生物信息学课件ppt模板

合集下载

《生物信息学》课件

《生物信息学》课件

生物信息学的重要性
解释生物信息学在生物科学 研究、药物开发和医学诊断 中的重要作用。
生物信息学的发展历程
1
计算机技术的进步
描述计算机技术的不断发展为生物信息学提供了强大的工具和平台。
2
基因测序技术的突破
介绍基因测序技术的革命性进步,推动了生物信息学的发展。
3
开放数据共享
解释开放数据共享促进了生物信息学研究的合作和创新。
生物信息学的基本原理
1 序列比对
2 基因功能注释
3 数据挖掘和机器学习
阐述序列比对在生物信息 学中的核心作用,用于识 别相似的DNA、RNA和蛋 白质序列。
描述基因功能注释的流程, 用于理解基因的功能和作 用。
介绍数据挖掘和机器学习 在生物信息学中的应用, 用于发现生物学模式和预 测结构。
生物信息学的未来发展趋势
技术革新
预测未来生物信息学将受益于技 术的不断革新,如人工智能、大 数据和基因编辑。
研究领域拓展
探索生物信息学在新兴领域,如 单细胞测序和微生物组学中的应 用潜力。
多学科融合
强调生物信息学将与其他学科, 如人类基ቤተ መጻሕፍቲ ባይዱ组学和系统生物学, 进行深入交叉。
《生物信息学》PPT课件
欢迎来到《生物信息学》PPT课件。本课程将带您了解生物信息学的定义、应 用、发展历程、基本原理和未来发展趋势。
导入生物信息学
什么是生物信息学
介绍生物信息学是一门跨学 科领域,结合了生物学和计 算机科学的知识,用于解析 和研究生物信息。
生物信息学的应用领域
探索生物信息学在基因组学、 蛋白质组学、转录组学等领 域的广泛应用。

生物信息学导论精品PPT课件

生物信息学导论精品PPT课件

2020/10/5
16
概述
➢ 生物信息学往哪里去
表18-1生物信息学的过去、现在和将来
二十世纪90年代 的生物信息学
当前的生物信息 学
未来的生物信息 学
2020/10/5
主要内容
大规模基因组学与蛋白质组学的实 验数据形成的一级数据库及其相应 的分析方法与工具
由一级数据库分类、归纳、注释得 到的基因组学与蛋白质组学二级数 据库 (知识库)及其相应的分析方法与 工具
细胞和生物体的完全计算机表示
目的 了解单个基因和蛋白 质的功能与用途
2020/10/5
12
概述
➢ 生物信息学的起源
DNA自动测序构成过巨大的冲击,因为它曾经是各种生物学数据高通 量产出的前沿阵地。像表达序列标签(ESTs),单核苷多态性(SNPs)都 和基因序列密切相关。随后发展的研究基因表达模式(profile)的DNA微 阵列技术、用于探测蛋白质相互作用的酵母双杂交系统、以及质谱技术极 大地让生命科学类数据库飞速膨胀。结构基因组学方面的新技术还不能大 规模地产生数据,但它们正在导致蛋白质三维结构数据的增加。
2020/10/5
14
概述
➢ 生物信息学往哪里去
尽管最近十年来,高通量检测技术与信息技术的结合让人们认识了大 量的基因和蛋白质,但是和物理学、化学相比较,生物学仍旧是一门不成 熟的学科,因为对于生命过程,我们无法根据一般性原理做出像卫星轨道 那样精确的预测。随着数据的不断膨胀和知识的积累,也借助于生物信息 学,这种情形很有可能发生改变。
生物信息学导论
Introduction to Bioinformatics
Email: Tel:
2020/10/5
1

生物信息学1PPT课件

生物信息学1PPT课件
Information technology
Biology
什么是生物信息学?(具体点)
生物信息学把用于存储和搜索数据的数 据库开发,与用于分析和确定大分子序列、 结构、表达模式和生化途径等生物数据集 之间的关系的统计工具和算法的开发结合 在一起。
生物信息学(总结)
数据库 算法与统计工具 分析与解释
1 Sanger Centre
1,6,9,10,13,20,22,X
850
2 WIBR
(Clones from Wash U)
3 Wash U
2,3,4,7,11,15,18,Y
900
4 JGI
5,16,19
250
5 Baylor
1,2,3,X
230
6 Riken
21,18,11q
160
7 IMB
8,21,X
Two men we have to mention
Francis Collins VS. J.Craig Venter
全自动测序仪加速了 …
看看关键的两条曲线
生物数据每14个月 double一次
Our Contribution to HGP
No
Center
Region
Size(Mb)
50
8 Genoscope
Most of 14
85
9 U. Wash (Olson)
10 Beijing
3p
30
11 GTC (Smith)
10
50
12 MPIMG
17,21,X
6.9
13 GBF
21, reg of 9
6
14 Stanford (Davis)

生物信息学课堂ppt课件

生物信息学课堂ppt课件
它是一门理论概念与实践应用并重的学科 ❖ bioinformatics这一名词在1991年左右才在文献中出现,还
只是出现在电子出版物的文本中。
5
产生 生物信息学的
❖ 20世纪后期,生物科学技术迅猛发展,无论从数量上还是从质量上都 极大地丰富了生物科学的数据资源。数据资源的急剧膨胀迫使人们寻求 一种强有力的工具去组织这些数据,以利于储存、加工和进一步利用。 而海量的生物学数据中必然蕴含着重要的生物学规律,这些规律将是解 释生命之谜的关键,人们同样需要一种强有力的工具来协助人脑完成对 这些数据的分析工作。
❖ 基因组时代--基因寻找和识别、网络数据库系统的 建立、交互界面的开发;
❖ 后基因组时代--大规模基因组分析、蛋白质组分析。
8
重要性 生物信息学的
❖ 生物信息学不仅是一门学科,更是一种重要的研究开发工具。 ❖ 从科学的角度来讲,生物信息学是一门研究生物和生物相关
系统中信息内容与信息流向的综合系统科学。只有通过生物 信息学的计算处理,人们才能从众多分散的生物学观测数据 中获得对生命运行机制的系统理解。 ❖ 从工具的角度来讲,生物信息学几乎是今后所有生物(医药) 研究开发所必需的工具。只有根据生物信息学对大量数据资 料进行分析后,人们才能选择该领域正确的研发方向。 ❖ 生物信息学不仅具有重大的科学意义,而且具有巨大的经济 效益。它的许多研究成果可以较快地产业化,成为价值很高 的产品。
分析(主要研究内容) 应用(多个领域)
主要由数据库、计算机网络和应用软件三大部分构成
2
定义
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大量数据。
生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学

生物信息学分析方法介绍PPT课件

生物信息学分析方法介绍PPT课件
生物信息学分析方法 介绍
目录
• 生物信息学概述 • 基因组学分析方法 • 转录组学分析方法 • 表观遗传学分析方法 • 蛋白质组学分析方法 • 生物信息学分析流程和方法比较
01
生物信息学概述
生物信息学的定义和重要性
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理和 技术,对生物学数据进行分析、建模和解读,以揭示生命现象的本质和规律。
研究蛋白质的序列、结构 和功能,以及蛋白质相互 作用和蛋白质组表达调控 机制。
研究基因转录本的序列、 结构和表达水平,以及转 录调控机制。
研究基因表达的表观遗传 调控机制,如DNA甲基化 、组蛋白修饰等。
通过对患者基因组、蛋白 质组和转录组等数据的分 析,为个性化医疗和精准 医学提供支持。
02
基因组学分析方法
基因组注释
基因组注释是指对基因组序列中的各 个区域进行标记和描述的过程,包括 基因、转录单元、重复序列、调控元 件等。
注释信息可以通过数据库(如RefSeq、 GeneBank等)或注释软件(如GATK、 ANNOVAR等)获取。注释信息对于 理解基因组的生物学功能和进化关系 具有重要意义。
基因组变异检测
基因组变异检测是指检测基因组序列 中的变异位点,包括单核苷酸变异、 插入和缺失等。
VS
变异检测对于遗传疾病研究、进化生 物学和生物进化研究等领域具有重要 意义。常用的变异检测方法有SNP检 测、CNV检测等,它们基于不同的原 理和技术,具有不同的适用范围和精 度。
03
转录组学分析方法
RNA测序技术
利用生物信息学方法和算法,对 RNA测序数据进行基因融合检测, 寻找融合基因及其融合方式。
基因融合检测结果可以为研究肿 瘤等疾病提供重要线索,有助于 深入了解疾病发生发展机制。

生物信息学介绍(PPT20页)

生物信息学介绍(PPT20页)
– 蛋白质的结构和功能预测
• 蛋白质怎样实现细胞和有机体的动力学:
– 生命为什么是蛋白质的运动方式
• 个体发育和系统发育的法则和机理:
– 肌体如何长成、运作、衰老和进化
• 征服疾病:
– 主要循环系统疾病、癌症、病毒源性疾病、遗传病和衰老
• 保护和利用生物资源,开发和发展生物产业:
– 生物学怎样造福人类

1、
功的路 。2020/10/262020/10/26Monda y, October 26, 2020
成功源于不懈的努力,人生最大的敌人是自己怯懦

2、
。2 020/10/ 262020 /10/26 2020/10 /2610/ 26/202 0 12:03:09 AM
每天只看目标,别老想障碍
–蛋白质的三维结构
– 蛋白质的物理性质预测
– 其他特殊局部信息:其它特殊局部结构包括 膜蛋白的跨膜螺旋、信号肽、卷曲螺旋 (Coiled Coils)等,具有明显的序列特征和结 构特征,也可以用计算方法加以预测
• cDNA 芯片相关的数据管理和分析
实验室信息管理系统 基因表达公共数据库
• 分子进化
基因芯片流程(二)
6. 图象处理(采用专门软件,对图象进行分析, 提取每个点上的数字信号),得到原始数据表。
7. 数据校正和筛选(对cy5或cy3信号进行校正, 消除实验或扫描等各环节因素对数据的影响, 同时利用筛选规则对数据中的“坏点”,“小 点”,“低信号点”进行筛选,并作标记。)
8. 差异表达基因的确定(采用ratio值对差异基因 进行判断,或采用统计方法如线性回归、主成 分分析、调整P值算法等对差异基因进行统计 推断)
远期任务
• 读懂人类基因组,发现人类遗传语言的 根本规律,从而阐明若干生 物学中的重 大自然哲学问题,像生命的起源与进化 等。这一研究的关键和核心是了解非编 码区

生物信息学第一章绪论PPT幻灯片

生物信息学第一章绪论PPT幻灯片
中关于生物及化学领域 内相关的基础知识;
❖ 掌握生物信息学领域内计算机信息处理的方法; ❖ 了解生物信息学方面的一些重要资源,掌握运
用生物信息学工具解决生命科学相关问题的基 本方法与途径。
研究对象
• 基因:具有遗传效应的DNA片段
• 蛋白质:调控和实现几乎所有生物功能 的分子机器
研究对象
参考书
❖ 孙啸,陆祖红,谢建明,生物信息学基础, 清华大学出版社, 2004. ❖ 张成岗, 贺福初, 生物信息学方法与实践, 科学出版社, 2002.
课程特点
➢ 具有学科交叉的鲜明特色 ➢ 概念多, 算法多
成绩评定
平时考核成绩×30% + 闭卷考试成绩×70%

生物信息学第一章生物信息学概述ppt课件

生物信息学第一章生物信息学概述ppt课件

基因通过转录和翻译,使遗传信息在生物个体中得以表达,并使后代表现出 与亲代相似的生物性状。
复制
DNA
转录
RNA
翻译
蛋白 质
(2)蛋白质的结构决定其功能
l 蛋白质功能取决于蛋白质的空间结构
l 蛋白质结构决定于蛋白质的序列(这是目前基本公认的假设),蛋白质
结构的信息隐含在蛋白质序列之整中理。课件
12
(3) DNA分子和蛋白质分子都含有进化信息
整理课件
5
• 生物信息学?--新兴的交叉学科
Mathematical sciences
Computer sciences
Life sciences
生物学背景?★★★ 分子生物学/基因工程 数学?★ 统计学,模型,算法 计算机科学背景? ★ Linux/Perl/PHP/JAVA/C++/Visual Basic
人类基因组 计划的 推动
生物信息学 基本思想的产生
二十世纪 50年代
生物信息学 的迅速发展
整理课件
二十世纪 80-90年代
18
(1)前基因组时代(20世纪90年代前)
n 20世纪50年代,生物信息学开始孕育 n 20世纪60年代,生物分子信息在概念上将计算生物学和计算
机科学联系起来,是生物信息学形成雏形的阶段
• 对于第二部密码,目前则只能用统计学的方法进行分析 • 无论是第一部遗传密码,还是第二部遗传密码,都隐藏在大量的
生物分子数据之中。
生物分子数据是宝藏, 生物信息数据库是金矿,等待我们去挖掘和利用。
整理课件
15
生物信息学涉及的生物分子数据库
DNA序列数据
最基本

蛋白质序列数据

第1讲 生物信息学绪论PPT幻灯片

第1讲 生物信息学绪论PPT幻灯片
Sanger测序法 双脱氧链终止法
Sanger测序法
新的测序技术 –焦磷酸测序法(454,Solexa, Solid), 单分子测序 –新的整合技术
1995 第一个自由生物体流感嗜血菌(H. inf)的全基因组测序完成
1996 完成人类基因组计划的遗传作图 启动模式生物基因组计划
H.inf全基因组
大肠杆菌及其全基因组
水稻基因组计划
1999.7 2000
第5届国际公共领域人类基因组测序会议,加快测序速度 Celera公司宣布完成果蝇基因组测序 国际公共领域宣布完成第一个植物基因组——拟南芥全基 因组的测序工作
Drosophila melanogaster 果蝇
Arabidopsis thaliana 拟南芥
51335613554632416254244212326366645622466146342646 11111111111111111111111111112222222222222222222222
隐状态:那个骰子
基因的鉴定
跟线虫的基因数差不多 暗示着。。。。。。
人类基因组序列的显示
Visualization什 Nhomakorabea是生物信息学? 1
一、生物信息学定义
2
生物信息学(Bioinformatics)名词的由来
八十年代末期,林华安博士认识到将计算机科学与生物学 结合起来的重要意义,开始留意要为这一领域构思一个合适的 名称。起初,考虑到与将要支持他主办一系列生物信息学会议 的佛罗里达州立大学超型计算机计算研究所的关系,他使用的 是“CompBio”;之后,又将其更改为兼具法国风情的 “bioinformatique”,看起来似乎有些古怪。因此不久,他便 进一步把它更改为“bio-informatics(bio/informatics)”。 但由于当时的电子邮件系统与今日不同,该名称中的-或/符号 经常会引起许多系统问题,于是林博士将其去除,今天我们所 看到的“bioinformatics”就正式诞生了,林博士也因此赢得了 “生物信息学之父”的美誉。

《生物信息学》PPT课件

《生物信息学》PPT课件

FT
/organism="Pisum sativum"
FT
/strain="G2"
FT
/dev_stage="pre-floral seedlings"
FT
/tissue_type="apical bud"
FT
/clone_lib="lambda ZAPII"
FT CDS
48..1376
FT
/db_xref="SPTREMBL:O04699"
互联网生物信息资源 Bioinformatics Resources on the
Internet
xxx 北京大学生物信息中心
lxxxx@ /

1
Half day on the web, saves you half month in the lab.
120
ctaatcgcac caggcttttc accaaagttc aattcagttt ccaccaactt cctccgattc
180
......
. ggaccacata catttgtttg tagtttatag taagttttgt atatgtcaaa cagtttgtat
catttttggg ttgacaattt tattgaacat gttatttaat catgcaaaat atcttttgtt
FT
/gene="ppf-1"
FT
/product="PPF-1 protein"
FT
/protein_id="CAA73179.1"
FT

《生物信息学》PPT课件

《生物信息学》PPT课件

❖ 10. 通过学习应逐渐掌握的内容
编辑ppt
2
1. 什么是生物信息学?
❖ What is bioinformatics ?
❖ What do you know about bioinformatics ?
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大
量数据。生物信息学(bioinformatics)是生物学与计算机科学以
及应用数学等学科相互交叉而形成的一门新兴学科。它通过对生
物学实验数据的获取、加工、存储、检索与分析,进而达到揭示
数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主
要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸
和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物
信息学可以狭义地定义为:将计算机科学和数学应用于生物大分
组测序工作。
编辑ppt
7
3. 生物信息学的发展过程
大致经历了3个阶段:
❖ 前基因组时代—生物数据库的建立、检索工 具的开发、DNA和蛋白质序列分析、全局和 局部的序列对位排列;
❖ 基因组时代—基因寻找和识别、网络数据库 系统的建立、交互界面的开发;
❖ 后基因组时代—大规模基因组分析、蛋白质 组分析。
❖ 早在1956年,在美国田纳西州盖特林堡(Datlinburg)召开的 首次“生物学中的信息理论研讨会”上,便产生了生物信息 学的概念。但是,就生物信息学的发展而言,它还是一门相 当年轻的学科。直到20世纪80—90年代,伴随着计算机科 学技术的进步,生物信息学才获得突破性进展。
❖ 1987年,林华安博士正式把这一学科命名为“生物信息学” (Bioinformatics)。此后,其内涵随着研究的深入和现实需 要的变化而几经更迭。1995年,在美国人类基因组计划第一 个五年总结报告中,给出了一个较为完整的生物信息学定义: 生物信息学是一门交叉科学,它包含了生物信息的获取、加 工、存储、分配、分析、解释等在内的所有方面,它综合运 用数学、计算机科学和生物编学辑p的pt 各种工具,来阐明和理解大10 量数据所包含的生物学意义。

《生物信息学》PPT课件

《生物信息学》PPT课件
➢ 对某一基因分析其mRNA序列和蛋白质序列特点,设 计一对RT-PCR引物并说明选择这对引物的理由;写 出克隆此基因编码区的研究策略和技术路线(pGEM-T 克隆载体及pcDNA3.1表达载体)。
完整版课件ppt
8
数据库
数据库格式:EMBL格式,GenBank格式, ASN.1格式,PIR/CODATA格式
生物信息学
生物信息学概述 生物信息数据库及其应用
完整版课件ppt
1
生物信息学(bioinformatics)是生物学与计算 机科学以及应用数学等学科相互交叉而形成 的一门学科。它通过对生物学实验数据的获 得、加工、存储、检索与分析,进而达到揭 示数据所蕴含的生物学意义的目的。
完整版课件ppt
2
生物信息学与生物计算
★ 各种数据库的建立和管理 ★ 数据库接口和检索工具的研制 ★ 研究新算法,发展方便适用的程序
完整版课件ppt
3
生物信息学与生物实验
★ 实验数据是生物信息学的基础 ★ 生物信息学的指导作用
完整版课件ppt
4
算法 图形学 图像识别 人工智能 数据库 统计学 计算机模拟 信息理论 语言学 机器人学 软件工程 计算机网络
完整版课件ppt
25
重要生物信息学中心简介
NIH:National Institute of Health NCBI:National Center of Biotechnology Institute NLM:National Library of Medicine / GenBank, Unigene , Refseq, dbSNP, OMIM
完整版课件ppt
32
完整版课件ppt
33
完整版课件ppt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物信息学 Bioinformatics
content
• 1.生物信息学简介 • 2.生物信息学数据库 • 3.生物信息学软件 • 4.生物信息学门户网站 • 5.生物信息学在基因芯片技术中的作用
1.生物信息学简介
1.1 生物信息学(Bioinformatics)这一名词的由来 1.2 Bioinformatics的定义 1.3 获取生物的完整基因组 1.4发现新基因和新的核苷酸多态性 1.5基因组中非编码蛋白质区域的结构与功能
模式生物(Model Organism)
Drosophila melanogaster
果蝇
繁殖很快、容易诱发变异的小昆虫。 总长达1.8亿核苷酸。
模式生物(Model Organism)
Arabidopsis thaliana
拟南芥
个体生活周期只有6周的十字花科 小草,是一种理想的模式植物。
模式生物(Model Organism) 小鼠(Mus musculus)
• 这一切构成了一个生物学数据的海洋。
What is Bioinformatics?
如何从海量数据中发掘出人类生存和发展所需的知识,诞生了一门新兴 的交叉科学生物信息学。
6
1.2 定义
广义: 指对基因组研究中的相关生物信息的获取、加工、存储、 分配、分析、和解释。
它包括了两层含义: 一是、对海量数据的收集、整理与服务; 二是、从中发现新的规律。具体来说,生物信息学是把基因组DNA序列信息 作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区,同时阐明基 因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言 规律。在此基础上归纳、整理与基因组遗传信息释放及调控相关的转录普和 蛋白质普的数据,从而认识生物有机体的代谢、发育、分化、进化规律。
• 基因的电脑克隆原理很简单,就是找到属于同一 基因的所有EST片段,再把它们连接起来。由于 EST序列是全世界很多实验室随机产生的,所以 属于同一基因的很多EST序列间必然有大量重复 小片段,利用这些小片段作为标志就可以把不同 的EST连接起来,直到发现了他们的全长,这样 就可以通过电脑克隆到一个基因。
模式生物
Ureaplasma urealyticum
Bacillus subtilis
Drosophila melanogaster
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli
human
Arabidopsis
Mycobacteriu m tuberculosis
Genome sizes in nucleotide pairs (base-pairs)
plasmids viruses bacteria fungi plants algae insects mollusks bony fish amphibians reptiles birds mammals
1.1 生物信息学(Bioinformatics)这一名词的由来
八十年代末期,马来西亚的美籍学者林华安 (Hwa A. Lim)认识到将计算机科学与生物学结 合起来的重要意义,开始留意要为这一领域构思 一个合适的名称。
因此不久,他便进一步把它更改为“bioinformatics(或bio/informatics)”。但由于当 时的电子邮件系统与今日不同,名称中的-或/符 号经常会引起许多问题,林博士于是将其去除, “bioinformatics”就正式诞生了,林博士也因此 赢得了“生物信息学之父”的美誉。
• 狭义:采用信息科学技术,借助数学、生 物学的理论、方法,对各种生物信息(包 括核酸、蛋白质等)的收集、加工、储存、 分析、解释的一门学科。
1.3 获取生物的完整基因组
模式生物基因组计划 酵母、线虫、果蝇、细菌、拟南芥等共约50多种已
完成,70余种正在进行。目前总量已达60亿碱基对!
基因组研究的首要目标是获得生物体的基因组全部核苷酸序列。
104 105 106 107 108 109 1010 1011
模式生物(Model Organism)
Escherichia coli 大肠杆菌
Eschericcoli O157:H7
大肠杆菌是研究得最为详尽的一个模式生物。这种 只有1.6微米长的、可以迅速繁殖的单细胞原核生物, 已经成为实验室和基因工程的重要工具。
基因组大小与人类相近,约30亿个核苷酸对;
1.4发现新基因和新的核苷酸多态性
• 发现新基因是当前国际上基因组研究的热 点,使用生物信息学的方法是发现新基因 的重要手段。比如啤酒酵母完整基因组所 包含的基因约6000个,大约60%的基因是 通过信息分析得到的。
1.2.1基因的电脑克隆
• 利用EST数据库发现新基因也被称为基因的 电脑克隆。EST序列是基因表达的短的 cDNA序列,它们携带着完整基因的某些片 段的信息。目前,Genbank的EST数据库 中水稻EST序列已达124万条,拟南芥达80 万条,而人类的EST序列已超过957万余条, 它大约覆盖了人类基因的90%以上。
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis
rat
elegans
Borrelia burgorferi
Plasmodium falciparum
Borrelia burgorferi
Aquifex aeolicus
Neisseria meningitidis Z2491
• 如果这个基因以前未曾发现过,那它就是一个新 基因。
• 20世纪50年代以来,生命科学进入了前所未有的 高速发展阶段,在短短几十年积累了大量的数据。 据不完全统计,目前在国际数据库中记录的DNA 序列的碱基早已超过了100亿;
• 而随着人类和其他模式生物基因组测序的完成, 可以预计今后DNA序列数据的增长将更为惊人;
• 与此同时,蛋白质的一级结构,即氨基酸序列的 数据的积累也随之增加,迄今已测定一万多种蛋 白质的不同分辨率的空间结构。
相关文档
最新文档