电路理论基础(陈希有)习题答案第十五章
电路理论课后答案,带步骤
解:(1)该电路有三个网孔。设网孔电流分别为 、 ,
参考方向如图3-4所示。并设受控源两端电压为U。
(2)列写网孔方程:
辅助方程为:
联立求解得:
U= V
所以: mW
3-5电路如题图3-5所示,试用网孔分析法求电流 和电压 。
题图3-5题图3-5(b)
解:(1)将原图中20A电流源与2 电阻并联部分等效为40V电压源与2 电阻串联,如图3-5(b)所示。
(2)列写节点方程:
整理得:
求解得: V
V
所以: V
3-7电路如题图3-7所示,①试用节点分析法列写电路的节点方程;②该电路能否用网孔分析法分析?为什么?
题图3-7题图3-7(b)
①解:
(1)将原图中的 电压源与 串联部分等效为 电流源与 并联。
且 。如图3-7(b)所示。
(2)该电路有5个节点,以节点5为参考点,节点电压分别设为: 、 、 ,
Ua=10-3I=4V
Ub=2I=4V
Uab=Ua–Ub=0V
题图1-2
1-3试计算题图1-3所示电路中I、Us、R和电源Us产生的功率。
解:做节点标识,A、B、C:
I1=6+12=18A
I2=I1-15=3A
I2+I3=12+5 I3=14A
I=15- I3=1A
US=3I1+12I2=90V
题图1-3
2-15题图2-15所示电路,试问当电阻R等于何值时,可获得最大功率,最大功率等于多少?
题图2-15图2-15(b)
解:先将a,b与R断开,则
得:
所以:共戴维南等效电路为图(a)所示
所以:当 时,获得最大功率
电路理论基础习题答案
电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –t V; 1.75cos2t A; 3Ω; 1.8cos 22t W.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ;1-8. 2F; 4 C; 0; 4 J. 1-9. 9.6V,0.192W, 1.152mJ; 16V , 0, 3.2mJ.1-10. 1– e -106t A , t >0 取s .1-11. 3H, 6(1– t )2 J; 3mH, 6(1–1000 t ) 2 mJ;1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W. 1-14. –40V , –1mA; –50V, –1mA; 50V , 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V ,50W;50V ,250W;–3V ,–15W;2V ,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W; (b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V ,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V , 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V , 18V . 1-21. K 打开:(a)0, 0, 0; (b)10V, 0, 10V; (c)10V,10V ,0; K 闭合: (a)10V ,4V ,6V; (b)4V ,4V ,0; (c)4V ,0,4V; 1-22. 2V; 7V; 3.25V; 2V. 1-23. 10Ω.1-24. 14V .1-25. –2.333V , 1.333A; 0.4V , 0.8A. 1-26. 80V . ※第二章2-1. 2.5Ω; 1.6R ; 8/3Ω; 0.5R ; 4Ω; 1.448Ω; . R /8; 1.5Ω; 1.269Ω; 40Ω; 14Ω.2-2. W P 484=低,W P 4484⨯=高. 2-3. 1.618Ω.2-4. 400V;363.6V;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. 0.75Ω.2-8.R 1=38K Ω,R 2=10/3K Ω 2-9. 10/3A,1.2Ω;–5V,3Ω; 8V ,4Ω; 0.5A,30/11Ω. 2-10. 1A,2Ω; 5V ,2Ω; 2A; 2A; 2A,6Ω. 2-11. –75mA; –0.5A. 2-12. 6Ω; 7.5Ω; 0; 2.1Ω. 2-13. 4Ω; 1.5Ω; 2k Ω. 2-14.1.6V ,-24V 2-15. (a) (b) –2 A ↓, 吸20W. 2-16. 2-17. 3A. 2-18. 7.33V . 2-19. 86.76W. 2-20. 1V, 4W. 2-21. 64W.2-22.电压源发50W ,电流源发1050W 2-232-24. 7V, 3A; 8V ,1A. 2-25. 4V, 2.5V, 2V. 2-26.2Ω 2-27. 60V . 2-28. 4.5V. 2-29. –18V .2-30. 原构成无解的矛盾方程组; (改后)4V,10V . 2-312-32.2.5A2-33. 3.33 k , 50 k .2-34 加法运算 )(3210i i i u u u u ++-= 2-35. R 3 (R 1 +R 2 ) i S /R 1 . 2-36. 可证明 I L =- u S /R 3 . 2-37. –2 ; 4 . ※第三章3-1. 44V;–1+9=8V; 6+9=15V; sin t +0.2 e – t V.3-2. 155V.3-3. 190mA.3-4. 1.8倍.3-5. 左供52W, 右供78W.3-6. 1 ; 1A; 0.75A.3-7. 3A; 1.33mA; 1.5mA; 2/3A; 2A.3-8. 20V, –75.38V.3-9. –1A; 2A; 1A.3-10. 5V, 20 ; –2V, 4 .3-12. 4.6 .3-13. 2V; 0.5A.3-14. 10V, 5k .3-15.3-16.22.5V3-17. 4/3 , 75W; 4/3 , 4.69W.3-18. 3 , 529/12W.; 1 , 2.25W.3-193-20. 50 .3-21. 0.2A.3-22. 1A.3-23. 1.6V.3-24. 4A;3-25. 23.6V; 5A,10V.3-26.3-27 4V3-28. ※第四章4-1. 141.1V, 100V, 50Hz, 0.02s,0o, –120o; 120 o. 4-2. 7. o A, 1/–45 o A, 18.75/–40.9 o A.4-3. U, 7.75mA .4-4. 10/53.13A, 10/126.87o A, 10/–126.87o A, 10/–53.13o A;各瞬时表达式略。
电路理论基础课后习题答案 陈希有主编 第十到十四章
答案10.1解:0<t时,电容处于开路,故V 20k 2m A 10)0(=Ω⨯=-C u由换路定律得:V 20)0()0(==-+C C u u换路后一瞬间,两电阻为串联,总电压为)0(+C u 。
所以m A 5k )22()0()0(1=Ω+=++C u i再由节点①的KCL 方程得:m A5m A )510()0(m A 10)0(1=-=-=++i i C答案10.2解:0<t时电容处于开路,电感处于短路,Ω3电阻与Ω6电阻相并联,所以A3)363685(V45)0(=Ω+⨯++=-i,A 2)0(366)0(=⨯+=--i i LV 24)0(8)0(=⨯=--i u C由换路定律得:V24)0()0(==-+C C u u ,A 2)0()0(==-+L L i i由KVL 得开关电压:V8V )2824()0(8)0()0(-=⨯+-=⨯+-=+++L C i u u答案10.3解:0<t 时电容处于开路,0=i ,受控源源电压04=i ,所以V 6.0V 5.1)69(6)0()0()0(1=⨯Ω+Ω===--+u u u C C>t 时,求等效电阻的电路如图(b)所示。
等效电阻Ω=++-==5)36(4i ii i i u R 时间常数s 1.0i ==C R τ0>t 后电路为零输入响应,故电容电压为:V e 6.0e )0()(10/t t C C u t u --+==τΩ6电阻电压为:V e 72.0)d d (66)(101t Ctu Ci t u -=-⨯Ω-=⨯Ω-=)0(>t答案10.4 解:<t 时电感处于短路,故A 3A 9363)0(=⨯+=-L i ,由换路定律得: A 3)0()0(==-+L L i i求等效电阻的电路如图(b)所示。
(b)等效电阻Ω=+⨯+=836366i R ,时间常数s 5.0/i ==R L τ 0>t 后电路为零输入响应,故电感电流为 A e 3e )0()(2/t t L L i t i --+==τ)0(≥t电感电压V e 24d d )(21t Lti Lt u --==)0(>t Ω3电阻电流为A e 23632133t L u i u i --=Ω+⨯Ω=Ω=Ω3电阻消耗的能量为:W3]e 25.0[1212304040233=-==Ω=∞-∞-∞Ω⎰⎰t t dt e dt i W答案10.5解:由换路定律得0)0()0(==-+L L i i ,达到稳态时电感处于短路,故A 54/20)(==∞L i求等效电阻的电路如图(b)所示。
电路基本理论答案第15章
答案15.1解: 波阻抗Ω500400102003c =⨯==++i u Z终端反射系数133c 2c 22=+-=Z R Z R N故负载承受的电压V k 15.24610200)1331(32222=⨯⨯+=+=++u N u u 答案15.2解:终端反射系数31c c 2=+-=Z Z Z Z N L L始端反射系数1cS cS 1-=+-=Z Z Z Z N这是一个多次反射过程,反射过程如图题15.2所示。
其中v l t d /= 当vlt 20<<时,反射波未达到始端,只有入射波。
mA 30500V 15c 11=Ω===+Z u i i 当vlt v l 42<<时,反射波到达始端, mA 101010302121=--=+-=+++i N N i N i i 当vlt v l 64<<时 ,始端电流为: mA 67.1631031010103022212212121=++--=+-+-=+++++i N N i N N i N N i N i i 达到稳态时mA 15)(211==∞R u i 所以⎪⎩⎪⎨⎧<<<<<<=v l t l/v v l t l/v v l t t i /64 16.67mA /42 10mA /20 mA30)(1 mA 15)(211==∞R u i图题15.2答案15.3解:波从始端传到中点所用的时间为:μs 10s 1010310325831==⨯⨯==-v l t (1)当μs 100<<t 时,入射波从始端发出,尚未到达中点所以 0)(=t i 。
(2)μs 30μs 10<<t 时,入射波已经过中点,但在终端所产生的反射波还没有到达中点。
A 2.0600600240)(c S S 1=+=+==+Z R U i t i(3) μs 60μs 30<<t 时,在终端所产生的反射波已经过中点,并于μs 40=t 时 刻到达始端。
电路理论基础(陈希有)课后题答案
答案11.1解: (1)2020001e 1e 1e e )()(-ssdt s stdt t t s F stst stst =-=+-==∞-∞-∞-∞----⎰⎰ε (2)20)(20)(00)(1e)(1e 1e e )(e )(-ααααεααα+=+-=+++-==∞+-∞+-∞-∞-----⎰⎰s s dts s t dt t t s F ts t s st st t答案11.2解:)/1(//1)(1τττ+=+-=s s A s A s A s F 由拉氏变换的微分、线性和积分性质得:)/1(/)()()/(]/)([)()]0()([)(22111112ττ+++=++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F答案11.3解:设25)}({)(11+==s t f s F L ,52)}({)(22+==s t f L s F 则)5)(2(10)()(21++=s s s F s F)(1t f 与)(2t f 的卷积为)e e (310]e 31[e 10e e 10e 2e 5)(*)(520350350)(5221t t t tt ttt d d t f t f --------=⨯==⨯=⎰⎰ξξξξξξ对上式取拉氏变换得:)5)(2(10)5121(310)}(*)({21++=+-+=s s s s t f t f L 由此验证)()()}(*)({2121s F s F t f t f =L 。
答案11.4解:(a)6512)(2+++=s s s s F 3221+++=s A s A3|31221-=++=-=s s s A , 3|31221-=++=-=s s s A 所以t t s s t f 321e 5e 3}3523{)(---+-=+++-=L(b))2)(1(795)(23+++++=s s s s s s F 212)2)(1(3221+++++=+++++=s A s A s s s s s 2|2311=++=-=s s s A 1|1321-=++=-=s s s A 所以t t t t s s s L t f 21e e 2)(2)(}21122{)(----++'=+-++++=δδ (c)623)(2++=s s s F 22)5()1(5)5/3(++⨯=s 查表得)5sin(e 53)(t t f t-=答案11.5解:(a) 由运算电路(略)求得端口等效运算阻抗为:11262241)3/(142)]3/(14[21)(22i ++++=++++=s s ss s s s s s Z , 112611430)(22++++=s s s s s Z i (b) 画出运算电路如图11.5(c)所示U )(2s __在端口加电流,列写节点电压方程如下⎩⎨⎧-==++-=-+)2()]()([3)(3)()]5.0/(11[)()1()()()()1(2122s U s U s U s U s s U s I s U s U s由式(2)解得)(144)(2s U s ss U ⨯+=代入式(1)得)()()1221(s I s U s ss =+-+所以1212)(2i +++=s s s s Y答案11.6解:运算电路如图11.6(b)所示。
电路理论基础习题答案
*电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –tV; A; 3Ω; W.1-4. u =104i ; u = -104i ; u =2000i ; u = -104i ;1-5.1-6. 0.1A. 1-7.1-8. 2F; 4C; 0; 4J.1-9. 9.6V,, ;16V, 0, .1-10. 1– e -106 tA , t >0 s .1-11. 3H, 6(1– t )2J; 3mH, 6(1–1000 t ) 2mJ; 1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W.1-14. –40V, –1mA; –50V, –1mA; 50V, 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V,50W;50V,250W;–3V,–15W;2V,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W;(b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V, 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V, 18V. 1-21. K 打开:(a)0, 0, 0; (b)10V, 0, 10V; (c)10V,10V,0; K 闭合: (a)10V,4V,6V; (b)4V,4V,0; (c)4V,0,4V;1-22. 2V; 7V; ; 2V. 1-23. 10Ω. 1-24. 14V.1-25. –, 1.333A; , 0.8A.1-26. 12V, 2A, –48W; –6V, 3A, –54W . ※第二章2-1. 2.5Ω; ; 8/3Ω; ; 4Ω; Ω; . R /8; Ω; Ω; 40Ω; 14Ω. 2-2. 11.11Ω; 8Ω; Ω. 2-3. Ω.2-4. 400V;;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. Ω.2-8. 10/3A,Ω;–5V,3Ω; 8V,4Ω; 0.5A,30/11Ω. 2-9. 1A,2Ω; 5V,2Ω; 2A; 2A; 2A,6Ω. 2-10. –75mA; –0.5A. 2-11. 6Ω; Ω; 0; Ω. 2-12. 4Ω; Ω; 2k Ω. 2-13. 5.333A; 4.286A. 2-14. (a) –1 A ↓; (b) –2 A ↓, 吸20W. 2-16. 3A. 2-17. 7.33V. 2-18. .2-19. 1V, 4W. 2-20. 64W.2-21. 15A, 11A, 17A. 2-23. 7V, 3A; 8V,1A. 2-24. 4V, , 2V. 2-26. 60V. 2-27. .2-28. –18V.2-29. 原构成无解的矛盾方程组; (改后)4V,10V. 2-30. k , 50 k . 2-31. R 3 (R 1 +R 2 ) i S /R 1 .2-32. 可证明 I L =-u S /R 3 . 2-33. –2 ; 4 .2-34. (u S1 + u S2 + u S3 )/3 . ※第三章3-1. –1+9=8V; 6+9=15V; sin t + e – tV. 3-2. 155V. 3-3. 190mA. 3-4. 1.8倍.iA 0 s 1 12 3 1-e -tt0 t ms i mA 410 0 tmsp mW 4100 2 25i , A.75t 0 .25ms(d) u , V800 10-20 t , ms(f ) u , V 100 0 10 t , ms (e)p (W) 10 0 1 2 t (s)-103-5. 左供52W, 右供78W. 3-6. 1; 1A; 0.75A. 3-7. 3A; ; ; 2/3A; 2A. 3-8. 20V, –.3-9. –1A; 2A; –.3-10. 5V, 20; –2V, 4. 3-12. 4.6. 3-13. 2V; 0.5A. 3-14. 10V, 5k .3-15. 4/3, 75W; 4/3, . 3-16. 1, . 3-18. 50. 3-19. 0.2A. 3-20. 1A. 3-21. 1.6V. 3-22. 4A; –2A.3-23. 23.6V; 5A,10V. 3-24. 52V. ※第四章 4-1. , 100V, 50Hz, ,0o , –120o ; 120 o.4-2. 7.07/0 o A, 1/–45 o A, – oA. 4-3. 3mU , .4-4. 10/, 10/, 10/–,10/–;各瞬时表达式略。
《电气原理导论》第十五章习题解答
习题十五解答15-1 就图15-1所示电路,试写出状态方程和求u n1、u n2的输出方程。
答(a ) s C L C Lu u i u i ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡''5.05.05.05.05.05.0;s C L n n u u i u u ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡5.05.05.05.05.05.021解(a ):()s L L c L s L c R L c R L c R C u R R dt di L R R i R u R dtdi Lu R i R u i R i R u i i R u i R u dtdiL434334334334333+--=-+-=+-=+-+=+=s C L L u R R u i R dt di L R R L 43343++-=⎪⎪⎭⎫ ⎝⎛+ 44344314R u dt du C R R u R i R dtdu CR u u i i i dtdu Cs c C L c c s L R L C+---=--+-=+-=44431R u u R i dt du C R R dt du Cs C L C C +--=+ 44431R u u R i dt du C R R C s C L C +--=⎪⎪⎭⎫ ⎝⎛+ 代入数据得s C L C Lu u i u i ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡''5.05.05.05.05.05.0图15-1习题15-1题图(b )(a )s C L CL s n u u i u i u u 5.05.05.021++-=+-=s C L n u u i u 5.05.05.02+--=s C L n n u u i u u ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡5.05.05.05.05.05.02115-2 列写如图15-2所示电路的状态方程。
电工学电子技术第七版第十五章答案
h RC (I B + IC ) + RB I B + U BE = UCC .k βRCIB + RBIB ≈ UCC
IB
≈
U CC βRC + RB
=
20 50 ×10 ×103 + 330 ×103
A
w = 0.024×10−3 A = 0.024mA
IC = βI B = 50 × 0.024mA = 1.2mA
wUCE = UCC − RC IC = (20 −10 ×103 ×1.2 ×10−3 ) = 8V
w15.6.1 在图 15.06 的射极输出器中,已知 RS = 50Ω, RE = 1KΩ, RB1 = 100KΩ
RB2 = 30KΩ, RL = 5.1KΩ, 晶体管的β = 50, rbe = 1kΩ,试求AU , ri , r0 o
= 1.78KΩ
ri = RB1 // RB2 //[rbe + (1 + β )RE'' ] = 6.2KΩ
a ro ≈ RC = 3.9KΩ
hd (2) Au
=
rbe
− βRL' + (1+ β )RE''
=
− 1.78
60× (3.9 // 3.9) + 61×100 ×100−3
= −14.8
.k Aus
=
ri RS +
ri
⋅
Au
=
6.22 × (−14.8) 0.6 + 6.22
=
−13.5
U O = Aus ⋅ ES = 13.5 ×15mV = 202.5mV
电路理论基础(陈希有)课后题答案
答案13.1解: (1)、(4)是割集,符合割集定义。
(2)、(3)不是割集,去掉该支路集合,将电路分成了孤立的三部分。
(5)不是割集,去掉该支路集合,所剩线图仍连通。
(6)不是割集,不是将图分割成两孤立部分的最少支路集合。
因为加上支路7,该图仍为孤立的两部分。
答案13.2解:选1、2、3为树支,基本回路的支路集合为 {1,3,4},{2,3,5},{1,2,6}; 基本割集的支路集合为 {1,4,6},{2,5,6},{3,4,5}。
答案13.3 解:(1) 由公式l t I B I T t =,已知连支电流,可求得树支电流A 1595111011010654321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i (2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压V 321321100111110654⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡u u u (3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。
将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。
(a)(b)(c)(d)答案13.4解:连支电流是一组独立变量,若已知连支电流,便可求出全部支路电流。
因此除将图中已知电流支路作为连支外,还需将支路3或4作为连支。
即补充支路3或4的电流。
若补充3i ,则得A 11=i ,A 22-=i ,34A 3-i i -=;若补充4i ,则得A 11=i ,A 22-=i ,43A 3-i i -=答案13.5解:树支电压是一组独立变量,若已知树支电压,便可求出全部支路电压。
除将图中已知支路电压作为树支外,还需在支路1、2、3、4、5中任选一条支路作为树支。
即在1u 、2u 、3u 、4u 、5u 中任意给定一个电压便可求出全部未知支路电压。
电路理论教程答案陈希有
电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。
当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。
所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。
答案1.3解:(a)元件a电压和电流为关联参考方向。
元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。
(b) 元件b电压和电流为关联参考方向。
元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。
(c) 元件c电压和电流为非关联参考方向。
元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。
答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。
(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。
电路理论基础(陈希有)课后题答案
答案12.1解:分别对节点①和右边回路列KCL 与KVL 方程:Cq u u i i qi C L L R C C /===--==ψ将各元件方程代入上式得非线性状态方程:C q C q f f q/)/()(21=--=ψψ方程中不明显含有时间变量t ,因此是自治的。
答案12.2解:分别对节点①、②列KCL 方程: 节点①:=1i 321S 1/)(R u u i q--= 节点②:=2i 423212//)(R u R u u q--= 将)(),(222111q f u q f u == 代入上述方程,整理得状态方程:⎩⎨⎧+-=++-=)/())((/)(/)(/)(4343223112S 3223111R R R R q f R q f q i R q f R q f q答案12.3解:分别对节点①列KCL 方程和图示回路列KVL 方程得:⎩⎨⎧-=-=(2)(1) /323321u u R u i qS ψ 3u 为非状态变量,须消去。
由节点①的KCL 方程得:0413332432=-++-=++-R u u R u i i i i 解得)/()]()([)/()(433224114332413R R R f R q f R R R i R u u ++=++=ψ 将)(111q f u =、)(222ψf i = 及3u 代入式(1)、(2)整理得:⎩⎨⎧++-+-=+++-=Su R R R R f R R R q f R R R f R R q f q)/()()/()()/()()/()(4343224331124332243111ψψψ 答案12.4解:由KVL 列出电路的微分方程:=L u )(sin )(d d 3t R u Ri tS ωβψαψ+-=+-= 前向欧拉法迭代公式:)](sin )([31k k k k t R h ωβψαψψ+-+=+后向欧拉法迭代公式:)](sin )([1311++++-+=k k k k t R h ωβψαψψ梯形法迭代公式:)](sin )()(sin )([5.013131++++-+-+=k k k k k k t R t R h ωβψαωβψαψψ答案12.5解:由图(a)得:tu C u U t C t u Ci R R C R d d )(d dd d S -=-== (1) 由式(1)可知,当0>R i 时,0d d <t u R ,R u 单调减小;当0<R i 时,0d d >tuR ,R u 单调增加。
电路理论基础习题答案
电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –t V; 1.75cos2t A; 3Ω; 1.8cos 22t W.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ; 1-5.1-6. 0.1A. 1-7.1-8. 2F; 4C; 0; 4J. 1-9. 9.6V,0.192W, 1.152mJ; 16V , 0, 3.2mJ.1-10. 1– e -106t A , t >0 取s .1-11. 3H, 6(1– t )2 J; 3mH, 6(1–1000 t ) 2 mJ;1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W. 1-14. –40V , –1mA; –50V, –1mA; 50V , 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V ,50W;50V ,250W;–3V ,–15W;2V ,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W; (b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V ,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V , 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V , 18V . 1-21. K 打开:(a)0, 0, 0; (b)10V , 0, 10V; (c)10V,10V ,0; K 闭合: (a)10V ,4V ,6V; (b)4V ,4V ,0; (c)4V,0,4V; 1-22. 2V; 7V; 3.25V; 2V. 1-23. 10Ω.1-24. 14V .1-25. –2.333V , 1.333A; 0.4V , 0.8A.1-26. 12V , 2A, –48W; –6V , 3A, –54W . ※第二章2-1. 2.5Ω; 1.6R ; 8/3Ω; 0.5R ; 4Ω; 1.448Ω; . R /8; 1.5Ω; 1.269Ω; 40Ω; 14Ω. 2-2. 11.11Ω; 8Ω; 12.5Ω. 2-3. 1.618Ω.2-4. 400V;363.6V;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. 0.75Ω.2-8. 10/3A,1.2Ω;–5V ,3Ω; 8V ,4Ω; 0.5A,30/11Ω. 2-9. 1A,2Ω; 5V,2Ω; 2A; 2A; 2A,6Ω. 2-10. –75mA; –0.5A.2-11. 6Ω; 7.5Ω; 0; 2.1Ω. 2-12. 4Ω; 1.5Ω; 2k Ω. 2-13. 5.333A; 4.286A. 2-14. (a) –1 A ↓; (b) –2 A ↓, 吸20W. 2-16. 3A. 2-17. 7.33V . 2-18. 86.76W. 2-19. 1V , 4W. 2-20. 64W.2-21. 15A, 11A, 17A. 2-23. 7V , 3A; 8V ,1A. 2-24. 4V , 2.5V, 2V. 2-26. 60V . 2-27. 4.5V. 2-28. –18V .2-29. 原构成无解的矛盾方程组; (改后)4V ,10V . 2-30. 3.33 k , 50 k . 2-31. R 3 (R 1 +R 2 ) i S /R 1 .2-32. 可证明 I L =-u S /R 3 . 2-33. –2 ; 4 .2-34. (u S1 + u S2 + u S3 )/3 . ※第三章3-1. –1+9=8V; 6+9=15V; sin t +0.2 e – t V. 3-2. 155V . 3-3. 190mA.i A0 s 1 12 3 1-e -t t 0 t ms i mA 410 0 t ms p mW 4 100 2 25i , A 0.4 .75 t 0 .25 1.25 ms -0.4 (d) u , V 80 0 10-20 t , ms(f ) u , V 1000 10 t , ms (e)p (W) 100 1 2 t (s) -103-4. 1.8倍.3-5. 左供52W, 右供78W. 3-6. 1; 1A; 0.75A.3-7. 3A; 1.33mA; 1.5mA; 2/3A; 2A. 3-8. 20V , –75.38V.3-9. –1A; 2A; –17.3mA. 3-10. 5V , 20; –2V, 4. 3-12. 4.6. 3-13. 2V; 0.5A. 3-14. 10V , 5k .3-15. 4/3, 75W; 4/3, 4.69W. 3-16. 1, 2.25W. 3-18. 50. 3-19. 0.2A. 3-20. 1A. 3-21. 1.6V . 3-22. 4A; –2A.3-23. 23.6V; 5A,10V . 3-24. 52V . ※第四章4-1. 141.1V , 100V , 50Hz, 0.02s,0o , –120o ; 120 o.4-2. 7.07/0 o A, 1/–45 o A, 18.75/–40.9 oA. 4-3. 3mU , 7.75mA .4-4. 10/53.13o A, 10/126.87o A, 10/–126.87oA,10/–53.13oA ;各瞬时表达式略。
电路理论基础作业答案
1:振幅、角频率和()称为正弦量的三要素。
1.初相位2.电压3.周期2:时间常数τ越大,充放电速度越()。
1.快2.慢3.稳3:电压的单位是()。
1.欧姆2.千安3.伏特4:电气设备开路运行时()。
1.电流无穷大2.电压为零3.电流为零5:电气设备短路运行时()。
1.电压为零2.电阻为零3.电流为零6:以假想的回路电流为未知量,根据KVL定律列出必要的电路方程,再求解客观存在的各支路电流的方法,称()电流法。
1.回路2.节点3.支路7:交流电可通过()任意变换电流、电压,便于输送、分配和使用。
1.电源2.变压器3.电感8:只提供电能,不消耗能量的设备叫()。
1.电源2.负载3.电阻9:电路中某点的电位大小是()的量1.绝对2.相对3.常量10:节点电压法适用于支路数较()但节点数较少的复杂电路。
1.多2.少3.复杂11:电源绕组首端指向尾端的电压称为()电压。
1.相2.线3.直流12:支路电流法原则上适用适用于支路数较()的电路。
1.多2.少3.复杂13:火线与火线之间的电压称为()电压。
1.相2.线3.直流14:功率因数越低,发电机、变压器等电气设备输出的有功功率就越低,其容量利用率就()。
1.低2.高3.大15:二端网络等效是对外等效,对内()等效。
1.不2.也3.可能1:当电流、电压的实际值远小于额定值时,电气设备功耗增大,效率降低。
()正确错误2:由若干元件组成但只有两个端钮与外部电源或其他电路相连接的电路称为二端网络或一端口网络。
()正确错误3:将其他形式的能量转换为电能并为电路提供所需能量的器件是负载。
()正确错误4:将电源供给的电能转换为其他形式的能量的器件叫电源。
()正确错误5:在电路等效的过程中,与理想电流源串联的电压源不起作用。
()正确错误1:两个同频率正弦量之间的相位差等于()之差。
1.初相位2.频率3.振幅2:电位是相对的量,其高低正负取决于()。
1.电源2.电流3.参考点3:并联的负载电阻越多(负载增加),则总电阻越()。
电路理论课后习题解答15
第十五章 电路方程的矩阵形式 15-1 按下列步骤列出图示电路节点电压方程的矩阵形式:1.拓扑图;2.写出关联矩阵A ;支路导纳矩阵Y ;支路电流源列向量⋅s I 及支路电压源列向量⋅s U ;3.出节点电压方程的矩阵形式。
解:110000111000101A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦12350000000000100000000R j L j M j M j L Z j C R ωωωωω⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦50000T S S U U ⎡⎤=-⎣⎦ 10000T S S I I ⎡⎤=⎣⎦n n S SY U AI -AY U =15-2按下列步骤列出图示电路节点电压方程的矩阵形式:1.拓扑图;2.写出关联矩阵A ;支路导纳矩阵Y ;支路电流源列向量⋅s I 及支路电压源列向量⋅s U ; 3.出节点电压方程的矩阵形式。
i S5L 2解:[]000111011011000A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦[]50000TS S I i ⎡⎤=⎣⎦[]00000T S U ⎡⎤=⎣⎦2134500000000000000000m L M L M Y j C g G G ω⎡⎤-⎢⎥∆∆⎢⎥-⎢⎥⎢⎥∆∆=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦其中223j (L L M )ω∆=- T m n S m S AY A U AI AY U =-15-3对图示电路建立状态方程。
u 2C解:2C 11221112c L sc s L c R R L s R c du C i i dt du C i i dt di L u Ri dt i i i u Ri u ⎧=-+⎪⎪⎪=-+⎪⎪⎪=-⎨⎪=-+⎪⎪=+⎪⎪⎪⎩21211s c R s c L u u i R i u u i R R-⎧=⎪⎪⎨⎪=-++⎪⎩ 整理,得111222************c L s c s c L s L c s c du i i dt C C du u u i i dtC R R C di R u u u dt LL R R ⎧=-+⎪⎪⎪⎛⎫=--+⎨ ⎪⎝⎭⎪⎪⎛⎫=--⎪ ⎪⎝⎭⎩1111222222110001111011100c c s c c s L L du C C dt u u du R u R i dt C C C C i di dt L L L ⎛⎫⎡⎤⎡⎤- ⎪⎢⎥⎢⎥ ⎪⎢⎥⎡⎤⎢⎥⎡⎤ ⎪⎢⎥⎢⎥⎢⎥∴=--+⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎣⎦ ⎪⎢⎥⎢⎥⎢⎥⎣⎦ ⎪⎢⎥⎢⎥- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦。
(完整版)电路原理课后习题答案
所以
3-11用回路电流法求解题3—11图所示电路中电流I。
题3—11图
解由题已知,
其余两回路方程为
代人整理得
所以
3—12用回路电流法求解题3-12图所示电路中电流 及电压 .
题3—12图
3-15列出题3—15图(a)、(b)所示电路的结点电压方程。
(a)(b)
题3-15图
解:图(a)以④为参考结点,则结点电压方程为:
题4—5图
4-9求题4—9图所示电路的戴维宁或诺顿等效电路。
(a)
(b)
题4—9图
解:(b)题电路为梯形电路,根据齐性定理,应用“倒退法”求开路电压 。设 ,各支路电流如图示,计算得
故当 时,开路电压 为
将电路中的电压源短路,应用电阻串并联等效,求得等效内阻 为
4—17题4-17图所示电路的负载电阻 可变,试问 等于何值时可吸收最大功率?求此功率。
题2-1图
解:(1) 和 并联,其等效电阻 则总电流
分流有
(2)当
(3)
2-5用△-Y等效变换法求题2—5图中a、b端的等效电阻:(1)将结点①、②、③之间的三个9电阻构成的△形变换为Y形;(2)将结点①、③、④与作为内部公共结点的②之间的三个9电阻构成的Y形变换为△形。
题2-5图
解(1)变换后的电路如解题2—5图(a)所示。
题4—2图
解:画出电源分别作用的分电路图
对(a)图应用结点电压法有
解得:
对(b)图,应用电阻串并联化简方法,可得:
所以,由叠加定理得原电路的 为
4—5应用叠加定理,按下列步骤求解题4—5图中 。(1)将受控源参与叠加,画出三个分电路,第三分电路中受控源电压为 , 并非分响应,而为未知总响应;(2)求出三个分电路的分响应 、 、 , 中包含未知量 ;(3)利用 解出 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ch ( l ) 0.5(el e l ) 1.2846 , sh( l ) 0.5(el e l ) 0.8064
始端输入电阻
Ri RL ch ( l ) Rc sh( l ) Rc 47.223 RL sh( l ) Rc ch ( l )
i(t ) i1 US 240 0.2A RS Z c 600 600
(3) 30μs t 60μs 时, 在终端所产生的反射波已经过中点, 并于 t 40μs 时 刻到达始端。由于 RS Z c ,所以到达始端后不再产生第二次反射 终端反射系数
N2 R2 Z c 1800 600 0.5 , i2 N 2i2 N 2i1 0.1A R2 Z c 1800 600
Z c1 Zc2
Z c1 。 Z c1 Z c2
R1
R2
Z1
Z2图题15.4解:若从来自个方向传来的波不产生反射波,则有
Z c1 Z1 R1 R2 Z c 2 R2 Z c 2 (1) (2)
1 1 1 1 Z c 2 Z 2 R2 R1 Z c1
由式(2)得
1 1 1 R2 Z c2 R1 Z c1 (3)
i(t ) i1 i2 0.1A 。
其波形如图15.3(b)所示。
0 .2 0.1
0 1 2 3 4 5 6 t / 10μs
(b)
i/A
题 15.4 在高频电缆接续处要求行波无论从何方向传来都不致在接头处产生反射波。 这可用图示 形 电阻网络来实现。若不计两电缆的损失,且其波阻抗分别为Z c1 和Z c2 。 试证R1 和R2 的值分别为 Z c1 ( Z c1 Z c2 ) 和 Z c2
Zc
2u
R
(b)
L
u
其中
u Zc uS (t 0.001) [5 (t 0.001) 5 (t 0.002)]V RS Z c
从电感两端看的等效电阻
Ri
u (t )
RZ c 300 200 120Ω R Z c 300 200
所以反射波电压象函数为:
U ( s) N ( s)U ( s)
代入已知数整理求得: 75s 5625 11250 U ( s) 75 s 225 s 225
u2 (t ) [75Wb (t ) 11250e 225t (t )]V
50 10 9 s/m 。试计算此升压延迟电缆的参数L0 和C 0 。各电缆的损失可忽略不计。
Zc
u2
uS
Z c1
u
图题15.5
解:终端开路,反射电压等于入射电压,则在升压延迟电缆始端电压应为
u2 14 / 2 7kV
又由
u2 u2 N 2 u2 1 N 2 u2
题 15.9 某直流传输线长 300km, 其线路参数为 R0=0.075/km, G0=80.6×10-6S/ km。 若该传输线始端 电压为 U1=500kV,终端负载电阻为 1000。求始端电流及负载所获得的功率。 解 波阻抗
Rc R0 G0 30.5
传播系数
R0G0 2.459 10 3 km , l 0.7376
l 1 s Ri 1200
的单位阶跃特性为
s(t ) R e t / 0.6e 1200t (t ) Zc R
所以
u(t ) [6e1200(t 0.001) (t 0.001) 6e1200(t 0.002) (t 0.002)] V
题 15.8 图示电路中,已知无损线的波阻抗 Zc=75,负载 R=150,L=1H,iS 为单位冲激电流源。
N2 Z L Zc 1 Z L Zc 3 ZS Z c 1 ZS Z c
始端反射系数
N1
这是一个多次反射过程,反射过程如图题 15.2 所示。其中t d l / v 当0 t
2l 时,反射波未达到始端,只有入射波。 v
u1 15V 30mA Z c 500
代入式(1)得
Z c1 R1
1 1 R1 1/ R2 1/ Z c 2 2 / Z c 2 1/( R1 Z c1 )
化简得
R12 Z c21 Z c1 Z c 2
即 R1 Z c1 Z c1 Z c 2
将 R1 代入式(3)得
1 1 1 2 R2 Z c 2 Z c1 Z c1 Z c 2 Z c1
,
单位长度延迟时间 1 t 0 L0 C0 50 10 9 s/m v 解得 2 L0 8.75 106 H/m , C0 109 F/m 7 题 15.6 无损均匀线长为 l, 波阻抗Z c R ,终端接电容 C,已知始端电压 u1=U(t)。求入射波第一 次到达终端后的电容电压u C 。设波速为 v。
Ri
uOC 2u u Zc iSC 2i i
因此得到入射波到达反射点时对负载来说的等效电路, 如图 15.6(a)所示。 这种方法称为彼德 生法则。 根据彼德生法则,可得到本题的等效电路如图 15.6(b)所示。
R 2U (t ) C uC
(b)
根据三要素法, 直接写出uC (t ) 的表达式,即
uC (t ) 2U [1 e (t l / v ) / RC ] (t l / v)
题 15.7 电路如图(a) 所示,设无损耗传输线长为 1ms 时间内波所传播的距离,波阻抗 L=0.1H,uS 10 ε(t ) 10 ε(t 0.001s) V。求 t>0 时的 Z c RS 200 。又已知 R=300, 零状态响应 u(t)。
uS RS R
L u
(a)
图题15.7
解: 0 t 1ms 时,入射波电压尚未传播到终端,所以 u (t ) 0 ;
t 1ms 时,入射波到达终端并产生反射波; t 2ms 时,反射波到达终端,
但由于 Z c RS , 所以在始端不再产生第二次反射。 根据彼德生法则, 得到 t 1ms 时的终端等效电路如图(b)所示。
i1 i
当
2l 4l t 时,反射波到达始端, v v
i1 i N 2i N1 N 2i 30 10 10 10mA
当
4l 6l t 时 ,始端电流为: v v 10 10 16.67mA 3 3
i1 i N 2 i N1 N 2 i N1 N 22 i N12 N 22 i 30 10 10
故负载承受的电压
u2 u2 N 2u2 (1
3 ) 200 103 246.15kV 13
题 15.2 长度为 l=600m 的无损线,波阻抗 Zc=500,终端接 1k电阻,始端施以阶跃电压 试分析始端电流在0 t 6l / v 期间的波过程, 最后的稳态解是多少?(波速v u1 15 (t )V 。 可按光速计算) 解:终端反射系数
i1 RS US
(a)
(t 0) i (t )
i2
R2
图题 15.3 解:波从始端传到中点所用的时间为:
t1 l 2 3 103 10 5 s 10μs v 3 108
(1)当 0 t 10μs 时,入射波从始端发出,尚未到达中点所以 i(t ) 0 。 (2) 10μs t 30μs 时,入射波已经过中点,但在终端所产生的反射波还没有 到达中点。
C0 0.2μF/km 。试计算当工作频率为 800Hz 时此电缆的波阻抗Z c 、传播常数 、相速v p 和
波长 。 解:
R0 jL0 7 j2 800 0.3 10 3 7.160612.157 / km G0 jC0 0.5 10 6 j2 800 0.2 10 6 1005.31 10 6 89.972 S/km
Zc i
2u
uOC
Z
(a)
图题15.6
解:当0 t l v 时,入射波没有到达终端,因此uC (t ) 0 。当入射波第一次到达终端, 并且从始端反射的反射波还没有到达终端时,用戴维南等效电路求解。 当负载两端开路时,终端电压为两倍入射电压,因此开路电压uOC 2u ,当负载两端短 路时,终端电流为两倍入射电流,即短路电流iSC 2i ,等效电阻
题 15.1 矩形电压波u =200kV 和电流波i =400A 沿架空线传播,线路终端接有 800的电阻负载。 试求波传到终端时负载所承受的电压为多少? 解: 波阻抗
Zc u 200 103 500Ω i 400
终端反射系数
N2 R2 Z c 3 R2 Z c 13
得联接处的反射系数为
N2 u2 7kV 1 1 0.4 u2 5kV
设升压延迟电缆的波阻抗为 Z c1 ,则
N2 Z c1 Z c Z c1 Z c
解得
2 7 Z c1 ( 1) Z c 75 175Ω 1 N2 3
又由
Z C1
L0 175 C0
将等号右边第二项分子、分母同乘以 Z c21 Z c1 Z c 2 Z c1 化简得
1 R2
题 15.5
Z c21 Z c1 Z c 2 Z c1 Z c 2
即 R2 Z c 2
Z c1 Z c1 Z c 2
图示电路, 用波阻抗为Z c 75 的电缆来传输高压脉冲。 设输入脉冲的幅值为 5kV, 要求 在输出端加一升压延迟电缆,以便得到 14kV 的开路电压脉冲;要求单位长度延迟时间为