2014年七年级上学期期中考试数学试卷及答案
初一数学上册期中考试试卷及答案
-七年级上学期数学期中调考试卷满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.12-的绝对值是( ). (A) 12 (B)12- (C)2 (D) -22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m 3.如果收入15元记作+15元,那么支出20元记作( )元. (A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ). (A)3个 (B)4个 (C)5个 (D)6个 5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A).1p q = (B)1qp= (C) 0p q += (D) 0p q -= 6.方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337.下列变形中, 不正确的是( ).(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d (C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d 8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ). (A) b -a>0(B) a -b>0(C) ab >0(D) a +b>0 9.按括号内的要求,用四舍五入法,对1022.0099(A)1022.01(精确到0.01) (B)1.0×10(C)1020(精确到十位) (D)1022.010(精确到千分位)10.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( ).(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=411. 下列等式变形:①若a b =,则a b x x =;②若a b x x =,则a b =;③若47a b =,则74a b =;④若74a b =,则47a b =.其中一定正确的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( ). (A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.写出一个比12-小的整数: . 14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m . 15.十一国庆节期间,吴家山某眼镜店开展优 惠学生配镜的活动,某款式眼镜的广告如图,请你 为广告牌补上原价.16那么,当输入数据为8时,输出的数据为 . 三、 解一解, 试试谁更棒(本大题共9小题,共72分) 17.(本题10分)计算(1)13(1)(48)64-+⨯- (2)4)2(2)1(310÷-+⨯- 解: 解:18.(本题10分)解方程(1)37322x x +=- (2) 111326x x -=- 解: 解:19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期 一 二 三 四 五 六 日 增减/辆-1+3-2+4+7-5-10(1) 生产量最多的一天比生产量最少的一天多生产多少辆?(3分) (2) 本周总的生产量是多少辆?(3分) 解:20.(本题7分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座? 解:21. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)(2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===则:5a = .(用1a 与q 的式子表示)(2分) (3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分) 解:22.(本题8分)两种移动电话记费方式表 (1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)解:23.(本题10分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数.全球通 神州行 月租费50元/分 0 本地通话费 0.40元/分0.60元/分(1)求m的值;(6分)(2)求这两个方程的解.(4分)解:24.(本题12分)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(4分)解:(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(4分)解:(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?(4分)解:七年级数学期中考试参考答案与评分标准一、选一选,比比谁细心1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D 二、填一填,看看谁仔细13.-1等 14. 350 15.200 16. 865三、解一解,试试谁更棒 17.(1)解: 13(1)(48)64-+⨯- = -48+8-36 ………………………………3分 =-76 ………………………………5分 (2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4 ………………………………2分 =2-2=0 ………………………………5分 18.(1)解:37322x x +=-3x+2x=32-7 ………………………………2分5x=25 ………………………………4分 x=5 ………………………………5分(2) 解:111326x x -=- 113126x x -+=- ………………………………2分 13x -=2 ………………………………4分x=-6 ………………………………5分19. 解: (1)7-(-10)=17 ………………………………3分 (2) (-1+3-2+4+7-5-10 )+100×7=696 ………………………………6分 20.解:设严重缺水城市有x 座,依题意有: ………………………………1分 3522664x x x +++= ………………………………4分 解得x=102 ………………………………6分答:严重缺水城市有102座. ………………………………7分21.(1)81……2分 (2) 41a q …………………4分 (3)依题意有:242a a q = ………………………………6分∴40=10×2q ∴2q =4 ………………………………7分 ∴2q =± ……………………………9分 22.(1)设一个月内本地通话t 分钟时,两种通讯方式的费用相同.依题意有:50+0.4t=0.6t ………………………………3分 解得t=250 ………………………………4分(2)若某人预计一个月内使用本地通话费180元,则使用全球通有:50+0.4t=180 ∴1t =325 ………………………………6分 若某人预计一个月内使用本地通话费180元,则使用神州行有: 0.6t=180 ∴2t =300∴使用全球通的通讯方式较合算. ………………………………8分 23.解:(1) 由234x m x -=-+得:x=112m + …………………………2分 依题意有:112m ++2-m=0解得:m=6 ………………………6分 (2)由m=6,解得方程234x m x -=-+的解为x=4 ……………8分解得方程2m x -=的解为x=-4 ………………………10分24. (1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒4t 个单位长度. 依题意有:3t+3×4t=15,解得t=1 …………………………2分 ∴点A 的速度为每秒1个单位长度, 点B 的速度为每秒4个单位长度. …3分画图 ……………4分 (2)设x 秒时,原点恰好处在点A 、点B 的正中间. ………………5分根据题意,得3+x=12-4x ………………7分 解之得 x=1.8即运动1.8秒时,原点恰好处在A 、B 两点的正中间 ………………8分 (3)设运动y 秒时,点B 追上点A 根据题意,得4y-y=15,解之得 y=5 ………………10分即点B 追上点A 共用去5秒,而这个时间恰好是点C 从开始运动到停止运动所花的时间,因此点C 行驶的路程为:20×5=100(单位长度) ………………12分。
人教版数学七年级上册《期中考试试卷》及答案
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各数中,其相反数等于本身的是( )A. B. 0 C. 1 D.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A 56℃ B. ﹣56℃ C. 310℃ D. ﹣310℃ 3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元 4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或57.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 9.若关于x ,y 多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 010. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ ……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102二、填空题11.比较大小:23- ____45- (填“>、< 或 =”). 12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.14.若24m n +=,则代数式642m n --的值为_______.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-= ⎪⎝⎭______ 三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 18.数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}20.某工厂第一车间有人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km ):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费元,超过3km 的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含 m,n 的代数式表示地面的总面积;(2)已知 n 1.5=,且客厅面积是卫生间面积的 倍,如果铺 平方米地砖的平均费用为 100 元,那么小王铺地砖的总费用为多少元?23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x ﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|值.(2)若|x ﹣2|=5,求x 的值是多少?(3)同理|x ﹣4|+|x+2|=6表示数轴上有理数x 所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|x ﹣4|+|x+2|=6,写出求解的过程.答案与解析一、选择题1.下列各数中,其相反数等于本身的是()A. B. 0 C. 1 D.【答案】B【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】A.的相反数是1,故不符合题意;B.0的相反数是0,故符合题意;C.1的相反数是-1,故不符合题意;D.的相反数是-a,当a=0时,符合题意;当a≠0时,不符合题意;故选B.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A. 56℃B. ﹣56℃C. 310℃D. ﹣310℃【答案】C【解析】试题解析:127-(-183)=127+183=310℃,故选C.3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元【答案】D【解析】80000000000000元=8×1013元,故选D .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 【答案】A【解析】分析】根据单项式、多项式、乘方的定义及有理数的大小比较方法逐项分析即可.【详解】A . 315x -不是单项式,正确; B . 没有最大的负有理数,故不正确;C . 432x x +是四次二项式,故不正确;D . 2(4)-中4-是底数,2是指数,故不正确;故选A .【点睛】本题考查了单项式、多项式、乘方的定义及有理数的大小比较方法,熟练掌握各知识点是解答本题的关键.5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 【答案】D【解析】【分析】根据同类项及合并同类项的方法逐项分析即可.【详解】A . 496x x x x -+=,故不正确;B . 2xy xy xy -=-,故不正确;C .x 3与x 2不是同类项,不能合并,故不正确;D . 1122a a a --=-,正确; 故选D .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或5【答案】C【解析】正数的绝对值有两个,且互为相反数,所以|±5|=5. 故选C.7.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 【答案】B【解析】【分析】化简后,根据相反数的定义【详解】A . ∵|3|--=-3,∴3-与|3|--相等,故不符合题意;B . ∵(25)--=25,25-=-25,∴(25)--与25-是互为相反数,故符合题意;C . ∵2(3)-=9,23=9,∴2(3)-与23相等,故不符合题意;D . ∵31-=-1,3(1)-=-1,∴31-或3(1)-相等,故不符合题意;故选B .【点睛】本题考查了相反数、绝对值、乘方的意义,熟练掌握各知识点是解答本题的关键.8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 【答案】C【解析】【分析】由数轴上点的位置,判断出a-b 和b 的正负,利用绝对值的代数意义化简即可得到结果.【详解】解:由数轴上点的位置得:a-b 大于0,b 小于0,∴|a-b|+2|b|-a=a-b-2b-a=-3b ,故选C.【点睛】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 0【答案】B【解析】【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.10. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102【答案】C【解析】试题分析:先根据题中所给的规律,把式子中的1×2,2×3,…,99×100,分别展开,整理后即可求解.解:根据题意可知,3×(1×2+2×3+3×4+…+99×100)=3×[13(1×2×3−0×1×2)+13(2×3×4−1×2×3)+13(3×4×5−2×3×4)+…+13(99×100×101−98×99×100)]=1×2×3−0×1×2+2×3×4−1×2×3+3×4×5−2×3×4+…+99×100×101−98×99×100=99×100×101.故选C.点睛:本题是一道找规律题.解题的关键要找出所给式子的规律,并应用于后面求解的式子中.二、填空题11.比较大小:23-____45-(填“>、< 或=”).【答案】>【解析】【分析】比较两个负数的大小关系,可以比较这两个负数的绝对值,绝对值大的反而小.【详解】解:∵210412, 315515 ==∴24 35 <∴24 35 ->-【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.【答案】千万位【解析】【分析】根据精确度的定义解答即可,近似数的最后一个数字实际在什么位上,即精确到了什么位.【详解】∵16.9亿中的9在千万位上,∴似数16.9亿精确到千万位.故答案为:千万位.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.【答案】或12-【解析】【分析】由||a b a b +=+,可知a 与b 是平行向量,根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分两种情况计算可求得答案.【详解】∵||a b a b +=+,∴a 与b 是平行向量,∴a =5,b =7或a =-5,b =7,∴a b -=5-7=-2或a b -=-5-7=-12.故答案为:或12-.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键. 14.若24m n +=,则代数式642m n --的值为_______.【答案】【解析】【分析】把642m n --变形为()622m n -+,将24m n +=代入计算即可.【详解】∵24m n +=,∴642m n --=()622m n -+=6-8=-2.故答案为:-2.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.如果给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.【答案】(0.3b-0.2a)【解析】【分析】首先表示出成本价是0.4a 元,再表示出买了b 份报纸的钱数,和退回的钱数,用卖的钱数+退回的钱数-成本可得赚的钱数.【详解】∵每份0.4元的价格购进了a 份报纸,∴这些报纸的成本是0.4a 元,∵每份0.5元的价格出售,一天共售b 份报纸,∴共卖了0.5b 元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a-b )元,他一天工赚到的钱数为:0.5b+0.2(a-b )-0.4a=0.3b-0.2a (元),故答案为(0.3b-0.2a ).【点睛】此题主要考查了列代数式,关键是正确理解题意,准确表示出各项的钱数.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-=⎪⎝⎭______ 【答案】1;【解析】【分析】根据所给新定义运算的例子求出12019g ⎛⎫ ⎪⎝⎭与(2019)f 的值,代入1(2019)2019g f ⎛⎫-= ⎪⎝⎭计算即可. 详解】∵(1)0f =,(2)1f =,(3)2f =,(4)3f =,…,∴(2019)f =2018. ∵122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,…, ∴12019g ⎛⎫ ⎪⎝⎭=2019, ∴1(2019)2019g f ⎛⎫-= ⎪⎝⎭2019-2018=1. 故答案为:1.【点睛】本题考查了新定义运算,以及有理数的减法,明确新定义的运算方法是解答本题的关键.三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 【答案】(1)-19;(2)113-;(3)24a a - 【解析】【分析】 (1)根据新定义的运算法则计算即可;(2)根据乘方法则计算第一项,根据绝对值计算第二项,根据乘除混合运算法则计算第三项,然后计算加减即可;(3)去括号合并同类项即可.【详解】(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭182021=-+-=19-; (2)原式8114333=-+-=-; (3)原式=()222255226a a a a a a -+--+=222255226a a a a a a --++-24a a =-.【点睛】本题考查了有理数的混合运算、以及整式的加减运算,熟练掌握运算法则是解答本题的关键. 18.在数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.【答案】−1.5<+(−1)<0<2<|−3|.【解析】分析:在数轴上表示出各数,再从左到右用“<”连接起来即可.本题解析:如图所示, ,故−1.5<+(−1)<0<2<|−3|.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}【答案】见解析.【解析】【分析】根据有理数的分类方法解答即可.【详解】(1)正整数:{32,… }(2)整数:{4-,0,32 ,... }(3)负分数:{ 3.14-,35,… } (4)有理数:{0.618, 3.14-,4-,35,13-,6%,0,32,…} 【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.20.某工厂第一车间有人,第二车间比第一车间人数45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?【答案】(1)9305x-;(2)10x+,4405x-;(3)1505x+【解析】【分析】(1)先表示出调动前第二车间人数,再相加可得;(2)把第一车间的人数加10,第二车间的人数减10即可;(3)将调动后第一车间人数减去第二车间人数可得.【详解】解:(1)调动前第二车间有(45x-30)人,∴两个车间共有x+(45x-30)= (9305x-)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(45x-30-10)=(4405x-)人;(2)根据题意得:(x+10)-(4405x-)= (1505x+)人,则调动后,第一车间的人数比第二车间的人数多(1505x+)人.【点睛】此题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系进行解题.21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费元,超过3km的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?【答案】(1)在公司的东边10千米处;(2)共耗油4.8升;(3)共收到车费68元.【解析】【分析】(1)由题意把接送批客人的行驶路程相加,并进行计算即可;(2)根据题意先计算出总行驶路程,再乘以出租车每千米耗油0.2升即可求出在这过程中共耗油多少升;(3)根据题意分别计算出各个批次所收到的车费,再进行相加即可.【详解】解:(1)5+2+(-4)+(-3)+10=10(km).由题意可知规定向东为正,向西为负,答:接送完第5批客人后,该驾驶员在公司的东边10千米处.(2)由题意出租车每千米耗油0.2升可得:(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升).答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元).答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是理解题意并熟练运用正负数的意义进行分析求解.22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积;,且客厅面积是卫生间面积的倍,如果铺平方米地砖的平均费用为100元,那么小王(2)已知n 1.5铺地砖的总费用为多少元?【答案】(1)S=6m+2n+18;(2) 铺地砖的总费用4500元【解析】【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m,n 的值代入计算即可.【详解】(1)S=2n+6m+3×4+2×3=6m+2n+18. (2)n=1.5时2n=3根据题意,得6m=8×3=24, ∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】此题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?【答案】(1)510;(2)0.9x ;0.830x +;(3)0.1 686a +【解析】【分析】(1)让300元部分按9折付款,剩下的300按8折付款即可;(2)等量关系为:购物款×9折;300×9折+超过300的购物款×8折; (3)两次购物王老师实际付款=第一次购物款×9折+300×9折+(总购物款-第一次购物款-第二次购物款300)×8折,把相关数值代入即可求解.【详解】解:(1)3000.9(600300)0.8510⨯+-⨯=(元).(2)当低于300元但大于100元时,他实际付款:0.9x 元;当大于300元时,他实际付款:300×0.9+(x-300)×0.8=(0.8x+30)元; (3)因为100300a <,所以第一次实际付款为0.9a 元,第二次付款超过300元,超过300元部分为(820300)a --元,所以两次购物王老师实际付款为()0.93000.90.8(820--300)0.1686a a a +⨯+=+元.【点睛】本题考查了列代数式,解决本题的关键是得到不同购物款所得的实际付款的等量关系,难点是求第二问的第二次购物款应分9折和8折两部分分别计算实际付款.24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)6;(2) x=﹣3或7 ;(3)整数是﹣2、﹣1、0、1、2、3、4【解析】分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.【详解】(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【点睛】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x-a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.。
【人教版】七年级上册数学《期中考试试卷》及答案解析
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷一、选择题(每小题3分,共30分)1.温度由3C ︒-上升6C ︒是( )A. 3C ︒B. 9C -︒C. 3C -︒D. 9C ︒2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走2米记为+2米,那么向西走5米记为( )A. +5米B. +2米C. -5米D. -2米3.若一个整数21500…0用科学记数法表示为102.1510⨯,则原数中“0”的个数为( )A. 7B. 8C. 9D. 104.有一个两位数,它的十位数字是x ,个位数字是y ,则这个两位数为( )A. xyB. +x yC. 10x y +D. 10(x y +)5.在如图所示的数轴上,表示-1.25的点是( )A. 点EB. 点FC. 点GD. 点H6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )A. B. C. D.7.下列说法中,正确有( )①圆柱、圆锥的底面都是圆;②棱柱的底面是四边形;③棱柱的侧面一定是长方形;④长方体一定是柱体.A. 1个B. 2个C. 3个D. 4个8.从3,2,-1,-4,-5中任取两个数相乘,若所得积中最大值是a ,最小值是b ,则a b的值为( )A. 203B. 13C. 12-D. 43- 9.下列关于多项式2227m n mn --的说法中,正确的是( )A. 最高次项是2m nB. 二次项系数是2C. 常项数是7D. 次数和项数都是3 10.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①②③处装有同样大小的塑钢玻璃,当第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A . 21718abm B. 21318abm C2518abm D. 2118abm 二、填空题(每小题3分,共15分)11.在7,32-,0,3,-2,17中,正数有__________个. 12.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,若“生”在正方体的前面,则这个正方体后面的汉字是“__________”.13.在-1,0,|2|--,5,(4)-+这5个数中任意两个数相减,所得的差中最大值是__________.14.如果2|2|(6)0x y -++=,则x y -=__________. 15.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”.已知数轴上点1A 的相关点为2A ,点2A 的相关点为3A ,点3A 的相关点为4A ……这样依次得到点1A ,2A ,3A ,4A ,……,n A .若点1A 在数轴上表示的数是12,则点2034A 在数轴上表示的数是__________. 三、解答题(本大题共8个小题,满分75分)16.(1)计算:13710 3.68 6.444+-+--. (2)计算:21224(2)6323⎛⎫-÷---⨯-⎪⎝⎭. 17.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.求2082a b cd m +-+的值. 18.如果3a b x y -和2425a y x -是同类项,先化简1323(3)2ab a ab b a ⎛⎫-++-+ ⎪⎝⎭,再求值. 19.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少? 20.用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:(1)c 表示几?b 的最大值是多少?(2)这个几何体最少是用多少个小立方体搭成的?最多呢?21.数学课上老师出了一道计算题:1234567891333333333+++++++++,老师在教室里巡视了一圈,发现同学都做不出来,于是老师给出了下面的一种解法:解:令1234567891333333333S =+++++++++,①234567891033333333333S =+++++++++,②②-①,得10231S =-. 所以10312S -=. (1)仿照以上方法计算:1234567891913333333333+++++++++++.(写出计算过程,结果用幂表示) (2)根据以上计算方法请猜想下列各式的计算结果(结果用幂表示):①123201913333+++++=________. ②123201917777+++++=________.22.(1)如图(1),在某年某月的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a ,则用含a 的代数式表示这三个数分别是__________;(按从小到大的顺序写在横线上)(2)现将连续自然数1~2007按图(2)的方式排成一个长方形阵形然后用一个正方形框出16个数. ①图中框出的这16个数的和是__________;②在图(2)中,要使一个正方形框出的16个数的和等于2016,2168,是否可能?若不可能,请说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.23.某服装厂生产一种西装和领带,西装每套定价280元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):方案一:买一套西装送一条领带;方案二:西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x 套西装,y 条领带(y x >).(1)该客户选择两种不同方案所需费用分别是多少元?(用含x ,y 的式子表示并化简)(2)若该客户需要购买10套西装,25条领带,则他选择哪种方案更划算?(3)若该客户需要购买25套西装,35条领带,则他选择哪种方案更划算?答案与解析一、选择题(每小题3分,共30分)1.温度由3C ︒-上升6C ︒是( )A. 3C ︒B. 9C -︒C. 3C -︒D. 9C ︒【答案】A【解析】【分析】根据题意列式计算即可.【详解】解:-3+6=3,∴温度由-3℃上升6℃后是3℃.故选A .【点睛】本题主要考查了有理数的加减法,熟记运算法则是解答本题的关键.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走2米记为+2米,那么向西走5米记为( )A. +5米B. +2米C. -5米D. -2米 【答案】C【解析】【分析】根据题意,可以知道负数表示向西走,问题得以解决.【详解】解:∵向东走2米记为+2米,∴向西走5米记为-5米,故选:C .【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.3.若一个整数21500…0用科学记数法表示为102.1510⨯,则原数中“0”的个数为( )A. 7B. 8C. 9D. 10 【答案】B【解析】【分析】把102.1510⨯写成不用科学记数法表示的原数的形式即可得.【详解】解:∵102.1510⨯表示的原数为21500000000,∴原数中“0”的个数为8,故选B.【点睛】本题主要考查了科学记数法—原数,要熟练掌握,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.4.有一个两位数,它的十位数字是x ,个位数字是y ,则这个两位数为( )A. xyB. +x yC. 10x y +D. 10(x y +)【答案】C【解析】【分析】 根据两位数字的表示方法:十位数字×10+个位数字即可得出. 【详解】解:根据两位数的表示方法得:这个两位数表示为:10x+y .故选C .【点睛】本题主要考查了两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.5.在如图所示的数轴上,表示-1.25的点是( )A .点EB. 点FC. 点GD. 点H 【答案】B【解析】【分析】直接利用数轴得出-1.25的位置.【详解】解: 1.251-<-,由图可知:点E 表示的数小于-1.5,∴在数轴上表示 1.25-的点是:F 点.故选:B . 【点睛】本题主要考查了数轴,正确理解数轴的意义是解题关键.6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A. B. C. D.【答案】C【解析】【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.【点睛】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.下列说法中,正确的有()①圆柱、圆锥的底面都是圆;②棱柱的底面是四边形;③棱柱的侧面一定是长方形;④长方体一定是柱体.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据柱体和锥体的性质,可判断①②③,根据长方体的性质,可判断⑤.【详解】解:①圆柱、圆锥的底面都是圆,正确;②n棱柱的底面是n边形,不一定是四边形,错误;③直棱柱的侧面一定是长方形,斜棱柱的侧面不是长方形,错误;④长方体一定是柱体,正确;故选B.【点睛】本题主要考查了常见的几何体,应注意棱柱由上下两个底面以及侧面组成.8.从3,2,-1,-4,-5中任取两个数相乘,若所得的积中最大值是a,最小值是b,则ab的值为()A. 203B. 13C. 12-D. 43- 【答案】D【解析】【分析】先确出积的最大值和最小值,然后再代入计算即可.【详解】解:最大值为-5×-4=20=a ,最小值为3×-5=-15=b , ∴a b =204=153--. 故选:D.【点睛】本题主要考查的是有理数的乘法,求得这两个数的乘积的最大值和最小值是解题的关键. 9.下列关于多项式2227m n mn --的说法中,正确的是( )A. 最高次项是2m nB. 二次项系数是2C. 常项数是7D. 次数和项数都是3【答案】D【解析】【分析】直接利用多项式的项数以及次数确定方法分析得出答案.【详解】解:多项式2227m n mn --,最高次项是22m n ,故选项错误;二次项为2mn -,二次项系数是-2,故选项错误;常数项是-7,故选项错误;次数是2+1=3,项数是3,故选项正确;故选D. 【点睛】本题主要考查了多项式,正确把握相关定义是解题关键.10.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①②③处装有同样大小的塑钢玻璃,当第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A. 21718abm B. 21318abm C. 2518abm D.2118abm 【答案】C【解析】【分析】 第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,第一块和第二块玻璃之间的距离是(12-13)×3a ,窗子的通风面积为①中剩下的部分. 【详解】解:由题意可得:115=3332318a a a ab ab ⎡⎤⎛⎫---⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦, 故选C.【点睛】本题考查了列代数式和整式的混合运算,有一定的难度,应根据图示找到窗子通风的部位在哪里,是哪个长方形,其长和宽式多少,都需要求出来,再进行面积计算.二、填空题(每小题3分,共15分)11.在7,32-,0,3,-2,17中,正数有__________个. 【答案】3【解析】【分析】根据正数的定义,即可解答.【详解】解:正数>0,∴正数有7,3,17共3个. 故答案为:3.【点睛】本题考查了正数和负数,解题的关键是掌握正数的概念,属于基础题,难度不大.12.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,若“生”在正方体的前面,则这个正方体后面的汉字是“__________”.【答案】尚【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:∵“生”在正方体的前面,前面和后面是相对面,∵“崇”和“低”是相对面,“活”和“碳”是相对面,∴“生”和“尚”是相对面,故答案为:尚.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.在-1,0,|2|--,5,(4)-+这5个数中任意两个数相减,所得的差中最大值是__________.【答案】9【解析】【分析】先化简各数,根据有理数的减法用最大数减去最小数即可得差最大的值.【详解】解:|2|--=-2,(4)-+=-4,∴5个数为:-1,0,-2,5,-4,∴差最大为:5-(-4)=9.故答案为:9.【点睛】本题考查了有理数大小比较和有理数的减法,解决此类问题的关键是找出最大最小有理数和对减法法则的理解.14.如果2|2|(6)0x y -++=,则x y -=__________. 【答案】8【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:∵2|2|(6)0x y -++=,∴x-2=0,y+6=0,解得:x=2,y=-6,代入x y -,原式=8.【点睛】本题考查了绝对值和平方的非负性,几个非负数的和为0时,这几个非负数都为0.15.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”.已知数轴上点1A 的相关点为2A ,点2A 的相关点为3A ,点3A 的相关点为4A ……这样依次得到点1A ,2A ,3A ,4A ,……,n A .若点1A 在数轴上表示的数是12,则点2034A 在数轴上表示的数是__________. 【答案】-1【解析】【分析】 先根据已知求出各个数,根据求出的数得出规律,即可得出答案.【详解】解:∵点A 1在数轴表示的数是12, ∴A 2=1112-=2,A 3=1=112--, A 4=()11=112--, A 5=1112-=2,A 6=-1,…,2034÷3=678,∴点A 2034在数轴上表示的数是-1,故答案为:-1.【点睛】本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.三、解答题(本大题共8个小题,满分75分)16.(1)计算:13710 3.68 6.444+-+--. (2)计算:21224(2)6323⎛⎫-÷---⨯-⎪⎝⎭. 【答案】(1)-3;(2)4【解析】【分析】(1)根据加法交换律和结合律先分别计算分数部分、整数部分、小数部分,再将各部分计算结果相加即可; (2)按照有理数的混合运算法则计算即可.【详解】解:(1)原式137(108)( 3.6 6.4)44⎛⎫=++--⎝-+ ⎪⎭5210=+-3=-;(2)原式12(34)9=---12(1)9=---1219=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序,注意简便算法.17.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.求2082a b cd m +-+的值. 【答案】-7【解析】【分析】利用相反数,倒数,以及绝对值的意义求出a+b ,cd ,及m 的值,代入所求式子计算即可得到结果.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.∴0a b +=,1cd =,1m =±,∴201m =. ∴20808112a b cd m +-+=-⨯+ 817=-+=-.【点睛】本题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握各自的定义是解本题的关键. 18.如果3a b x y -和2425a y x -是同类项,先化简1323(3)2ab a ab b a ⎛⎫-++-+ ⎪⎝⎭,再求值. 【答案】33-ab b ,-2【解析】【分析】原式去括号合并得到最简结果,利用同类项的定义求出a 与b 的值,代入计算即可求出值.【详解】解:∵3a b x y -和2425a y x -是同类项,∴42a a =-,2b =,∴23a =,2b =, 原式363ab a ab b a =-++--33ab b =-.当23a =,2b =时, 原式232323=⨯⨯-⨯ 462=-=-.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键,同时也考察了同类项的概念.19.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?【答案】(1)()254πcm;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】分析】(1)用圆柱上下底面积加上侧面积即可;(2)当截得的面积最大时,长方形的长为底面直径,宽为6,可得面积最大值.【详解】解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.20.用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:(1)c 表示几?b 的最大值是多少?(2)这个几何体最少是用多少个小立方体搭成的?最多呢?【答案】(1)c 表示3,b 的最大值为2;(2)最少是用11,最多是用16【解析】【分析】(1)根据从正面、上面看到的几何体进行判断;(2)第一列小立方体的个数最多为3+3+3=9,最少为3+1+1=5,那么加上其他两列小立方体的个数即可;【详解】解:(1)由从正面和上面看到的这个几何体的形状图可知,c 表示3,b 的最大值为2; (2)这个几何体最少是用53311++=个小立方体搭成的,最多是用94316++=个小立方体搭成的.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.21.数学课上老师出了一道计算题:1234567891333333333+++++++++,老师在教室里巡视了一圈,发现同学都做不出来,于是老师给出了下面的一种解法:解:令1234567891333333333S =+++++++++,①234567891033333333333S =+++++++++,②②-①,得10231S =-. 所以10312S -=. (1)仿照以上方法计算:1234567891913333333333+++++++++++.(写出计算过程,结果用幂表示) (2)根据以上计算方法请猜想下列各式的计算结果(结果用幂表示):①123201913333+++++=________. ②123201917777+++++=________.【答案】(1)20312-=S ;(2)①2020312-;②2020716- 【解析】【分析】(1)参照老师的做法对所求式子变形,从而可以解答本题;(2)参照示例和(1)解题过程得出1123111b b a a a a a a +-+++++=-,从而可得①和②的结果. 【详解】解:(1)令1231913333S =+++++,①23420333333S =+++++,②②-①,得20231S =-.∴20312-=S ; (2)根据老师的做法和(1)中的解题过程可知:1123111b b a a a a a a +-+++++=-,根据规律得: ①123201913333+++++=2020312-;②123201917777+++++=2020716-. 【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.(1)如图(1),在某年某月的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a ,则用含a 的代数式表示这三个数分别是__________;(按从小到大的顺序写在横线上)(2)现将连续自然数1~2007按图(2)的方式排成一个长方形阵形然后用一个正方形框出16个数. ①图中框出的这16个数的和是__________;②在图(2)中,要使一个正方形框出的16个数的和等于2016,2168,是否可能?若不可能,请说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.【答案】(1)7a -,a ,7a +;(2)①352;②框出的16个数它们的和可以等于2016,且最小数为114,最大数为138;它们的和不可能等于2168,见解析【解析】【分析】(1)经过观察可知,如果中间的数是a ,则上面的数是a-7,下面的数是a+7;(2)①可以把这16个数直接加起来即可, ②可以设最小的数是m ,那么第一行的四个数的和就是4m+6,第二行的四个数的和就是4m+6+7×4=4m+34,第三行的四个数的和是4m+34+7×4=4m+62,第四行的四个数的和是4m+62+7×4=4m+90,(其中最大数是m+24),然后这16个数相加也就是四行数相加,令其结果等于2016或2168,看计算出的m 的值是不是整数,若是整数说明存在,若不是就说明不存在.【详解】解:(1)若中间的数是a ,那么上面的数是a-7,下面的数是a+7,故这三个数从小到大排列分别是a-7,a ,a+7;(2)①16个数中,第一行的四个数之和是:10+11+12+13=46,第二行的四个数之和是:46+4×7=74,第三行的四个数之和是:74+4×7=102, 第四行的四个数之和是:102+4×7=130. 于是16个数之和=46+74+102+130=352.故图中框出的这16个数之和是352;②设这16个数中最小的数为m ,则这16个数分别为m ,1m +,2m +,3m +,7m +,8m +,9m +,10m +,14m +,15m +,16m +,17m +,21m +,22m +,23m +,24m +,它们的和为16192m +(m 为正整数),所以它们的和可以等于2016,理由:161922016m +=,解得114m =,所以24138m +=,因此框出的16个数它们的和可以等于2016,且最小数为114,最大数为138,它们的和不可能等于2168,理由:161922168m +=,解得123.5m =,而m 应为整数,所以16个数的和不可能等于2168.【点睛】本题考查了一元一次方程的应用,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.23.某服装厂生产一种西装和领带,西装每套定价280元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):方案一:买一套西装送一条领带;方案二:西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x 套西装,y 条领带(y x >).(1)该客户选择两种不同的方案所需费用分别是多少元?(用含x ,y 的式子表示并化简)(2)若该客户需要购买10套西装,25条领带,则他选择哪种方案更划算?(3)若该客户需要购买25套西装,35条领带,则他选择哪种方案更划算?【答案】(1)(24040)x y +元和(25232)x y +元;(2)他选择方案二购买更划算;(3)他选择方案一购买更划算【解析】【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)把x 、y 的值代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)把x 、y 的值代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;【详解】解:(1)该客户选择方案一购买,需付款28040()(24040)x y x x y +-=+(元),该客户选择方案二购买,需付款28090%4080%(25232)x y x y ⨯+⨯=+(元).该客户选择方案一和方案二两种不同的购买方式所需费用分别是(24040)x y +元和(25232)x y +元;(2)当10x =,25y =时,按方案一购买,需付款:240104025240010003400⨯+⨯=+=(元)按方案二购买,需付款:25210322525208003320⨯+⨯=+=(元)∵34003320>,∴他选择方案二购买更划算.(3)当25x =,35y =时,按方案一购买,需付款:240254035600014007400⨯+⨯=+=(元), 按方案二购买,需付款:252253235630011207420⨯+⨯=+=(元)∵74007420<,∴他选择方案一购买更划算.【点睛】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.。
苏科版七年级上册数学《期中考试试卷》及答案解析
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.相反数是( )A. B. 2 C. 12 D. 12- 2.在百度中,搜索“快乐学数学”关键词,约有634000条相关结果,把数字634000写成科学计数法是( )A. 60.63410⨯B. 56.3410⨯C. 463.410⨯D. 363410⨯ 3.下列计算结果正确的是( )A. 233a a a += B. 54a a a -= C. 2222a a a -=- D. 246a b ab += 4.下列一组数2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A. 0个B. 1个C. 2个D. 3个 5.用代数式表示“a 的5倍和b 的差的平方”,正确的是( )A. ()25a b -B. ()25a b -C. 25a b -D. ()25a b - 6.如图A 、B 两点在数轴上表示的数分别是a ,b ,则表示A 、B 两点间距离不正确的是( )A. a-bB. a+bC. b a -D. a b + 7.如果单项式5x a y 5与-313b x y 是同类项,那么a 、b 值分别为( ) A. 2,5 B. 3,5C. 5,3D. -3,5 8.下列说法中,①a 和1a 都是单项式;②单项式225x y -的系数是-2;③x+2xy-y 可读作x 、2xy 、-y 的和;④若x =-x ,则x<0;正确的是( )A. 1个B. 2个C. 3个D. 4个9.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则“S”形的周长可表示为( )A. 8a-4bB. 8a-5bC. 4a+5bD. 4a+4b10.某班要在一面墙上同时展示数张形状、大小均相同矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如用9枚图钉将4张作品钉在墙上如图).若有28枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张二、填空题11.如果盈利200元记作+200,那么亏损500元记作______元12.写一个绝对值不大于π的整数_______.13.比较大小:23-__35-.(填“<”、“>”或“=”)14.如图,若开始输入的x的值为3,按所示的程序运算,最后输出的结果为___.15.单项式213nx y-是关于x、y的四次单项式,则n=____.16.一组数:3、1、8、x、y、.........满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是3a-b”,那么这组数中y表示的数是______.17.有理数a、b、c在数轴上的位置如图所示,则a c c b a b----+=_______.18.若多项式2835x x -+与多项式3225x mx x --相加后,结果不含二次项,则常数m 的值为_______. 19.已知多项式ax 5+bx 3+cx+3,当x=-1时,多项式的值为5,当x=1时,该多项式的值为_______.20.下图是某同学在沙滩上用石头摆成的小房子观察规律变化,写出第⑧个小房子用了_____块石头.三、解答题21.计算题(1)-11+8+(-14)(2)()243-13-23+⨯+ (3)()157--362612⎛⎫+⨯ ⎪⎝⎭ (4)()3214--5-2-31211⎛⎫⨯+÷+ ⎪⎝⎭ 22.化简(1)323235322m m n m nm m --++(2)()()2232x y y x ---(3)()()22742223x x x x +---+(4)()()927232x y x y z z ⎡⎤----+⎣⎦23.(1)先化简,再求值:()()22225342a b ab ab a b ---+,其中a=2,b=-1 (2)已知:a 2-2a-1=0,求代数式2(a+2)-2(a 2-a +1)的值.24.在数轴上画出表示下列各数的点,并用“<”号将所给的数按从小到大的顺序连接起来:|-2.5|,211,0,-212,-(-1),-4. 25.如图设计师设计图形如图所示1,为边长4a 正方形和直径4a 半个圆,后来改为了倒凸形和直径2a 的圆(如图2所示).(1)求出图2的面积(用含有的式子表示,圆周率用π表示);(2)如果用铁丝做成这两个图形,问哪个图形用的铁丝多?写出理由.26.每年“双11”天猫商城都会推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在三家天猫店铺中选择一家购买原价均为500元/瓶的护肤品若干瓶.已知三家店铺在非活动期间,均在原价基础上优惠20%销售,活动期间在此基础上再分别给予以下优惠:A 店铺:“双11”当天购买可以再享受8折优惠.B 店铺:双十一当天所有会员(办理商场会员卡需50元手续费)商品每满400元,商场返现金50元,同时该护肤品专柜针对所有会员也在当天推出活动,购护肤品每满100元可返现金10元(如:张阿姨购买2瓶护肤品需支付400×2-50×2-10×8+50=670元). C 店铺:“双11”当天下单可享立减活动:①每瓶立减58元(购买10瓶以内,不包括10瓶);②每瓶立减88元(一次性购买10瓶及10瓶以上).(1)双十一当天:若在A 店铺购买1瓶护肤品,需支付____________元;若在B 店铺办理会员并购买一瓶护肤品,需支付____________元;(2)若张阿姨在“双11”当天在同一家店铺一次性购买a 瓶护肤品,请用含有a 的代数式分别表示在这三家店铺的购买费用. (B 店铺:先办理会员再购买)(3)若张阿姨在双十一当天在同一家店铺一次性购买20瓶护肤品,你推荐她去哪家,通过计算、比较,说明你的理由27.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.记,1011234567891055n n ==+++++++++=∑,3231n n a a a a -=++∑,()()()()()()()8322324252627281233n x n x x x x x x x =+=+++++++++++=+∑.同学们,通过以上材料的阅读,请回答下列问题:(1)计算(填写最后的结果)421n n =∑=__________;()321n x nx =∑+=____________.(2)2+4+6+8+10用求和公式符号可表示__________.(3)化简:()333111321nn n n n n a a a ===---∑∑∑ (4)若对于任意x 都存在()222420k n x n x a x bx =⎡⎤∑+-=++⎣⎦,请求代数式12b-ab 的值.答案与解析一、选择题1.的相反数是( )A. B. 2 C. 12 D. 12-【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.在百度中,搜索“快乐学数学”关键词,约有634000条相关结果,把数字634000写成科学计数法是() A. 60.63410⨯ B. 56.3410⨯ C. 463.410⨯ D. 363410⨯【答案】B【解析】【分析】根据科学计数法的表示即可求解.【详解】解:634000=56.3410⨯故选B【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.3.下列计算的结果正确的是( )A. 233a a a +=B. 54a a a -=C. 2222a a a -=-D. 246a b ab+=【答案】C【解析】【分析】根据合并同类项进行计算解答即可.【详解】解:A. 34a a a +=,故错误;B. 54a a 与不是同类项,不能合并,故错误;C. 2222a a a -=-,正确D. 24a b 与不是同类项,不能合并,故错误;故选C【点睛】本题考查合并同类项问题,关键是根据合并同类项的法则解答.4.下列一组数2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A. 0个B. 1个C. 2个D. 3个 【答案】C【解析】【分析】根据无理数与有理数的概念进行判断即可得. 【详解】解:2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有:0.010010001...2π,(相邻两个1之间依次增加一个0),共2个故选C【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,,如0.1010010001…,等.5.用代数式表示“a 的5倍和b 的差的平方”,正确的是( )A. ()25a b -B. ()25a b -C. 25a b -D. ()25a b - 【答案】A【解析】【分析】a 的5倍为5a ,a 的5倍与b 的差为5a-b ,然后再平方即可.【详解】依题意得:(5a-b)2,故选:A .【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.6.如图A 、B 两点在数轴上表示的数分别是a ,b ,则表示A 、B 两点间距离不正确的是( )A. a-bB. a+bC. b a -D. a b + 【答案】B【解析】【分析】 根据数轴可得a ,b 正负性,再根据两点间距离进行化简即可【详解】解:由数轴可知:b<0<a∴a-b >0,|b|=-b∵AB =|a-b|∴AB =a-b=|b-a|= a b +故A 、C 、D 正确故选B【点睛】本题考查了数轴上两点的距离以及化简绝对值,掌握绝对值的化简是解题的关键.7.如果单项式5x a y 5与-313b x y 是同类项,那么a 、b 的值分别为( ) A. 2,5B. 3,5C. 5,3D. -3,5 【答案】B【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出a ,b 的值即可.【详解】∵单项式5x a y 5与-313b x y 是同类项, ∴a =3,b =5.故选B.【点睛】同类项概念:对于两个单项式,如果所含字母相同,相同字母的指数也相同,那么这两个单项式是同类项.8.下列说法中,①a 和1a 都是单项式;②单项式225x y -的系数是-2;③x+2xy-y 可读作x 、2xy 、-y 的和;④若x =-x ,则x<0;正确的是( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】各个小点进行判断后,即可得出正确的个数.【详解】解:①1a 不是单项式,故①错; ②单项式225x y -的系数是25-,故②错; ③x+2xy-y 可读作x 、2xy 、-y 的和,故③正确;④若x =-x ,则0x ≤ ,故④错;故正确个数由1个故选A【点睛】本题考查了整式、绝对值,掌握整式和绝对值是解题的关键.9.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“S ”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则“S”形的周长可表示为( )A. 8a-4bB. 8a-5bC. 4a+5bD. 4a+4b【答案】A【解析】【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:44a-b 8a a b +=-()4 ,故选:A【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如用9枚图钉将4张作品钉在墙上如图).若有28枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张【答案】B【解析】【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,28枚图钉最多可以展示的画的数量,比较后即可得出结论.【详解】解:①如果所有的画展示成一行,28÷(1+1)﹣1=13(张),∴28枚图钉最多可以展示13张画;②如果所有的画展示成两行,28÷(2+1)=9……1(枚),9﹣1=8(张),2×8=16(张),∴28枚图钉最多可以展示16张画;③如果所有的画展示成三行,28÷(3+1)=7,7﹣1=6,3×6=18(张),∴28枚图钉最多可以展示18张画;④如果所有的画展示成四行,28÷(4+1)=5……3(枚),5﹣1=4(张),4×4=16(张),∴28枚图钉最多可以展示16张画;⑤如果所有的画展示成五行,28÷(5+1)=4,4﹣1=3(张),5×3=15(张),∴28枚图钉最多可以展示15张画.综上所述:28枚图钉最多可以展示18张画.故选B.【点睛】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.二、填空题11.如果盈利200元记作+200,那么亏损500元记作______元【答案】-500【解析】【分析】根据正负数表示的意义作答即可.【详解】解:∵盈利200元记作+200,∴亏损500元记作:-500元故答案为-500【点睛】本题考查正负数的意义,正确理解题目中正负数表示意义是解题的关键.12.写一个绝对值不大于π的整数_______.【答案】0(答案不唯一)【解析】【分析】直接利用绝对值的性质进而分析得出答案.【详解】解:绝对值不大于π的整数有很多个,例如:0…故答案为0(答案不唯一)【点睛】此题主要考查了绝对值的性质,正确掌握绝对值的性质是解题关键.13.比较大小:23-__35-.(填“<”、“>”或“=”)【答案】<【解析】【分析】根据两个负数,绝对值大的反而小进行比较即可得答案.【详解】∵22103315-==,3395515-==,109 1515>,∴23-<35-,故答案为<.【点睛】本题考查了有理数大小比较,有理数大小比较法则:正数大于0,0大于负数,正数大于负数. 14.如图,若开始输入的x 的值为3,按所示的程序运算,最后输出的结果为___.【答案】15【解析】【分析】根据开始输入的x 的值为3,由程序框图计算即可得出结果.【详解】解:根据题意得:2317102711510⨯+⨯+>=<;= ,故最后输出结果为15. 故答案为15.【点睛】本题考查了有理数混合运算,能根据程序框图进行计算是解答此题的关键.15.单项式213n x y-是关于x 、y 的四次单项式,则n=____. 【答案】3【解析】【分析】直接利用单项式的次数确定方法分析得出答案.【详解】解:∵单项式213n x y-是关于x 、y 的四次单项式∴2+n-1=()4∴n=3故答案为:3【点睛】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.16.一组数:3、1、8、x 、y 、.........满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是3a-b”,那么这组数中y 表示的数是______.【答案】29【解析】【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:3185x,38(5)29y .故答案为29. 【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.17.有理数a 、b 、c 在数轴上的位置如图所示,则a c c b a b ----+=_______.【答案】2b【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:a <b <0<c ,,∴a-c<0,c-b>0,a+b<0则原式=-a+c-c+b+a+b=2b ;故答案为2b .【点睛】本题考查了整式的加减,掌握整式的加减实质上就是合并同类项是解题的关键.18.若多项式2835x x -+与多项式3225x mx x --相加后,结果不含二次项,则常数m 的值为_______.【答案】8【解析】【分析】根据题意列出关系式,合并后根据结果不含二次项,即可确定出m 值.【详解】解:根据题意得: 2835x x -+()+3225x mx x --()= 2835x x -++3225x mx x -- =x +-m x -8x+5322(8)由结果不含二次项,得到8-m=0,解得:m=8.故答案为8.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知多项式ax 5+bx 3+cx+3,当x=-1时,多项式的值为5,当x=1时,该多项式的值为_______.【答案】1【解析】【分析】首先把x=-1代入多项式ax 5+bx 3+cx+3,整理成关于a 、b 、c 的等式,再把x=1代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-1时,ax 5+bx 3+cx+3=5,即-a-b-c+3=5,所以a+b+c=-2,当x=1时,ax 5+bx 3+cx+3=a+b+c+3=1,故答案为1.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 20.下图是某同学在沙滩上用石头摆成的小房子观察规律变化,写出第⑧个小房子用了_____块石头.【答案】96【解析】【分析】把房子所需的石子分为2部分,上面一部分,下面一部分分别找到规律再相加即可.【详解】解:把房子所需的石子分为2部分,第一个房子的上面的石子个数为1,第二个房子的上面的石子个数为3,第三个房子的上面的石子个数为5,第四个房子的上面的石子个数为7,故第n 个房子的上面的石子个数为2n-1;第一个房子的下面的石子个数为4=22,第二个房子的下面的石子个数为9=32,第三个房子的下面的石子个数为16=42,第四个房子的下面的石子个数为25=52,第n 个房子的下面的石子个数为(n+1) 2,故第n 个小房子用了2n-1+(n+1) 2=(24n n +)个石子.故第8个小房子用了2848=96+⨯个石子.故答案为:96【点睛】此题主要考查图形规律探索,解题的关键是根据题意分开求出规律.三、解答题21.计算题(1)-11+8+(-14)(2)()243-13-23+⨯+ (3)()157--362612⎛⎫+⨯ ⎪⎝⎭(4)()3214--5-2-31211⎛⎫⨯+÷+ ⎪⎝⎭ 【答案】(1)-17;(2);(3) -27;(4)【解析】【分析】(1)利用有理数的加法法则计算即可;(2)先计算乘方与乘法,然后利用有理数的加减法运算即可;(3)利用乘法分配律计算,然后再利用有理数的加法以及乘法运算即可;(4)先计算乘方与乘法,然后利用有理数的加减法运算即可.【详解】解:(1)原式=-11+8-14=-17(2) 原式=-13427+⨯+=-11227++=(3) 原式=()()()157-36-36--362612⨯+⨯⨯ =-18-30+21=-27(4) 原式=()114-8-91211⨯+÷+ =()2-88+÷=()2-1+=【点睛】本题考查有理数的加减乘除混合运算以及乘方,解题的关键是熟练掌握运算法则,属于中考常考题型.22.化简(1)323235322m m n m nm m --++(2)()()2232x y y x ---(3)()()22742223x x x x +---+(4)()()927232x y x y z z ⎡⎤----+⎣⎦【答案】(1) 326m m n -;(2) 510x y -;(3) 914x -;(4)2-x z【解析】【分析】(1)根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并;(2)原式去括号,然后合并同类项即可;(4)原式去括号,然后合并同类项即可;(3)原式去括号,然后合并同类项即可.【详解】解:(1)原式=333225232m m m m n nm -+-+=326m m n -(2) 原式=246+3x y y x --=2+346x x y y --=510x y -(3) 原式=227484+2-6x x x x +--=227+2448-6x x x x +--=914x - (4) 原式=9272+32x y x y z z ---+() =927+2-32x y x y z z --+=972+2-32x x y y z z --+=2-x z【点睛】本题主要考查了整式的加减混合运算,熟练掌握去括号,合并同类项的解题过程是解答本题的关键.23.(1)先化简,再求值:()()22225342a b ab ab a b ---+,其中a=2,b=-1 (2)已知:a 2-2a-1=0,求代数式2(a+2)-2(a 2-a +1)的值.【答案】(1)227a b ab -;-30 (2) 2-2-2-1a a ();0【解析】【分析】(1)原式去括号,然后合并同类项即可,把a,b 的值代入原式求值即可;(2)原式去括号,然后合并同类项即可,把a 2-2a-1=0整体代入原式求值即可.【详解】解:(1)原式=2222155+4-8a b ab ab a b -=222215-85+4a b a b ab ab -=227a b ab -当a=2,b=-1时原式=222-72-⨯⨯⨯-(1)(1)=-1742⨯⨯⨯-(1)=-282-=-30(2)原式= 224-2+2a-2a a += 2+-24+2a a= 2-2-2-1a a ()∵2210a a --=∴原式=0【点睛】本题主要考查了整式的加减-化简求值,熟练掌握化简的方法与根据已知条件求出相关字母的值是解题的关键24.在数轴上画出表示下列各数的点,并用“<”号将所给的数按从小到大的顺序连接起来:|-2.5|,211,0,-212,-(-1),-4. 【答案】数轴见解析;-212<-4<0<211<-(-1) < |-2.5| 【解析】【分析】先画出数轴并在数轴上表示出各数,再根据数轴的特点从左到右用“<”号将这些数连接起来.【详解】解:画出数轴并表示出各数如图所示,根据数轴的特点从左到右用“<”号将这些数连接起来:-212<-4<0<211<-(-1) < |-2.5|【点睛】此题考查数轴、有理数大小比较,解题关键在于运用数轴进行有理数的大小比较.25.如图设计师设计图形如图所示1,为边长4a正方形和直径4a半个圆,后来改为了倒凸形和直径2a的圆(如图2所示).(1)求出图2的面积(用含有的式子表示,圆周率用π表示);(2)如果用铁丝做成这两个图形,问哪个图形用的铁丝多?写出理由.【答案】(1)(π+12) a2;(2)一样,理由见解析.【解析】【分析】(1)分别计算出上面圆的面积和下面倒凸形面积即可解答.【详解】解:(1)π(22a)2+2a×4a+2a×2a=πa2+8 a2+4 a2=(π+12) a2.(2)因为图1:4a×4+π×4a÷2=16a+2πa;图2:π×2a+4a×4=16a+2πa.所以用的铁丝一样多.【点睛】本题考查列代数式,解题关键是熟练掌握圆的面积、周长公式.26.每年“双11”天猫商城都会推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在三家天猫店铺中选择一家购买原价均为500元/瓶的护肤品若干瓶.已知三家店铺在非活动期间,均在原价基础上优惠20%销售,活动期间在此基础上再分别给予以下优惠:A店铺:“双11”当天购买可以再享受8折优惠.B店铺:双十一当天所有会员(办理商场会员卡需50元手续费)商品每满400元,商场返现金50元,同时该护肤品专柜针对所有会员也在当天推出活动,购护肤品每满100元可返现金10元(如:张阿姨购买2瓶护肤品需支付400×2-50×2-10×8+50=670元). C 店铺:“双11”当天下单可享立减活动:①每瓶立减58元(购买10瓶以内,不包括10瓶);②每瓶立减88元(一次性购买10瓶及10瓶以上).(1)双十一当天:若在A 店铺购买1瓶护肤品,需支付____________元;若在B 店铺办理会员并购买一瓶护肤品,需支付____________元;(2)若张阿姨在“双11”当天在同一家店铺一次性购买a 瓶护肤品,请用含有a 的代数式分别表示在这三家店铺的购买费用. (B 店铺:先办理会员再购买)(3)若张阿姨在双十一当天在同一家店铺一次性购买20瓶护肤品,你推荐她去哪家,通过计算、比较,说明你的理由【答案】(1)320;360;(2)在A 家店铺的购买费用:320a 元;在B 家店铺的购买费用:(310a+50)元,在C 家店铺的购买费用:当0a 10≤< 时:费用为:342a 元当10a ≤ 时:费用为:312a 元;(3)在C 家店铺的购买费用最少,为6240元.【解析】【分析】(1)根据题意可以分别得到A 、B 家店铺需要支付的费用;(2)根据题意可以用代数式表示出在A 、B 、C 家店铺的购买费用;(3)利用(2)中代数式分别算出在A 、B 、C 家店铺的购买费用,进行比较即可.【详解】解:(1)500-%.=320⨯⨯(120)08 ;500-%-50-104+50=360⨯⨯(120)故答案为:320;360(2)在A 家店铺的购买费用:500-%.a=320a ⨯⨯⨯(120)08(元)在B 家店铺的购买费用:[500-%-50-104]+50=310a+50a ⨯⨯⨯(120)(元) 在C 家店铺的购买费用:当0a 10≤< 时:费用为:[500-%-a=342a ⨯⨯(120)58](元) 当10a ≤ 时:费用为:[500-%-a=312a ⨯⨯(120)88](元) (3)当a=20时:在A 家店铺的购买费用:32020=6400⨯(元)在B 家店铺的购买费用:31020+50=6250⨯(元)在C 家店铺的购买费用: 31220=6240⨯(元)∵624062506400<<故在C 家店铺的购买费用最少答:(2)在A 家店铺的购买费用:320a 元;在B 家店铺的购买费用:(310a+50)元在C 家店铺的购买费用:当0a 10≤< 时:费用为:342a 元,当10a ≤ 时:费用为:312a 元(3)在C 家店铺的购买费用最少,为6240元.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.27.在数学中,了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.记,1011234567891055n n ==+++++++++=∑,3231n n a a a a -=++∑,()()()()()()()8322324252627281233n x n x x x x x x x =+=+++++++++++=+∑. 同学们,通过以上材料的阅读,请回答下列问题:(1)计算(填写最后的结果)421n n =∑=__________;()321n x nx =∑+=____________.(2)2+4+6+8+10用求和公式符号可表示为__________.(3)化简:()333111321nn n n n n a a a ===---∑∑∑ (4)若对于任意x 都存在()222420k n x n x a x bx =⎡⎤∑+-=++⎣⎦,请求代数式12b-ab 的值. 【答案】(1)30;26x x +3;(2) 512n n =∑;(3);(4)27【解析】【分析】(1)根据定义进行计算即可;(2)观察出2,4,6,8,10是2n 的形式,再利用定义进行计算即可;(3)根据定义进行计算化简即可;(4)根据定义进行列出方程,计算出a ,b 的值,再代入计算即可.【详解】解:(1)421n n =∑=22221+2+3+4=1+4+9+16=30;()3222221+2+3=6n x nx x x x x x x x x =∑+=++++()()()3 故答案为30;26x x +3.(2)2+4+6+8+10用求和公式符号可表示:512n n =∑(3) ()111333321n n n n n n a a a ===∑-∑--∑=()()()232332333[+++212121](+a a a a a a a a a --+-+--()) =233232++-a++-3-33322-a a a a a a a a -(2)=223323++-a--33322+-3-a a a a a a a a -2=(4)根据题意得:()22kn x n x a =⎡⎤∑+-⎣⎦()()()()2222 23 4 5 x x a x x a x x a x x a =+-++-++-++⎡⎤-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦= 2420x bx ++,整理得:4x 2+14x-14a=4x 2+bx+20,则有:b=14,-14a=20, ∴10147b a ==-, , ∴1110=14--=+20=27227b ab -⨯⨯()147, 【点睛】本题考查了整式的加减,弄清题中的新定义,熟练掌握运算法则是解本题的关键.。
七年级第一学期期中考试数学试题(带有答案)
七年级第一学期期中考试数学试题(带有答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的相反数是()A.-6B.6C.±6D.162.如图是由5个相同的小立方块搭成的几何体,从正面看这个几何体是()A. B. C. D.3.第19届亚运会于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城核心区建筑总面积2720000平方米,将数2720000用科学记数法表示为()A.0.272X107B.2.72X106C.27.2X105D.272x104,0,(﹣1)2,﹣0.6,2,﹣|﹣10| 4.根据《九章算术》的记载,中国人最早使用负数.那么在﹣25中负数的个数有()A.2B.3C.4D.55.下列运算正确的是()A.3y2-2y2=1B.3a+2b=5abC.3x2+2x3=5x5D.3a2b-3ba2=06.下列几何体中,截面不可能是长方形的是()A. B. C. D.7.下列说法正确的是()A.﹣52的底数是﹣5B.正数和负数统称为有理数0C.单项式3πxy的系数是3D.﹣|a|-1一定是负数8.若2a-b=4,则式子4a-2b-5的值为()A.3B.﹣3C.1D.﹣19.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>﹣2B.ab>0C.|a|>|b|D.a+b>0(第9题图) (第10题图)10.如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的 一,图形②面积是图形①面积的2倍的13,图形③而积是图形②面积的2倍的13,……,图形⑥面积是图形⑤面积的2倍的13,图形⑦面积是图形⑥面积的2倍,计算13+29+427+...+2536的值为( )A.665729B.64729C.179243D.64243第II 卷(非选择题共110分) 二.填空题:(本大题共6个小题,每小题4分,共24分)11.如果水位升高2m 记作+2m ,那么水位下降5m 记作 m. 12.比较大小:﹣1 ﹣34(填>或<)。
上海2014年七年级上数学期中试卷
2014学年第一学期期中真题考卷七年级数学 试卷(满分100分,考试时间90分钟)一 选择题(每题3分,共12分)1.下列运算正确的是:……………………………………………… ( )(A )()532a a = (B) 3332a a a =• (C) 6332a a a =+ (D) 532a a a =•2. 下列各式从左到右的变形中,是因式分解的是……………………………( )(A )22))((b a b a b a -=-+; (B )2222)(b ab a b a ++=+;(C ))2(242223a b a b a b a -=+-; (D )3)2(322--=--a a a a .3.若a 与b 互为倒数,则()20072008a b ⋅-的值是………………… ( )(A )a ; (B )a -; (C )b ; (D )b -.4. 下列各式① 2214x xy y ---②222a ab b ++ ③2244b a ab +-- ④xy y x 129422-+ ⑤226y xy x -+-中,能用完全平方公式分解的有( )(A ) 1个 (B )2个 (C )3个 (D )4个二 填空题(每题2分,共28分)5.计算:()=323x 。
6.用代数式表示:a 的平方减去b 的倒数的差是 。
7.单项式722y x -的系数是 。
8.把多项式y x y x xy y x 423245263---+按x 的降幂排列9.计算:()422421b a ab -•= 。
10.计算:()()33x x --= 。
11.若412y x m -与125+n y x 是同类项,则n m += 。
12.计算:1610977⨯= 。
13.请写出一个含有字母a 和b ,系数为2-且次数为5的单项式 。
14.因式分解:22yx xy y ++= 。
15.因式分解:()()2242a a b b b a -+- = 。
人教版七年级上学期期中考试数学试题(含答案)
人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。
苏科版七年级上册数学《期中考试试卷》及答案
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,总分24分)1. 下面数中,与﹣2的和为0的是( )A. 2B. ﹣2C. 12D. 12- 2. 下列各组数中两个数,互为倒数的是( )A. 3和-3B. 3和13C. -3和13D. 13和13- 3. 下列各式计算正确的是( )A. 3a-a=3B. 2a+b=2abC. 2a+a=22aD. –ab+2ab=ab 4. 下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是 ( )A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃ 5. 下列去括号中,正确的是 ( )A. -(1-3m)=-1-3mB. 3x-(2y-1)=3x-2y+1 C -(a+b)-2c=-a-b+2c D. m 2+(-1-2m)=m 2-1+2m6. 在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( )A. 1.94×1010B. 19.4×910C. 194×810D. 1947. 某顾客以8折优惠价买了一件商品,比标价少付了40元,那么他购买这件商品花了( )A. 80元B. 100元C. 140元D. 160元 8. .如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A 5次 B. 6次 C. 7次 D. 8次二、填空题(本大题共10小题,每题3分,共30分)9. -(+2)的绝对值是_____.10. 某生态园区生产的苹果包装纸箱上标明苹果的质量为100.030.03+-千克,如果这箱苹果重9.98千克,那么这箱苹果的质量______标准.(填“符合”或“不符合”)11. 在2x +2,1a +4,237ab ,ab c ,-5x ,0中,整式有_____个. 12. “比x 的4倍大3的数”用代数式表示是_____.13. 蚂蚁从数轴上A 出发爬了2个单位到了原点,则点A 所表示的数是____.14. 已知代数式m-n 的值是1,则代数式3m-3n+2019的值是______.15. 若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 16. 定义新运算“※”,规定a ※b=a-b a ,则-3※2=_____.17. 如图所示是计算机程序计算,若开始输入x=-1,则最后输出的结果是_____.18. 有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____. 三、解答题(本大题共有8题,共96分)19. 计算:(1)7-(-3)+(-2);(2)(-12)÷2×12; (3)(131346-+)×(-12) (4)-1+(-2)×14-1. 20. 化简:(1)3232235x x x x --+-;(2)221622(3)2a ab a ab --+; 21. (1)先化简,再求值:3(x-y )-2(x+y )+2,其中x=-1,y=2.(2)已知x+y=15,xy=-12,求代数式(x+3y-3xy )-2(xy-2x-y )的值. 22. 某辆公交车上原来有(8a-6b )人,中途下去一半,又上来若干人,使车上共有乘客(10a-6b )人.(1)求中途上来了多少乘客?(用含a 、b 的式子表示,结果要化简)(2)当a=4,b=3时,中途上车的乘客是多少人?23. 小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m 为标准,超过的米数记作正数,不足的米数记作负数.下表是他一周跑步情况的记录(单位:m):(1)星期三小明跑了 m ;(2)他跑得最多的一天比最少的一天多跑了 m ;(3)若他跑步的平均速度为200m/min ,求这周他跑步的时间.24. 某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费:超过10吨的部分按2.5元/吨收费.(1)若王老师家5月份用水8吨,问应交水费多少元?(2)若王老师家6月份交水费25元,问黄老师家6月份用水多少吨?(3)若王者师家7月份用水a 吨,问应交水费多少元?(用a 的代数式表示)25. 对于实数x 、y 我们定义一种新运算L(x ,y) =ax+by ,(其中a 、b 均为非零常数)等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x、y叫做线性数的一个数对,若实数x、y都取正整数,我们称这样的线性数为正格线性数,这时的x、y叫做正格线性数的正格数对.(1)若L(x,y)=x+3y,则L(3,1)= ,L(43,13)= .(2)已知L(x,y)=3x+by,L(2,1)=4,若正格线性数L(x,kx)=6,(其中k为整数).问是否有满足这样条件的正格数对?若有,请回答;若没有,请说明理由.26. 已知a是单项式-2xy2的系数,b是绝对值最小的有理数,c是多项式x2y2+4y3的次数,且a,b,c分别是点A,B,C在数轴上对应的数.(1)a= ,b= ,c= .(2)若动点P从点A出发沿数轴正方向运动,动点Q从点C出发沿数轴负方向运动,点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,两点同时开始出发,求当运动5秒时,点P与点Q之间距离? (3)在数轴上找一点M使点M到A,B,C三点的距离之和等于7,请直接写出所有点M对应的数.答案与解析一、选择题(本大题共8小题,每小题3分,总分24分)1. 下面的数中,与﹣2的和为0的是( )A. 2B. ﹣2C. 12D. 12- 【答案】A【解析】∵-2+2=0,故选A.2. 下列各组数中的两个数,互为倒数的是( )A. 3和-3B. 3和13C. -3和13D. 13和13- 【答案】B【解析】【分析】根据倒数的意义,两个数的积等于1,这两个数互为倒数,分别把每组的两个数相乘,看其积是否等于1;据此解答.【详解】解:A 、3×()3-=-9,不是互为倒数; B 、3×13=1,是互为倒数;C 、-3×13=-1,不是互为倒数;D 、13×13⎛⎫- ⎪⎝⎭=-19,不是互为倒数; 故选:B .【点睛】本题是考查倒数的意义及特征,判断两个数是否是互为倒数,可以根据倒数的意义,也可看两个数的分子、分母的位置是否相反(整数看作分母为1的分数).3. 下列各式计算正确的是( )A. 3a-a=3B. 2a+b=2abC. 2a+a=22aD. –ab+2ab=ab【答案】D【解析】【分析】根据合并同类项的法则逐一进行判断即可.【详解】A ,323a a a -=≠,故错误;B ,2,a b 不是同类型,不能合并,故错误;C ,2232a a a a +=≠,故错误;D ,2ab ab ab -+=,故正确,故选:D .【点睛】本题主要考查合并同类项,掌握合并同类项的法则是解题的关键.4. 下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是 ( )A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃【答案】C【解析】 试题分析:A .午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B .中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C .考点:1.有理数的减法;2.数轴.5. 下列去括号中,正确的是 ( )A. -(1-3m)=-1-3mB. 3x-(2y-1)=3x-2y+1C. -(a+b)-2c=-a-b+2cD. m 2+(-1-2m)=m 2-1+2m【答案】B【解析】【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.6. 在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( )A. 1.94×1010B. 19.4×910C. 194×810D. 194【答案】A【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 1.94a =,194亿=19400000000,整数位数是11位,所以10n =∴194亿=19400000000=101.9410⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.7. 某顾客以8折的优惠价买了一件商品,比标价少付了40元,那么他购买这件商品花了( )A. 80元B. 100元C. 140元D. 160元 【答案】D【解析】【分析】设标价为x,则8折优惠后的价钱为0.8x,列出一元一次方程,求出标价,在减去40,即可求出实际花的钱,即可解决.【详解】解:设标价为x,则8折优惠后的价钱为0.8xx-0.8x=40x=200200-40=160(元)故选D.【点睛】本题主要考查了一元一次方程的应用,熟练标价乘折扣等于售价以及准确列出方程是解决本题的关键.8. .如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为( )A. 5次B. 6次C. 7次D. 8次【答案】C【解析】【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.二、填空题(本大题共10小题,每题3分,共30分)9. -(+2)的绝对值是_____.【答案】2【解析】【分析】根据绝对值的意义即可得出答案.详解】()222-+=-=,故答案为:2.【点睛】本题主要考查绝对值,掌握绝对值的意义是解题的关键.10. 某生态园区生产的苹果包装纸箱上标明苹果的质量为100.030.03+-千克,如果这箱苹果重9.98千克,那么这箱苹果的质量______标准.(填“符合”或“不符合”)【答案】符合【解析】【分析】根据题意求出标准质量的范围,然后再根据范围判断.【详解】解:∵10+0.03=10.03,10−0.03=9.97,∴标准质量是9.97千克~10.03千克,∵9.98千克在此范围内,∴这箱苹果的质量符合标准.故答案为:符合.【点睛】本题考查了正、负数的意义,懂得质量书写的含义,求出标准质量的范围是解题的关键. 11. 在2x +2,1a +4,237ab ,ab c ,-5x ,0中,整式有_____个. 【答案】4【解析】【分析】根据单项式和多项式统称为整式,进而判断得出即可.【详解】解:根据整式的定义可知:x 2+2,237ab ,-5x ,0是整式,共4个, 故答案为4.【点睛】此题主要考查了整式的概念,正确把握定义是解题关键.12. “比x 的4倍大3的数”用代数式表示是_____.【答案】4x+3【解析】【分析】根据题意先求倍数,再求和,进而列出代数式.【详解】∵x 的4倍是4x,∴比4x 大3的数是4x+3.故答案为4x+3.【点睛】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“小”等,从而明确其中的运算关系,正确地列出代数式.13. 蚂蚁从数轴上A 出发爬了2个单位到了原点,则点A 所表示的数是____.【答案】±2【解析】【分析】设A 点表示的数为x ,再根据数轴上各点到原点距离的定义解答即可.【详解】解:设A 点表示的数为x ,则|x|=2,解得x=±2.故答案为±2.【点睛】本题考查的是数轴,熟知数轴上各点到原点距离的定义是解答此题的关键.14. 已知代数式m-n 的值是1,则代数式3m-3n+2019的值是______.【答案】2022【解析】【分析】把1m n -=代入()33201932019m n m n -+=-+计算即可.【详解】解:∵1m n -=,∴332019m n -+()32019m n =-+312019=⨯+2022=,故答案为:2022.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.15. 若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 【答案】-1【解析】【分析】根据单项式的和是单项式,可得312a x y 与22b x y -是同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】解:由题意,得312a x y 与22b x y -是同类项, 所以b=3,a=2.a−b=2−3=−1,故答案为:−1.【点睛】本题考查了合并同类项,利用同类项的定义得出a ,b 的值是解题关键.16. 定义新运算“※”,规定a ※b=a-b a ,则-3※2=_____.【答案】-12【解析】【分析】根据a ⊗b=a-a b ,可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊗b=a-a b ,∴-3⊗2=-3-(-3)2=-3-9=-12,故答案为:-12.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.17. 如图所示是计算机程序计算,若开始输入x=-1,则最后输出的结果是_____.【答案】-11【解析】【分析】根据程序框图的顺序计算即可得出答案.【详解】根据题意有,()()1414135-⨯--=-+=->-,()341121115-⨯--=-+=-<-,∴最后输出的结果是-11,故答案为:-11.【点睛】本题主要考查有理数的混合运算,读懂程序框图是解题的关键.18. 有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.【答案】-2【解析】【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==-- 411123a ==+ ……所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共有8题,共96分)19. 计算:(1)7-(-3)+(-2);(2)(-12)÷2×12; (3)(131346-+)×(-12) (4)-1+(-2)×14-1. 【答案】(1)8;(2)1-8;(3)3;(4)-4. 【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用除法法则变形,计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)7-(-3)+(-2)=7+3-2=8;(2)(-12)÷2×12=-12×2×12= 1-8; (3)(131346-+)×(-12)=131(12)(12)(12)4923346⨯--⨯-+⨯-=-+-=; (4)-1+(-2)×14-1=-1+(-8) ×14-1=-1-2-1=-4. 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.20. 化简:(1)3232235x x x x --+-;(2)221622(3)2a ab a ab --+;【答案】(1)25x -;(2)3ab -.【解析】【分析】(1)根据合并同类项的法则计算即可;(2)根据去括号,合并同类项的法则计算即可.【详解】(1)原式=3322325x x x x -+--25x =-;(2)原式=22626a ab a ab ---22662a a ab ab =---3ab =- .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.21. (1)先化简,再求值:3(x-y )-2(x+y )+2,其中x=-1,y=2.(2)已知x+y=15,xy=-12,求代数式(x+3y-3xy )-2(xy-2x-y )的值. 【答案】(1)52x y -+,-9;(2)()55x y xy +-,72. 【解析】【分析】 (1)根据去括号,合并同类项的法则进行化简,然后将x ,y 的值代入计算即可;(2)根据去括号,合并同类项的法则进行化简,然后将x y +和的值整体代入即可得出答案.【详解】(1)原式=()33222x y x y --++33222x y x y =---+52x y =-+当1,2x y =-=时,原式=15229--⨯+=-;(2)原式=()33242x y xy xy x y +----33242x y xy xy x y =+--++()55x y xy =+-当11,52x y xy+==-时,原式=11575515222⎛⎫⨯-⨯-=+=⎪⎝⎭.【点睛】本题主要考查整式的化简求值,掌握去括号,合并同类项的法则是解题的关键.22. 某辆公交车上原来有(8a-6b)人,中途下去一半,又上来若干人,使车上共有乘客(10a-6b)人.(1)求中途上来了多少乘客?(用含a、b的式子表示,结果要化简)(2)当a=4,b=3时,中途上车的乘客是多少人?【答案】(1)6a - 3b;(2)中途上车的乘客是15人.【解析】【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把a与b的值代入计算即可求出值.【详解】解:(1)根据题意得:(10a-6b)- 12(8a-6b)=10a-6b-4a+3b=6a-3b(人),则上车的乘客是(6a-3b)人;(2)把a=4,b=3代入得:原式=24-9=15(人),则上车的乘客是15人.【点睛】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.23. 小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m为标准,超过的米数记作正数,不足的米数记作负数.下表是他一周跑步情况的记录(单位:m):(1)星期三小明跑了m;(2)他跑得最多的一天比最少的一天多跑了m;(3)若他跑步的平均速度为200m/min,求这周他跑步的时间.【答案】(1)1900;(2)530;(3)这周他跑步的时间73 min.【解析】【分析】(1)利用2000米减去100米即可;(2)最大值与最小值的差就是跑得最多的一天减去最少的一天的距离;(3)利用总路程除以速度即可求解.【详解】解:(1)2000-100=1900(m),故答案为1900;(2)跑得最多的一天比最少的一天多跑了320-(-210)=530(m);故答案为530;(3)310+320-100+130-210+0+150+2000×7=14600(m),14600÷200=73(min)答:这周他跑步的时间为73min.【点睛】本题考查了正数与负数的意义,正确理解正数与负数的意义是解题的关键.24. 某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费:超过10吨的部分按2.5元/吨收费.(1)若王老师家5月份用水8吨,问应交水费多少元?(2)若王老师家6月份交水费25元,问黄老师家6月份用水多少吨?(3)若王者师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)【答案】(1)应交水费16元;(2)黄老师家6月份用水12吨;(3)当a≤10,应交水费2a元,当a>10,应交水费(2.5a-5)元.【解析】【分析】(1)直接根据题意列式计算即可;(2)首先判断出黄老师家6月份用水量的范围,设黄老师家6月份用水x吨,根据题意列出方程,解方程即可;(3)根据题意分两种情况:每月每户不超过10吨时和超过10吨,分别进行讨论即可.⨯=(吨),【详解】(1)8216∴王老师家5月份用水8吨,应交水费16元;>⨯,(2)25102∴黄老师家6月份用水超过了10吨,设黄老师家6月份用水x吨,根据题意得,()⨯+-⨯=,10210 2.525xx=,解得12∴黄老师家6月份用水12吨;(3)当10a ≤时,应交水费2a 元;若10a >时, ()10210 2.5 2.55a a ⨯+-⨯=- ,∴应交水费()2.55a -元.【点睛】本题主要考查代数式的应用以及一元一次方程的应用,读懂题意是解题的关键.25. 对于实数x 、y 我们定义一种新运算L(x ,y) =ax+by ,(其中a 、b 均为非零常数)等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x 、y 叫做线性数的一个数对,若实数x 、y 都取正整数,我们称这样的线性数为正格线性数,这时的x 、y 叫做正格线性数的正格数对.(1)若L(x ,y)=x+3y ,则L(3,1)= ,L (43,13)= . (2)已知L(x ,y)=3x+by ,L(2,1)=4,若正格线性数L(x,kx)=6,(其中k 为整数).问是否有满足这样条件的正格数对?若有,请回答;若没有,请说明理由.【答案】(1)6,73;(2)有,6、6是满足这样条件的正格数对. 【解析】【分析】(1)利用题意计算进而求得答案;(2)根据线性数的定义求得2b =-,故(),326L x kx x kx =-=,再根据x 为正整数,k 为整数,kx 取正整数即可求解.【详解】解:(1)∵(),3L x y x y =+,∴()3,13316L =+⨯=,41417,333333L ⎛⎫=+⨯= ⎪⎝⎭, 故答案为:6,73; (2)∵(),3L x y x by =+,∴()2,1324L b =⨯+=,解得2b =-,∴(),326L x kx x kx =-=,即632x k=-, ∵x 为正整数,kx 为正整数, ∴60326032k k k ⎧>⎪⎪-⎨⎪>⎪-⎩,解得302k <<, ∵k 为整数,∴当1k =时,6x =符合题意,∴6、6是满足这样条件的正格数对.【点睛】此题主要考查了一元一次不等式的应用,以及新定义,根据题意得出正确等式是解题关键. 26. 已知a 是单项式-2xy 2的系数,b 是绝对值最小的有理数,c 是多项式x 2y 2+4y 3的次数,且a ,b ,c 分别是点A,B,C 在数轴上对应的数.(1)a= ,b= ,c= .(2)若动点P 从点A 出发沿数轴正方向运动,动点Q 从点C 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,两点同时开始出发,求当运动5秒时,点P 与点Q 之间距离?(3)在数轴上找一点M 使点M 到A ,B ,C 三点的距离之和等于7,请直接写出所有点M 对应的数.【答案】(1) -2 , 0 ,4;(2)点P 与点Q 之间距离9;(3)所有点M 对应数±1. 【解析】【分析】(1)根据单项式系数的概念,绝对值的意义,多项式次数的概念即可得出答案;(2)首先根据题意求出点P ,Q5秒后运动到什么位置,然后再求距离即可;(3)分四种情况:点MA 点左侧,点M 在A ,B 之间,点M 在B ,C 之间,点M 在C 点右侧,分别进行讨论即可.【详解】(1)∵a 是单项式-2xy 2的系数,b 是绝对值最小的有理数,c 是多项式x 2y 2+4y 3的次数,∴2,0,4a b c =-==;(2)∵点P 从点A 出发沿数轴正方向运动,动点Q 从点C 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,∴5秒后P,Q 点所在的位置分别是2153,4256-+⨯=-⨯=-,∴点P 与点Q 之间距离为()369--=;(3)若点M 在A 点左侧,即2x <-时,设点M 对应的数为x ,根据题意有()()247x x x ---+-=, 解得53x =-, 因为523->-,不符合题意,故舍去; 若点M 在A ,B 点之间,即20x -<<时,设点M 对应的数为x ,根据题意有()()247x x x +-+-=,解得1x =- ;若点M 在B ,C 点之间,即04x <<时,设点M 对应的数为x ,根据题意有()()247x x x +++-=,解得1x =;若点M 在C 点右侧,即4x >时,设点M 对应数为x ,根据题意有()()247x x x -++-= , 解得133x =, 因为1343<,不符合题意,故舍去; 综上所述,点M 对应的数为1或-1.【点睛】本题主要考查数轴与有理数,运用方程的思想并分情况讨论是解题的关键.答案与解析一、选择题(本大题共8小题,每小题3分,总分24分)1. 下面的数中,与﹣2的和为0的是( )A. 2B. ﹣2C. 12D. 12- 【答案】A【解析】∵-2+2=0,故选A.2. 下列各组数中的两个数,互为倒数的是( )A. 3和-3B. 3和13C. -3和13D. 13和13- 【答案】B【解析】【分析】根据倒数的意义,两个数的积等于1,这两个数互为倒数,分别把每组的两个数相乘,看其积是否等于1;据此解答.【详解】解:A 、3×()3-=-9,不是互为倒数; B 、3×13=1,是互为倒数;C 、-3×13=-1,不是互为倒数;D 、13×13⎛⎫- ⎪⎝⎭=-19,不是互为倒数; 故选:B .【点睛】本题是考查倒数的意义及特征,判断两个数是否是互为倒数,可以根据倒数的意义,也可看两个数的分子、分母的位置是否相反(整数看作分母为1的分数).3. 下列各式计算正确的是( )A. 3a-a=3B. 2a+b=2abC. 2a+a=22aD. –ab+2ab=ab 【答案】D【解析】【分析】根据合并同类项的法则逐一进行判断即可.【详解】A ,323a a a -=≠,故错误;B ,2,a b 不是同类型,不能合并,故错误;C ,2232a a a a +=≠,故错误;D ,2ab ab ab -+=,故正确,故选:D .【点睛】本题主要考查合并同类项,掌握合并同类项的法则是解题的关键.4. 下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是 ( )A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃【答案】C【解析】 试题分析:A .午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B .中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C .考点:1.有理数的减法;2.数轴.5. 下列去括号中,正确的是 ( )A. -(1-3m)=-1-3mB. 3x-(2y-1)=3x-2y+1C. -(a+b)-2c=-a-b+2cD. m 2+(-1-2m)=m 2-1+2m【答案】B【解析】【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.6. 在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( )A. 1.94×1010B. 19.4×910C. 194×810D. 194【答案】A【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 1.94a =,194亿=19400000000,整数位数是11位,所以10n =∴194亿=19400000000=101.9410⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.7. 某顾客以8折的优惠价买了一件商品,比标价少付了40元,那么他购买这件商品花了( )A. 80元B. 100元C. 140元D. 160元 【答案】D【解析】【分析】设标价为x,则8折优惠后的价钱为0.8x,列出一元一次方程,求出标价,在减去40,即可求出实际花的钱,即可解决.【详解】解:设标价为x,则8折优惠后的价钱为0.8xx-0.8x=40x=200200-40=160(元)故选D.【点睛】本题主要考查了一元一次方程的应用,熟练标价乘折扣等于售价以及准确列出方程是解决本题的关键.8. .如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为( )A. 5次B. 6次C. 7次D. 8次【答案】C【解析】【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.二、填空题(本大题共10小题,每题3分,共30分)9. -(+2)的绝对值是_____.【答案】2【解析】【分析】根据绝对值的意义即可得出答案.详解】()222-+=-=,故答案为:2.【点睛】本题主要考查绝对值,掌握绝对值的意义是解题的关键.10. 某生态园区生产的苹果包装纸箱上标明苹果的质量为100.030.03+-千克,如果这箱苹果重9.98千克,那么这箱苹果的质量______标准.(填“符合”或“不符合”)【答案】符合【解析】【分析】根据题意求出标准质量的范围,然后再根据范围判断.【详解】解:∵10+0.03=10.03,10−0.03=9.97,∴标准质量是9.97千克~10.03千克,∵9.98千克在此范围内,∴这箱苹果的质量符合标准.故答案为:符合.【点睛】本题考查了正、负数的意义,懂得质量书写的含义,求出标准质量的范围是解题的关键. 11. 在2x +2,1a +4,237ab ,ab c ,-5x ,0中,整式有_____个. 【答案】4【解析】【分析】根据单项式和多项式统称为整式,进而判断得出即可.【详解】解:根据整式的定义可知:x 2+2,237ab ,-5x ,0是整式,共4个, 故答案为4.【点睛】此题主要考查了整式的概念,正确把握定义是解题关键.12. “比x 的4倍大3的数”用代数式表示是_____.【答案】4x+3【解析】【分析】根据题意先求倍数,再求和,进而列出代数式.【详解】∵x 的4倍是4x,∴比4x 大3的数是4x+3.故答案为4x+3.【点睛】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“小”等,从而明确其中的运算关系,正确地列出代数式.13. 蚂蚁从数轴上A 出发爬了2个单位到了原点,则点A 所表示的数是____.【答案】±2【解析】【分析】设A 点表示的数为x ,再根据数轴上各点到原点距离的定义解答即可.【详解】解:设A 点表示的数为x ,则|x|=2,解得x=±2.故答案为±2.【点睛】本题考查的是数轴,熟知数轴上各点到原点距离的定义是解答此题的关键.14. 已知代数式m-n 的值是1,则代数式3m-3n+2019的值是______.【答案】2022【解析】【分析】把1m n -=代入()33201932019m n m n -+=-+计算即可.【详解】解:∵1m n -=,∴332019m n -+()32019m n =-+312019=⨯+2022=,故答案为:2022.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.15. 若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 【答案】-1【解析】【分析】根据单项式的和是单项式,可得312a x y 与22b x y -是同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】解:由题意,得312a x y 与22b x y -是同类项, 所以b=3,a=2.a−b=2−3=−1,故答案为:−1.【点睛】本题考查了合并同类项,利用同类项的定义得出a ,b 的值是解题关键.16. 定义新运算“※”,规定a ※b=a-b a ,则-3※2=_____.【答案】-12【解析】【分析】根据a ⊗b=a-a b ,可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊗b=a-a b ,∴-3⊗2=-3-(-3)2=-3-9=-12,故答案为:-12.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
七年级数学上册期中考试试卷及答案.doc
()()()座位号秋学期期中考试试卷七年级数学《满分:150分时间:150分钟〉一、选择题(每题3分,共计30分)1.—£的绝对值是()1 1阪 B. -22.下列各组是同类项的一组是A. A),与—丄兀22C. 2D. -2(B. - 2a3b 与丄ba'23.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探D. 3x2y与2xy测的国家.嫦娥三号探测器的发射总质量约3 700千克,3 700用科学计数法表示为()A. 3. 7X102B・ 37X 102 C・ 3.7X10'下而的图形哪一个是正方体的展开图4.5-A.D. 0. 37X101)C.D.下列各组的两个数中,运算后结果相等的是(人・23和¥ B. —3彳和(-3尸 C. -2?和(—2尸D.236.下列计算正确的是()A • 3a—a=2C • 3a-\rb—3ab7.如图1,数轴上A点表示的数减去B点表示的数,A B-3 0 1 5B. -5-2=-3D・—4?= —16结果是( )A. 80 1图1B. -8C. 2D. -28.一个三位数,个位数字是a,十位数字是b,百位数字是c,则这个三位数是()A. abcB.a+10b+100cC. 100a+10b+cD. a+b+c9.已知代数式x + 2y的值是3,则代数式2x+4y+1的值是()/・ 7 B. 4C. 1 不能确定10.观察下列算式:2匚2, 22=4, 23=8, 24=16,....根据上述算式屮的规律,请你猜想2?°□的末尾数字是()A. 2B. 4C. 8 D・ 6二、填空题(每小题3分,共计30分)11・如果收入15元记作+ 15元,那么支出20元记作___________ o12.—天早晨的气温为一3°C,中午上升了7°C,半夜又下降了8°C,则半夜的气温是_________2 _313.比较大小:"3 ________ _4,(用“<、>或=”填空)14.单项式一3 Trxyz2的系数是________15.若|a+5|+(b—4尸=0,则(a+b)2016= __________ ・16.已知单项式2%由与-3d心方2是同类项,则2m + = ________ 。
人教版七年级上册数学期中考试试卷及答案
少?设车x辆,根据题意,可列出方程是().
3x22x9
3(2)29
A.
C.
B.x
x
的
x
x
29
3(x2)2(x9)
D.
3
2
【答案】B
【解析】
【分析】
根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
母的指数是否相同.缺少其中任何一条,就不是同类项.注意所有常数项都是同类项.
a
1
、的大小关系是(
5.有理数a
在数轴上对应的点如图所示,则a、
)
a1a
A.
aa1
B.
1a
C.a
D.1aa
【答案】C
【解析】
【分析】
精选期中测试卷
根据相反数的定义在数轴上找到-a、-1对应的点,根据数轴上的点表示的数,右边的总比左边的大解答即可.
B.﹣6
C.﹣3或﹣5
D.无法确定
4.下面各组是同类项的是(
)
1
(
D.2和
3
)
A.2x和3x
B.12ax和8bx
C.x和a4
3
2
4
100
a
1
的大小关系是(
5.有理数a
在数轴上对应的点如图所示,则a、
、
)
a1a
A.
aa1
B.
1a
C.a
D1aa
xyab
,
5ab2
6.下列各式,
,
,1,xy﹣1,中,单项式有(
B、括号前是负数添括号全变号,故B正确;
人教版七年级上册数学《期中考试试卷》及答案解析
人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 33. 与原点距离是2.5个单位长度的点所表示的有理数是( )A 2.5 B. -2.5 C. ±2.5 D. 这个数无法确定4.计算(2)--的值是()A. -2B. 2C. 2±D. 45.﹣3的绝对值是( )A ﹣3 B. 3 C. -13D.136.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 77.下列各组中的两个单项式中,是同类项的是()A. a2和-2aB. 2m2n和3nm2C. -5ab和-5abcD. x3和238.化简5(2x-3)+4(3-2x)结果为( )A 2x-3 B. 2x+9 C. 8x-3 D. 18x-39.加上3m -等于2535m m --的式子是( ) A. 25(1)m -B. 2565m m --C. 25(1)m +D. 2(565)m m -+-10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克B. 50×109千克C. 5×109千克D. 5×1010千克二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 12.30+(﹣20)=_____.13.计算:2(3)-=__________;23-=__________. 14.当2x =-时,代数式221x x -+-=__________.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 16.3xy 2﹣7xy 2=_____.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣4519.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷bc的值. 23.根据下面给出数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示). (3)数轴上,线段AB 的中点表示的数是多少?五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人, (1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题: (1)请直接写出、、的值.a = ,b = ,c = .(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:|1||1|2|5|x x x +---+(请写出化简过程)(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)n n >个单位长度的速度向左运动,同时,点和点分别以每秒2n 个单位长度和5n 个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表示为BC ,点与点之间的距离表示为AB .请问:BC AB -的值是否随着时间的变化而改变?若变化,请说明理由:若不变,请求其值.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 3【答案】A【解析】【分析】根据题意,在选项中寻找负有理数或零即可.【详解】解:不是正有理数,则为负有理数或零,而A中的﹣3.14是负数故选A.【点睛】本题考查有理数;能够理解题意,掌握有理数的分类是解题的关键.3. 与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5B. -2.5C. ±2.5D. 这个数无法确定【答案】C【解析】试题分析:根据数轴上的点表示的数即可判断.与原点距离是2.5个单位长度的点所表示的有理数是±2.5,故选C.考点:数轴点评:分类思想是初中数学学习中一个非常重要的思想,是学生对所学知识是否熟练掌握的很重要的一个体现,因而此类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需特别注意.4.计算(2)--的值是()A. -2B. 2C. 2±D. 4【答案】B【解析】【分析】根据去括号法则求解即可.【详解】(2)2--=故选:B.【点睛】本题考查了去括号法则,熟记法则是解题关键.5.﹣3的绝对值是( )A. ﹣3B. 3C. -13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】利用单项式次数求解即可. 【详解】单项式7πa 2b 3的次数是5. 故选B .【点睛】本题主要考查了单项式,解题的关键是熟记单项式的定义,注意π是常数. 7.下列各组中的两个单项式中,是同类项的是( ) A. a 2和-2a B. 2m 2n 和3nm 2 C. -5ab 和-5abc D. x 3和23【答案】B 【解析】试题分析:同类项是指:单项式中所含的字母相同,且相同字母的指数也完全相同.ACD 都不属于同类项. 考点:同类项的定义.8.化简5(2x-3)+4(3-2x)的结果为( ) A. 2x-3 B. 2x+9 C. 8x-3 D. 18x-3【答案】A 【解析】试题分析:根据整式的混合运算,结合合并同类项法则可求解:5(2x-3)+4(3-2x)=5(2x-3)-4(2x-3)=2x-3. 故选A考点:合并同类项9.加上3m -等于2535m m --的式子是( ) A. 25(1)m - B. 2565m m --C. 25(1)m +D. 2(565)m m -+-【答案】A 【解析】 【分析】根据整式的加减法则即可得.【详解】由题意得:所求的式子为2535(3)m m m ----25353m m m =--+ 255m =-25(1)m =-故选:A .【点睛】本题考查了整式的加减运算,理解题意,正确列出所求的式子是解题关键.10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克 B. 50×109千克C. 5×109千克D. 5×1010千克【答案】D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1. 【详解】解:50 000 000 000一共11位,从而50 000 000 000=5×1010. 故选D .二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 【答案】0. 【解析】 【分析】根据数轴上数字的表示可得答案.【详解】数轴上以原点为界限,右边的数都大于0,左边的数都小于0,原点表示0. 故答案为0.【点睛】本题考查了数轴上点所表示的数,非常简单. 12.30+(﹣20)=_____. 【答案】10. 【解析】 【分析】根据有理数加法法则计算即可. 【详解】30+(﹣20)=30﹣20=10. 故答案为10【点睛】本题主要考查了有理数的加法,熟记有理数的加法法则是解答本题的关键.13.计算:2(3)-=__________;23-=__________.【答案】 (1). 9 (2). -9 【解析】 【分析】根据有理数的幂运算法则即可得. 【详解】2(3)(3)(3)9-=-⨯-=23339-=-⨯=-故答案为:;9-.【点睛】本题考查了有理数的幂运算,熟记运算法则是解题关键. 14.当2x =-时,代数式221x x -+-=__________. 【答案】-9 【解析】 【分析】将2x =-代入求解即可得.【详解】22221(21)(1)x x x x x -+-=--+=-- 将2x =-代入得:原式()()222219=--+⨯--=- 故答案为:9-.【点睛】本题考查了代数式的化简求值,掌握有理数的混合运算方法是解题关键.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 【答案】﹣2. 【解析】 【分析】根据单项式系数、次数的定义来求解,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,然后求出m和n的值,相乘即可,m=-23,n=3,mn=-2.【详解】∵单项式﹣223x y的系数是m,次数是n,∴m=﹣23,n=3,mn=﹣2.故答案为-2【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.3xy2﹣7xy2=_____.【答案】﹣4xy2.【解析】【分析】根据合并同类项的法则计算即可.【详解】3xy2﹣7xy2=(3﹣7)xy2=﹣4xy2.故答案为﹣4xy2【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.【答案】54.【解析】【分析】求出所有数的绝对值的和即可.【详解】由题意可得:|+5|+|﹣3|+|+10|+|﹣8|+|+4|+|﹣6|+|+8|+|﹣10|=5+3+10+8+4+6+8+10=54(米),答:守门员全部练习结束后,他共跑了54米.故答案为54.【点睛】本题考查了正数和负数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣45【答案】﹣15. 【解析】 【分析】根据有理数的乘法和加减法即可解答. 【详解】﹣2×4﹣6+(﹣15)﹣45=﹣8﹣6+(﹣15)+(﹣45)=﹣15.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 【答案】6.5. 【解析】 【分析】根据有理数的乘法和加减法可即可求解. 【详解】|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| =3.75+5.25﹣2.5 =6.5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5 【答案】6x 2﹣9x ﹣5. 【解析】 【分析】根据合并同类项法则计算即可. 【详解】原式=(2x 2+4x 2)+(﹣3x ﹣6x )﹣5 =6x 2﹣9x ﹣5.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 【答案】244x -;5.【解析】【分析】先根据整式的加减:合并同类项进行化简,再将x 的值代入求解即可. 【详解】22211(21)()(33)33x x x x x -----+- 22211021333x x x x x =---+++- 244x =-当32x =时,原式2394()44429445=⨯-=⨯-=-=. 【点睛】本题考查了整式的加减及化简求值,熟记整式的运算法则是解题关键. 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷b c 的值. 【答案】5.【解析】【分析】根据绝对值的非负性可得a+5=0,b-3=0,c+2=0,再解可得a 、b 、c 的值,然后再代入代数式可得答案.【详解】∵|a +5|+|b ﹣2|+|c +4|=0,∴a +5=0,b ﹣2=0,c +4=0,解得a =﹣5,b =2,c =﹣4,∴a b ÷b c =a b ×c b=52-×42- =5,故答案为5.【点睛】此题主要考查了绝对值,以及有理数的乘法,关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.23.根据下面给出的数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示).(3)数轴上,线段AB 的中点表示的数是多少?【答案】(1)A 、B 两点之间的距离是5;(2)如图所示,见解析;(3)数轴上,线段AB 的中点表示的数是0.5.【解析】【分析】(1)从数轴上可以看出A 点是-2,B 点是3,所以距离为5;(2)与点A 的距离为2的点有两个,即一个向左,一个向右.(3)从数轴上找出线段AB 的中点,即距A ,B 两点的距离都是2.5的点,然后读出这个数即可.【详解】(1)A 、B 两点之间的距离是2+3=5.(2)如图所示:.(3)(﹣2+3)÷2=0.5.【点睛】本题主要考查了在数轴上解决实际问题的能力,学生要会利用数轴来解决这些问题.五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人,(1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?【答案】(1)中途上车的共有(132m ﹣92n )人;(2)中途上车的乘客有29人. 【解析】分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)将m 与n 的值代入(1)中的关系式,计算即可得到结果.【详解】(1)根据题意得:(8m ﹣5n )﹣12(3m ﹣n )=8m ﹣5n ﹣12m +12n =132m ﹣92n , 则中途上车的共有(132m ﹣92n )人; (2)当m =10,n =8时,原式=132×10﹣92×8=65﹣36=29, 则中途上车的乘客有29人.【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题:(1)请直接写出、、的值.a=,b=,c=.(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:+---+(请写出化简过程)|1||1|2|5|x x xn n>个单位长度的速度向左运动,同时,点和(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)点分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表-的值是否随着时间的变化而改变?若变化,请说明示为BC,点与点之间的距离表示为AB.请问:BC AB理由:若不变,请求其值.【答案】(1)-1,1,6;(2)-10;(3)不变,值为3.【解析】【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC−AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【详解】解:∵b是最小的正整数,∴b=1,∵(c−6)2+|a+b|=0,(c−6)2⩾0,|a+b|⩾0,∴c=6,a=−1,b=1,故答案为−1,1,6;(2).由题意−1<x<1,∴|x+1|−|x−1|−2|x+5|=x+1+x−1−2x−10=−10.(3)不变,由题意BC=5+5nt−2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC−AB=(5+3nt)−(2+3nt)=3,∴BC−AB的值不变,BC−AB=3.【点睛】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长.。
2014—2015学年度七年级上数学期中考试试卷
(2)当 a=2,b=3时,求此三角形的周长
3a 3 b 3
1 2
a2b
b
4a 3b3
1 4
a2b
b2
a 3b3
1 4
a 2b
2b 2 3
的值”,
马小虎做题时把 a 2 错抄成 a 2 ,王小真没抄错题,但他们做出的结果却都一样,你知道
这是怎么回事吗?说明理由.
23. (10分) 先化简,再求值:
1 2
,
-2,
12 , 5 , -(-5)
22. 计算(12分)
(1)
7 9
(
2 3
1 5
)
1 3
(2)
2
(2) 4 22 (4) ( 1 1)
1 3
24
(3)当 a=2,三角形的周长为 27时,求此三角形各边的长。
25. (10分)有这样一道题“当 a 2,b 2 时,求多项式
A. 2
B. (2)21
C.a-b = 0
D.a-b>0
C.0
()
D. 210
8.减去 3x 得 x2 3x 6 的式子为
()
A. x2 6
B. x2 3x 6 C. x2 6x
x 6x 6
2
D.
9. 若 (a 1) 2 | b 2 | 0 ,则 a b 的值是
D.
的次数是 6
C. -3.14
()
D.3.14+
5. 若 3x2m y3 与 2x4 yn 是同类项,那么 m n
浙教版七年级上期中考试数学试卷及答案
浙教版七年级上期中考试数学试卷及答案一、选择题(每题2分,共20分)1、下列哪个选项是正确的?A. (x+y)^2=x^2+y^2B. (x+y)^2=x^2+2xy+y^2C. (x+y)^2=x^2-2xy+y^2D. (x+y)^2=x^2+y^2+2xy正确答案是:B. (x+y)^2=x^2+2xy+y^2。
2、如果a和b是互为相反数,那么a+b等于多少?A. 0B. 1C. -1D.无法确定正确答案是:A. 0。
3、下列哪个数不是有理数?A. 0.5B. -3C. π/2D. √9正确答案是:C. π/2。
4、一个正方形的面积是4平方厘米,那么它的周长是多少?A. 4厘米B. 6厘米C. 8厘米D. 10厘米正确答案是:C. 8厘米。
根据正方形面积公式,可得出边长为2厘米,因此周长为8厘米。
5、下列哪个函数在某个区间内单调递增?A. y=x^2B. y=3x+5C. y=|x|D. y=2/x正确答案是:C. y=|x|。
函数y=|x|在区间[0,+∞)内单调递增。
其他选项中,A是二次函数,在区间(-∞,0)内单调递减,在区间(0,+∞)内单调递增;B是一次函数,在R内单调递增;D是反比例函数,在区间(-∞,0)和(0,+∞)内都单调递减。
A.全等三角形的面积相等B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.底边相等的两个等腰三角形全等如果一个点到原点的距离为,那么这个点在()A.轴上B.轴负半轴上C.第三象限的角平分线上D.第四象限的角平分线上A.平方等于它本身的数只有0和1B.互为相反数的两个数之和为0C.除以一个数等于乘这个数的倒数D.任何有理数的偶次方都是正数如果一个数的平方等于它的倒数,那么这个数是_________.下列等式成立的是_________.(添>、<、=、≥、≤)在括号内填上适当的整式使等式成立_________.(1)计算:|-3|+|+5|-|-1|;(2)先化简再求值:当a=5时,求a+4+3a-4的值.(1)计算:3÷(-6);(2)计算:+;(3)计算:2(2a+b)-(3a-b);1已知有理数a、b在数轴上的对应点如图所示,用不等号填空:(1)a_________b;(2)-a_________-b;(3)|a|_________|b|;(4)a的相反数_________b的相反数;(5)-a的相反数_________-b 的相反数.【分析】根据轴对称图形的概念,进行选择即可.【分析】根据数轴上表示数的方法,可得答案.a−b=2,则9 - a + b = ______.下列加点字的注音完全正确的一项是()(2分)A.确凿(záo)倜傥(tǎng)蝉蜕(tuì)菜畦(qí)B.脑髓(suǐ)讪笑(shàn)哽咽(yè)嫉妒(jí)C.庇护(pì)猝然(cù)木讷(nè)笃信(dǔ)D.拮据(jū)褴褛(lǚ)栈桥(zhàn)阔绰(chuò)正确答案是:D.拮据(jū)褴褛(lǚ)栈桥(zhàn)阔绰(chuò)。
2014年七上期中数学试题 (1)
2008-2009学年第一学期七年级期中考试调研测试题一. 选择题(每题3分,共12题)下面每个小题中的四个选项有且只有一个是正确的,请将正确的选项填在题后的括号中 1.-2的相反数是( )A.-2B.2C.±2D.-122.-3的绝对值等于( )A.-3B.3C.- 13D. 133.计算0-9的结果是( )A. -9B. 9C. 0D. ±9 4.-24的值是( )A. -8B.8C. -16D. 165.数轴上一点A 表示的有理数为-2,若将A 点向右平移3个单位长度后再向左平移2个单位长度,则此时A 点表示的有理数应为( )A. 0B. -3C. 1D. -16.国家统计局统计数据显示,2008年前三季度我国经济运行态势良好,财政收入继续保持较快增长,前三季度国内生产总值绝对额达16604300000000元,同比增长11.5%。
那么16604300000000用科学记数法可表示为( ) A.1.66043×107B.166043×108C.0.166043×1013D.1.66043×10137.单项式-3x 2yz 的系数、次数分别是( )A.3, 2B.-3, 2C.3, 4D.-3, 4 8.如图,将一个长、宽分别为a 、b 的长方形的四个角都挖去一个边长为x 的正方形,折起来以后,做成一个没有盖的 盒子,则这个盒子的容积是( )A.2()()x a x b x -- B.()()x a x b x -- C.1(2)(2)2x a x b x -- D.(2)(2)x a x b x -- 9.代数式()2()33()14222xy xyz xyz xy xy xyz +--+-+-+的值( )A.与x 、y 、z 的大小无关B.与x 、y 、z 的大小有关C.仅与x 的大小有关D.仅与x 、y 的大小有关10.若m ,n 为正整数,则多项式4m n m nx x +--的次数应当是( )A.mB.m +nC.nD.m ,n 中较大的数 11.如果x=y,那么下列等式不一定成立的是( )A. ax=ayB. 1122x y --=-- C. 11x y a a =++ D.11x y a a =++ 12.一个三位数的个位数字是7,把个位数字移到首位,则新数比原数的5倍还多77,求这个数.设这个三位数的前两位数为x ,则列出的方程是( ) A.700771075xx +-=+ B.7007775x x ++=+ C.700+x -77=5(10x+7) D.5(700+x)=x+7+77二、填空题(每题3分,共4题).13.请写出一个以x=-2为解的一元一次方程:__________________. 14.若3223m n x y x y -与 是同类项,则m+n =____________.15.计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如2(1101)表示二进制数,将它转换成十进制形式是32101212021213⨯+⨯+⨯+⨯=(注:021=),那么将二进制数2(1111)转换成十进制形式是 . 16.用牙签按下列方式排出图形:①②③④ 则第n 个图形有_________根牙签.三、解答下列各题(本大题有9个小题,共72分)17.(本题6分)计算:3-(-7)+(-15)-1-(-9).18.(本题6分)计算:1(56)()(44)(32)32-÷-+-⨯+.……19.(本题6分)计算:757189618⎛⎫-+⨯ ⎪⎝⎭.20.(本题7分)计算:23313()(2)(3)25-⨯---÷.21.(本题7分)先化简再求值:2222332232x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中x =3,13y =-.22.(本题8分)已知:()221a +与3b +互为相反数,c 是最大负整数,求代数式3212a a bc a +-的值.23.(本题10分) (1)若()6321=---a x a 是关于x 的一元一次方程,求 323212(23)(225)23a a a a a a -+---+-的值. (2)解以x 为未知数的一元一次方程2237452803m m xmx x x m --+-+--=24.(本题10分)(1)根据表中所给,a b 的值,计算2()a b +与222a ab b ++的值,并将计算结果填入表中:(4分)+的正方形被分成4个部分,这个图形的面积既可以直接由正方形(2)如图,边长为a b面积公式表示为_____________,又可以用4部分的面积和表示为_____________.(2分)(3)结合(1)、(2)中获得的经验,你能够得出什么结论?结论:_______________________________________________.(1分)请你利用你发现的结论进行简便运算:22+⨯⨯+(3分)1.234567892 1.234567898.765432118.7654321125.(本题12分)动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度。
2013~2014学年人教版七年级上期中数学试卷含答案
12013-2014学年度第一学期期中考试七年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.-2的相反数是( )A .2B .-2C .21-D .212.在有理数2(1)-、3()2--、|2|--、3(2)-中负数有( )个 A.4 B.3 C.2 D.1 3.若233mxy -与42n x y 是同类项,那么m n -=( )A.0B.1C.-1D.-24.据测试,未拧紧的水龙头4小时会滴水1440毫升。
1440毫升用科学记数法表示为 ( )毫升。
A.33.610⨯ B.31.4410⨯ C.41.4410⨯ D.43.610⨯ 5. 已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )A.15B.1C.-5D. 1- 6. 如果a 和2b 互为相反数,且b ≠0,那么a 的倒数是( )A . -12b B. 12b C. -2b D. 2b7.下列各式中正确的是( )A .|| 33a a =B .33)(a a -=C .|| 22a a -=-D .22)(a a -=8.有理数a 、b 、c 在数轴上的位置如图,化简│a+b │-│c-b │的结果为( )A.a+cB.-a-2b+cC.a+2b-cD.-a-c_b_029.已知96.7362.82=,若7396.02=x ,则x 的值( ) A. 86. 2 B. 0.862 C. ±0.862 D. ±86.2 10.已知a 、b 为有理数,下列式子:①||ab ab >②0a b <③||a ab b=-④330a b +=其中一定能够表示a 、b 异号的有( )个A.1B.2C.3D.4第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)11.在数5-、 1、 3-、 5、 2-中任取两个数相乘,其中最大的积是___________. 12.已知代数式x +2y 的值是3,则代数式2x+4y +1= ___________. 13.|x-2|与(y+1)2互为相反数,则x+2y= .14.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为 .15.表2是从表1中截取的一部分,则a = .16.任何一个正整数n 都可以进行这样的分解:n s t =⨯ (s 、t 是正整数,且s ≤t ),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯(p q ≤)是n 的最佳分解,并规定()n p F q =.例如:18可以分解成1×18,2×9,3×6,这时就有(18)3162F ==.结合以上信息,给出下列关于()n F 的说法:①(2)12F =;②(24)38F =;③(27)13F =;④若n 是一个整数的平方,则()1n F =.其中正确的说法有_________.(只填序号)第15题图3三、解答题:17.计算(本题满分6分)(1)11112()342-⨯+-() (2)()313248522⨯-÷+-+-18.计算(本题满分6分)(1)ab ba ab 86++- (2))2(2)35(b a b a ---19.(本题满分6分) 先化简,再求值:2233132x x xy xy +⎪⎭⎫⎝⎛+-。
安徽省无为三中2014—2015学年七年级上期中考试数学试卷
5.下列说法错误的是( )
A. xy 的系数是-1
B. 2 a 2b3c 是五次单项式 3
C. 2x2 3xy 1是二次三项式
D. 把多项式-2x2+3x3-1+x 按 x 的降幂排列是 3x3-2x2+x-1
6.已知 a-b=-2,则代数式 3(a-b)2-a+b 的值为( )
A.10
下 2 滴水,每滴水约 0.05 毫升.如果某个同学在洗手后,没有把水龙头拧紧,当他离开 5 小时后
水龙头滴了__________毫升水.(必须用科学记数法表示,否则 0 分)
14.观察规定一种新运算:
a
b=a
b
,如
2
3=23
=8
,计算:
1 3
2
.
15.一张长方形桌子可坐 6 人,按下图方式将桌子拼在一起。
问题,并写出解答过程.
23.(本小题 14 分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭 示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示 1 和 4 的两点之间的距离是
;
表示-3 和 2 的两点之间的距离是
;
表示数 a 和-2 的两点之间的距离是 3,那么 a=
(1) 4 2 (3)2 6 ( 1) 2
(2)
3 4
5 9
7 12
36
+|-24|
17.(本小题 12 分)化简与计算 (1)已知:多项式 A=2x2-xy,B=x2+xy-6,求:
① 4A-B; ②当 x=1,y=-2 时,4A-B 的值.
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
2013-2014学年度七年级上数学中期考试题
三合中学2013-2014学年度第一学期中期考试试题(卷)七年级数学题号A 卷B 卷一二 三 合计 27 28 29 30 31 合计 得分A 卷 (100分)一、 选择题 (本大题共10小题,每小题3分,共30分。
将答案填在表格内)1、-3的倒数是( )A .-3B .3C .31D .31-2、冬季某天我国三个城市的最高气温分别是-10°C ,1°C ,-7°C ,把他们从高到低排列正确的是 ( )A. -10°C , -7°C ,1°C ,B. -7°C , -10°C ,1°C ,C. 1°C ,-7°C ,-10°C ,D. 1°C ,-10°C , -7°C 3、长城总长约为6700000米,用科学记数法表示为( )A .6.7510⨯米 B .6.7610⨯米 C .6.7710⨯米 D .6.7810⨯米 4、下列各式中,正确的是( )A .y x y x y x 2222-=- B .ab b a 532=+C .437=-ab abD .523a a a =+5、a-b 的相反数是( )A .a-bB . b - aC .- a-bD 、不能确定 6、两个有理数的积为负数,和也为负数,那么这两个数( )A .都是负数B .绝对值较大的数是正数,另一个是负数C .互为相反数D .绝对值较大的数是负数,另一个是正数7、已知496b a -和445b a n 是同类项,则代数式1012-n 的值是( )A .17B .37C .–17D .988、下列说法中①-a 一定是负数;②|-a|一定是正数;③倒数等它本身的数是±1; ④绝对值等于它本身的数是1。
其中正确的个数是( )A .1个B .2个C .3个D .4个9、右图是一数值转换机,若输入的x 为-5,则输出的结果为( )A. 11B. -9C. -17D. 2110、已知代数式y x 2+的值是3,则代数式142++y x 的值是( )A .1B .4C .7D .不能确定二、填空题(本大题共8小题,每小题4分,共32分)11、如果运进72吨记作+72吨,那么运出56吨记作_________; 12、用四舍五入法取近似数,保留3个有效数字后1.804≈ 13、若|a+2|+()23-b =0,则a+b=____________.14、某校去年初一招收新生x 人,今年比去年增加20%,用代数式表示今年该校初一学生人数为_____15、单项式33yx -的系数是_____16、 “a,b 两数的平方的差”用代数式表示为17、一个单项式加上22x y +-后等于22y x +,则这个单项式为18、 如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为______________(用n 的式子表示).命题人 孙臻得 分 评卷人得 分 评卷人输 出×(-3) 输入x -2三、解答题 (本大题共6小题,共38分) 19、计算(每小题4分,本题共16分,)(1) 0×(-2008)×2009+(-1)÷(-2) (2) )3214785163()32(-+-⨯- (3))145()2(52825-⨯-÷+- (4))61()61(514-÷-⨯--20、化简:(每小题5分,共10分)(1) ()()b a b a 45392222--++ (2) ()1223522---+x x x x21. (6分)先化简,再求值 )53()13(52222-+---b a ab ab b a ,其中21-=a ,31=b22.(本小题6分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入。
2014年七年级上学期期中考试数学试卷及答案
2014年七年级上学期期中考试数学试卷及答案D三 计算(每小题4分,共24分) 21)()3032324-⨯⎪⎭⎫⎝⎛--÷- 22)()()13181420----+-23)()313248522⨯-÷+-+- 24 )()⎪⎭⎫ ⎝⎛-⨯÷--÷⎪⎭⎫ ⎝⎛-41855.257512525)mnn m mn mn n m 36245222++-+- 26))32(3)32(2a b b a ---四. 解答题 (每小题6分,共18分)27.先化简,再求值:⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+--224231325x xy xy x 。
其中21,2=-=y x28.解下列方程并检验。
92723+=+-x x?,800631631.29则第三天看了多少页多少页?若完,该同学第三天看了第三天把剩下的全部看页,多页,第二天看了剩下的少了全书的页,一位同学第一天看一本小说共 m m五 列方程解应用题(每小题6分,共12分) 30.把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?31.小明去文具店买铅笔,店主说:“如果多买一些,可以打八折”,小明算了一下,如果买50支,比原价可以便宜6元,那么每支铅笔的原价是多少元?六 解答题32.()()的值。
求且若b a c c b a a -⋅=-=++-32,21,0212附加题(每小题10分,共20分,不计入总分) 1. 有一列数按一定规律排列为1,-3,5,-7,9,…,如果其中三个相邻的数之和为-201,求这三个数?2.计算12011191151141131121222222-+-++-+-+-+-一 .选择题1)D 2)C 3)A 4)C 5)C 6)D 7)B 8)C 9)C 10)B 二 .填空题11)0 ; 12)53 ; 13)3 ; 14)2.007×103 ; 15)32-,3 ;16)0 ; 17)-2 ; 18)-6 ; 19)0.99a ; 20)3an+2a ; 三.计算题()2620630322343032324)21-=--=⨯-⨯--⨯⎪⎭⎫⎝⎛--÷-=解: ()()()291847181314201318142013181420)22-=+-=+---=-+--=----+-解:()3113813131243431324852)232---⨯⎪⎭⎫ ⎝⎛-⨯++-⨯-÷+-+-===解:()()2222222244326536245)25mn mn n m mn mn mn n m n m mn n m mn mn n m ++=++-++-++-+-=解: ()()()()ba b b a a a b b a a b b a 121366949664323322)26-=--++=+--=---解:四.解答题711271293722)28-==-+=+-x x x x :系数化为合并同类项:解:移项:()()是原方程的解=左边=右边,所以,=右边==左边=代入原方程,检验:将75972577237--+-⨯--⨯+--=x x ()71261712541582551755112541855.257512524===))解:(++⨯⨯+⨯+⨯⎪⎭⎫⎝⎛-⨯÷--÷-()()()66245462546254231325)27222222222+-=++-+-=-++-=+---=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+--xy x xy xy x x x xy xy x x xy xy x x xy xy x 解:()()116146212221,22=++=+⨯---=-=原式=时,当y x()294869232892632892632,892631632632631,631)29-=-+⎪⎭⎫ ⎝⎛-=--+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++=+⨯⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛---m m m m m m m m m m m m m 剩下:第二天看了剩下:解:第一天看了 当m=900时,398290094294=-⨯=-m (人)五.列方程解应用题30)解:设这个班有x 个学生,根据题意得: 3x+20=4x-25解得:x=45 答:这个班有45人。
2013-2014学年七年级上期中考试数学试题及答案
初一年级数学期中考试试卷一、选择题(本大题共6题,每小题3分,共18分.) 1.下列计算止确的是 ( )A .(-3)-(-5)=-8B .(-3)+(-5)=+8C .(-3)3=-9D .-32=-92. 地球上的海洋面积约为361000000km 2,用科学记数法可表示为 ( )A .3.61×106km 2B .3.61×107km 2C .0.361×108km 2D .3.61×109km 23. 下列运算结果正确的是( )A.x x x 23534=- B.mn mn 743=+C.022=+-a b b aD.999109107102⨯=⨯+⨯ 4.若32n x y 与5mx y -是同类项,则m ,n 的值为 ( ) A. m =3,n =-1 B .m =3,n=1 C .m =-3, n =-1 D .m =-3,n =1 5. 下列说法中正确的个数是(1)a 和0都是单项式 (2)多项式-3a 2b +7a 2b 2-2ab +l 的次数是3(3)单项式229xy -的系数为-2 (4)x 2+2xy -y 2可读作x 2、2xy 、-y 2的和A .l 个B .2个C .3个D .4个6.下表,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .66D .74二、填空题(本大题共8题,每小题3分,共24分)题号 一 二 三 四 五 六 七 总分 累分人 得分0 2 84 2 4 6 224 6 8 44m67. 单项式32y x ⋅-π的系数是___ _次数是___________.8.如果22(1)0a b ++-=,那么代数式2013)(b a 的值是 .9. 若4x 2my m +n 与-3x 6y 2是同类项,则m n = .10. 若代数式b a 3+的值为8-,则代数式()()b a b a +++24132的值为__________ 11. 1-2+3-4+5-6+…+2 011-2 012+2013的值是___ ___. 12. 当时,二次三项式的值等于18,那么当时,该二次三项式的值等于 .13. 若有理数在数轴上的位置如图所示,则化简:a c abc b ++--+=________.14. 观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的等式表示出来: .三、(本大题共2 题,每小题5分,共10分.解答时应写出必要的计算过程) 15. 8-23÷(-4)×(-7+5); 16. 412×[-36×(-13)6-0.8]÷(-145)2四.(本大题共2题,每小题6分,共12分.解答时应写出必要的计算过程.) 17. -3x +2y -5x -7y 18. 5(3a 2b -ab 2+c )-4(2c -ab 2+3a 2b )五.化简或求值(本大题共2题,每小题8分,共16分.) 19. -a 2-12[3b 2-2 (a 2-b 2)+6],其中a =-2,b =3.20. 3x 3-[x 3+(6x 2-7x)]-2(x 3-3x 2-4x),其中x =-1.六.(本大题共2题,每小题9分,共18分.) 21. 已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1(1)求3A +6B ;0c b acba (1)(2)(3)(2)若3A +6B 的值与a 的取值无关,求b 的值.22. 某厂家生产的产品出厂时可以提供如图所示的三种方式进行打包.(其中a b c >>) (1)请用代数式分别表示出三种方式的绳子长度123,,l l l ;(2)若出厂时只能采用一种方式统一进行打包,那么 最节省打包所费绳子的方式为________.(填序号)七.(本题共2小题,23题10分,24题12分,共22分) 23. 问题:你能比较两个数20122013与20132012的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较n n +1和(n +1)n的大小(即是自然数).然后,我们分析n =1,n =2,n =3…这些简单情形入手,从而发现规律,经过归纳,才想出结论. (1)通过计算,比较下列各组中两个数的大小①12_______24②23_______32③34_______43④45_______54⑤56_______65⑥67_______76(2)从第(1)题的结果经过归纳,可以猜想nn +1和(n +1)n的大小关系;(3)根据下面归纳猜想得到的一般结论,试比较下列两个数的大小: 20122013_______20132012.24. (1)观察一列数12343,9,27,81,,a a a a ====发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_______;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么6a =__________,n a =__________;(可用幂的形式表示)(2)如果想要求231012222+++++的值,可令23101012222S =+++++①将①式两边同乘以2,得_________________________②,由②减去①式,得10S =_______.(3)若(1)中数列共有20项,设2020392781S a =+++++,请利用上述规律和方法计算20S 的值. (4)设一列数111111,,,,,2482n - 的和为n S ,则n S 的值为__________.参考答案22.(1)c b a l 6241++= c b a l 6422++= c b a l 4443++= (2)2l 23.< < > > > > 当n=1或n=2 时n n+1____<___(n+1)n当n>=3 时 且n 为自然数时 n n+1___>__(n+1)n20122013___>____20132012.24. (1)3 63 n 3 (2)11321022222++++= S 1211-(3))33(212120-=S (4)1212--n 或n 222-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年七年级上学期期中考试数学试卷及答案
2014年七年级上学期期中考试试卷
一 选择题 (每小题2分,共20分) ( ) 1.下列各对数中,互为相反数的是:
A.()2--和2
B.
)
(和3)3(+--+ C.
22
1
-和
D. ()55----和 ( ) 2. 下列式子:0
,5,,73,41,222
x c
ab
ab a x -++中,整式
的个数是:
A. 6
B. 5
C.
4 D. 3
( ) 3. 一个数的平方和它的倒数相等,则这个数是:
A. 1
B. -1
C.
±1 D. ±1和0 ( ) 4.下列计算正确的是:
A.
4
812-=-- B. 9
45-=+- C.
10
91-=-- D.
9
32=-
( ) 5. 数轴上点A,B,C,D 对应的有理数都是
整数,若点A 对应有理数a ,点B 对应有理数b ,且b-2a=7,则数轴上原点应是:
C
A. A 点
B. B 点
C.
C 点 D.
D 点
( ) 6.若()b
a b a 则,032122
=-+-=
A. 61
B. 2
1
- C. 6 D. 8
1 ( ) 7.下列说法正确的是:
A.0,<-=a a a 则若
B. 0,0,0><<b ab a 则若
C
是七次三项式
式子124332+-y x xy D.
m
b m a m b a ==是有理数,则
若,
( ) 8.方程1-3y=7的解是:
A. 21-=y
B. 21
=y C. 2
-=y
D.2=y
( ) 9. 一个多项式加上,
3332322
y x x xy y x --得则这个
多项式是:
A. x 3+3xy 2
B. x 3-3xy 2
C. x 3-6x 2y+3xy 2
D. x 3-6x 2y-3x 2y
二 填空(每小题2分,共20分)
11.绝对值不小于1而小于3的整数的和为______;
12.-35
的倒数的绝对值是______;
13.若a 、b 互为相反数,c 、d 互为倒数,
三 计算(每小题4分,共24分) 21)
()3032324-⨯⎪⎭
⎫
⎝⎛--÷
- 22)
()()13
181420----+-
23)
()3
13248522⨯
-÷+-+- 24 )
()⎪
⎭⎫ ⎝⎛-⨯÷--÷⎪⎭⎫ ⎝
⎛
-41855.2575125
25)mn
n m mn mn n m 36245222++-+- 26)
)
32(3)32(2a b b a ---
四. 解答题 (每小题6分,共18分)
27.先化简,再求值:⎥⎦
⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+--22
4231325x xy xy x 。
其中21,2=-=y x
28.解下列方程并检验。
927
2
3+=+-x x
?
,80063
1
631.29则第三天看了多少页多少页?若完,该同学第三天看了第三天把剩下的全部看页,
多页,第二天看了剩下的少了全书的页,一位同学第一天看一本小说共 m m
五 列方程解应用题(每小题6分,共12分) 30.把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,
若每人分4本,则缺25本,这个班有多少学生?
31.小明去文具店买铅笔,店主说:“如果多买一些,可以打八折”,小明算了一下,
如果买50支,比原价可以便宜6元,那么每支铅笔的原价是多少元?
六 解答题
32.()()的值。
求且若b a c c b a a -⋅=-=++-32
,21,0212
附加题(每小题10分,共20分,不计入总分) 1. 有一列数按一定规律排列为1,-3,5,-7,9,…,如果其中三个相邻的数之和为-201,求这三个数?
2.计算120111911511411311212
2
2
2
2
2
-+-++-+-+-+-
一 .选择题
1)D 2)C 3)A 4)C 5)C 6)D 7)B 8)C 9)C 10)
B 二 .填空题
11)0 ; 12)53 ; 13)3 ; 14)2.007×103 ; 15)3
2
-,3 ;
16)0 ; 17)-2 ; 18)-6 ; 19)0.99a ; 20)3an+2a ; 三.计算题
()26206303
22343032324)21-=--=⨯-⨯--⨯⎪⎭⎫
⎝⎛--÷-=解: ()()()29
184718
1314201318142013181420)22-=+-=+---=-+--=----+-解:
()3
1138
13
131243431324852)232-
-
-⨯
⎪⎭⎫ ⎝⎛-⨯++-⨯-÷+-+-===解:
()
()2
222222244326536245)25mn mn n m mn mn mn n m n m mn n m mn mn n m ++=++-++-++-+-=解: ()()()()b
a b b a a a b b a a b b a 121366949664323322)26-=--++=+--=---解:
四.解答题
7
1127
12
9
37
2
2)28-==-+=+-x x x x :系数化为合并同类项:解:移项:()()是原方程的解
=左边=右边,所以,
=右边==左边=代入原方程,检验:将75972577
2
37--+-⨯--⨯+--=x x ()7
126
1
712541
582551755112541855.257512524===))解:(++⨯
⨯+⨯+⨯⎪
⎭
⎫
⎝⎛-⨯÷--÷-()
()
()66245462546254231325)272222
22
222+-=++-+-=-++-=+---=⎥
⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+--xy x xy xy x x x xy xy x x xy xy x x xy xy x 解:()()116
1462
12221,22
=++=+⨯---=-=原式=时,当y x
()2
9486923
2
892632892632,89263
1
6326
3
2
631,631)29-=-+⎪⎭⎫ ⎝⎛-=--+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++=+⨯⎪
⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛---m m m m m m m m m m m m m 剩下:第二天看了剩下:解:第一天看了 当m=900时,39829009
4
294=-⨯=-m (人)
五.列方程解应用题
30)解:设这个班有x 个学生,根据题意得: 3x+20=4x-25
解得:x=45 答:这个班有45人。
31)解:设原价为x 元,根据题意得:
(1-0.8)x ×50=6
解得:x=0.6 答:原价为0.6元。
六.解答题
()()()
()()
()()8912111,1,218
2712133,1,211321211,2
1
02,012,
02,0120
212)3233
33
2
2
-
=⎥⎥⎦
⎤⎢⎢⎣⎡--⎪⎭⎫ ⎝⎛⨯-=--=-==⎥⎥⎦⎤⎢⎢⎣⎡--⎪⎭⎫ ⎝⎛⨯-=-==-=∴±=-∴=--==
∴=+=-∴≥+≥-=++-b a c c b a b a c c b a c c c b a b a a b a a b a a 时,当=
=时,当或解:
附加题
1. 解: 设三个数中间的一个为x,
依题意得:
-(x-2)+x-(x+2)=-201 解得:x=201 ∴-(x-2)=-199 , -(x+2)=-203 答:这三个数为-199、201、-203。
840
58921120121121211191201181614151314121311212119120181641531421311=⎪⎭
⎫
⎝⎛--+=⎪
⎭⎫ ⎝⎛-+-++-+-+-+-=⨯+⨯++⨯+⨯+⨯+⨯= 解:原式。