材料力学第七章习题
材料力学第2版 课后习题答案 第7章 弯曲变形
250
−qx l⎞ ⎛ 9l 3 − 24lx 2 + 16 x 3 ) ⎜ 0 ≤ x ≤ ⎟ ( 384 EJ 2⎠ ⎝ − ql ⎛l ⎞ y2 = −l 3 + 17l 2 x − 24lx 2 + 8 x 3 ) ⎜ ≤ x ≤ l ⎟ ( 384 EJ ⎝2 ⎠
y1 =
41ql 4 ( x = 0.25l ) 1536 EJ 5ql 4 ⎛l⎞ y⎜ ⎟ = − 768EJ ⎝2⎠
习 题 7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI为常量。
7-1 (a) M( x) = M 0
∴ EJy '' = M 0 1 EJy ' = M 0 x + C EJy = M 0 x 2 + Cx + D 2 边界条件: x = 0 时 y = 0 ; y' = 0
代入上面方程可求得:C=D=0
(c)
l−x q0 l q0 1 3 ⎛l−x⎞ M ( x) = − q( x) ( l − x ) ⎜ ⎟ = − ( l − x) 2 6l ⎝ 8 ⎠ q 3 ∴ EJy '' = 0 ( l − x ) 6l q 4 EJy ' = − 0 ( l − x ) + C 24l q 5 EJy = 0 ( l − x ) + Cx + D 120l y = 0 ; y' = 0 边界条件: x = 0 时 q( x) =
)
(c)解:
q0 x l q x2 EJy ''' = 0 + C 2l q0 x3 '' EJy = + Cx + D 6l q x 4 Cx 2 EJy ' = 0 + + Dx + A 24l 2 q0 x5 Cx 3 Dx 2 ' EJy = + + + Ax + B 120l 6 2 ⎧y=0 ⎧y=0 边界条件: x = 0 ⎨ '' x = l ⎨ '' ⎩y = 0 ⎩y = 0 ql D=0 ∴C = − 0 6 7q l 3 A= 0 B=0 360 EJy '''' =
材料力学课后习题答案7章
将 x = a 代入上述 w1 或 w 2 的表达式中,得截面 C 的挠度为
wC = 0
将以上所得 C 值和 x = 2a 代入式(a),得截面 B 的转角为
θB =
M a Ma 1 4 M ea 2 − M ea − e ) = − e (3) ( EI 4a 12 12 EI
4
(b)解:1.求支反力 由梁的平衡方程
2.建立挠曲轴近似微分方程并积分 自 A 向右取坐标 x ,由题图可见,弯矩的通用方程为
M =
Me x − M e < x − a >0 2a
3
挠曲轴的通用近似微分方程为
EI
将其相继积分两次,得
d2w M e = x − M e < x − a >0 2 2a dx
dw M e 2 = x − M e < x − a > +C dx 4a M M EIw = e x 3 − e < x − a > 2 +Cx + D 12a 2 EI
(a) (b)
在x = 0处, w=0 在x = 2a处, w=0
将条件(c)与(d)分别代入式(b),得
(c) (d)
D = 0,C = −
3qa 3 16
4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
w=
1 qa 3 q 4 q 3qa 3 [ x − x + < x − a >4 − x] 24 24 16 EI 8
M a 1 Me 3 Me [ x − < x − a > 2 − e x] EI 12a 2 12
由此得 AC 段与 CB 段的挠曲轴方程分别为
材料力学第五版 第七章 应力状态 答案
第七章应力状态与强度理论一、教学目标和教学内容1.教学目标通过本章学习,掌握应力状态的概念及其研究方法;会从具有受力杆件中截取单元体并标明单元体上的应力情况;会计算平面应力状态下斜截面上的应力;掌握平面应力状态和特殊空间应力状态下的主应力、主方向的计算,并会排列主应力的顺序;掌握广义胡克定律;了解复杂应力状态比能的概念;了解主应力迹线的概念。
掌握强度理论的概念。
了解材料的两种破坏形式(按破坏现象区分)。
了解常用的四个强度理论的观点、破坏条件、强度条件。
掌握常用的四个强度理论的相当应力。
了解莫尔强度理论的基本观点。
会用强度理论对一些简单的杆件结构进行强度计算。
2.教学内容○1应力状态的概念;○2平面应力状态分析;○3三向应力状态下的最大应力;○4广义胡克定律•体应变;○5复杂应力状态的比能;⑥梁的主应力•主应力迹线的概念。
讲解强度理论的概念及材料的两种破坏形式。
讲解常用的四个强度理论的基本观点,并推导其破坏条件从而建立强度计算方法。
介绍几种强度理论的应用范围和各自的优缺点。
简单介绍莫尔强度理论。
二、重点难点重点:1、平面应力状态下斜截面上的应力计算,主应力及主方向的计算,最大剪应力的计算。
2、广义胡克定律及其应用。
难点:1、应力状态的概念,从具体受力杆件中截面单元体并标明单元体上的应力情况。
2、斜截面上的应力计算公式中关于正负符号的约定。
3、应力主平面、主应力的概念,主应力的大小、方向的确定。
4、广义胡克定律及其应用。
5 强度理论的概念、常用的四个强度理论的观点、强度条件及其强度计算。
6 常用四个强度理论的理解。
7 危险点的确定及其强度计算。
三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、建议学时10学时五、讲课提纲1、应力状态的概念所谓“应力状态”又称为一点处的应力状态(state of stresses at a given point),是指过一点不同方向面上应力的集合。
材料力学习题册
5
天津工业大学机械工程学院
力学练习册—— 《材料力学》部分
2018 版
四、基本计算题
1.图示硬铝试样,厚度 2 mm ,试验段板宽 b 20 mm ,标距 l 70 mm 。在轴向拉力 F 6 kN 的作
用下,测得试验段伸长 l 0.15mm ,板宽缩短 b 0.014 mm 。试计算硬铝的弹性模量 E 与泊松比 。
3
天津工业大学机械工程学院
力学练习册—— 《材料力学》部分
2018 版
3.图示桁架,杆 1 与杆 2 的横截面均为圆形,直径分别为 d1 30 mm 与 d2 20 mm ,两杆材料相同,屈 服极限s 320 MPa ,安全因数 ns 2.0 。该桁架在节点 A 处承受铅垂方向的载荷 F 40 kN 作用,试
天津工业大学机械工程学院
力学练习册—— 《材料力学》部分
2018 版
班级
学号
姓名
成绩
第七章 绪论
本章要点: (1) 利用截面法计算截面上的内力分量 (2) 应力和应变的定义 一、选择题
1.以下列举的实际问题中,属于强度问题的是:
;属于刚度问题的是:
;属于稳定性问
题的是:
。
A. 旗杆由于风力过大而产生不可恢复的永久变形; B. 自行车链条拉长量超过允许值而打滑
0.8M
M
4
3
3M
0.6M
2
1
4
3
2
1
a
a
a
a
1 0.6M
1
3M 2
0.6M
2
3
M
3M
0.6M
3
4
0.8M
M
3M
0.6M
工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解
得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI
材力第7章习题解
∴ = 0,
MPa,
MPa
MPa
2. = 248 MPa;
∴ = 0,
MPa,
MPa
MPa 3. = 290 MPa。
∴ = 0,
MPa,
MPa
MPa
7-13 铝合金制成的零件上某一点处的平面应力状态如图所示,其屈服应力 = 280MPa。试按最大切应 力准则确定。
1.屈服时的 的代数值; 2.安全因数为 1.2 时的 值。 1.解:
1.(a)
(b)
,
2.(a)
(b) 用形状改变比能,相当应力相同。
7-17 薄壁圆柱形锅炉容器的平均直径为 1250mm,最大内压强为 23 个大气压(1 个大气压 0.1MPa), 在高温下工作时材料的屈服应力 = 182.5MPa。若规定安全因数为 1.8,试按最大切应力准则设计容器的 壁厚。
解:
,
,
习题 7-17 解图
壁厚:
mm
7-18 平均直径 D = 1.8m、壁厚 = 14mm 的圆柱形容器,承受内压作用。若已知容器为钢制,其屈服应力 = 400MPa,要求安全因数 ns = 6.0。试分别应用以下准则确定此容器所能承受的最大内压力。
1.用最大切应力准则; 2.用形状改变比能准则。
①设:
习题 7-13 图
=0
得
= 230 MPa
②设: =0
得
MPa
∴
= 230 MPa 或
MPa
2.解:
, = 168 MPa
或
,
MPa
∴
= 168 MPa 或
MPa
7-16 两种应力状态分别如图 a 和 b 所示,若二者的 、 数值分别相等,且
材料力学答案第7章
∑F
及
n
= 0, σ α dA = 0
∑F
分别得到
t
= 0, τ α dA = 0
σ α = 0,τ α = 0
由于方位角 α 是任取的,这就证明了 A 点处各截面上的正应力与切应力均为零。 顺便指出,本题用图解法来证更为方便,依据 A 点上方两个自由表面上的已知应力(零 应力)画应力图,该应力圆为坐标原点处的一个点圆。至此,原命题得证。
由此可知,主应力各为
σ1 = 60.0MPa, σ 2 = σ 3 = 0
5
σ1 的方位角为
α0 = 0o
对于应力图(b),其正应力和切应力分别为
σB = τB =
| M | | y B | 12 × 20 × 10 3 × 0.050 N = = 3.00 × 10 7 Pa = 30.0MPa 3 2 Iz 0.050 × 0.200 m Fs S z (ω) 12 × 20 × 10 3 × 0.050 × 0.050 × 0.075 N = = 2.25 × 10 6 Pa = 2.25MPa 3 2 I zb 0.050 × 0.200 × 0.050m
σα = (
− 30 + 10 − 30 − 10 + cos45 o − 20sin45 o )MPa = −38.3MPa 2 2 − 30 − 10 τα = ( sin45 o + 20cos45 o )MPa = 0 2
(c)解:由题图所示应力状态可知,
σ x = 10MPa,σ y = −20MPa,τ x = 15MPa,α = −60 o
7-7
已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 MPa) ,试用图解法
《材料力学》第7章-应力状态和强度理论-习题解
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。
材料力学第七章答案 景荣春
课
后
答
案
网
ww
7-13 用塑性很好的低碳纲制成的螺栓,当拧过紧时,往往沿螺纹根部崩断,试分析其 破坏原因。 答 螺纹根部处于三向受拉应力状态,切有叫大的应力集中。脆断。
w.
102
kh
7-12 水管在冬天常发生冻裂,为什么冰不破碎而钢管却破裂? 答 冰的密度比水小,结的冰成三向受压,呈现良好的塑性,不破碎;钢管因冰体积膨 胀受拉,加上温度低,呈现冷脆性,被拉断。
kh
τ yz τ zx
G G
1 ⎡σ x − μ (σ y + σ z ) ⎤ , ⎦ E⎣ 1 ⎡σ y − μ (σ z + σ x ) ⎦ ⎤, εy = ⎣ E 1 εz = ⎡ σ z − μ (σ x + σ y ) ⎤ ⎦, E⎣
εx =
上式称为一般应力状态下的广义胡克定律。 正应力只产生正应变, 并考虑横向变形效应 (泊松效应) , 用叠加原理求得在 σ x ,σ y 和
w.
co
m
2 ⎧11.2 − 40 + (− 20 ) ⎛ − 40 + 20 ⎞ 2 d 解(1) σ 1,3 = ± ⎜ MPa , σ 2 = 0 ⎟ + (− 40 ) = ⎨ 2 2 ⎝ ⎠ ⎩− 71.2 2 × (− 40 ) (2) tan 2α 0 = − = −4 , α 01 = −38.0° − 40 − (− 20 ) σ −σ3 (3) τ max = 1 = 41.2 MPa 2
即
w. da
⎛σ x −σ y ⎞ 2 ⎟ τ max = ⎜ ⎜ ⎟ + τ xy = 35 2 ⎝ ⎠ σ x +σ y σ x −σ y + × (− 0.28) − τ xy × 0.96 = 0 2 2 σ x −σ y × 0.96 + τ xy × (− 0.28) = 0 2 2 ⎛σ x −σ y ⎞ 2 ⎜ ⎟ + τ xy = 1 225 ⎜ ⎟ 2 ⎠ ⎝
德州学院,材料力学,期末试题7章习题讲解
德州学院,材料⼒学,期末试题7章习题讲解第七章⼒和应变分析强度理论 §7.1应⼒状态概述1.过受⼒构件内⼀点,取截⾯的不同⽅位,这⼀点在各个⾯上的(D ). (A )正应⼒相同,切应⼒不同;(B )正应⼒不同,切应⼒相同;(C )正应⼒和切应⼒都相同;(D )正应⼒和切应⼒都不同。
2.关于单元体的描述,下列正确的是A(A )单元体的三维尺⼨必须是微⼩的;(B )单元体是平⾏六⾯体;(C )单元体必须是正⽅体;。
(D )单元体必须有⼀对横截⾯。
3.对于图⽰承受轴向拉伸的锥形杆上的A 点,哪⼀种应⼒状态是正确的Dxτxx4.在单元体的主平⾯上()。
(A )正应⼒⼀定最⼤;(B )正应⼒⼀定为零;(C)切应⼒⼀定最⼩;(D )切应⼒⼀定为零。
§7.2⼆向应⼒状态实例1. Q235钢制成的薄壁圆筒形蒸汽锅炉,壁厚δ,内径D ,蒸汽压⼒p ,试计算锅炉壁内任意⼀点处的三个主应⼒。
注:薄壁圆筒受⼒均匀,因此,任意点的应⼒状态均相同。
1.求⽔平⽅向上的正应⼒σx2.求竖直⽅向上的正应⼒σy3.求垂直于纸⾯⽅向上的正应⼒σz 薄壁圆筒与纸⾯垂直⽅向上的σz 为零.总结:薄壁圆筒的三个主应⼒为:薄壁圆筒为两向应⼒状态注意事项:1.注意单位配套使⽤;2. 纵向截⾯上正应⼒是横截⾯正应⼒的两倍;3.按规定排列正应⼒。
课本215页例7.1如下由Q235钢制成的蒸汽锅炉,壁厚δ=10mm,内径D=1m,蒸汽压⼒p=3MPa,试计算锅炉壁内任意⼀点处的三个主应⼒。
经分析,薄壁圆筒为两向应⼒状态2. 圆球形容器的壁厚为δ,内径为D,内压为p,求容器内任意⼀点的应⼒。
注:薄壁圆球受⼒均匀,因此,任意点的应⼒状态均相同。
1.求⽔平⽅向上的正应⼒σx2.求竖直⽅向上的正应⼒σy3.求垂直于纸⾯⽅向上的正应⼒σz薄壁圆筒与纸⾯垂直⽅向上的σz为零.球形薄壁容器的三个主应⼒为:受内压的球形薄壁容器为⼆向应⼒状态§7.3 ⼆向应⼒状态分析——解析法⼆向应⼒状态下,单元体各⾯上应⼒分量皆为已知,如下图所⽰:求垂直于xy平⾯的任意斜截⾯ef上的应⼒及主应⼒和主平⾯⼀.符号规定1.正应⼒正负号规定2.切应⼒正负号规定使微元或其局部顺时针⽅向转动为正;反之为负。
材料力学(刘鸿文)第七章-强度理论
强度理论的统一表达式:
相当应力
r [ ]
r ,1 1 [ ]
r ,2 1 ( 2 3 ) [ ]
r ,3 1 3 [ ]
无论材料处于什么应力状态,只要发生同一种破坏形 式,都是由于同一种因素引起。
2 1
σ2 σ1 σ3
σ
屈服准则:
max jx
复杂应力状态下的最大切应力
单向应力状态下 屈服条件 相应的强度条件:
max ( 1 3 ) / 2
jx
s
2
1 3
s
ns
低碳钢拉伸
低碳钢扭转
适用范围: 塑性屈服
此理论较满意地解释了塑性材料的屈服现象; 并能解释材料在三向均压下不发生塑性变形或断裂的事实。 偏于安全 常用于载荷往往较不稳定的机械、动力等行业
§2
经典强度理论
构件由于强度不足将引发两种失效形式 脆性断裂: 材料无明显的塑性变形即发生断裂; 断面较粗糙; 且多发生在垂直于最大正应力的截面上; 如铸铁受拉、扭,低温脆断等。
塑性屈服(流动): 材料破坏前发生显著的塑性变形; 破坏断面粒子较光滑; 且多发生在最大切应力面上; 例如低碳钢拉、扭,铸铁压。
1. 最大拉应力理论(第一强度理论)
材料发生断裂的主要因素是最大拉应力;
认为无论是什么应力状态,只要危险点处最大拉应力 达到与材料性质有关的某一极限值,材料就发生断裂
σ2
σ
σ1 σ3
脆断准则:
1 b
相应的强度条件:
1 t
t
b
nb
与铸铁,工具钢,工业陶瓷等多数脆性材料的实验结果较符合
家电公司研发部资料材料力学习题答案(七)
第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。
答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。
A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。
答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。
材料力学七章.pdf
第七章平面弯曲内力1. 试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
2. 试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
3. 试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
4. 试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
M max。
设q,l均为已知。
M max。
设l,Me均为已知。
M max。
设l,F均为已知。
8. 试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S和,maxM max。
设q,F,l均为已知。
9.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S和,max M max。
设q,l均为已知。
10. 试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S,max 和M max。
设q,l,F,M e均为已知。
11. 不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。
解:(1)由静力平衡方程得:F A=F,M A= Fa,方向如图所示。
(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。
(3)梁最大绝对值剪力在AB段内截面,大小为2F。
梁最大绝对值弯矩在C截面,大小为2Fa。
12. 不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。
解:(1)由静力平衡方程得:F A=3q l/8(↑),F B=q l/8(↑)。
(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。
(3)梁的最大绝对值剪力在A右截面,大小为3q l/8。
梁的最大弯矩绝对值在距A端3l/8处截面,大小为9q l2/128。
13. 不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。
解:(1)由静力平衡方程得:F B=2qa,M B=qa2,方向如图所示。
(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。
(3)梁的最大绝对值剪力在B左截面,大小为2qa。
工程力学(材料力学部分第七章)
4 主应力及应力状态的分类
主应力和主平面
切应力全为零时的正应力称为主应力;
主应力所在的平面称为主平面;
主平面的外法线方向称为主方向。
主应力用1 , 2 , 3 表示 (1 2 3 ) 。
应力状态分类
单向应力状态
11
应力状态分类
单向应力状态 二向应力状态(平面应力状态)
三向应力状态(空间应力状态)
D点
由 y 40, yx 60
D'点
画出应力圆
52
圆心坐标
OC x y 80 (40)
2
2
20
半径
R
x
2
y
2
2 xy
80 (40) 2
(60)2
84.85 85
2
53
圆心坐标 OC 20
半径
R 85
1 OA1 OC R
E
105 MPa
3 OC R
65 MPa
D (x ,xy)
x y
2
R 1 2
x y
2
4
2 xy
38
3 应力圆上的点与单元体面上的应力的对应关系 (1) 点面对应
应力圆上某一点 的坐标值对应着 单元体某一方向面上的正应力和切应力。
39
(1) 点面对应
应力圆上某一点的坐 标 值对应着单元体某 一方向面上的正应力 和切应力。
D点对应的面与E点 对应的面的关系
主应力。
从半径CD转到CA1 的角度即为从x轴转
到主平面的角度的
两倍。
44
主应力 即为A1, B1处的正应力。
max min
x
y
2
x
2
材料力学练习题
的单位是相同的。
•
A、内力 B、应变 C、弹性 D、弹C性模量
• 12、对于圆柱形螺栓,计算挤压面积是
。
•
A、半圆柱面 B、整个圆柱面
•
C、直径平面 D、半个直径平面
• 四、计算题: • 1、一柱塞在P1,P2与P3作用下处于平衡状态,如图所示
,已知P1=60KN, P2=35KN, P3=25KN,试求指定截
ns
1.5
可见,工作应力小于许用应力,说明杆件能够安全工作。
5、 已知 l = 54 mm, di = 15.3 mm, E=200 GPa, m 0.3, 拧
紧后, AB 段的轴向变形为Dl =0.04 mm。试求螺栓横截面
上的正应力 , 与螺栓的横向变形 Dd
解:1. 螺栓横截面正应力
E
面上的内力。
• 解:1、求1-1截面上的内力 • (1)取其左段为研究对象 • (2)画受力图(b) • (3)列平衡方程 • ∑Fx=0 P1+N1=0
N1= P1 =-60KN (或-N1-P2-P3=0 N1= -60KN) • 2、求2-2截面上的内力 • (1)取2-2截面右段为研究对象
• 6、轴向拉伸或压缩杆件横截面上正应力的正负号规定 :正应力方向与横截面外法线方向一致为正,相反时为负 ,这样的规定和按杆件变形的规定是一致的。 (对 )
• 7、力的可传性原理在材料力学中不适用。 ( 对 ) • 8、轴力的大小与杆件的材料无关,与其横截面面积和杆
件长度有关。 ( 错 ) • 9、轴力越大,杆件越容易被拉断,因此轴力的大小可用
• 9、当剪应力不超过材料的剪切 ,剪应变与剪应力成正比。
比例
极限时
• 10、剪切的实用计算中,假设了剪应力在剪切面上是
材料力学练习册答案7-9
第七章应力、应变状态分析MPa7- 2 已知应力状态如图所示(应力单位为),试用解析法计算图中指定截面的正应力与切应力。
解:与截面的应力分别为:;;;7- 6 已知应力状态如图所示(应力单位为),试用图解法计算图中指定截面的正应力与切应力。
7-1 已知应力状态如图所示(应力单位为),试用解析法计算图中指定截面的正应力与切应力。
解:与截面的应力分别为:;;;解:如图,得:指定截面的正应力切应力7-7 已知某点A 处截面AB 与AC 的应力如图所示 (应力单位为 ),试用图解法求主应力的大小及所在截面的方位。
解:由图,根据比例尺,可以得到,,7-8 已知应力状态如图所示,试画三向应力圆,并求主应力、最大正应力与最大切应力。
解:对于图示应力状态,是主应力状态,其它两个主应力由、、确定。
在平面内,由坐标( , )与( , )分别确定和点,以为直径画圆与轴相交于和。
再以及为直径作圆,即得三向应力圆。
由上面的作图可知,主应力为,,,7-9 已知应力状态如图所示(应力单位为),试求主应力的大小。
解:与截面的应力分别为:;;;在截面上没有切应力,所以是主应力之一。
;;;7-11 已知构件表面某点处的正应变,,切应变,试求该表面处方位的正应变与最大应变及其所在方位。
解:得:7-12 图示矩形截面杆,承受轴向载荷已F 作用,试计算线段AB的正应变。
设截面尺寸b和h 与材料的弹性常数E和μ均为知。
解:,,,AB 的正应变为7- 13 在构件表面某点O 处,沿,与方位,粘贴三个应变片,测得该三方位的正应变分别为,与,该表面处于平面应力状态,试求该点处的应力,与。
已知材料的弹性模量,泊松比解:显然,,并令,于是得切应变:第八章复杂应力状态强度8- 1 圆截面轴的危险面上受有弯矩My、扭矩Mx 和轴力FNx 作用,关于危险点的应力状态有下列四种。
试判断哪一种是正确的。
请选择正确答案。
(图中微元上平行于纸平面的面对应着轴的横截面)答: B8- 2 图示钢质拐轴, 承受集中载荷 F 作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学第七章习题7-2各单元体上的应力如图所示。
试用解析法求指定截面上的应力,再用图解法校核。
7-3各单元体上的应力如图所示。
试用解析法求各单元体的主应力大小和方向,再用应力圆法校核,并绘出主应力单元体。
7-5图示A 点处的最大切应力是0.9MPa ,试确定力F 的大小。
7-7求图中两单元体的主应力大小及方向。
2F
F F
3F 3F 60°
60° (b)
7-12在图示工字钢梁的中性层上某点k 处,沿与轴线成45°方向上贴有电阻
片,测得正应变6452610o ε-=-⨯,试求梁上的荷载F 。
设E =2.1×105MPa ,0.28ν=。
7-13图示一钢质圆杆,直径d =20mm 。
已知A 点处与水平线成70°方向上的正应变67041010o ε-=⨯。
E =2.1×105MPa ,0.28ν=。
求荷载F 。