高中数学必修5《等差数列求和公式》教学设计
等差数列求和 教案
等差数列求和教案教案标题:等差数列求和教学目标:1. 理解等差数列的概念和性质;2. 能够根据等差数列的首项、公差和项数求和;3. 能够应用等差数列求和的方法解决实际问题。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学PPT等;2. 学生准备:笔、纸。
教学过程:步骤一:导入新知1. 引入:通过提问的方式,复习学生对等差数列的基本概念和性质,例如:什么是等差数列?等差数列的公式是什么?2. 出示一道等差数列求和的例题,并引导学生思考如何解决。
步骤二:探究等差数列求和的方法1. 讲解等差数列求和的公式:Sn = (a1 + an) * n / 2,其中Sn为等差数列的前n 项和,a1为首项,an为末项,n为项数。
2. 通过示例演示公式的应用,解决具体的等差数列求和问题。
3. 强调公式的推导过程,让学生理解公式的本质。
步骤三:练习与巩固1. 提供一系列等差数列求和的练习题,让学生独立完成并相互交流讨论。
2. 针对部分难题,进行讲解和解析,帮助学生理解和掌握等差数列求和的方法。
步骤四:拓展与应用1. 提供一些实际问题,引导学生运用等差数列求和的方法解决,如:小明每天存钱,第一天存1元,以后每天比前一天多存2元,到第n天共存了多少钱?2. 鼓励学生思考如何将实际问题转化为等差数列求和的问题,并给予指导和解答。
步骤五:归纳总结1. 让学生总结等差数列求和的方法和公式,强调重点和难点;2. 鼓励学生提出疑问和问题,进行解答和讨论。
步骤六:作业布置1. 布置一些等差数列求和的作业题,要求学生独立完成并及时交上;2. 提醒学生复习和巩固所学知识。
教学反思:1. 教学中要注重启发式教学,引导学生主动思考和解决问题;2. 在讲解公式推导时,要通过具体例子和图像等方式加深学生对公式的理解;3. 在练习环节,要针对学生的不同水平设置不同难度的题目,以促进学生的巩固与提高。
4. 教学过程中要注重学生的参与和互动,激发学生的学习兴趣。
等差数列求和公式教案
等差数列求和公式教案一、教学目标1.理解等差数列的概念和性质;2.掌握等差数列的通项公式和求和公式;3.能够应用等差数列的公式解决实际问题。
二、教学重点1.等差数列的通项公式和求和公式;2.应用等差数列的公式解决实际问题。
三、教学难点1.等差数列求和公式的推导;2.应用等差数列的公式解决复杂问题。
四、教学内容1. 等差数列的概念和性质等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差相等的数列。
例如:1,3,5,7,9,11,13,15,17,19 就是一个等差数列,公差为2。
等差数列的性质有:1.公差相等;2.任意两项的和等于它们的中间项之和;3.等差数列的前n项和可以表示为n的某个函数。
2. 等差数列的通项公式和求和公式等差数列的通项公式是指根据数列中的位置n,求出该位置上的数的公式。
设等差数列的首项为a1,公差为d,则等差数列的通项公式为:an = a1 + (n - 1) * d等差数列的前n项和公式是指求出等差数列前n项的和的公式。
设等差数列的首项为a1,公差为d,则等差数列的前n项和公式为:Sn = n * (a1 + an) / 2其中,an为等差数列的第n项。
3. 应用等差数列的公式解决实际问题等差数列的公式可以应用于很多实际问题中,例如:1.求和问题:某人每天存钱,第一天存1元,第二天存2元,第三天存3元,以此类推,到第30天时,他一共存了多少钱?解法:这是一个等差数列,首项为1,公差为1,共有30项。
根据等差数列的前n项和公式,可得:Sn = 30 * (1 + 30) / 2 = 465所以,他一共存了465元。
2.求项数问题:一个等差数列的首项为3,公差为4,如果它的第n项为35,求n是多少?解法:根据等差数列的通项公式,可得:an = a1 + (n - 1) * d35 = 3 + (n - 1) * 4n = 9所以,该等差数列的第9项为35。
五、教学方法1.讲解法:通过讲解等差数列的概念、性质、通项公式和求和公式,让学生掌握等差数列的基本知识;2.案例法:通过实际问题的案例,让学生应用等差数列的公式解决问题,提高学生的实际应用能力;3.练习法:通过大量的练习题,让学生巩固等差数列的公式和应用能力。
《等差数列求和公式》教案
《等差数列求和公式》教案教案:等差数列求和公式一、教学目标:1.理解等差数列的概念,掌握等差数列的通项公式和部分和公式;2.能够根据所给的等差数列求出其前n项的和。
二、教学重点:1.等差数列的通项公式和部分和公式的掌握;2.能够根据实际问题应用等差数列的求和公式。
三、教学难点:1.等差数列部分和公式的推导;2.将实际问题转化为等差数列的求和问题。
四、教学过程:1.情境导入(5分钟)教师展示一段视频:小明每天放学回家都会经过一家自动贩卖机,他每天都会从自动贩卖机里买一瓶饮料。
他发现,每天他付的饮料价格比前一天多2元。
请大家思考一下,小明连续买了n天的饮料,他总共花费了多少钱呢?2.理解等差数列的概念(10分钟)教师引导学生思考,并给予提示,帮助学生定义等差数列:等差数列:指一个数列中,从第二项起,每一项与前一项的差都相等。
这个相等的差叫做公差。
学生根据提示得出答案并讨论。
3.推导等差数列的通项公式(15分钟)教师通过提问引导学生思考,帮助学生推导出等差数列的通项公式:设等差数列的首项为a1,公差为d,第n项为an;由等差数列的定义可知:a2=a1+da3=a2+d=a1+2da4=a3+d=a1+3d……an = a1 + (n-1)d4.理解等差数列的部分和公式(15分钟)教师通过引导学生思考推导出等差数列的部分和公式:等差数列的前n项和Sn = a1 + a2 + a3 + … + an又a1 + an = a2 + an-1 = a3 + an-2 = … = an-1 + a2 = an +a1由此可以得出:2Sn = (a1 + an) + (a2 + an-1) + … + (an + a1)Sn = (a1 + an) × n/25.运用等差数列求和公式解题(30分钟)教师给学生提供一些实际问题,引导学生运用等差数列求和公式解决问题。
例如:小明连续买了n天的饮料,第一天他支付了2元,第二天支付了4元,第三天支付了6元,以此类推,请计算小明总共支付的饮料费用。
等差数列的求和公式的教案
等差数列的求和公式的教案
目标
本教案旨在向学生介绍等差数列的概念,并教授他们求和公式的方法。
教学步骤
步骤一:引入
1. 向学生简要介绍等差数列的概念。
解释等差数列是指每个数与其前一个数的差值都相等的数列。
2. 提示学生思考常见的等差数列,并列举几个例子。
步骤二:推导求和公式
1. 解释等差数列求和的概念,并告诉学生我们可以找到一种方法来简化求和过程。
2. 以一个具体的等差数列为例,展示如何推导等差数列求和公式。
3. 解释每个步骤的原理,并确保学生理解。
步骤三:练
1. 提供一些练题,要求学生应用所学的求和公式来计算等差数列的和。
2. 指导学生如何有效地解答这些问题,并给予他们必要的示范和讲解。
步骤四:巩固
1. 给学生一些拓展题,考验他们对等差数列求和公式的理解和应用能力。
2. 让学生解答这些问题,并互相检查答案。
教学资源
- 等差数列的定义和性质的讲解材料
- 练题集
- 答案解析
教学评估
- 监测学生在练中的表现,评估他们是否掌握了等差数列的求和公式。
- 给学生一份测验,以确定他们对该概念的掌握程度。
结束语
通过本课程,学生应该能够理解等差数列的概念,并能够应用求和公式解决相关问题。
同学们应该练习并加深对该概念的理解,并积极参与课堂活动和互动。
等差数列求和公式教案
过 多媒体演示:
加的方法。
堆放的钢管共 21 层,自上而下各
项和公式的推导的讲解打 下基础。
层的钢管数组成等差数列
1,2,3,4,… 21,求钢管的总数。
程 通过多媒体演示堆放的
观 看 并 思 考 大 屏 钢管求和的例子,使学生 幕 上 演 示 的 堆 放 的 形象的感受并建立倒序相 钢管的总数,通过多 加的思想,从而引发学生 媒 体 演 示 观 察 出 倒 想到用同样的方法推导等 序相加的方法。 差数列的前 n 项和的公 7’
情感态度 价值观
一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路 和方法; 2、通过与生活实际相联系的例题及习题,使学生了解数学在生活中
的实用性,渗透学以致用的思想。
教学重点 等差数列的前 n 项和的公式及其应用
教学难点 等差数列的前 n 项和的公式的推导
教学方法 讲授法、启发法、分组教学法
象,便于更好的掌握。 形公式并记忆。
提问学生用通项公式将上式展
开得:Sn = a1 +( a1 + d)+( a1 +2 d)
+……+[ a1 +(n -1)d]
利用倒序相加的思想将 Sn 写成
通过例题 1 要让学生 思考,与老师共同
程
Sn = an + an1 + an2 +……+ a1
学会应用等差数列的求 分析求解,找到公式
(1100) (2 99) (3 98)... (50 51)
学 50 101
5050
引导学生在不同的类型 的等差数列中充分讨论高 斯算法,
问题 1:
通过详细此题,使学生 整理思路,通过这 初 步 感 受 倒 序 相 加 的 方
等差数列的求和公式教学设计
等差数列的求和公式教学设计第一篇:等差数列的求和公式教学设计等差数列前n项和教学案例:一、教学设计思想本堂课的设计是以个性化教学思想为指导进行设计的。
本堂课的教学设计对教材部分内容进行了有意识的选择和改组,为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。
课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展。
在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
二、学生情况与教材分析1、学生通过上一节的学习,已经了解了等差数列的定义,基本上掌握了通项公式,会运用等差数列的通项公式进行解题,因此只要简单地回顾上一节课的知识就可引入新课;2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。
只有做到了直观上的理解,才是真正的理解。
因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系。
本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。
三、教学目标1、知识目标(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和。
2、能力目标经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。
3、情感目标通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学心理体验,产生热爱数学的情感,体验在学习中获得成功。
高三数学必修五教案《等差数列》优秀4篇
高三数学必修五教案《等差数列》优秀4篇1. 引言本教案是针对高三数学必修五教材中的《等差数列》内容进行设计的。
《等差数列》是高中数学中的重要概念,对学生理解数列的规律和应用具有重要意义。
本教案旨在通过多种不同的教学方法和活动,帮助学生深入理解等差数列的定义、性质和应用。
2. 教案一:等差数列的定义和性质2.1 教学目标•了解等差数列的定义;•掌握等差数列的通项公式;•理解等差数列的性质。
2.2 教学内容1.等差数列的定义;2.等差数列的通项公式;3.等差数列的性质。
2.3 教学活动•分组讨论:学生分成小组,讨论等差数列的定义和通项公式,并总结出等差数列的性质;•演示教学:教师通过示例,引导学生理解等差数列的定义和通项公式,并帮助学生掌握等差数列的性质;•练习巩固:学生进行一些练习题,巩固对等差数列的理解。
2.4 教学评价教师通过观察学生在讨论和练习中的表现,评价学生对等差数列的理解程度。
3. 教案二:等差数列的求和公式3.1 教学目标•掌握等差数列的求和公式;•理解求和公式的推导过程;•运用求和公式解决实际问题。
3.2 教学内容1.等差数列的求和公式;2.求和公式的推导过程;3.运用求和公式解决实际问题。
3.3 教学活动•演示推导过程:教师通过详细的步骤,演示等差数列求和公式的推导过程,并帮助学生理解每一步的意义;•练习应用:学生进行一些实例练习,运用求和公式解决实际问题;•小组合作:学生分组讨论,互相解答问题,提高合作能力和解决问题的能力。
3.4 教学评价教师通过观察学生在练习和讨论中的表现,评价学生对求和公式的掌握情况。
4. 教案三:等差数列的应用4.1 教学目标•熟练运用等差数列解决实际问题;•发现等差数列在生活和科学中的应用。
4.2 教学内容1.通过例题引入等差数列的应用;2.探究等差数列在生活和科学中的应用。
4.3 教学活动•案例分析:教师通过具体的案例,引导学生发现等差数列在生活和科学中的应用,并分析其规律;•分组讨论:学生分组讨论,提出更多的应用案例,并探究其规律和特点;•学生报告:每个小组选取一个应用案例进行报告,分享给全班同学。
高三数学必修五教案《等差数列》优秀4篇
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。
二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。
三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】等差数列前n项和公式的推导和应用。
【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。
你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
等差数列求和公式教案
等差数列求和公式教案教案标题:等差数列求和公式教案教案目标:1. 理解等差数列的概念和性质。
2. 掌握等差数列求和公式的推导过程。
3. 能够应用等差数列求和公式解决实际问题。
教学准备:1. 教师准备:黑板、彩色粉笔、教学PPT、计算器。
2. 学生准备:课本、练习册、笔、纸。
教学过程:引入活动:1. 利用教学PPT或黑板,展示一组数字序列:2, 5, 8, 11, 14, ...2. 提问学生:你能发现这组数字序列中的规律吗?教学步骤:步骤一:等差数列的概念和性质1. 解释等差数列的概念:等差数列是指一个数列中,从第二项开始,每一项与前一项的差值都相等的数列。
2. 引导学生观察示例序列,并找出差值:3。
3. 引导学生总结等差数列的性质:公差相等,差值固定。
步骤二:等差数列求和公式的推导1. 提示学生回忆等差数列的通项公式:an = a1 + (n - 1)d。
2. 利用示例序列,展示求和公式的推导过程:- 将示例序列反向排列并相加,得到等差数列的和:14, 11, 8, 5, 2。
- 将示例序列与反向序列相加,得到和的总和:16, 16, 16, 16, 16。
- 总和除以2,得到等差数列的和:16 ÷ 2 = 8。
3. 引导学生总结等差数列求和公式:Sn = (a1 + an) × n ÷ 2。
步骤三:应用等差数列求和公式解决实际问题1. 提供一些实际问题,要求学生利用等差数列求和公式解决,如:小明连续10天每天跑步增加2公里,第一天跑了5公里,问他10天内累计跑了多少公里?2. 引导学生分析问题,确定公差(d)、首项(a1)、项数(n)。
3. 学生独立计算并给出答案。
总结与拓展:1. 总结等差数列的概念、性质和求和公式。
2. 提醒学生在实际问题中灵活运用等差数列求和公式。
3. 鼓励学生拓展思维,尝试推导其他数列的求和公式。
教学反思:本教案通过引入活动激发学生兴趣,通过示例和推导过程帮助学生理解等差数列求和公式的原理,最后通过应用实际问题进行巩固。
《等差数列求和》说课稿
《等差数列求和》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《等差数列求和》。
接下来,我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等差数列求和”是高中数学必修 5 第二章数列中的重要内容。
数列作为一种特殊的函数,在数学中有着广泛的应用。
等差数列求和公式不仅是数列这一章节的重点,也是后续学习等比数列以及数学归纳法的基础。
本节课所涉及的等差数列求和公式的推导方法——倒序相加法,是一种重要的数学思想方法,对于培养学生的逻辑思维能力和创新能力具有重要意义。
二、学情分析学生在之前已经学习了等差数列的定义、通项公式等基础知识,具备了一定的数列运算能力和逻辑推理能力。
但对于如何从具体的等差数列求和问题中抽象出一般的求和方法,以及如何理解和运用倒序相加法,可能还存在一定的困难。
此外,高中学生的思维正处于从形象思维向抽象思维过渡的阶段,在教学中需要注重引导学生通过观察、分析、归纳等活动,自主探究等差数列求和的规律。
三、教学目标1、知识与技能目标(1)学生能够理解等差数列求和公式的推导过程,并掌握等差数列求和公式。
(2)学生能够熟练运用等差数列求和公式解决相关的数学问题。
2、过程与方法目标(1)通过对等差数列求和公式的推导,培养学生的观察、分析、归纳和逻辑推理能力。
(2)让学生体会从特殊到一般、从具体到抽象的数学思维方法,提高学生的数学素养。
3、情感态度与价值观目标(1)通过自主探究和合作交流,激发学生学习数学的兴趣,增强学生的自信心和团队合作精神。
(2)让学生在解决数学问题的过程中,感受数学的简洁美和严谨性,培养学生的审美情趣和科学态度。
四、教学重难点1、教学重点(1)等差数列求和公式的推导和应用。
(2)倒序相加法的理解和运用。
2、教学难点(1)如何引导学生从具体的等差数列求和问题中发现倒序相加法的规律。
(2)灵活运用等差数列求和公式解决综合性的数学问题。
等差数列求和详细教案
等差数列求和详细教案一、教学目标1. 知识目标:掌握等差数列的概念及公式,掌握等差数列求和公式的推导过程和应用方法。
2. 技能目标:能够应用等差数列求和公式解决实际问题,培养学生分析和解决问题的能力。
3. 情感目标:通过学习和实践,提高学生的数学能力和自信心,培养学生发现规律和思考的能力。
二、教学重难点1. 重点:等差数列的概念、公式和性质。
2. 难点:等差数列求和公式的推导和应用。
三、教学内容及时间安排1. 等差数列的概念及公式(20分钟)a. 等差数列的定义和性质;b. 公差的定义和计算方法;c. 等差数列通项公式;d. 常用的等差数列公式,如前n项和、通项和、中项等。
2. 等差数列求和公式的推导(30分钟)a. 初步推导:前n项和Sn(n≥1)的个数是n项,每项的平均值为(a1+an)/2,因此Sn=n(a1+an)/2;b. 深入推导:将Sn表示为n项的和,通过把每一项和其对应的项相加,得到Sn=n(a1+an)/2。
3. 等差数列求和公式的应用(30分钟)a. 常见的求和类型:求前n项和、通项和、中项等;b. 实际问题的应用:如阶梯状收入、等差数列补缺等。
4. 练习与讲评(40分钟)a. 练习:课后练习题;b. 讲评:分析解题思路,提高解决问题的能力。
五、教学资源黑板、彩色粉笔、PPT、课件、练习题六、教学过程一、引入(5分钟)教师通过引入生活中的实际问题,如等差数列补缺,引起学生的兴趣。
引导学生自主思考,回顾巩固等差数列的基本概念和公式。
二、讲解等差数列的概念及公式(20分钟)1. 等差数列的定义和性质定义:如果一个数列从第二项开始,每一项与它的前一项之差都相等,那么这个数列就是等差数列。
性质:等差数列各项的和等于项数乘以首项与末项的平均数。
2. 公差的定义和计算方法定义:等差数列中相邻两项之间的差叫做公差。
计算方法:公差等于任意两项之差。
3. 等差数列的通项公式通项公式:an=a1+(n-1)d其中,an表示等差数列的第n项,a1表示首项,d表示公差。
《等差数列求和公式》教案
《等差数列求和公式》教案等差数列求和公式教案一、教学目标1. 理解等差数列的概念及性质;2. 掌握等差数列前n项和的求法;3. 运用等差数列求和公式解决实际问题。
二、教学内容1. 等差数列的定义与性质;2. 等差数列前n项和的求法;3. 等差数列求和公式的推导;4. 实际问题的应用。
三、教学过程步骤一:引入通过提问的方式,激发学生对等差数列求和的兴趣。
例如,你有没有注意到日常生活中有哪些常见的等差数列呢?请举例说明。
步骤二:概念解释详细解释等差数列的定义,即指每一项与它的前一项之差都相等。
并介绍等差数列的性质,如公差、首项和通项公式。
步骤三:前n项和的求法1. 引导学生通过列出几个等差数列的前几项来发现规律;2. 提示学生观察等差数列前n项的和与首项、末项相关的特点;3. 教导学生通过计算等差数列前n项的和来掌握具体的求和方法。
步骤四:等差数列求和公式的推导1. 提供正推法与逆推法两种方法,让学生体会不同方法的可行性;2. 通过具体例子,引导学生观察、总结出等差数列求和公式的一般形式;3. 对等差数列求和公式的推导进行解释,使学生理解推导的过程。
步骤五:应用实际问题引导学生将等差数列求和公式应用到实际问题中。
例如,小明每天走路去学校,第一天走了2000米,之后每天多走100米,一共走了10天,问小明这10天内走了多少米?四、教学方法1. 探究式教学:通过观察、总结规律的方式引导学生自主研究;2. 讲解与实践相结合:通过具体例子的讲解,加深学生对知识点的理解;3. 个案辅导:根据学生的不同问题,进行个别指导。
五、教学评估1. 教师观察法:根据学生的课堂表现和问题解答情况,评估学生的理解情况;2. 书面测试:进行等差数列求和的计算和问题解答等形式的书面测试。
六、教学延伸1. 引导学生运用等差数列求和公式解决更复杂的问题;2. 提供更多例题和练,加强学生对等差数列求和公式的运用能力。
七、教学资源1. 教学课件:包含等差数列的定义、性质和求和公式推导等内容;2. 计算器。
高一数学必修五《23等差数列求和》教案
(一)教学目标1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2. 过程与方法:通过对历史有名的高斯求和的介绍,引导学生发现等差数列的第k 项与倒数第k 项的和等于首项与末项的和这个规律;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生利用学过的知识解决与现实有关的问题的能力。
(二)教学重、难点重点:探索并掌握等差数列的前n 项和公式;学会用公式解决一些实际问题,体会等差数列的前n 项和与二次函数之间的联系。
难点:等差数列前n 项和公式推导思路的获得,灵活应用等差数列前n 项公式解决一些简单的有关问题(三)学法与教学用具 学法:讲练结合 教学用具:投影仪(四)教学设想 [创设情景]等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的问题。
在200多年前,历史上最伟大的数学家之一,被誉为“数学王子”的高斯就曾经上演了迅速求出等差数列这么一出好戏。
那时,高斯的数学老师提出了下面的问题:1+2+3+……+100=?当时,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+……+(50+51)=101×50=5050高斯的算法实际上解决了求等差数列1,2,3,…,n ,…前100项的和的问题。
今天我们就来学习如何去求等差数列的前n 项的和。
[探索研究]我们先来看看人们由高斯求前100个正整数的方法得到了哪些启发。
人们从高斯那里受到启发,于是用下面的这个方法计算1,2,3,…,n ,…的前n 项的和:由 1 + 2 + …+ n-1 + n n + n-1 + … + 2 + 1 (n+1)+(n+1)+ … +(n+1)+(n+1)可知2)1(...321nn n ⨯+=++++ 上面这种加法叫“倒序相加法”请同学们观察思考一下:高斯的算法妙在哪里? 高斯的算法很巧妙,他发现了整个数列的第k 项与倒数第k 项的和与首项与尾项的和是相等的这个规律并且把这个规律用于求和中。
《等差数列求和公式》详细教案
《等差数列求和公式》详细教案第一章:等差数列的概念1.1 等差数列的定义解释等差数列的定义,即数列中每一项与它前一项的差是一个常数。
通过示例来让学生理解等差数列的特点。
1.2 等差数列的性质介绍等差数列的性质,包括:1) 任何两个连续项的差是常数。
2) 等差数列中任意一项都可以用首项和公差表示。
第二章:等差数列的通项公式2.1 通项公式的推导引导学生通过观察等差数列的性质,推导出通项公式。
解释通项公式中各项的物理意义。
2.2 应用通项公式求等差数列的项教授如何使用通项公式来求等差数列中任意一项的值。
提供练习题,让学生巩固通项公式的应用。
第三章:等差数列的前n项和公式3.1 前n项和的定义解释等差数列的前n项和是指数列中前n项的和。
强调前n项和公式的意义和应用。
3.2 等差数列的前n项和公式的推导通过数学推导,引导学生得出等差数列的前n项和公式。
解释公式中各项的物理意义。
第四章:应用前n项和公式求等差数列的和3.1 应用前n项和公式求等差数列的和教授如何使用前n项和公式来求等差数列的和。
提供练习题,让学生巩固前n项和公式的应用。
3.2 拓展练习提供一些拓展练习题,让学生更好地理解和应用等差数列的前n项和公式。
第五章:总结与复习5.1 总结对本节课的内容进行总结,回顾等差数列的概念、通项公式和前n项和公式的推导过程。
强调等差数列的性质和公式的应用。
5.2 复习练习提供一些复习练习题,让学生巩固本节课所学的知识和技能。
第六章:等差数列的图形表示6.1 等差数列的图形特征介绍等差数列的图形表示方法,包括数列项的连线和数列曲线的特点。
强调图形表示在理解等差数列性质方面的重要性。
6.2 等差数列前n项和的图形表示解释如何通过图形来表示等差数列的前n项和。
提供练习题,让学生通过图形来求解等差数列的和。
第七章:等差数列的实际应用7.1 等差数列在实际问题中的应用通过实际问题引入等差数列的应用,如计算存款利息、统计数据等。
等差数列求和公式教学设计
等差数列求和公式教学设计简介本文档旨在设计一篇关于等差数列求和公式教学的教案。
通过本教案的实施,学生将能够理解并正确应用等差数列求和公式,提高其数学解题能力。
本教案适用于中学阶段,针对九年级学生。
教学目标- 学生能够理解等差数列的定义和性质。
- 学生能够熟练运用等差数列求和公式进行计算。
- 学生能够应用等差数列求和公式解决实际问题。
教学内容1. 等差数列的定义和性质- 等差数列的定义和基本术语(首项、公差)- 等差数列的通项公式和前n项和公式的推导2. 等差数列求和公式的应用- 熟练掌握等差数列求和公式的计算方法- 学生通过练题加深对等差数列求和公式的理解和应用3. 实际问题的应用- 通过生活中的实际问题,引导学生将等差数列求和公式应用于实际解决问题的场景- 学生通过解决实际问题,提升对等差数列求和公式的应用能力教学方法1. 讲授法:教师通过讲解等差数列的定义和性质,引导学生理解等差数列的概念。
同时,教师通过推导等差数列求和公式,帮助学生理解公式的来由和计算方法。
2. 练法:教师设计一系列练题,让学生在课堂上进行练,以巩固对等差数列求和公式的掌握。
3. 情景模拟法:教师设计一些实际问题,让学生应用等差数列求和公式解决问题。
通过实际问题的解决,培养学生的实际应用能力。
教学步骤1. 导入:教师简要介绍等差数列的概念,并引入等差数列求和公式的话题。
2. 讲解:教师讲解等差数列的定义和性质,并推导等差数列求和公式。
3. 示例:教师通过示例演示如何应用等差数列求和公式进行计算。
4. 练:教师设计一些练题,让学生在课堂上进行练,并进行讲解和答疑。
5. 实际问题应用:教师设计一些实际问题,让学生应用等差数列求和公式解决问题,并进行讲解和讨论。
6. 总结:教师总结本节课的内容,并强调等差数列求和公式的重要性和实际应用。
教学评估1. 练评估:通过课堂上的练题,检查学生对等差数列求和公式的掌握情况。
2. 实际问题评估:通过学生对实际问题的解决,评估其应用等差数列求和公式解决问题的能力。
高三数学必修五等差数列教案
高三数学必修五等差数列教案教学目标:1. 理解等差数列的定义,并能够辨别等差数列;2. 学会等差数列的通项公式及其应用;3. 掌握等差数列的求和公式及其应用;4. 能够解决实际问题中的等差数列问题。
教学重点:1. 理解等差数列的定义;2. 掌握等差数列的通项公式及其应用;3. 掌握等差数列的求和公式及其应用;4. 能够解决实际问题中的等差数列问题。
教学难点:1. 等差数列的通项公式的推导和应用;2. 等差数列的求和公式的推导和应用;3. 解决实际问题中的等差数列问题。
教学准备:1. 教材《高中数学必修五》;2. 课件及多媒体设备;3. 相关教学资源。
教学过程:一、导入(5分钟)1. 教师先进行一个小测试,让学生回顾一下等差数列的定义:什么是等差数列?有哪些特点?2. 特别提醒学生注意等差数列的公差是多少。
二、概念讲解及例题演练(20分钟)1. 教师讲解等差数列的概念和性质,并引入等差数列的通项公式。
2. 教师通过例题演示如何使用通项公式求解等差数列中的某一项。
三、练习及讲解(20分钟)1. 学生进行书上相关练习,教师讲解并点评。
2. 教师提供一些应用题,让学生动手解决。
四、归纳总结(5分钟)教师归纳总结等差数列的性质、通项公式及应用,并与学生一起总结解题方法。
五、拓展延伸(10分钟)教师引导学生思考和讨论等差数列的推广和应用,如等差数列的几何意义、等差中项、等差数列的变形等。
六、作业布置(5分钟)布置相关习题,要求学生进行巩固和扩展。
七、课堂小结(5分钟)教师对本课内容进行小结,并对下节课的预习内容进行引导和温习。
人教高中数学必修五1.3等差数列的前n项和《等差数列求和公式》教案设计
等差数列求和公式教学目标1.知识目标(1)掌握等差数列前n 项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n 项和公式求和。
2.能力目标经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。
3.情感目标通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
学生已学等差数列的通项公式,对等差数列已有一定的认知。
教学重点、难点1.等差数列前n 项和公式是重点。
2.获得等差数列前n 项和公式推导的思路是难点。
教学过程复习回顾:1.等差数列的定义;2.等差数列的通项公式。
新课引入:问题一:介绍德国著名数学家高斯,相传高斯在10岁那年他的算术老师给他出了一道算术题:1+2+3+…+100=?。
结果高斯很快就算出了答案,你知道高斯是怎么很快的算出结果的吗?请同学起来回答,如何进行首尾配对求和:123...100n S =++++=(1100)(299)...(5051)+++++=10011002+⋅()=5050. 师:非常好!这位同学和数学家高斯一样聪明!这里高斯的配对法就是采用的“首尾配对法”。
师:这里1,2,3,…,100这是一个什么数列?生:等差数列。
师:这里123...100++++就是在求一个等差数列的和的问题。
引出课题:7.2.2等差数列求和。
一、数列的前n 项和意义一般地,设有数列123,,,,,n a a a a …,我们把123n a a a a ++++叫做数列{}n a 的前n 项和,记作n S .即123n n S a a a a =++++. 问题二:(课件出示印度泰姬陵的图片),介绍传说中的泰姬陵陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共21层。
你知道镶饰这个图案一共花了多少宝石吗?学生回答:即求2112321S =++++。
等差数列求和公式的教学设计
等差数列求和公式的教学设计Teaching design of summation formula of arit hmetic sequence等差数列求和公式的教学设计前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文下载后内容可随意修改调整及打印。
问题1:著名数学家高斯10岁时,曾解过一道题:1+2+3+…+100=?你们知道怎么解吗?问题2:1+2+3+…+n=?在探求中有学生问:n是偶数还是奇数?教师反问:能否避免奇偶讨论呢?并引导学生从问题1感悟问题的实质:大小搭配,以求平衡设=1+2+3+…+n ,又有= + + +…+1= + + +…+ ,得 =问题3:等差数列 = ?学生容易从问题2中获得方法(倒序相加法)。
但遇到 = = =…=呢?利用等差数列的定义容易理解这层等量关系,进一步的推广可得重要结论:m+n=p+q问题4:还有新的方法吗?(引导学生利用问题2的结论),经过讨论有学生有解法:设等差数列的公差为d,则 = +()+()+…+[ ]= = (这里应用了问题2的结论)问题5: = = ?学生容易从问题4中得到联想: = = 。
显然,这又是一个等差数列的求和公式。
等差数列的求和对初学数列求和的离学生的现有发展水平较远,教师通过“弱化”的问题1和问题2将问题转化到学生的最近发展区内,由于学生的最近发展区是不断变化的,学生解决了问题2,就说明学生的潜在的发展水平已经转化为其新的现有发展水平,在新的现有发展水平基础上教师提出了问题3,学生解决了问题3,他们潜在的发展水平已经转化为其新的现有发展水平,在此基础上教师提出了问题4,这个案例的设计体现教师搭“脚手架”的作用不可低估,教师自始至终都应坚持“道而弗牵,强而弗抑,开而弗达”(《礼记·学记》),诱导学生自己探究数学结论, 处理好“放”与“扶”的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等差数列求和公式》教学设计
知识与技能目标:掌握等差数列前n 项和公式,能较熟练应用等差数列前n 项和公式求和。
过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。
情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。
教学重点与难点:等差数列前n 项和公式是重点。
获得等差数列前n 项和公式推导的思路是难点。
教学策略:用游戏的方法调动学生的积极性教学用具:flash ,ppt课堂系统部分:整节课分为三个阶段:
问题呈现阶段探究发现阶段公式应用阶段
问题呈现1:有10袋金币,在这10袋中有一袋金币是假的,已知,真金币的重量是2两/个, 而假币的重量是1两/个。
问:只给一个电子秤,而且只能秤一次,找出哪一袋金币是假的?
S = 10 + 9 + + 2 + 1 2S =11+11+ +11+11问题1:1+2+ +8+9+10=? S =1+2+ +9+102S =11⨯10=110110S ==552动画演示:
由刚刚的计算我们已经知道,从10袋里面拿出
的金币数共55个,如果这10袋都是真币,那么
电子秤显示的数据应该是: (两) 55⨯2=
110
而实际显示的的数字是:102(两)
可见比全是真币时少了8两
又因为,每个假币比真币轻1两
所以,可知在电子秤上有8个假币
那么,第8袋全是假币。
设计说明:
这道题的设计新颖之处在于摆脱了以往以高斯算法引出的模式,用一道智力题,激发学生的学习兴趣。
动画的演示更能较直观地表现出本题的思维方式
承上启下,探讨高斯算法.
问题呈现2:
泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国
皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大
理石砌建而成的主体建筑叫人心醉神迷,成为世界七
大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同大小的圆宝
石镶饰而成,共有100层(见左图),奢靡之程度,
可见一斑。
你知道这个图案一共花了多少宝石吗?
2:图案中,第1层到第21层一共有多少颗宝石?
也就是联想到“首尾配对”摆出几何图形,
, 如何将图与高斯的逆序相加结合起来, 让
, 将两个三角形拼成平行四边形.
(1+21) ⨯21s = 212
设计说明:
•源于历史,富有人文气息.
•图中算数,激发学习兴趣.
这一个问题旨在让学生初步形成数形结合的思想, 这是在高中数学学习中非常重要的思想方法. 借助图形理解逆序相加, 也为后面公式的推导打下基础.
探究发现:
问题3:如何求等差数列{a n }的前n 项和S n ?
由前面的例子,不难用逆序相加法推出
s n =a 1+a 2+a 3+ +a n s n =a n +a n -1+a n -2+ +a 1 n (a 1+a n ) ∴s n = 2
设计说明:
在前面两个问题的基础上,问题呈现3提出了等差数列求和公式的推导,鼓励学生利用“逆序相加”的数学方法推导公式。
探究发现:
a 1(m ) ,下底长为a n (m ) ,高为n (m ) ,求这个梯形的面积为多少平方米?
面积公式:
1n S =2
设计说明:
利用梯形的面积公式,帮助学生记忆等差数列的求和公式,让学生对于“数形结合”的理解更加深一层。
n (a +a )
探究发现:
问题4 已知首相a 1, 相数n , 公差d
如何求等差数列{a n }的前n 项和S n ?
复习回顾:等差数列通项公式:a n =a 1+(n -1)d
n (a 1+a n ) 公式1S n =2
n [a 1+a 1+(n -1)d ]n (a 1+a n ) S n == 22
n ⎡2na 1+n (n -1)d ⎡2a 1+(n -1)d ⎡⎡== 22
n (n -1) 公式2S n =na 1+d 2
根据等差数列求和公式1和等差数列通项公式, 推出等差数列公式2
公式应用
•根据题目选用公式
•利用通项求中间量
•依据条件变用公式
例题1:
2008年北京奥运会的体育馆已初步建成,其中有一块地的方砖成扇形铺开,有人数了第一排的方砖个数为10个,最后一排的方砖个数为2008个,而且一共有36排,问这一块地的方砖有多少块?
本例提供了许多数据,学生可以从题目条件发现,只告知了首项、尾项和项数,于是从这一方向出发,可知使用公式1,达到学生熟悉公式的要素与结构的教学目的。
通过两种公式的比较,引导学生应该根据信息选择适当的公式,以便于计算。
例题2:
2003年医护人员积极致力于研究人体内的非典病毒,已知一个患病初期的人人体内的病毒数排列成等差数列,且已知第一排的病毒数是2个,后面每一排比前一排多3个,一共有78排,问这个人体内的病毒数有多少个?
本例已知首项,公差和项数,引导学生使用公式2。
事实上,根据提供的条件再与公式对比,
便不难知道应选公式。
例题3:
甲从A 地出发骑车去B 地,前1分钟他骑了了400米,后来每一分钟都比前
一分钟多骑5米,当他到达B 地时的那一分钟内骑了500米,问A 地和B 地之间的距离?
本例题欲求AB 间的距离,实质求甲共骑了多少米。
已知首项400,公差为5和末项为500,可求出项数为21,然后引导学生使用公式1。
本题需要用到通项公式求项数,作为中间的桥梁。
例题4:
等差数列-10,-6,-2,2,…前多少项的和是54 ?
本例题已知公差为4,首相为-10,前n 项和为54,欲求项数n ,于是变用公式2。
n (n -1)4 54=-10n +解得:n =-3或
n =9又因为项数不能为负数,所以-3舍去,一共有9项 2
练习:
游戏规则:将全班同学分为4组,显示出飞行
棋的棋盘画面,每一组用一种颜色的飞机代表,
四驾飞机停在起点,右下角有一个点击的标志,
持续点击控制骰子的点数。
让学生根据练习题抢答,抢到的同学回答,如
果答案正确,那么丢骰子的点数便是飞机前行
的方格数,相反,答案错误者,丢骰子的点数
便是飞机后退的方格数。
练习1:
一个堆放铅笔的V 型的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,放了120层,这个V 形架上共放着多少支铅笔?
解:由题意可知,自下而上各层的铅笔成等差数列,且首相为1,项数为120,
公差为1,选用公式1可得结果。
答:V 形架上共放着7260支铅笔
练习2:
工地上放了一堆钢管,已知最下一层为20个,最上面一层为2个,且放了5层,问这一堆钢管的个数?
解:钢管由上至下为等差数列,已知首相为2,末项为20,项数为5,选
用公式1可得结果
答:工地上的钢管一共有55个
练习3:
舞蹈队对舞蹈员进行排队,已知第一个身高为1.58m, 后面每个舞蹈员比前面一个舞蹈员高0.2m ,且最后一个舞蹈员为 1.72m ,问这些舞蹈员的总身高为多少?
解:舞蹈员由前至后成等差数列,已知首相为1.58,末项为1.72,公差为
0.2,可利用通项公式求出项数为8,选用公式1可得结果
答:这些舞蹈员的总身高为13.2m
练习4:
等差数列{an }的首项为a 1,公差为d ,项数为n ,第n 项为a n ,前n 项和为S n ,请填写下表:
课堂小结:
回顾从特殊到一般的研究方法;
体会等差数列的基本元表示方法,逆序相加的算法,及数形结合的数学思想;掌握等差数列的两个求和公式及简单应用。
课后系统部分:
作业布置:
必做题:课本142页,练习A 1、2;
选做题:课本142页,练习B,1
必做题是让学生巩固所学的知识,熟练公式的应用。
根据我校的特点,为了促进数学成绩优秀学生的发展,培养他们分析问题解决问题的能力,我们设计了选做题,达到分层教学的目的。