应用比例尺画图
《第3章_比例》小学数学-有答案-人教版六年级(下)数学同步练习(21)
《第3章 比例》小学数学-有答案-人教版六年级(下)数学同步练习(21)一、填空题:1. ________和________的比叫做比例尺。
比例尺=________:________,比例尺实际上是一个________.2. 在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离________千米。
也就是图上距离是实际距离的________,实际距离是图上距离的________倍。
3. 一幅图的比例尺是,那么图上的1厘米表示实际距离________;实际距离50千米在图上要画________厘米。
把这个线段比例尺改写成数值比例尺是________.4. 一种精密的零件长5毫米,画在纸上长20厘米,这幅图的比例尺是________.5. 从36的约数中选出4个数组成比例:________:________=________:________.6. 甲数的23等于乙数的34(甲数、乙数不为0),甲数与乙数的比值是________.7. 在比例3:10=18:60中,如果第二项增加它的12,那么第四项必须增加________,比例仍然成立。
二、实际应用:在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲乙两地的实际距离是780千米。
(1)求这幅图的比例尺。
(2)在这幅地图上量得A 、B 两城的图上距离是5厘米,求A 、B 两城的实际距离。
在比例尺是1:3000000的地图上,量得两地距离是10厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。
已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。
(1)求这间教室的图上面积与实际面积。
(2)写出图上面积和实际面积的比。
并与比例尺进行比较,你发现了什么?甲乙丙三种商品总价值为5800元。
按数量,甲与乙的比是1:2,乙与丙的比是1:2.5;按单价,甲与乙的比是3:2,乙与丙的比是4:3.三种商品各值多少元?参考答案与试题解析《第3章比例》小学数学-有答案-人教版六年级(下)数学同步练习(21)一、填空题:1.【答案】图上距离,实际距离,图上距离,实际距离,比【考点】比例尺【解析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比。
比例尺及图形放大和缩小
【基础知识巩固】【知识点一】比例尺:1、比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
如:A城与B城的距离为120千米,画在地图上只有2厘米,那么这幅图的比例尺就是:图上距离:实际距离=2厘米:120千米=2厘米:12000000厘米=1:6000000.比例尺没有单位。
2、比例尺的分类及转换:根据表现形式分为:(1)数值比例尺,如:1:20000;(2)线段比例尺,如:根据将实际距离缩小还是放大分为:(1)缩小比例尺,如1:2000;(2)放大比例尺,如:8:1.3、比例尺的应用:图上距离:实际距离=比例尺图上距离:比例尺=实际距离实际距离 比例尺=图上距离根据已知条件选择合适的公式计算4、应用比例尺画图:确定合适的比例尺---→求出图上距离----→画出平面图----→标名称和比例尺【知识点二】图形的放大与缩小:1、图形放大与缩小的意义保持图形原来的形状:(1)使图形变大,叫做图形的放大。
如:用显微镜看细菌。
(2)使图形变小,叫做图形的缩小。
如:建筑物效果图。
2、图形放大或缩小的方格:一看,看原图形每边各占几格。
二算,计算按给定的比将图形的各边长放大或缩小后的新图形每边占几格。
三画,按计算出的边长画出原图形的放大图或缩小图。
【知识点三】用比例解决问题:1、用正比例解决问题:判断题中哪两种量成正比例,;列出比例(方程)求解。
2、用反比例解决问题:判断题中哪两种量成反比例,;列出比例(方程)求解。
【典型例题讲解】【题型1】求比例尺的方法【例1】甲乙量程的实际路程是210千米,画在地图上只有3厘米,求这幅地图的比例尺。
【例2】蚂蚁的实际体长只有3mm,画在一副彩图上体长是9.6cm,这幅彩图的比例尺是多少?【例3】一幅地图的比例尺是(1)一问:请把线段比例尺化成数值比例尺。
(2)二问:在这幅地图上量得甲乙两城相距4.5厘米,那么两城之间实际有多少千米?(3)三问:如果把相距96千米的两地画在这幅地图上,应画多长?【题型2】根据比例尺和图上距离求实际距离【例4】在比例尺为1:300000的地图上,量得李庄和贾庄相距3厘米,李庄到贾庄的实际距离是多少千米?【例5】在比例尺为20:1的精密零件设计图上,量得某零件的长度是5厘米,求这个零件实际长是多少厘米?【题型3】应用比例尺画图【例6】学校要建一个长6米,宽4米的长方形花痴,画出花池的平面图。
六年级下册数学讲义-第四单元——比例:比例的应用人教版(含答案)
比例的应用【知识梳理】1.比例尺。
(1)意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或实际距离图上距离=比例尺 (2)分类:①按表现形式分,可以分为数值比例尺和线段比例尺;② 按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。
(3)已知图上距离和实际距离,求比例尺的方法。
先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成前项是1或后项是1的比,得出比例尺。
(4)已知比例尺和图上距离,求实际距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出实际距离,也可以利用“实际距离=图上距离÷比例尺”直接列式计算。
(5)已知比例尺和实际距离,求图上距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出图上距离,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
(6)应用比例尺画图。
①确定比例尺;②根据比例尺求出图上距离;③画图;④ 标出所画图的名称和比例尺。
要点提示:①比例尺是一个比,表示两个同类量间的倍比关系,不能带单位名称。
②图上距离一般用厘米作单位,实际距离一般用米或千米作单位,计算比例尺时一定要先统一单位。
③为了计算方便,一般把比例尺写成前项或后项是1的形式。
2.图形的放大与缩小。
(1)特点:形状相同,大小不同。
(2)将图形放大或缩小的方法。
一看,看原图形各边占几格;二算,按已知比计算出放大图或缩小图的各边占几格;三画,按计算出的边长画出原图形的放大图或缩小图。
要点提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。
3.用比例解决问题。
根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,再根据正、反比例关系列出相应的比例并求解。
要点提示:用正、反比例解决问题的关键是确定成什么比例关系。
【诊断自测】1.填空。
(1)在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
苏教版六年级下册《第2、3章_圆柱和圆锥、比例》小学数学-有答案-同步练习卷(2)
苏教版六年级下册《第2、3章圆柱和圆锥、比例》小学数学-有答案-同步练习卷(2)一、解答题1. 一张操场平面图上,量得操场的宽为10cm,而操场的实际宽为36m,求这张平面图的比例尺。
2. 在比例尺是1的地图上量得甲、乙两地的距离是35cm,若把这两地画在比例尺4000000是1:7000000的地图上,应画多少长?3. 一个盐池从100克海水里晒出2.1克盐,照这样计算,一次放入海水30万吨,共可晒出盐多少万吨?4. 一堆煤,工厂原计划烧60天,每天烧15吨,实际每天比原计划节约20%,这批煤实际烧了多少天?5. 一块长方形操场,用1的比例尺画在图上,长5cm,宽3cm,那么操场的实际面10000积是多少?6. 在一副比例尺1:5000000的地图上,甲、乙两城间的距离是2.4cm,一列火车每小时72千米的速度从甲城开往乙城,共要几小时?7. 一根木头,锯成4段要12分钟,照这样计算,如果把这根木头锯成8段要________分钟。
8. 一块24公顷的地,一台拖拉机3小时耕了它的1,照这样计算,耕完这块地需要几小8时?9. 一批零件有96个,一台机床1.5小时可加工24个零件,照这样计算,加工完这批零件共需几小时?10. 一个精密的手表零件长2毫米,画在一张设计图上长是2分米,求这幅图的比例尺。
11. 甲、乙两人共完成一批零件,甲、乙工作效率比是5:6,完成任务时甲做了350个,这批零件共多少个?12. 已知100克蜂蜜里有34.5克葡萄糖,照这样计算,4.5千克的蜂蜜里含有多少千克葡萄糖?13. 要用同一种方砖铺大小两个房间的地面,已知大房间17平方米,共用方砖68块,照这样计算,铺完12平方米的小房间,至少还要准备多少块这样的方砖?14. 有一块长方形菜地长90米,宽60米,按1:3000的比例尺画出这块菜地的平面图。
15. 甲、乙两人合作生产了一批零件,已知甲做零件个数的34与乙做零件个数的25相等,若这批零件共460个,问:甲加工了多少个零件?16. 甲、乙、丙三张地图上的比例尺分别是1:2500000、13000000、14000000问:哪张地图上6cm 表示的实际距离最长?17. 在比例尺是1:6000000的地图上,量得两地间的距离是10cm ,甲、乙两辆车同时从两地相向开出,8小时相遇。
比例尺应用题
1.甲乙两地相距1600千米,画在比例尺是1 :5000000的地图上,应画多少厘米?2.在一幅比例尺是1 :3000000的地图上,甲乙两地的距离是7.5厘米,甲乙两地的实际距离是多少千米?3.在一幅比例尺是1 :10000000的地图上,量得重庆到成都的高速公路长上3.3厘米,重庆到成都的高速公路实际长是多少千米?4.某建筑工地挖一个长方形的地基,把它画在比例尺是的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?5.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?6.从井冈山到韶山的实际距离是475千米,在一幅1 :2500000的地图上应画多少厘米?7.一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
8.甲乙两地实际距离是50米,画在一张图纸上的距离为1厘米,这幅图纸的比例尺是()。
9.在一幅地图上,量得甲地到乙地的距离是4.2厘米,实际距离是1050千米,这幅地图的比例尺是()。
10.学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?11.在比例尺是1:200000的地图上,量得两地距离是30厘米,这两地的实际距离是多少千米?12.南京到上海约320千米,画在1:4000000的地图上,两地间的图上距离是多少厘米?13.某小学的校园长200米,画在平面图上是20厘米,量得校园宽是150米,在这张图纸上应画14. 在一一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?15. 在一幅比例尺是1:4500000的地图上,量得甲地到乙地的距离是20厘米,甲地到乙地的实际距离是多少千米?16. 北京与天津大约相距120千米,在比例尺是1:600000的地图上的距离约是多少多少厘米?17. 一种精密零件长5毫米,画在纸上长10厘米,这幅图纸的比例尺是多少?18. 兰州到乌鲁木齐的铁路线大约长1900km,在一幅地图上量得两地间的距离是5cm 。
六年级数学 正比例、反比例、实际问题
个性化教学辅导教案例1:判断。
()(1)含有未知项的比例也是方程。
()(2)x:6=11:4,求x的值叫做解比例。
()(3)在比例里,两个外项的积和两个内项的积的差是0.()(4)如果3x=8y,那么y和x成正比例。
()(5)一个加数不变,和与另一个加数成正比例。
()(6)圆的周长和半径成正比例。
()(7)正方形的面积与边长成正比例。
()(8)圆的面积与半径成正比例。
例2:判断下面每题中的量是否成正比例,并说明理由.1、速度一定,汽车行驶的路程和所用时间。
2、单价一定,购买物品付出的钱数与购买的数量。
3、长方形的长一定,面积与宽。
4、圆柱的高一定,底面周长和侧面积。
5、长方形的长一定,周长和宽。
6、把一定数量的钱存到银行,定期存款,存款的年限和所得的利息。
7、汽车行驶速度一定,行驶的路程和时间。
8、工作效率一定,工作时间和工作总量。
9、一袋大米的重量一定,吃了的和剩下的。
10、每本练习本的张数一定,装订练习本纸的总张数和装订的本数.例3:解比例:(1)20.8::0.253x=(2)1.22575x=(3)21168xx=+(4))(3x+4):(1134+) =361:72例4:师徒弟两人生产同一种零件已知师傅生产的零件数比徒弟多13,而徒弟所用的时间却比师傅少14。
求师、徒二人的工作效率比例5:甲、乙两种商品的价格比为6:3,如果它们的价格分别下降12元,其价格比则变为8:3,这两种商品的原价各是多少元?例6:在正方形ABCD中,E是AD的三等分点,已知正方形的面积是6cm²,求阴影部分的面积。
例7:说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系.在什么条件下,其中两种量成正比例?例1:判断:()(1)比值一定,比的前项和后项成正比例。
()(2)三角形的底一定,它的面积和高成正比例。
()(3)小美从学校走到家,走路的速度和所需的时间成反比例。
()(4)2×5=10(一定),所以2和5成反比例。
比例尺
• 点击突破1:在图幅相等的 情况下,比例尺越大,表 示的范围越 ,表示的内 容越 ;反之,比例尺越 小,表示的范围越 ,表 示的内容越 。
知识点二:比例尺的形式
• 过关精炼1:AB两地间的直线距离是 150千米,在地图上只有5厘米,该地 图的比例尺是多少? • 用三种表示方法来表示。 • 2:较下列比例尺的大小 • 1/500000 五万分之一 图上1厘 米等于实地距用 5厘米的距离表示实际距离1500千 米。在这幅地图上量得A、B两地 的距离是3.5厘米,A、B两地的实 际距离是多少千米?一条640千米 的高速公路,在这幅地图上是多少 厘米?
知识点五:应用比例尺画图
• 步骤:1.确定比例尺。 • 2.根据自己选择的比例尺计 算出平面图上的距离。 • 3.画图。
• 2、小明家正西方向500是街心公园, 街心公园正北方向300是科技馆,科 技馆正东方向1是动物园,动物园正南 方向400是医院。先确定比例尺,再 画出上述地点的平面图。 • · 小明家
• 例:小丹在比例尺是1/100的房 屋设计图上,量得自家房屋平 面图长16厘米,宽8厘米。小丹 的爸爸准备把房屋的地面铺上 边长为0.8米的地砖,大约需要 多少块这样的地砖?如果每块 地砖需12元钱,小丹家买地砖 需要多少钱?
知识点一:比例尺的意义
• 例1:一张地图上2厘米 的距离表示实际距离 1000米。求图上距离和 实际距离的比。
• 过关精炼:1)用图上距离5厘米, 表示实际距离200米,这幅图的比 例尺是( ) • 图上距离:实际距离=1cm: 50km=1cm:( )cm=1:( ) • 3)在一幅地图上,用3厘米的线 段表示18千米的实际距离,这幅 地图的比例尺是( )。
• 3:地图上的线段比例尺是0 60 120 180 240千米,它表示的数值 比例尺是( )。A.1/6000000 B.1/12000000 C.1/18000000 D.1/24000000 • 4:两城的实际距离是120千米,在 一幅地图上的图上距离为4厘米,请 你画出线段比例尺
比例尺画图1
星星小学的正东方向100m是幼儿园, 幼儿园的正北方是300m是图书馆, 图书馆的正东方400m是超市,超市 的正南方200m是医院,医院的正西 方300m是动物园。先确定比例尺, 在画出上述地点的平面图。
一间会议室长30米,宽28米,先确 定合适的比例尺,在画出这间会议 室的平面图。
ቤተ መጻሕፍቲ ባይዱ
足球场长100米,宽50
米,把他画在比例尺是 图纸上,长,宽各画多 长?
1 5000
的
学校要建一个长80米,宽60米的长方形 操场,画出操场的平面图。
先确定比例尺
80米=( 60米=( )厘米 )厘米
你用哪中比例尺表 示?
操场的平面图
一个足球场长120米,宽90米, 用1:2000的比例尺画出它的 平面图。
《利用比例尺和实际距离求图上距离》ppt课件
4×3 = 12平方米 答:小卧室的实际面积是12平方米。
4cm 1.5cm 2.5cm
三、自主练习
4.
4cm
4cm
3cm
5cm
(3)如果阳台宽1.2米, 画在图上应是多少厘米?
根据比例尺的意义,在 这幅图上,实际距离是图 上距离的100倍。
1.2米 = 120 厘米 120÷100 = 1.2厘米
实际距离 180千米 15千米
4毫米
比例尺 1∶3000000
1∶500000 20∶1
三、自主练习
3. 在比例尺是1:25000的地图上量得甲、乙两地之间的距离是20 厘米,如果把它改画在比例尺为1:20000的地图上,甲、乙两 地的图上距离应画多长?
解:设甲、乙两地之间的实际距离为χ厘米。 1:25000 = 20:χ χ = 20×25000 χ = 500000
= 比例尺
可以列方程解答。
解:A点距底线的图上距离是χ厘米。解:A点距右边线的图上距离是y厘米。
10米 = 1000厘米
χ
1000
=
1 100
0 1000χ = 1×1000
返回
χ =1
25米 = 2500厘米
y
2500 =
1 1000
1000y = 1×2500
y = 2.5
二、合作探索
A点距底线的图上距离是多少厘米?距右边线呢?
二、合作探索
A点距底线的图上距离是多少厘米?距右边线呢?
足球场平面图 左边线
你会求图上距离 底 吗?试试看!
线
比例尺1:1000
右边线
10号队员在蓝色区域A处(距底线10米、右边
线25米处)起脚,射进第一个球。
2020年小升初数学专题复习训练—空间与图形:图形与位置(2)(知识点总结 同步测试) (含详细答案)
2020年小升初数学专题复习训练—空间与图形图形与位置(2)知识点复习一.根据方向和距离确定物体的位置【知识点归纳】1.确定观察点,建立方向标;2.用量角器确定物体方向;3.用刻度尺根据物体方向距离确定其位置;4.找出物体具体位置,标上名称.【命题方向】例:(1)以灯塔为观测点,A岛在东偏北60°的方向上,距离是4千米.(2)以灯塔为观测点,货轮在西偏南40°的方向上,距离是2千米(3)客轮在灯塔西偏北35°的方向上,距离是3千米.请画出客轮的位置.分析:(1)由图意可知:以灯塔为观测点,A岛在东偏北60°的方向上,又因图上距离1厘米表示实际距离1千米,而A岛与灯塔的图上距离为4厘米,于是就可以求出A岛与灯塔的实际距离.(2)以灯塔为观测点,货轮在西偏南40°的方向上,又因图上距离1厘米表示实际距离1千米,而货轮与灯塔的图上距离为2厘米,于是就可以求出货轮与灯塔的实际距离.(3)因为图上距离1厘米表示实际距离1千米,而客轮与灯塔的实际距离是3千米,于是可以求出客轮与灯塔的图上距离,再据“客轮在灯塔西偏北35°的方向上”即可在图上标出客轮的位置.解:(1)以灯塔为观测点,A岛在东偏北60°的方向上,又因图上距离1厘米表示实际距离1千米,所以A岛与灯塔的实际距离为:4×1=4(千米);(2)以灯塔为观测点,货轮在西偏南40°的方向上,又因图上距离1厘米表示实际距离1千米,所以货轮与灯塔的实际距离为:2×1=2(千米);(3)因为图上距离1厘米表示实际距离1千米,而客轮与灯塔的实际距离是3千米,所以客轮与灯塔的图上距离为:3÷1=3(厘米);于是标注客轮的位置如下图所示:.故答案为:4点评:此题主要考查依据方向(角度)和距离判定物体位置的方法以及线段比例尺的意义.二.比例尺【知识点归纳】1.比例尺:表示图上距离比实地距离缩小的程度,因此也叫缩尺.图上距离和实际距离的比,叫做这幅图的比例尺. 即:图上距离:实际距离=图上距离÷比例尺 比例尺分类:比例尺一般分为数值比例尺和线段比例尺:(1)数值比例尺:例如一幅图的比例尺是1:20000或.为了方便,通常把比例尺写成前项(或后项)是1的比.(2)线段比例尺是在图上附上一条标有数量的线段,用来表示实际相对应的距离. 2.比例尺表示方法:用公式表示为:实际距离=图上距离÷比例尺.比例尺通常有三种表示方法.(1)数字式,用数字的比例式或分数式表示比例尺的大小.例如地图上1厘米代表实地距离500千米,可写成:1:50000000或写成:500000001.(2)线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离.(3)文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一. 3.比例尺公式:图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 比例尺=图上距离÷实际距离. 【命题方向】例1:图上6厘米表示实际距离240千米,这幅图的比例尺是( ) A 、1:40000 B 、1:400000 C 、1:4000000 分析:比例尺=图上距离:实际距离,根据题意可直接求得比例尺. 解:240千米=24000000厘米, 比例尺为6:24000000=1:4000000. 故选:C .点评:考查了比例尺的概念,掌握比例尺的计算方法,注意在求比的过程中,单位要统一. 例2:把线段比例尺,改为数值比例尺是( )A 、110B 、1:100000C 、1:1000000解:因为10千米=1000000里面,则1里面:1000000里面=1:1000000;答:改成数值比例尺为1:1000000.故选:C.点评:此题主要考查比例尺的计算方法,解答时要注意单位的换算.三.图上距离与实际距离的换算(比例尺的应用)【知识点归纳】单位换算:在比例尺计算中要注意单位间的换算:1公里=1千米=1×1000米=1×100000厘米图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零.【命题方向】例1:在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()千米.A、672B、1008C、336D、1680.=33600000(厘米);33600000厘米=336(千米);故选:C.点评:此题应根据图上距离、比例尺和实际距离的关系,先求出全程,进而运用按比例知识进行解答即可.例2:一幅图的比例尺是1:5000000,下面图( )是这幅图的线段比例尺.分析:题干中的数值比例尺是已知的,可根据比例尺的概念(图上距离:实际距离=比例尺),把数值比例尺转换成线段比例尺即可得出答案.解:这幅图的比例尺是1:5000000,地图上1厘米的距离相当于地面上5000000厘米的实际距离. 因为5000000厘米=50千米,所以地图上1厘米的距离相当于地面上50千米的实际距离. 故选:C .点评:注意:图上距离一般用厘米作单位,实际距离一般用米或千米作单位.四.应用比例尺画图 【知识点归纳】 1.方法:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上.要确定图上距离和相对应的实际距离的比. 2.比例尺公式:图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 比例尺=图上距离÷实际距离. 【命题方向】例:街心花园的直径是5米,现在它的周围修一条1米宽的环形路,请按2501的比例尺画好设计图,并求出路面的实际面积.分析:先根据比例尺求出街心花园的直径和1米宽的环形路在图形上的长度,再在设计图上画出图形;根据圆环的面积公式即可求出路面的实际面积. 解:5÷250=0.02(m )=2cm , (5+1×2)÷250=0.028(m )=2.8cm . 5+1×2=7(m ),3.14×[(7÷2)2-(5÷2)2] =3.14×6=18.84(m2).答路面的实际面积18.84m2.作图如下:点评:考查了应用比例尺画图,圆环的面积.能够根据比例尺正确进行计算,注意单位的统一.同步测试一.选择题(共8小题)1.小东和小辰分将学校的正方形花坛画了下来,如图.如果小东是按1:a的比例尺画的,那么小辰按()的比例尺画的.A.1:B.1:3a C.1:3D.1:2.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:4003.如图,小明家在A点处,那么下面哪句话能准确地表述出小明家的方向?()①小明家在北偏东45°方向上.②小明家在东南方向上.③小明家在东偏北45°方向上.④小明家在东北方向上.A.①②B.①②③C.②③④D.①③④4.如果请你将你们教室的黑板按一定的比例缩小后,画在3分米×3分米的白纸上,你会选择下面第()号比例尺.A.10:1B.1:10C.1:10005.在比例尺是1:100000的平面图上,实际距离是1000m,在图上是()A.1m B.1dm C.1cm6.小明家在学校的东偏南30°方向,小红家在学校的正东方向,两家与学校的距离是300米.则小红家位于小明家()方向上.A.北偏东15°B.东偏北60°C.西偏南75°D.北偏东30°7.学校操场的长是200米,把它画在比例尺是1:10000的图上,应画()A.2分米B.2厘米C.2毫米8.图书馆在剧院的东偏南30°方向500米处,那么剧院在图书馆的()A.东偏南30°方向500米处B.南偏东60°方向500米处C.北偏西30°方向500米处D.西偏北30°方向500米处二.填空题(共8小题)9.前项是1的比例尺是把实际距离,后项是1的比例尺是把实际距离.10.淘淘来到实验楼,看到一楼中厅的校园沙盘后驻足观赏,发现标注沙盘的比例尺是1:240,而且在沙盘上南门到主楼大约是45cm,那么淘淘回家后告诉妈妈:进校门后大约要走米才能进入主楼.11.用的比例尺把一个2米长的零件画在设计图上,图纸上的零件长.12.小明家在超市的北偏东30°方向上,距离700米,超市就在小明家的偏°的方向上,距离米.13.实际距离是图上距离的4000000倍,这幅地图的比例尺是.图上距离是实际距离的,这幅地图的比例尺是.14.一种长方形零件,画在比例尺是10:1的平面图上,长是30厘米,宽是16厘米,这个零件的实际长是厘米.15.如图:A点在O点的偏度的方向上,距离是米.16.一个零件长8毫米,比例尺是20:1,画在图纸上的长是毫米.三.判断题(共5小题)17.一张比例尺是5:1的精密零件图纸,如果在图纸上量得长 2.5mm,那么它表示实际的长度是12.5mm..(判断对错)18.把线段比例尺,改成数值比例尺是1:3000000.(判断对错)19.因为“图上距离:实际距离=比例尺”,所以“实际距离=图上距离×比例尺”.(判断对错)20.知道了物体的方向就能确定物体的位置..(判断对错)21.电影院在小明家的西偏南40°方向600米处,那么小明家就在电影院南偏西40°方向600米处..(判断对错)四.操作题(共3小题)22.下面是菲菲家附近的平面图.(1)用数对表示学校、公园和商场的位置.(2)菲菲从学校出发向正北走400m,再向正东走700m就到家了.张亮从公园出发向正西走600m,再向正南走100m就到图书馆了.请在图中标出菲菲家和图书馆的位置,并用数对表示.23.某市新建一个长方形运动场,长240m,宽120m,请在下面图中画出运动场的平面图.(比例尺:1:4000)24.按要求完成下面各题.①以市政府为观测点,青少年宫在偏°的方向上,距离是米.②博物馆在市政府的东偏南30°的方向400米处.请你在平面图上标出博物馆的位置.五.应用题(共4小题)25.学样要建一个长100米,宽60米的长方形操场.请先算一算,再在下面画出操场的平面图.(比例尺1:2000)26.在同一幅地图上,量得甲、乙两地的直线距离是10cm,甲、丙两地的直线距离是15cm.如果甲、乙两地的实际距离是1200km,那么甲、丙两地的实际距离是多少?27.看图完成下面各题.(1)小东家到健身中心的图上距离是6cm,则小东家到健身中心的实际距离是多少米?(2)游乐场在小东家西偏南45°的方向上,实际距离是500m,请在图中标出游乐场的位置.28.在一幅比例尺为1:2000000的地图上,量得甲、乙两地之间的距离是3.6厘米.如果一辆摩托三轮车以每小时30千米的速度在上午8点从甲地出发,问什么时间能够到达乙地?参考答案与试题解析一.选择题(共8小题)1.【分析】2厘米是6厘米的,所以小东选择的比例尺是小辰的;据此解答即可.【解答】解:2÷6==1:a答:小辰按1:a的比例尺画的.故选:A.【点评】解答本题关键是明确比例尺越小,单位长度表示的实际距离越大.2.【分析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.【解答】解:16千米=1600000厘米,4:1600000=1:400000;答:这幅地图的比例尺是1:400000.故选:C.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.3.【分析】根据地图上确定位置的方法,上北下南,左西右东,来判定小明家的位置即可.【解答】解:根据图上确定方向的方法,可以判断小明家的方向应该是东北方向,所以②是错误的.根据图上的角度可知,小明家的方向东偏北和北偏东都是45°,所以,①、③、④都对.故选:D.【点评】本题主要考查地图上确定方向的方法.4.【分析】我们教室的黑板长为:为300cm、宽为140cm,已知图上距离、实际距离,求比例尺,用比例尺=图上距离:实际距离,统一单位代入数据,算出两个比例尺,即可解决问题.【解答】解:3分米=30厘米30:300=1:1030:140≈1:5所以应选比例尺即1:10.故选:B.离,灵活变形列式解决问题.5.【分析】要求甲乙两城的图上距离是多少厘米,根据“实际距离×比例尺=图上距离”,代入数值,计算即可.【解答】解:1000米=100000厘米,100000×=1(厘米);答:在图上是1厘米;故选:C.【点评】解答此题应根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.6.【分析】根据平面图上方向的辨别“上北下南,左西右东”,以学校的位置为观测点,小明家在学校的东偏南30°方向,小红家在学校的正东方向,两家与学校的距离是300米.以图上1厘米代表实际距离100米的线段比例尺即可画出学校、小明家、小红的位置.学校、小红家、小家是以学校为顶点的等腰三角形,根据等腰三角形两个底角相同的特征及三角形内角和定理,以小明家的位置为观测点,学校的方向与小红家方向之间的平角是(180°﹣30°)÷2=75°,学校在小明家西偏南30°方向,也就是西偏北30°方向,从而推出小红家在小明家东偏北15°方向.【解答】解:小明家在学校的东偏南30°方向,小红家在学校的正东方向,两家与学校的距离是300米.则小红家位于小明家北偏东15°方向上.故选:A.【点评】此题考查的知识点有:根据方向和距离确定物体的位置、等腰三角形的性质,三角形内角和定理、比例尺的应用等.7.【分析】根据图上距离=实际距离×比例尺,求出图上的长即可.【解答】解:200米=20000厘米,20000×=2(厘米)答:应画2厘米;故选:B.离,灵活变形列式解决问题.8.【分析】根据位置的相对性可知,它们的方向相反,角度相等,距离相等,据此解答.【解答】解:图书馆在剧院的东偏南30°方向500米处,那么剧院在图书馆的西偏北30°方向500米处;故选:D.【点评】本题主要考查了学生对位置相对性的掌握情况,画图更容易解答.二.填空题(共8小题)9.【分析】根据比例尺=图上距离:实际距离,前项是1的比例尺是把实际距离缩小,后项是1的比例尺是把实际距离放大据此解答.【解答】解:因为比例尺=图上距离:实际距离,所以前项是1的比例尺是把实际距离缩小,后项是1的比例尺是把实际距离放大.故答案为:缩小,放大.【点评】本题考查了比例尺的意义,即比例尺=图上距离:实际距离.10.【分析】图上距离与比例尺已知,求实际距离,用图上距离除以比例尺即可.【解答】解:45÷=10800(厘米)10800厘米=108米答:进校门后大约要走108米才能进入主楼.故答案为:108.【点评】本题主要是灵活利用比例尺的意义解决问题,注意单位的换算.11.【分析】根据“图上距离=实际距离×比例尺”即可求出图上距离.【解答】解:2米=200厘米200×=4(厘米)答:图纸上的零件长4厘米.故答案为:4厘米.【点评】此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.12.【分析】根据题意,利用方向的相对性,小明家在超市的北偏东30°方向上,距离700米,则超市就在小明家的南偏西30°的方向上,距离700米.做题即可.【解答】解:小明家在超市的北偏东30°方向上,距离700米,超市就在小明家的南偏西30°的方向上,距离700米.故答案为:南;西;30;700.【点评】此题主要考查依据方向(角度)和距离判定物体位置的方法.13.【分析】实际距离是图上距离的4000000倍,即图上1厘米代表实际距离4000000厘米,根据比例尺的意义,这幅地图的比例尺是1厘米:4000000厘米=1:4000000.图上距离是实际距离的,即代表图1厘米代表实际距离200厘米,根据比例尺的意义,这幅地图的比例尺是1厘米:200厘米=1:200.【解答】解:实际距离是图上距离的4000000倍,这幅地图的比例尺是1:4000000.图上距离是实际距离的,这幅地图的比例尺是1:200.故答案为:1:4000000,1:200.【点评】此题是考查比例尺的意义及求法.比例尺=图上距离:实际距离.数值比例尺前、后项长度单位要统一;根据比的基本性质,比的前项要化成1.14.【分析】这是一个放大的比例尺,图上距离是实际距离的10倍,用图上距离除以10即可求出实际距离.【解答】解:30÷10=3(厘米)答:这个零件的实际长是3厘米.故答案为:3.【点评】此题考查了图上距离与实际距离的换算(比例尺的应用).15.【分析】相邻两个方向的夹角是90°,把北与西的夹角平均分成3份,每份是90°÷3=30°.根据平面图上方向的辨别“上北下南,左西右东”,以点O的位置为观测点,点A在北偏西30°方向或西偏北60°方向.点A以点O的距离为4个单位长度.根据图中所标注的线段比例尺,一个单位长度为200米,即可求出点A到点O的实际距离.【解答】解:如图200×4=800(米)答:A点在O点的北(或西)偏西(或北)30(或60)度的方向上,距离是800米.故答案为:北(或西),西(或北)30(或60),800.【点评】此题考查了利用方向与距离在平面图中确定物体位置的方法以及线段比例尺的灵活应用.16.【分析】根据“图上距离=实际距离×比例尺”,即可求出图上距离.【解答】解:8×=160(毫米)答:长160毫米.故答案为:160.【点评】此题是考查比例尺的应用.关键记住图上距离、实际距离、比例尺之间的关系,还要注意长度单位的换算.三.判断题(共5小题)17.【分析】要求这个零件实际长,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.【解答】解:2.5÷=0.5(毫米)答:这个零件实际长0.5毫米.故答案为:×.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.18.【分析】图上距离和实际距离已知,依据“比例尺=图上距离:实际距离”即可将线段比例尺改写成数值比例尺.【解答】解:30千米=3000000厘米比例尺=1:3000000原题说法正确.故答案为:√.【点评】此题主要考查比例尺的计算方法,解答时要注意单位的换算.19.【分析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.【解答】解:因为图上距离:实际距离=比例尺,所以实际距离=图上距离÷比例尺,原题说法错误.故答案为:×.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.20.【分析】确定物体的位置要有三个步骤:(1)定观察点,(2)量角度,(3)算距离,据此即可进行解答.【解答】解:因为找清观察点,量出物体所在的方向(角度),再算出与观察点的距离,即可确定出物体所处的位置,所以说,知道了物体的方向就能确定物体的位置,说法错误.故答案为:×.【点评】此题主要考查确定物体位置的主要条件.21.【分析】两个物体的位置是相对的,分别以它们为观测中心时,看到对方的方向相反,角度和距离相等,据此即可解答问题.【解答】解:由分析可知:电影院在小明家的西偏南40°方向600米处,那么小明家就在电影院东偏北40°方向600米处,所以原题说法错误.故答案为:×.【点评】此题主要考查两个物体位置的相对性:方向相反,角度相同,距离相等.四.操作题(共3小题)22.【分析】(1)根据数对确定位置的方法:先列后行,确定学校、公园、商场的位置.(2)根据实际距离和比例尺,计算各点之间的图上距离,结合图上确定方向的方法及题目信息完成作图,并用数对表示.【解答】解:(1)学校(3,3)公园(7,5)商场(8,2)(2)400÷100=4(格)700÷100=7(格)600÷100=6(格)100÷100=1(格)菲菲家的位置为:(10,7)图书馆的位置为:(1,4)如图所示:【点评】此题主要考查用数对确定位置的方法以及线段比例尺的意义.23.【分析】根据“图上距离=实际距离×比例尺”即可分别求出长方形运动场的长、宽、然后即可画出这个长方形运动场的平面图.【解答】解:240m=24000cm,120m=12000cm24000×=6(cm)12000×=3(cm)即画长方形运动场的长是6cm,宽是3cm.画图如下:【点评】画平面图的关键一是根据实际距离及比例尺求出图上距离;二是方向的确定.24.【分析】①从图上可以看出市政府距离少年宫的图上距离4个200米,由此即可得出少年宫在市政府在东偏北35°的方向上,距离是800米.②在平面图中画出东偏南30°的方向,实际距离400米处,即2个200米,画两段即可,再标出博物馆的位置.【解答】解:①200×4=800(米)以市政府为观测点,青少年宫在东偏北35°的方向上,距离是800米;②400÷200=2(厘米)故答案为:东,北,35,800.【点评】此题考查了利用方向和距离表示物体位置的方法,五.应用题(共4小题)25.【分析】根据“图上距离=实际距离×比例尺”,分别求出学校操场的图上的长、宽即可画出它的平面图.【解答】解:100米=10000厘米,60米=6000厘米,10000×=5(厘米)6000×=3(厘米)即学校操场的图上长是5厘米,宽是3厘米,画图如下:【点评】此题主要是考查比例尺的应用.根据比例尺求出图上距离即可画图.注意平面图是按一定比例画的,标数据时仍可标注实际距离.26.【分析】图上距离和实际距离已知,根据“图上距离:实际距离=比例尺”求出这幅地图的比例尺,再根据关系式:图上距离÷比例尺=实际距离,解决问题.【解答】解:1200km=120000000cm10:120000000=1:1200000015÷=180000000(厘米)180000000厘米=1800千米答:甲、丙两地的实际距离是1800千米.【点评】此题考查了关系式:图上距离:实际距离=比例尺,图上距离÷比例尺=实际距离.27.【分析】(1)根据图上距离与比例尺,计算实际距离:6÷=150000(厘米),150000厘米=1500米.(2)利用实际距离和比例尺,计算图上距离:500米=50000厘米,50000×=2(厘米).然后根据图上确定方向的方法确定游乐场的位置.【解答】解:(1)6÷=150000(厘米)150000厘米=1500米答:小东家到健身中心的实际距离是1500米.(2)500米=50000厘米50000×=2(厘米)游乐场的位置,如图所示:【点评】本题主要考查依据方向(角度)和距离判定物体位置的方法以及线段比例尺的意义.28.【分析】图上距离和比例尺已知,首先根据“实际距离=图上距离÷比例尺”,求出甲、乙两地的距离,然后根据“时间=路程÷速度”求出三轮摩托车行驶的时间,最后根据“起始时刻+行驶时间=结束时刻”求出到达乙地的时间.【解答】解:3.6×2000000=7200000(厘米)7200000厘米=72千米72÷30=2.4(小时)2.4小时=2小时24分钟上午8点+2小时24分钟=上午10点24分答:10点24分能够到达乙地.【点评】此题应根据图上距离、比例尺和实际距离的关系和速度、路程、时间之间的关系的综合应用.。
第四单元 比例(知识清单 培优专练)六年级数学下册复习讲义(人教版)
第四单元 比例 (知识清单·培优专练)1、比例的意义。
(1)比例的意义:表示两个比相等的式子叫作比例。
(2)判断两个比能否组成比例的方法:看两个比的比值是否相等,如果比值相等,那么就能组成比例;否则不能组成比例。
2、比例的各部分的名称。
组成比例的四个数,叫作比例的项,两端的两项叫作比例的外项,中间的两项叫作比例的内项。
3、比例的基本性质。
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
4、解比例的意义和解比例。
(1)意义:求比例中的未知项,叫作解比例。
(2)方法:根据比例的基本性质把比例转化成乘法算式;解方程求出未知项的值。
5、正比例的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,那么这两种量就叫作成正比例的量,它们的关系叫作整理比关系。
如果用字母y 和x 表示两种相关联的量,用k 表示它们的比例(一定),那么正比例关系用式子表示为k xy(一定)。
6、正比例图像的特点。
正比例图像是一条从原点出发的射线。
从图像中可以直观地看到两种量地变化情况,可以不用计算,由一个量的值就能直接找到相对应的另一个量的值。
7、反比例的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么这两种量就叫作成反比例的量,它们的关系叫作反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系可以表示为xy=k(一定)。
8、比例尺的意义。
比例尺的意义:一幅图的图上距离和实际距离的比,叫作这幅图的比例尺。
比例尺的计算:图上距离:实际距离=比例尺。
9、比例尺的种类。
按照表现形式分为数值比例尺和线段比例尺;按照实际距缩小还是扩大分为缩小比例尺和扩大比例尺。
10、已知图上距离和实际距离,求比例尺。
已知图上距离和实际距离,求比例尺的方法:用图上距离比实际距离就可以求出比例尺,但要注意统一单位。
几何画图
图1-3 比例尺
返
比例 (图名) 制图 描图 审核 日期 (班级) (学号) (校 材料 件数
(图号) 成绩 名)
图1-16 制图作业的标题栏格式
若标题栏的长边置于水平方向且和图纸的长边平行时,构成X型的图纸,也称横式幅面,如图 1-13、1-14中的(a)图;若标题栏的长边和图纸的长边垂直,则构成Y型的图纸,也称立式幅面 ,如图1-13、1-14中的(b)图。一般A0~A3号图纸幅面宜横放,A4号以下的图纸幅面宜竖放。
返
1. 3常用几何图形的画法
1. 3.1几何作图
1. 3.2斜度和锥度
1. 3.3圆弧连接
返回目录
1. 3.1几何作图
步骤
1.线段和角的等分
(1)线段的任意等分,如图1-32所示。 过线段一端做一长度适合的线AC
A
1
1'
2
2'
3'
4'
5'
用圆规依次截取相等的五段
C
连接B5’ 端
3
4 5
B
图1-32 五等分线段AB
图1-34 角的二等分
b)
c)
2.等分圆周作正多边形
(1)正三角形 1)用圆规和三角板作圆的内接正三角形,如图1-35所示。
A A
O
O
B
C
B
C
D
D
图1-35用圆规和三角板作圆的内接正三角形 2)用丁字尺和三角板作圆的内接正三角形,如图1-36所示
A A A
O
O
O
B
B
C
B
C
a)
b)
c)
图1-36用丁字尺和三角板作圆的内接正三角形
《比例尺》比例PPT教学课件
例
一幅图中,荷花村到杏花村的图上距 离为2.5厘米,表示实际距离10千米。求
这?幅图要的求图比上例尺距离。与实际距离的比,能不能直接用题中给
因为图出上距的离两和实个际数距离列单式位不?同为,要什先么把题?中应实际该距怎么办?
离的千米数化成厘米数,再根据 图上距离 =比例尺,求
出这幅图的比例尺。
实际距离
比例尺1:1000的意1思是: (1)图上距离是实际11距0000离00的(
);
(2)实际距离是图上距离10的00( 10
)倍;
(3)图上1厘米的线段,表示实际(
)
厘米,即
( )米的实际距离。
练 习
1.说出下列比例尺表示的意思
1:地图的比 例尺吗?说说它表示的意 思。
3. 一个圆柱形零件的高是5mm,在图纸上的高是2cm, 这幅图纸的比例尺是多少?
规范解答:
图上距离∶实际距离=比例尺
2 cm=20 mm 20∶5=4∶1 答:这幅图纸的比例尺是4∶1。
4. 甲、乙两地相距640千米,在图上只有32厘米。乙、丙两 地在图上相距12厘米,乙、丙两地实际相距多少千米?
图上1cm表示实际 距离200m。
2.两张不同的图纸,A图纸的比例尺是1∶2000,B图纸的比例尺 是1∶500。那么,这两张图纸上3cm长的线段表示的实际长度 各是多少米?
A图纸:图上1cm表示实际距离2000cm,也就是 1cm表示20m。 20×3=60(m)
B图纸:图上1cm表示实际距离500cm,也就是 1cm表示5m。 5×3=15(m)
规范解答:
640千米=64000000厘米
24000000厘米=240千米 答:乙、丙两地实际相距240千米。
优胜教育小学数学讲义比例尺应用题参考答案
比例尺应用题参考答案典题探究一.基本知识点:二.解题方法:例1.在比例尺是1:500的图纸上,量得一个正方形草坪的边长是4厘米.这个草坪的实际面积是400平方米.考点:比例尺应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出这个正方形草地的边长,进而利用正方形的面积S=a2,就能求出这个草坪的实际面积.解答:解:4÷=2000(厘米)=20(米),20×20=400(平方米);答:这个草坪的实际面积是400平方米.故答案为:400平方米.点评:此题主要考查正方形的面积的计算方法依据图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.例2.培正小学的操场长80米,宽50米,如果用的比例尺画出操场的平面图,图上面积是160平方厘米.考点:比例尺应用题.分析:实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可分别求出操场长和宽的图上距离,进而利用长方形的面积公式就可以求出操场的图上面积.解答:解:80米=8000厘米,50米=5000厘米,8000×=16(厘米),5000×=10(厘米),16×10=160(平方厘米);答:这个操场的图上面积是160平方厘米.故答案为:160平方厘米.点评:此题主要考查图上距离、实际距离和比例尺的关系在实际中的应用,以及长方形的面积的计算方法.例3.地图上1.5厘米的距离表示实际距离120千米,这幅地图的比例尺是1:8000000.如果该地图上,甲乙两地之间的图上距离是2厘米,那么实际距离是160千米.考点:比例尺应用题.专题:比和比例应用题.分析:(1)根据比例尺的意义作答,即图上距离与实际距离的比就是比例尺;(2)先求出1厘米的线段表示实际距离的千米数,由此求出2厘米所表示的实际距离的千米数.解答:解:(1)1.5厘米:120千米,=1.5厘米:12000000厘米,=15:120000000,=1:8000000;(2)120÷1.5×2,=80×2,=160(千米),故答案为:1:8000000;160.点评:本题主要灵活利用:比例尺=图上距离:实际距离这一关系解决问题.例4.在比例尺是1:4000000的地图上,量得甲、乙两港的距离是9厘米,一艘货轮于上午6时以每小时24千米的速度从甲港开往乙港,到达乙港的时间是晚上9或21时.考点:比例尺应用题;简单的行程问题.专题:比和比例应用题;行程问题.分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”求出货轮从甲港到乙港需要的时间,进而可以求出到达乙港的时刻.解答:解:9÷=36000000(厘米)=360(千米),360÷24=15(小时),6+15=21(时);答:货轮到达乙港的时间是晚上9时或21时.故答案为:晚上9或21.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=时间”.演练方阵A档(巩固专练)1.一张图纸长30厘米、宽20厘米,把长50米、宽38米的一块长方形菜的画在这张图纸上,选用适当的比例尺是()A.1:200 B.1:400 C.1:100 D.200:1考点:比例尺应用题.专题:比和比例应用题.分析:本题的实际长度是长50米、宽38米.而图上距离是:长30厘米、宽20厘米,要想画在这样的图纸上,必须是缩小的,所以D答案不能选,既能画下来,还能画的合适,这就是比例尺的问题了,应根据:图上距离:实际距离=比例尺来计算.解答:解:因为:50米=5000厘米38米=3800厘米,而图纸长30厘米、宽20厘米,比例尺为;30:5000≈1:167,20:3800=1:190,综合长和宽的比例尺选1:200比较合适.故选:A.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.2.一个三角形中,三个内角的度数比是1:1:3,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形考点:比例尺应用题;三角形的分类;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:因为三角形的内角度数和是180°,它的最大角占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.解答:解:1+1+3=5,最大角度数:180°×=108°,所以,这个三角形是钝角三角形.故选:A.点评:解决此题关键是掌握三角形的内角度数和是180°,运用按比例分配的方法解决问题.3.在比例尺是1:8的图纸上,甲、乙两个圆的直径比是2:3,那么甲、乙两个圆的实际的直径比是()A.1:8 B.4:9 C.2:3 D.8:1考点:比例尺应用题.分析:根据比例尺的意义,令甲乙两圆的图上直径为2d,3d,根据比例尺可得实际圆的直径分别是16d,24d,由此利用比例尺进行计算,即可选择正确答案.解答:解:令甲乙两圆的图上直径为2d,3d,根据比例尺可得实际甲乙两圆的直径分别是16d,24d,16d:24d=2:3.故选:C.点评:此题考查了利用比例尺解决实际问题的方法.4.学校实验园地是一个长60m,宽40m的长方形,用比例尺1﹕1000画平面图,长应画()A.4cm B.6cm C.6dm D.6m考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:图上距离=实际距离×比例尺,实际距离是60米,比例尺是1:1000.代入数据进行解答.解答:解:60米=6000厘米,6000×=6(厘米).答:长应画6厘米.故选:B.点评:本题主要考查了学生对图上距离=实际距离×比例尺,这一数量关系的掌握情况.5.北京到上海的实际距离大约是300千米,画在一幅比例尺是的地图上,应该画()厘米.A.3B.2C.6考点:比例尺应用题.专题:比和比例应用题.分析:因为图上距离1厘米表示实际距离50千米,依据除法的意义,即可求出图上距离.解答:解:300÷50=6(厘米);答:应该画6厘米.故选:C.点评:此题主要考查线段比例尺的意义.6.在一幅比例尺是1:30000000的地图上,量的甲乙两地的距离是5厘米,那么甲地到乙地的实际距离是()千米.A.150 B.6000 C.1500考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:图上距离与比例尺已知,求实际距离,用图上距离除以比例尺即可.解答:解:5÷=150000000(厘米),150000000厘米=1500千米;答:甲地到乙地的实际距离是1500千米.故选:C.点评:本题主要是灵活利用比例尺的意义解决问题,注意单位的换算.7.一个直角三角形的两条直角边分别是3厘米、2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24 C.48 D.96考点:比例尺应用题.专题:压轴题.分析:先按4:1的比例尺分别求出放大后的两条直角边的长度,再依据三角形的面积公式即可求出放大后的面积.解答:解:放大后的直角边分别是:3×4=12(厘米),2×4=8(厘米);放大后的面积:12×8÷2=48(平方厘米);答:放大后的面积是48平方厘米.故选:C.点评:此题主要考查放大比例尺的应用及三角形的面积计算.8.在比例尺是1:500000的地图上,量得A、B两地间的距离是11厘米,A、B两地间的实际距离是()千米.A.55 B.5500000 C.5500考点:比例尺应用题.专题:比和比例应用题.分析:求实际距离,根据公式“图上距离÷比例尺=实际距离进行解答即可.解答:解:11÷=5500000(厘米),5500000厘米=55千米,答:A、B两地之间的实际距离是55千米;故选:A.点评:此类题做题的关键是弄清题意,根据图上距离、实际距离和比例尺三者之间的关系进行列式解答.9.长江是中国第一大河,全长6300千米,在比例尺是1:100000000的地图上的长度为.()A.6.3cm B.63dm C.63cm考点:比例尺应用题.专题:比和比例应用题.分析:根据比例尺=图上距离:实际距离,知道图上距离=比例尺×实际距离,代入数据解答即可.解答:解:6300千米=630000000厘米,630000000×=6.3(厘米),答:在比例尺是1:100000000的地图上的长度为6.3厘米.故选:A.点评:此题主要考查比例尺的意义及已知比例尺和实际距离求图上距离.注意单位的换算.10.一种精密零件长5毫米,把它画在图纸上,图上零件长6厘米,这张图纸的比例尺是()A.1:12 B.5:6 C.6:5 D.12:1考点:比例尺应用题.专题:比和比例应用题.分析:根据比例尺=图上距离:实际距离,把实际长度5毫米,图上长度6厘米代入求出这张图纸的比例尺.解答:解:6厘米:5毫米,=60毫米:5毫米,=60:5,=(60÷5):(5÷5),=12:1,答:这张图纸的比例尺是12:1.故选:D.点评:此题主要考查学生对比例尺这一知识点的理解和掌握,像这种求比例尺的题目单位一般不相同,因此首先要注意单位的统一.B档(提升精练)1.在比例尺是1:100000的地图上,量得甲、乙两地的距离是3厘米,甲、乙两地的实际距离是()A.300千米B.3千米C.30千米D.0.3千米考点:比例尺应用题.专题:比和比例应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出甲、乙两地的实际距离.解答:解:3÷=300000(厘米)=3(千米);故选:B.点评:此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.2.学校操场扩建后的平面图如图,扩建后面积比原来增加25%,操场原来的面积是()平方米.A.480 B.4800 C.6000 D.7500考点:比例尺应用题;应用比例尺画图.专题:压轴题;比和比例应用题.分析:先依据“图上距离÷比例尺=实际距离”求出扩建后的操场的长和宽的实际长度,再利用长方形的面积公式求出扩建后的面积,把原来的面积看作单位“1”,再据已知一个数的几分之几是多少,求这个数的方法,即可求解.解答:解:6=6000(厘米)=60(米),10÷=10000(厘米)=100(米),100×60÷(1+25%),=6000÷1.25,=4800(平方米);答:操场原来的面积是4800平方米.故选:B.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及长方形的面积的计算方法在实际生活中的应用.3.新光小学的操场是一个长方形,画在比例尺是1:4 000的平面图上,长3厘米,宽2厘米.操场的实际面积是()A.240平方米B.96平方米C.2.4平方米D.9 600平方米考点:比例尺应用题.专题:比和比例应用题.分析:要求操场的实际面积,根据“图上距离÷比例尺=实际距离”,代入数值,分别计算出操场实际的长和宽,然后根据“长方形的面积=长×宽”,代入数值,计算即可.解答:解:3÷=12000(厘米)=120(米),2÷=8000(厘米)=80(米),面积:120×80=9600(平方米),答:操场的实际面积是9600平方米,故选:D.点评:解答此题用到的知识点:(1)图上距离、实际距离和比例尺三者之间的关系;(2)长方形的面积计算方法.4.在比例尺是1:20的图纸上画出一种机械配件平面图的角是40度.这个角实际是()度.A.2B.40 C.800考点:比例尺应用题.分析:比例尺=图上距离÷实际距离,是指长度尺寸按比例放大或缩小.解答:解:根据比例尺是1:20的图纸,知道图上距离是1厘米,实际距离是20厘米,是长度尺寸是按比例缩小,角的大小与边的长度无关,只与两边叉开的程度有关,所以角度是不会变的;故选:B.点评:此题主要考查了比例尺的意义以及角的意义.5.在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A.15点B.17点C.21点考点:比例尺应用题.分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”求出货轮从A地到B地需要的时间,进而可以求出到达B地的时刻.解答:解:9÷=36000000(厘米)=360(千米),360÷24=15(小时),6+15=21(时);答:货轮到达B港的时间是21时.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=时间”.6.比例尺表示.A.图上距离是实际距离的B.实际距离是图上距离的800000倍C.实际距离与图上距离的比为1:800000考点:比例尺应用题.分析:在图上附有一条注有数目的线段,用它来表示和地面上相对应的实际距离,这就叫做线段比例尺.图中比例尺1厘米表示实际距离8千米,用比表示为1:800000.解答:解:8千米=800000厘米,所以此线段比例尺表示为:1:800000,它可以表示图上距离是实际距离的,也可以表示实际距离是图上距离的800000倍,也表示图上距离与实际距离的比是1:800000.所以在ABC答案中,只有B答案正确.故选:B.点评:此题考查了线段比例尺的意义.7.在比例尺是1:3000000的地图上,量得A、B两港距离为12cm,一艘货轮于上午7时出发,以每小时24km的速度从A港开向B港,到达B港的时间是()A.22时B.23时C.21时考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:先根据图上距离÷比例尺=实际距离,再根据路程÷速度=时间,进而解出答案.解答:解:12÷=36000000(厘米)=360(千米),360÷24=15(小时),上午7时过15小时是晚上的22时,故选:A.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及行程问题中的基本数量关系“路程÷速度=时间”.8.在比例尺是1:30,000,000的地图上量得甲、乙两地相距5.5厘米,一辆汽车按3:2分两天行完全程,那么第二天行的路程是()A.6.6千米B.66千米C.660千米D.6600千米考点:比例尺应用题.分析:先根据比例尺求出实际的全程,再把全程按照3:2的比例分配即可.解答:解:30000000×5.5=165000000(厘米);165000000厘米=1650(千米);3+2=5,1650÷5×2=660(千米);故答案选:C.点评:本题先利用比例尺求出实际的全程,再把全程按比列分配;注意1千米=100000厘米.9.在比例尺是1:3000000的地图上,量得A、B两港距离为12厘米,一艘货轮于上午7时以每小时24千米的速度从A港开向B港,到达B港的时间是()A.16点B.18点C.20点D.22点考点:比例尺应用题.分析:先根据图上距离÷比例尺=实际距离,再根据路程÷速度=时间,进而解出答案.解答:解:12÷=36000000(厘米)=360(千米),360÷24=15(小时),上午7时过15小时是晚上的22时,故选:D.点评:解答此题用了比例尺和行程方面的知识解答.10.一个正方形的面积是100平方厘米,把它按10:1的比放大.放大后图形的面积是多少平方厘米?()A.1000平方厘米B.2000平方厘米C.10000平方厘米考点:比例尺应用题.分析:一个正方形的面积是100平方厘米,它的边长是10厘米,把它按10:1的比放大,就是把这个正方形的边长扩大到原来的10倍,据此可求出放大后图形的面积.解答:解:10×10=100(厘米),100×100=10000(平方厘米);故选:C.点评:本题是考查图形的放大与缩小,图形放大与缩小的倍数是指图形边长放大与缩小的倍数.C档(跨越导练)1.在比例尺是1:1000的图纸上,量得一块正方形地的边长是5厘米,则这块地的实际面积是()A.250000平方厘米B.2500平方厘米C.2500平方米D.250平方米考点:比例尺应用题;长方形、正方形的面积.专题:平面图形的认识与计算.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出正方形的边长的实际长度,进而利用正方形的面积公式即可求解.解答:解:5÷=5000(厘米)=50(米),50×50=2500(平方米);答:这块地的实际面积是2500平方米.故选:C.点评:此题主要考查依据图上距离、实际距离和比例尺之间的关系解决实际问题,解答时要注意单位的换算.2.在比例尺是1:6000000的地图上,量得广州到北京的距离是30厘米,广州到北京的实际距离约是()千米.A.1600 B.2000 C.1800考点:比例尺应用题.专题:比和比例应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出广州到北京的实际距离.解答:解:30÷=180000000(厘米)=1800(千米);答:广州到北京的实际距离是1800千米.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.3.地图上的线段比例尺如图,表示这副地图的数值比例尺是()A.B.C.D.考点:比例尺应用题;长度的单位换算.分析:依据比例尺的意义,即“图上距离与实际距离的比即为比例尺”即可将线段比例尺化成数字比例尺.解答:解:由题意可知:图上1厘米代表实际60千米,又因60千米=6000000厘米,所以1厘米:6000000厘米=1:6000000;故选:C.点评:此题主要考查比例尺的意义,解答时要注意单位的换算.4.在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()A.300km B.600km C.900km D.1500km考点:比例尺应用题;按比例分配应用题.专题:比和比例应用题.分析:要求两天行的路程差是多少千米,先根据“图上距离÷比例尺=实际距离”,求出甲地到乙地的路程,然后根据两天行的路程比,得出第一天行了全程的第二天行了全程的,第一天比第二天多行全程的﹣,解答即可得出结论.解答:解:5÷×(﹣),=150000000×,=30000000(厘米);30000000厘米=300千米;故选:A.点评:此题应根据图上距离、比例尺和实际距离的关系,先求出全程,进而运用按比例知识进行解答即可.5.在比例尺是1:2000000的地图上,量得两地距离是28厘米,这两地的实际距离是560千米,若一辆货车以70千米每小时的速度由贵阳往晴隆行驶,则需要8小时.考点:比例尺应用题;简单的行程问题.专题:比和比例应用题;行程问题.分析:已知比例尺和图上距离求实际距离,求出实际距离,再根据路程÷速度=时间,列式解答.解答:解:(1)28=56000000(厘米),56000000厘米=560千米,(2)560÷70=8(小时),答:这两地的实际距离是560千米,需要8小时.故答案为:560,8.点评:此题主要考查比例尺的意义及已知比例尺和图上距离求实际距离.注意单位的换算.6.在比例尺是1:10000000的地图上,量得甲地到乙地的距离是10.2厘米,一辆汽车按3:2的比例分两天跑完全程,两天跑的路程的差是204千米.考点:比例尺应用题.专题:比和比例应用题.分析:首先实际距离=图上距离÷比例尺,求出甲、乙两地之间的路程,已知一辆汽车按3:2的比例分两天跑完全程,第一天跑的路程占全程的,第二天跑的路程占全程的,然后根据一个数乘分数的意义,用乘法解答.解答:解:10.2,=10.2×10000000,=102000000(厘米),102000000厘米=1020千米,1020×(),=1020×,=204(千米),答:两天跑的路程的差是204千米.故答案为:204.点评:此题解答关键是根据图上距离和比例尺求出实际距离,再把比转化成分数,根据一个数乘分数的意义解答即可.7.树人小学新建一幢教学楼,地基是长50米、宽28米的长方形.画在图纸上,长是2.5厘米,宽是1.4厘米,这幅图的比例尺是1:2000.考点:比例尺应用题;长度的单位换算.分析:这道题是已知实际距离、图上距离,求比例尺的问题,运用图上距离:实际距离=比例尺,即可解决问题.解答:解:50米=5000厘米,2.5:5000=1:2000;答:这幅图的比例尺是1:2000.故答案为:1:2000.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.8.在一副比例尺为1:4000000的地图上,量得平阳至杭州的公路长时10.5cm,两地实际相距420千米,如果一辆汽车每小时100千米的速度与上午10时40分从平阳开出,那么将在下午2时52分到达杭州.考点:比例尺应用题;简单的行程问题.专题:压轴题;比和比例应用题;行程问题.分析:(1)图上距离和实际距离已知,依据“实际距离=图上距离÷比例尺”即可求出平阳至杭州的公路的实际长度;(2)依据“路程÷速度=时间”即可求出这辆汽车需要的时间,进而求出到达的时刻.解答:解:(1)10.5÷=42000000(厘米)=420(千米);答:两地实际相距420千米.(2)420÷100=4.2(小时)=4小时12分钟,所以10时40分+4小时12分=14时52分;答:这辆汽车将在下午2时52分到达杭州.故答案为:420、2、52.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及行程问题中的基本数量关系“路程÷速度=时间”.9.在比例尺是1:60000000的地图上,量得甲乙两地的航线距离是2.5厘米,上午8时30分有一架飞机从甲地飞往乙地,上午11时到达.这架飞机平均每小时飞行600千米.考点:比例尺应用题.分析:已知比例尺和图上距离求实际距离,用图上距离÷比例尺=实际距离;上午8时30分有一架飞机从甲地飞往乙地,上午11时到达,飞行时间是2.5小时,再根据路程÷时间=速度,列式解答.解答:解:2.5÷=2.5×60000000=150000000(厘米);150000000厘米=1500千米;1500÷2.5=600(千米/时);答:这架飞机平均每小时飞行600千米.故答案为:600.点评:此题主要考查已知比例尺和图上距离求实际距离的方法,再根据路程、速度、时间三者之间的关系解答即可.10.在比例尺是1:60000000的地图上,量得甲乙两地的距2.5厘米,上午8点30分有一架飞机从甲地飞往乙地,上午9点45分到达,这架飞机每小时行1200千米.考点:比例尺应用题.分析:这道题是已知比例尺、图上距离,求实际距离,根据图上距离÷比例尺=实际距离列式求得实际距离,再进一步求出飞机速度,即可解答.解答:解:2.5÷=2.5×60000000=150000000(厘米),150000000厘米=1500千米,从上午8点30分到上午9点45分的时间为1.25小时,1500÷1.25=1200(千米);答:这架飞机每小时行1200千米.故答案为:1200.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.。
小学数学公开课《应用比例尺画平面图》教案(含试卷)
小学数学公开课《应用比例尺画平面图》教案一、课标要求:1、使学生理解比例尺的意义,掌握相应的数量关系,能正确地求出图上距离、实际距离和比例尺。
2、使学生能运用比例的相关知识,分析、解决实际问题,并在经历问题解决的过程中,积累和丰富解决问题的经验策略,提高问题解决能力。
二、学习目标:1、通过自主学习,尝试交流,会根据比例尺及图上距离,绘制平面图。
三、任务评价:1、通过提问、板演,检测学习目标的达成。
四、学习过程:(一)复习:1、图上距离2厘米表示实际距离10千米,这幅图的比例尺是()。
2、在一张图纸上,用6厘米的线段表示3毫米,这张图纸的比例尺是()。
3、线段比例尺改写成数值比例尺是()。
(二)新知探究:1、出示例3。
2、指导阅读与理解题意。
3、交流解题策略。
要画平面图,应先求出小明家、小亮家、小红家到学校的图上距离,再根据图上距离来画。
4、明确解题思路。
(1)方法一:根据比例尺确定题目中每一段实际距离对应的图上距离,根据“图上距离:实际距离=比例尺”,可以得出“图上距离=实际距离×比例尺”。
方法二:先将题目中的数值比例尺转化成线段比例尺,再根据线段比例尺来求图上距离。
(2)根据位置与方向的知识画出平面图。
5、分小组解决问题。
6、指定小组板演、汇报7、根据学生板演、汇报情况指导,提醒画图注意事项。
(三)全课总结:应用比例尺画图时,应先根据比例尺求出图上距离,再根据图上距离画出相应的平面图,并标明平面图的名称及比例尺。
(四)做一做:学校要建一个长80m、宽60m的长方形操场,请在右图中画出操场的平面图。
(比例尺1:2000)五、作业设计:明明量得公园的一个圆形花坛的周长是157米,他想把它画在平面图上,请你帮忙画一画。
(比例尺根据纸张的大小和圆规的大小确定。
)六、板书设计:应用比例尺画平面图200m=20000cm400m=40000cm250m=25000cm小明家到学校的图上距离:20000×1/10000 =2(cm)小红家到学校的图上距离25000×1/10000 =2.5(cm)小亮家到学校的图上距离(40000-20000)×1/10000 =2(cm)小升初数学模拟试卷一、选择题1.下列判断种正确的有()个①因为周长相等的两个圆,面积一定相等,所以周长相等的两个长方形,面积也一定相等:②圆锥的体积是等底等高的圆柱体的:③xy=k+5.4(k+5.4≠0),当k一定时,x和y成反比例:④一个圆的半径增加10%,它的面积增加21%:⑤甲数比乙数多,乙数比甲数少。
3 运用比例尺画图
(3)最后在图上标出起脚位置。
4.应用比例尺画图,先根据()和()求出图上距离,再标出图上位置。
5.在同一题中,如果要出现多个未知数,就需用不同的字母设未知数,一般用()和()来设。
6.根据要求完成练习。
(1)体育场距广电大厦的图上距离是()厘米,已知实际距离是300米,这幅平面图的比例尺是()。
(2)广电大厦到移动公司的图上距离是例尺、比例的基本性质、解比例等相关知识。
学具准备:直尺。
参考答案
1.3600242.用方向和距离描述。
3.(1)1500 = 4.比例尺实际距离5.xy6.(1)1.51∶20000
(2)1200
3运用比例尺画图
项目
内容
1.换算单位。
36米=()厘米2400000厘米=()千米
2.思考:怎样才能确定一个地点的具体位置?
3.读教材第60页信息窗3。
A点距底线的图上距离是多少厘米?距右边线呢?
分析与解答:
(1)先计算出图上距离:计算A点距底线的图上距离,15米=()厘米,然后设图上距离为x,根据比例尺列出方程()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解法二:10米=1000厘米 25米=2500厘米 1 1000× 1000 1 2500 × 1000 =2.5(厘米) =1(厘米)
所以:在平面图中,10号队员在浅色区域距底
线1厘米、右边线2.5厘米处起脚。
+
根据比例尺的意义,用解比例的方法来求图上 距离。仍需注意图上距离和实际距离的单位名称 要一致,要注意单位名称的换算。
4.在设了未知数Ⅹ、通过解比例求出10号运动员 起脚处距底线的图上距离之后,在求他距边线的 图上距离时,还能再设未知数Ⅹ吗?为什么? 因为要求起脚位置距离底线和边线两处的图 上距离,所以涉及到要设两次未知数,解两次比 例,而在同一道题中,如果要出现多处未知数, 就需用不同的字母来表示,以示区别。 5.在计算出相关数据之后,我们应该怎样在图上 确定这名队员起脚射门的位置? 利用作图工具,利用已知点作一条直线的垂线的 方法,联系刚算出的有关数据,就可以在足球场 平面图上标出这名队员起脚射门的位置了。
用例尺 求图上距离并画图
1.什么是比例尺? 关系式是怎样的? 2.计算:
讨论提纲:
1.题中有关解决这一问题的信息由哪些? 有足球场平面图的比例尺,有相关的实际距离。 2.你觉得应该分哪些步骤来解决这一问题? 先算图上距离,再在图上标出起脚的位置。 3.怎样求起脚位置距离底线和边线的图上距离?