8 -4.5 -2 -0.5 0 -0.5 -2 …
2
y
画出二次函数 y = - 1 ( x + 1)2
与
y= -
1(x-
2 1)2 的图像,
2
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
知识点 1 二次函数y=a(x-h)2的图象
知1-导
议一议
二次函数y= 1 (x-1)2的图象与二次函数y= 1 x2
2
2
的图象有什么关系?
类似地,你能发现二次函数y= 1 (x+1)2的图象与
二次函数y=
1
2 (x-1)2的图象有什么关系吗?
2
知1-导
x … -3 -2 -1 0 1 2 3 …
的开口方向、对称
轴、顶点坐标、增减性和最值?
(2)抛物线
y= -
1(x2
1)2
负半轴上,所以不与x轴相交;函数y=
3 2
x2-1与y=
3 (x-1)2的二次项系数相同,所以抛物线的形状相同,
2
因为对称轴和顶点的位置不同,所以抛物线的位置不同;
抛物线y=
1 2
x
1 2
2
的顶点坐标为
1 2
,0
;抛物线y=
1 2
x+
1 2
2
的对称轴是直线x=-
1 2
.
总结
知2-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
y 1 (x 1)2 …
2
-2 -0.5
0 -0.5
-2 -4.5 -8 …
y 1 (x 1)2 … -8 -4.5 -2 -0.5 0 -0.5 -2 …
2
y
画出二次函数 y = - 1 ( x + 1)2
与
y= -
1(x-
2 1)2 的图像,
2
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
知识点 1 二次函数y=a(x-h)2的图象
知1-导
议一议
二次函数y= 1 (x-1)2的图象与二次函数y= 1 x2
2
2
的图象有什么关系?
类似地,你能发现二次函数y= 1 (x+1)2的图象与
二次函数y=
1
2 (x-1)2的图象有什么关系吗?
2
知1-导
x … -3 -2 -1 0 1 2 3 …
的开口方向、对称
轴、顶点坐标、增减性和最值?
(2)抛物线
y= -
1(x2
1)2
二次函数中的数形结合。 ppt课件

小结:
回 1.二次函数的图象特征与系数符号的关系 头 一 2.二次函数图象与性质的应用 看 , 3.巧妙地进行“数”与“形”的相互转化 我 想 4.重视图形信息的收集、整理和加工 说
5.培养思维能力,形成良好的数学思维习惯
二次函数中的数形结合。
…
提高题
1.(山西)二次函数y=ax2+bx+c的图象如图所示. 有下列结论:
y=ax+b和二次函数y=ax2+bx+c的图象可
能为( A )
二次函数中的数形结合。
3. 二次函数增减性
例3 二次函数y=ax2+bx+c的图象如图所示,
若点A(1,y1)、B(2,y2)是它图象上的
两点,则y1与y2的大小关系是( C)
A. y1< y2 B. y1= y2 . C.y1 >y2 D.不能确定
平移:形状和开口方向不变,即a不变. 规律:“左加右减”;“上加下减”.
二次函数中的数形结合。
练习4把抛物线y=x2+bx+c的图象向右平 移3个单位,再向下平移2个单位,所得 图象的解析式为y=x2-4x+5,
则b、c的取值为( A )
(2010年贵州毕节改编题)
A.b=2,c=4
B.b=1,c=2
解法三 抛物线 y=x2+bx+c 与x轴交于A(-1,0), B(3,0) 两点.
∴所求抛物线的解析式为y=(x+1)(x-3)=x2﹣2x﹣3
二次函数中的数形结合。
练习5(四川成都) 如图所示的抛物线是二次函数
yax23xa21 的图象, 那么抛物线的解析式
为 yx2 3.x
二次函数中的数形结合。
北师大版初中九年级下册数学课件 《二次函数与一元二次方程》二次函数PPT课件7

解:(1)当h=15时, t2-4t+3=0 t1=1,t2=3
20t–5t2=15
当球飞行1s和3s时,它的高度为15m.
15m
1s
3s
20m 2s
(2)当h=20时, t2-4t+4=0 t1=t2=2
20t–5t2=20
当球飞行2s时,它的高度为20m.
(3)当h=20.5时,
20t–5t2=20.5
第二章二次函数
二次函数与一元二次方程
回顾旧知
二次函数的一般式:
y ax2 bx c (a≠0)
x y x ______是自变量,____是____的函数。
当y=0时,
ax²+bx+c=0
ax²+bx+c=0
这是什么方程?
一元二次方程与二次函数有什么 关系?
九年级上册中我们学习了 “一元二次方程”
实际问题
以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛 物线,如果不考虑空气阻力,球的飞行高度h (单位:m)与飞行时间t (单位:s)之间 具有关系:h=20t–5t2 考虑下列问题: (1)球的飞行高度能否达到15m? 若能,需要多少时间? (2)球的飞行高度能否达到20m? 若能,需要多少时间? (3)球的飞行高度能否达到20.5m?为什么? (4)球从飞出到落地要用多少时间?
已知二次函数,求自变量的值
解一元二次方程的根
探究
下列二次函数的图象与x轴有交点吗? 若有,求出交点坐标.
(1)y=2x2+x-3
(2)y=4x2-4x+1
y
(3)y=x2–x+1
o
x
令y=0,解一元二次方程的根
中考二次函数复习课件

值 a<0
当 x=-2ba时, y 最小值=4ac4-a b2 当 x=-2ba时, y 最大值=4ac4-a b2
当 x=h 时,y 最小值=k 当 x=h 时,y 最大值=k
数学·新课标(RJ)
当
x<-2ba时,y 的值随
x
的
当 x<h 时,y 的值随 x 的增大而 减小 ;当
a>0 增大而 减小 ;当 x>-2ba时,x>h 时,y 的值随 x 的函数y=ax2+bx+c(a≠0)的图象如图26-2所示,则下列结论.错误 的有( )
①ac>0;②b<0;③a-b+c<0;④a+b+c<0;⑤2a+b=0. A.1个 B.2个 C.3个 D.4个
数学·新课标(RJ)
练习:
2、二次函数y=ax2+bx+c(a≠0)的图象如图
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数: Δ<0
y
•
0
y
•0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
x
上正下负
(2)c确定抛物线与y轴的交点位置:
上正下负, 过原点则c=0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数:
2
3
顶点是_______________,对称轴是__________,
当x
时, y随x的增大而减小。
当x
时, y有最 值为
.
顶点式为y 1 (x 1)2 1
2
6
巩固练习:
当 x=-2ba时, y 最小值=4ac4-a b2 当 x=-2ba时, y 最大值=4ac4-a b2
当 x=h 时,y 最小值=k 当 x=h 时,y 最大值=k
数学·新课标(RJ)
当
x<-2ba时,y 的值随
x
的
当 x<h 时,y 的值随 x 的增大而 减小 ;当
a>0 增大而 减小 ;当 x>-2ba时,x>h 时,y 的值随 x 的函数y=ax2+bx+c(a≠0)的图象如图26-2所示,则下列结论.错误 的有( )
①ac>0;②b<0;③a-b+c<0;④a+b+c<0;⑤2a+b=0. A.1个 B.2个 C.3个 D.4个
数学·新课标(RJ)
练习:
2、二次函数y=ax2+bx+c(a≠0)的图象如图
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数: Δ<0
y
•
0
y
•0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
x
上正下负
(2)c确定抛物线与y轴的交点位置:
上正下负, 过原点则c=0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数:
2
3
顶点是_______________,对称轴是__________,
当x
时, y随x的增大而减小。
当x
时, y有最 值为
.
顶点式为y 1 (x 1)2 1
2
6
巩固练习:
中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
九年级数学下册第二章第二节二次函数图象的平移课件

二次函数y=ax2的图象与二次函数 y=a(x-h) 2的图象的关系
y Y=5(x+2)
2
Y=5x
2
y=5(x-2)
2
• 二次函数y=a(x-h) 2的图象可由二次函数y=ax2的图
• •
象向左(或向右)平移得到: 当h>0时,抛物线y=ax2向右平移h的绝对值个单位, 得y=a(x-h) 2 当h<0时,抛物线y=ax2向左平移h的绝对值个单位, 得y=a(x-h) 2
口诀:左加右减,上加下减.Fra bibliotek学以致用
• 例1:已知函数Y=-5(X+6) -4 • (1)你能直接写出它的图象向右平移3个单位后的
2
• •
解析式吗? 2 解:Y=-5(X+6-3) -4 2 Y=-5(X+3) -4
(2)如果向下平移2个单位呢? 2 Y=-5(X+6) -4-2 2 • Y=-5(X+6) -6
抛物线 y
= a ( x-h)2 + k的特点:
向上 最 ____ 低 点是顶点; a>0时,开口________, 高 向下 a<0时,开口________, 最 ____ 点是顶点;
直线 x = h (h , k) 。 顶点坐标是 __________
对称轴是 _____________,
y = a( x – h )2 + k
左 右 平 移 上 下 平 移
y = ax2 + k
上下平移
y = a(x – h )2
左右平移
y=
ax2
结论: 一般地,抛物线 y = a(x-h)2+k 与y = ax2形状相同,位置不同。
二次函数复习-完整版PPT课件

学练优九年级数学上(RJ) 教学课件
第二十二章 二次函数
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
二次函数的概念
定义 一般形式
y=a2bc
a,b,c是常数,a≠0
自变量的取值范围 全体实数
图象
一条抛物线
一般式
二
次 解析式形式 顶点式
函
数
交点式
y=a2bca≠0 y=a-h2 y=a-1-2
y=a2bc
1,2);
y
C’
C
Q
B
OA x
图2
丙1,15
丁
0,1
4,1
1m
甲
2.5m
乙
1m
4m
解:如图建立平面直角坐标系,可设抛物a线的b 解1析1式.5,为y=a2b1
点(1,15)、(4,1)在抛物线上,得 16a 4b 1 1,
解得:a , 所1 ,b以抛2 物线解析式为
63
y1x22x1(1≤ x≤ 4) , 63
当=25时,y=1625所以丁同学的身高为1625米
应
用
二次函数的概念 及图象特征
用数形结合 的方法去研 究和运用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解决实际问题
课后训练
=-2-523 ,下列说法正确的是( )
A
A开口向下,顶点坐标5,3 B开口向上,顶点坐标5,3
C开口向下,顶点坐标-5,3 D开口向上,顶点坐标-5,3
>0, b<0,c>0时,下列图象有可能是抛物线y=a2bc的是 ( A)
a ≠ 0 性 质 六点、一轴、一方及增减性与最值
第二十二章 二次函数
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
二次函数的概念
定义 一般形式
y=a2bc
a,b,c是常数,a≠0
自变量的取值范围 全体实数
图象
一条抛物线
一般式
二
次 解析式形式 顶点式
函
数
交点式
y=a2bca≠0 y=a-h2 y=a-1-2
y=a2bc
1,2);
y
C’
C
Q
B
OA x
图2
丙1,15
丁
0,1
4,1
1m
甲
2.5m
乙
1m
4m
解:如图建立平面直角坐标系,可设抛物a线的b 解1析1式.5,为y=a2b1
点(1,15)、(4,1)在抛物线上,得 16a 4b 1 1,
解得:a , 所1 ,b以抛2 物线解析式为
63
y1x22x1(1≤ x≤ 4) , 63
当=25时,y=1625所以丁同学的身高为1625米
应
用
二次函数的概念 及图象特征
用数形结合 的方法去研 究和运用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解决实际问题
课后训练
=-2-523 ,下列说法正确的是( )
A
A开口向下,顶点坐标5,3 B开口向上,顶点坐标5,3
C开口向下,顶点坐标-5,3 D开口向上,顶点坐标-5,3
>0, b<0,c>0时,下列图象有可能是抛物线y=a2bc的是 ( A)
a ≠ 0 性 质 六点、一轴、一方及增减性与最值
第二章 二次函数-2022-2023学年九年级数学下册教材配套教学课件(北师大版)

ax2+c≥kx+m的解集是____.
【答案】-4≤x≤1
【点睛】本题考查了二次函数与不等式的关系,
主要利用了数形结合的思想,解题关键在于对图
像的理解,谁大谁的图象在上面.
典例精析
12.仙桃市大力推进义务教育均衡发展,加强学校
标准化建设,计划用三年时间对全市学校的设施和
设备进行全面改造,2020年市政府已投资7.5亿元人
D.2≤m≤3或m≥6
【答案】D
【详解】解:∵抛物线解析式为y=x2-4x+3,
∴对称轴为x=2,由二次函数的对称性可知,
当x=-1和x=5时,函数值y相等,
当x=1和x=3时,函数值y相等,
即当满足-1<x<1和3<x<5的函数值相同,
当-1<x1<1,存在一个正数m,当m-1<x2<m
时,都有y1≠y2,
知识点7 二次函数的应用
知识点总结
知识点一、二次函数的定义
1.一般地,如果y=ax2+bx+c(a,b,c是常数,
a≠0),那么y叫做x的二次函数.特别地,当a≠0,b=
c=0时,y=ax2是二次函数的特殊形式.
2.二次函数的三种基本形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);
B,若点B关于( ,0)的对称点C恰好落在抛物线上,
则a值为_____.
【答案】−
【分析】先根据二次函数的性质及题意求出点B的
坐标,再根据对称的性质求出点C的坐标,最后将
点C的坐标代入二次函数解析式求解即可.
典例精析
11.如图,已知抛物线y=ax2+c与直线y=kx+m交
于A(-4,y1),B(1,y2)两点,则关于x的不等式
【答案】-4≤x≤1
【点睛】本题考查了二次函数与不等式的关系,
主要利用了数形结合的思想,解题关键在于对图
像的理解,谁大谁的图象在上面.
典例精析
12.仙桃市大力推进义务教育均衡发展,加强学校
标准化建设,计划用三年时间对全市学校的设施和
设备进行全面改造,2020年市政府已投资7.5亿元人
D.2≤m≤3或m≥6
【答案】D
【详解】解:∵抛物线解析式为y=x2-4x+3,
∴对称轴为x=2,由二次函数的对称性可知,
当x=-1和x=5时,函数值y相等,
当x=1和x=3时,函数值y相等,
即当满足-1<x<1和3<x<5的函数值相同,
当-1<x1<1,存在一个正数m,当m-1<x2<m
时,都有y1≠y2,
知识点7 二次函数的应用
知识点总结
知识点一、二次函数的定义
1.一般地,如果y=ax2+bx+c(a,b,c是常数,
a≠0),那么y叫做x的二次函数.特别地,当a≠0,b=
c=0时,y=ax2是二次函数的特殊形式.
2.二次函数的三种基本形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);
B,若点B关于( ,0)的对称点C恰好落在抛物线上,
则a值为_____.
【答案】−
【分析】先根据二次函数的性质及题意求出点B的
坐标,再根据对称的性质求出点C的坐标,最后将
点C的坐标代入二次函数解析式求解即可.
典例精析
11.如图,已知抛物线y=ax2+c与直线y=kx+m交
于A(-4,y1),B(1,y2)两点,则关于x的不等式
二次函数图像和性质复习课件精选全文

例4 已知抛物线 y x2 k 4 x k 7,
①k取何值时,抛物线经过原点; ②k取何值时,抛物线顶点在y轴上; ③k取何值时,抛物线顶点在x轴上; ④k取何值时,抛物线顶点在坐标轴上。
解:①抛物线经过原点,则当x=0时,y
=0,所以 0 02 k 4 0 k 7,所以k=
-7,所以当k=-7时,抛物线经过原点;
在对称轴右侧,y随x的增大而减小
y x
y x
4.二次函数 y ax2 bx c 的性质:
(1)顶点坐标
b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
②抛物线顶点在y轴上,则顶点横坐标为0,
即
b
k 4
0
,所以k=-4,所
2a
21
以当k=-4时,抛物线顶点在y轴上。
③抛物线顶点在x轴上,则顶点纵坐标为0,
即 4ac b2 4 1 k 7 k 42 0 ,整理得
4a
4 1
k2 4k 12 0 ,解得:k1 2, k2 6 ,所 以当k=2或k=-6时,抛物线顶点在x轴 上。 ④由②、③知,当k=-4或k=2或k=-6 时,抛物线的顶点在坐标轴上。
2a
①若b=0对称轴为y轴,
②若a,b同号对称轴在y轴左侧,
③若a,b异号对称轴在y轴右侧。
5.抛物线y=ax2+bx+c中a,b,c的作用。 (3)c的大小决定抛物线y=ax2+bx+c与y轴 交点的位置。 当x=0时,y=c,∴抛物线y=ax2+bx+c 与y轴有且只有一个交点(0,c), ①c=0抛物线经过原点; ②c>0与y轴交于正半轴; ③c<0与y轴交于负半轴。
北师大版九年级数学下册确定二次函数的表达式课件(第1、2课时20张)

+
顶点式 = ( − ) 能使问题简化。
教学过程
新
知
新
授
做一做
类型三 已知抛物线与轴交点的坐标,求二次函数的表达式
例3.已知二次函数的图象与 轴交于点M(-2,0)、N(3,
-0),且抛物线经过P(2,4),求这个二次函数的表达式.
解:设函数的表达式为 = ( + )( − )
知
新
答一答
1.二次函数的达式有几种情势?
一般式: = + + (a≠0)
顶点式: = ( − ) + (a≠0)
交点式: = ( − )( − )(a≠0)
2.已知函数 = − − ,函数的开口方向 向上 ,
对称轴是直线 =1 ,顶点坐标是 (1,-7)
除了以上四种类型外,还有一些特殊方法。
对二次函数 = + + .
抛物线与轴交点(0,c).
当 = , = 时,抛物线顶点在原点,以轴为对称轴.
当 = 时,抛物线顶点(0,c),以轴为对称轴.
当 = 时,抛物线必过原点.
当 − = 时,抛物线顶点在轴上.
= −
所以,所求二次函数表达式为 = −
教学过程
方
法
总
结
记一记
方法总结:所求二次函数表达式有两个
待定系数时,需要两个独立条件或两个
点的坐标。
教学过程
新
知
新
授
做一做
类型二
已知抛物线顶点的坐标,求二次函数的表达式
例2.已知二次函数的图象以M(-2,3)为顶点,且经过点
N(-1,-3),求这个二次函数的表达式.
顶点式 = ( − ) 能使问题简化。
教学过程
新
知
新
授
做一做
类型三 已知抛物线与轴交点的坐标,求二次函数的表达式
例3.已知二次函数的图象与 轴交于点M(-2,0)、N(3,
-0),且抛物线经过P(2,4),求这个二次函数的表达式.
解:设函数的表达式为 = ( + )( − )
知
新
答一答
1.二次函数的达式有几种情势?
一般式: = + + (a≠0)
顶点式: = ( − ) + (a≠0)
交点式: = ( − )( − )(a≠0)
2.已知函数 = − − ,函数的开口方向 向上 ,
对称轴是直线 =1 ,顶点坐标是 (1,-7)
除了以上四种类型外,还有一些特殊方法。
对二次函数 = + + .
抛物线与轴交点(0,c).
当 = , = 时,抛物线顶点在原点,以轴为对称轴.
当 = 时,抛物线顶点(0,c),以轴为对称轴.
当 = 时,抛物线必过原点.
当 − = 时,抛物线顶点在轴上.
= −
所以,所求二次函数表达式为 = −
教学过程
方
法
总
结
记一记
方法总结:所求二次函数表达式有两个
待定系数时,需要两个独立条件或两个
点的坐标。
教学过程
新
知
新
授
做一做
类型二
已知抛物线顶点的坐标,求二次函数的表达式
例2.已知二次函数的图象以M(-2,3)为顶点,且经过点
N(-1,-3),求这个二次函数的表达式.
《二次函数——二次函数的图象与性质》数学教学PPT课件(9篇)

在函数y=x2的图象上,则y1,y2,y3之间的大小
y3>y2>y1
关系为___________.
导引:因为a>1,所以0<a-1<a<a+1, 所以这三个点
都在函数y=x2的图象的对称轴的右侧.根据
“当x>0时,y随x的增大而增大”的性质,可得
y3>y2>y1.
(来自《点拨》)
知2-讲
总 结
当所比较的点都在抛物线的对称轴的同一侧时,
y值都随x值的增大而增大
D.当x<0时,函数y=x2,y的值随x值的增大的变化情况与当x>0
时,函数y=-x2,y的值随x值的增大的变化情况相同
(来自《典中点》)
知2-练
4 如图,一次函数y1=kx+b的图象与二次函数y2=
x2的图象交于A(-1,1)和B(2,4)两点,则当y1<y2时,x的取
值范围是( D )
1
(1,2
), 可知, 其中有两点在第一象限, 一
点在第四象限, 排除B,
1
C;在第一象限内,
y1的对应
2
点(1, 2)在上, y3的对应点(1, )在下, 排除A.
知1-练
1 关于二次函数y=3x2的图象,下列说法错误的是( C )
A.它是一条抛物线
B.它的开口向上,且关于y轴对称
C.它的顶点是抛物线的最高点
可直接利用函数的增减性进行大小比较.
(来自《点拨》)
知2-练
1 已知点(x1,y1),(x2,y2)是二次函数y=-x2的图象
上的两点,当x1<x2<0时,y1与y2的大小关系为
y1<y2
________.
y3>y2>y1
关系为___________.
导引:因为a>1,所以0<a-1<a<a+1, 所以这三个点
都在函数y=x2的图象的对称轴的右侧.根据
“当x>0时,y随x的增大而增大”的性质,可得
y3>y2>y1.
(来自《点拨》)
知2-讲
总 结
当所比较的点都在抛物线的对称轴的同一侧时,
y值都随x值的增大而增大
D.当x<0时,函数y=x2,y的值随x值的增大的变化情况与当x>0
时,函数y=-x2,y的值随x值的增大的变化情况相同
(来自《典中点》)
知2-练
4 如图,一次函数y1=kx+b的图象与二次函数y2=
x2的图象交于A(-1,1)和B(2,4)两点,则当y1<y2时,x的取
值范围是( D )
1
(1,2
), 可知, 其中有两点在第一象限, 一
点在第四象限, 排除B,
1
C;在第一象限内,
y1的对应
2
点(1, 2)在上, y3的对应点(1, )在下, 排除A.
知1-练
1 关于二次函数y=3x2的图象,下列说法错误的是( C )
A.它是一条抛物线
B.它的开口向上,且关于y轴对称
C.它的顶点是抛物线的最高点
可直接利用函数的增减性进行大小比较.
(来自《点拨》)
知2-练
1 已知点(x1,y1),(x2,y2)是二次函数y=-x2的图象
上的两点,当x1<x2<0时,y1与y2的大小关系为
y1<y2
________.
中考数学专题《二次函数》复习课件(共54张PPT)

当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴
中考数学复习 二次函数的图象与性质 复习课 课件

二次函数
二次函数的图象与性质
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图象和性质 用函数观点看方程与不等式
应用
1. 二次函数的定义
一般地,形如 y=ax2+bx+c(其中a,b,c为 常数,且a≠0)的函数, 叫做二次函数. 其中x是自 变量, a,b,c 分别是函数解析式的二次项系数、 一次项系数和常数项.
最大值为4ac b. 2 4a
【温馨提示】判断函数图象增减性时,可在旁边画出大致图象,数形结合更直观.
2. 二次函数的图象和性质
(4)根据函数图象判断相关结论
图象(示意图)
结论
>
a_____0
b__>___0
c<0 b2-4ac > 0
a_<____0
b=0 c>0
b2-4ac_>____0
a>0
B E
D
二次函数的对称性
例3.如图,在平面直角坐标系网格中,点Q,R,S,T 都在格点上,过点
P(1,2)的抛物线y=ax2+2ax+c(a<0)可能还经过( D )
A. 点Q
B. 点R
C. 点S
D. 点T
分析:由y=ax2+2ax+c得到对称轴为
P'
x b 2a 1 2a 2a
b_<____0
c_>____0
b2-4ac > 0
a<0
b_<____0
c<0
b2-4ac_=____0
2. 二次函数的图象和性质
图象(示意图) _________
_________
y=ax2+bx
二次函数的图象与性质
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图象和性质 用函数观点看方程与不等式
应用
1. 二次函数的定义
一般地,形如 y=ax2+bx+c(其中a,b,c为 常数,且a≠0)的函数, 叫做二次函数. 其中x是自 变量, a,b,c 分别是函数解析式的二次项系数、 一次项系数和常数项.
最大值为4ac b. 2 4a
【温馨提示】判断函数图象增减性时,可在旁边画出大致图象,数形结合更直观.
2. 二次函数的图象和性质
(4)根据函数图象判断相关结论
图象(示意图)
结论
>
a_____0
b__>___0
c<0 b2-4ac > 0
a_<____0
b=0 c>0
b2-4ac_>____0
a>0
B E
D
二次函数的对称性
例3.如图,在平面直角坐标系网格中,点Q,R,S,T 都在格点上,过点
P(1,2)的抛物线y=ax2+2ax+c(a<0)可能还经过( D )
A. 点Q
B. 点R
C. 点S
D. 点T
分析:由y=ax2+2ax+c得到对称轴为
P'
x b 2a 1 2a 2a
b_<____0
c_>____0
b2-4ac > 0
a<0
b_<____0
c<0
b2-4ac_=____0
2. 二次函数的图象和性质
图象(示意图) _________
_________
y=ax2+bx
中考数学专题复习——数形结合思想PPT课件

2 无论 m 为何实数,直线 y = x + 2m 与 y =-x+4的交点不可能在 ( C) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
y
O
x
y=-x+4
3 已 知 二 次 函 数 y1 = ax2 + bx + c (a≠0)与一次函数 y2=kx +m(k≠0) 的 图 象 相 交 于 点 A( - 2,4) , B(8,2) (如图所示),则能使 y1 > y2成立的 x<-2或x>8 x的取值范围是_____
24 24 18 (3)中途加油__升 (4)如果加油站离 12 目的地还有230公里, 6 车速为40公里/小时, 0 1 2 3 4 5 6 7 8 9 10 11 (小时) t
要到达目的地,油箱中的油是否够用?请说明理由 .
7、思考题:
已知:如图,直线y=-√3 x/3+1和x 轴、 y 轴分别相交于 A、 B 两点,以线段 AB 为 边在第一象限内作一个等边三角形ABC,点P 在第一象限内,且使△ABP与△ABC的面积相 y 等。(1)求C点坐标; (2)求直线PC的解析式; D (3)若点Q的坐标为 C (√3 m,m2-3),问点Q在 P B x 不在直线PC上? A E O
2 例3:已知二次函数 y ax bx c 的图象如图所示
1、试判断a , b , c 的符号 2、点(b , 2a-b)在第
二
象限
3、若M= a b c a b c 则 ( A ) A、M > 0 B、 M = 0 C、M < 0 D、不能确定
2a b 2a b y
运用数形结合的方法,将 函数的解析式、图象和性 质三者有机地结合起来
-1
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若(2010,y1),(-2010,y2)是该抛物线 上的两点,请比较y1与y2的大小
问:怎样平移抛物线可使y1=y2?
y
-2 -1 O 1
Hale Waihona Puke x练习3:如图,抛物线y=ax2+bx+c与x轴的一个交 点在点(-2,0)和(-1,0)之间,
(2)若此抛物线与y轴的交点为(0,2), M(x1, -2010),N(x2, -2010)是图象上的两点, 则x=x1+x2时,二次函数的值是多少?
练习2:
如图,抛物线y=ax2+bx+c与x轴的一个交 点在点(-2,0)和(-1,0)之间,
(4)若抛物线与y轴的 交点为(0,2),求当 y<2时,x的取值范围。
y
变式:若p(n,y1),Q(2,y2) 是抛物线上的两点,且
y1>y2,求实数n的取值 范围。
-2 -1 O 1
x
练习3:
如图,抛物线y=ax2+bx+c与x轴的一个交 点在点(-2,0)和(-1,0)之间,
y
思考:观察结果,当 自变量
取 x x1 x2时,函数值与
原解析式哪个系数有关?如
-2 -1 O 1
x
何解释?
练习4:
如图,抛物线y=ax2+bx+c与x轴的一个交 点在点(-2,0)和(-1,0)之间,
问当x>2时,y随 x 的变化情况。 y
-2 -1 O 1
提升训练: 若抛物线y=mx2+(2m—1)x+1(m≠0),对任意
x
D
练习2:
如图,两条抛物线
y1
1 2
x2
1、 y 2
1 2
x2
1与分
别经过点(—2,0),(2,0)且平行于y轴的两条平行线
围成的阴影部分的面积为
A.8
B.6
C.10
D.4
、
(9题图)
变式2:
如图,二次函数y=ax2+bx+c的图象如图 所示,Q(n,3)是图象上一点,且 AQ⊥BQ,则a的值是多少。
二次函数复习之数形结合
练习1:
如图,抛物线y=ax2+bx+c与x轴的一个交 点在点(-2,0)和(-1,0)之间,
(1)求当y=0时,方程ax2+bx+c=0的两根的取 值范围。
(2)若顶点坐标为(1,2.5),
根据图象求方程ax2+bx+c-2=0
y
的根的情况。
请归纳方程ax2+bx+c=k -2 -1 O 1
y
Q
A
BOx
y
1A
B
O 12
xx
变式1:
如图,点A,B的坐标分别为(1, 4)和(4, 4),
抛物线 y a(x m)2 n 的顶点在线段AB上运动,
与x轴交于C、D两点(C在D的左侧),点C的横
坐标最小值为—3,则点D的横坐标最大值为
()
A.-3
B.1 y C.5
D.8
A(1,4) B(4,4)
O
C
(第10题)
x
的根的情况。
练习2:
如图,抛物线y=ax2+bx+c与x轴的一个交 点在点(-2,0)和(-1,0)之间(不包 括该两点),
(1)求下列各式的取值范围
①abc
②4a—2b+c ③ 2a+b
y
④ 4a+2b+c
(2)请比较2c与3b 的大小 -2 -1 O 1
x
(3)请比较a+b与 m(am+b) 的大小 (m≠1的实数)
正实数m,当x<—2时,问y随x的变化情况。
变式1:
如图,抛物线y=ax2+bx+c与x轴的一个交 点A在点(-2,0)和(-1,0)之间(包括 这两点),顶点C是矩形DEFG上(包括边界 和内部)的一个动点,求a的取值范围。
变式2:
如图,四边形ABCD为正方形,A(1,1), B(2,1),抛物线y=ax2(a>0)若要与正 方形有交点,求a的取值范围。