简单多面体 欧拉公式
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单多面体欧拉公式
V-E+F=2
其中 V(Vertex)是多面体的顶点数E(Edge)是边数,F(Face)是面数
有关简单多面体最有趣的定理之一是欧拉公式:V-E+F=2,其实大约在1635年笛卡尔就早已发现了它.欧拉在1750年独立地发现了这个公式,并于1752年发表了它.由于笛卡尔的研究到1860年才被人们发现,所以这个定理就称为欧拉公式而不是笛卡尔公式.
F(面数)+V(顶点数)-E(棱数)=2
欧拉公式说明了多面体顶点数、棱数与面数之间的一个关系,尽管多面体可能会有很多种变化,但这个关系在连续变形下却是保持不变的.这种连续变形下保持不变的性质,就成为拓扑性质,而在连续变形下保持不变的量称为拓扑不变量,这两者都是拓扑学研究的重要内容.