压裂液技术现状与发展趋势共80页文档
最新压裂技术现状及发展趋势资料
压裂技术现状及发展趋势(长城钻探工程技术公司)在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。
低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。
1、压裂技术发展历程自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。
压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。
压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。
(2)1970年-1990年:中型压裂。
通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。
(3)1990年-1999年:整体压裂。
压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。
(4)1999年-2005年:开发压裂。
考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。
(5)2005年-今:广义的体积压裂。
从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。
2、压裂技术发展现状经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。
国内外水力压裂技术现状及发展趋势
国内外水力压裂技术现状及发展趋势国内外水力压裂技术现状及发展趋势1. 水力压裂技术的概述水力压裂技术是一种用于释放和采集地下岩石中储存的天然气或石油的方法。
该技术通过高压水将岩石破碎,使储层中的油气能够流动到井口并采集出来。
水力压裂技术的应用范围广泛,已经成为当今油气勘探和生产领域不可或缺的重要工艺。
2. 国内水力压裂技术的发展2.1 技术进展近年来,中国在水力压裂技术领域取得了长足的进展。
国内开展了一系列水力压裂试验和生产实践,并不断优化了水力压裂液的配方和压裂参数,提高了技术效果。
目前,国内已经具备了一定的水力压裂能力,大规模商业化的水力压裂项目也在逐渐增加。
2.2 技术挑战然而,国内水力压裂技术仍面临一些挑战。
由于我国地质条件复杂多样,水力压裂参数的优化和设计仍需进一步完善。
水力压裂过程中对水和化学药剂的需求量较大,对水资源的消耗和环境影响也需要引起重视。
国内水力压裂技术在环保、安全等方面的标准和规范也亟待完善。
3. 国外水力压裂技术的现状3.1 技术领先相比之下,国外水力压裂技术相对更为成熟和领先。
美国作为全球水力压裂技术的发源地和领导者,已经积累了丰富的经验和技术。
加拿大、澳大利亚、阿根廷等国家也在水力压裂技术领域取得了显著进展。
3.2 发展趋势在国外,水力压裂技术正朝着更高效、可持续的方向发展。
技术创新持续推动着水力压裂技术的进步,如改良水力压裂液配方、增加试验参数、提高水力压裂设备效率等。
另注重环境保护和社会责任意识也推动了水力压裂的可持续发展,包括减少用水量、降低化学品使用、加强废水处理等。
4. 对水力压裂技术的观点和理解4.1 技术应用前景广阔水力压裂技术作为一种有效的油气勘探和生产工艺,具备广阔的应用前景。
随着全球能源需求的增长和传统资源的逐渐减少,水力压裂技术有望成为我国能源领域的重要支撑。
4.2 重视技术创新和可持续发展为了更好地推动水力压裂技术在国内的应用,我们应加大技术创新力度,不断优化水力压裂方案,提高资源利用效率,并探索更环保、可持续的水力压裂技术路径。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望水平井压裂技术是一种用于增加地下油气储层产能的有效工艺,已经被广泛应用于油气勘探与开采领域。
本文将对水平井压裂工艺技术的现状进行综述,并展望其未来发展趋势。
1. 技术原理:水平井压裂技术是通过在油气储层中钻探一根水平井管,然后通过高压液体将压裂剂注入井孔中,从而形成裂缝网络,增加储层的渗透率,促进油气的流动。
2. 应用领域:水平井压裂技术主要应用于非常规油气储层的开发,如页岩气、页岩油和煤层气等。
水平井压裂技术也被应用于传统油气田的增产。
3. 技术难点:水平井压裂技术面临的主要难题包括压裂剂的选择、裂缝网络的设计和优化、裂缝扩展和稳定性等。
目前,针对这些问题已经有了一些解决方案,但仍需进一步研究改进。
4. 技术发展:水平井压裂技术自20世纪80年代开始应用于油气勘探与开采,经过几十年的发展,已经取得了显著的成果。
特别是在美国,在页岩气开发中取得了巨大的成功,成为美国能源革命的关键技术之一。
1. 提高效率:目前,水平井压裂技术在工艺效率上仍有提升空间。
未来,可以通过改进压裂剂的性能,优化裂缝网络设计和优化压裂参数等措施,提高压裂效果,提高产能和采收率。
2. 精细化设计:由于地下油气储层的复杂性,水平井压裂技术还面临着很多挑战。
未来,可以通过引入计算模拟、导向钻井等先进技术,精细化设计水平井和压裂工艺,提高压裂效果和经济效益。
3. 环境友好化:在水平井压裂过程中,压裂液中的化学物质可能对地下环境造成一定的影响。
未来,可以通过研究和应用环境友好的压裂剂,减少对环境的影响,并开展相关环境保护技术的研究。
4. 多学科融合:水平井压裂技术是一个涉及地质学、工程学、化学等多学科的综合技术。
未来,需要进一步加强不同学科之间的交流与合作,共同推动水平井压裂技术的发展。
水平井压裂技术是一项广泛应用于油气勘探与开采领域的有效工艺。
虽然在技术原理和应用领域上已经有了明确的进展,但仍面临一些技术难点。
压裂装备发展现状与发展趋势
压裂装备发展现状与发展趋势摘要:在现代工业发展的进程中,由于压裂装备制造技术不断进步,其应用范围越来越广,压裂工艺的要求也在不断的提高。
近几年,压裂装备的功率越来越大,压力和排量也越来越高,这对连续工作的可靠性和自动化水平的要求也越来越高。
随着我国经济快速增长以及油价持续走低等一系列因素影响下油田采出量及开采成本上升问题日益突出,且矛盾尖锐,压裂效果不好造成设备闲置,压裂装置存在安全隐患,出现故障时会对作业环境产生污染、浪费资源的现象发生,甚至导致设备损坏。
因此,在石油勘探开发的过程中,必须要重视压裂装备制造技术和发展趋势。
虽然我国已经在研究和开发压裂技术方面取得了很大进步,但是受到各种的约束条件,高精尖复合材料被大量使用在高端精密加工领域中而代替原有装备来完成复杂零件的加工,这就使得我国迫切需要研究压裂装备技术发展趋势和方向。
文章对压裂装备发展现状与发展趋势进行了研究。
关键词:压裂装备;发展现状;发展趋势一、引言压裂装备最早是从美国发展的,1947年,美国进行了第一次的水里压裂实验,经过压裂装备的不断改良与发展,水力压裂成为了提高油气井采收率的重要措施。
裂压的核心基础得到了不断的发展。
随着生产发展对压裂装置的要求,需要的压裂液量大、压力高,压裂设备连续作业长。
随着压裂装置的应用越来越广泛,压裂装备不断的更新发展,压裂装备主要包括压裂泵注设备、混砂设备、压裂料存储设备和压裂管汇等。
在进行压裂施工的时候,压裂液支撑剂等材料会按照一定的配比比例均匀的进行搅拌,然后再由往复式泵注入设备加压,经压裂管汇、井口进入井筒。
二、国内外的发展现状由于压裂装备的发展历史较短,国内生产和使用规模相对单一,所以在装备设计、制造以及应用方面都存在一定的问题。
国内生产使用规模较小,压裂技术在我国的发展起步较晚,所以对压裂装备制造方面研究较少,但随着国家经济实力不断提高和科技水平逐渐提升,我们应积极引进国外先进设备,注重产品性能优化与新工艺开发以达到节能环保目的以及在压裂装备生产过程中对压裂技术发展方向,从而提高我国在国际市场竞争能力和竞争力[1]。
非常规压裂液发展现状及展望
液 ) V S压 裂 液 以季 铵 类 表 面 活性 剂 为 主 要 成 ,E
分 , 入反 离子 使 表 面 活性 剂 分 子 缔 合形 成 蠕 虫 加 状 胶 束 , 予 流 体 黏 弹性 具 有 较 好 的 携 砂 性 能 。 赋 V S压裂 液 体 系 不 需 外 加 化 学 破 胶 就 能 自动 破 E 胶 , 胶 液 表 面张 力 很 低 , 破 返排 能 力 强 , 压裂 液 且 残 渣含 量几 乎 为零 ; 同时 , 系含有 大量 阳离 子表 体 面活性 剂 能够有 效 地 稳 定 黏 土 , 裂 过程 中较 低 压 的表皮 效应 和油 层 污染能 有效 提高 油气 井压裂 改
( e i 表面活性 剂) E G mn i 。V S压裂液体系配制简
单, 只需 加入 表 面活性 剂 以及 无 机 盐 ( 离 子 ) 反 或
带 不 同电荷 的表 面 活 性 剂 , 能 形 成具 有 黏 弹 性 就
的流体。体系不需要加入杀菌剂 , 因为体系 中加 入的阳离子表面活性剂本身就具有杀菌的能力 ; 体系也不用加助排剂 , 因为 V S E 压裂液体系本身
造 后 的产 能 J 。
要 措施 , 非常 规 油 气 藏 与 常 规 油气 藏 的储 层 特 但 征存 在 巨大 差 异 , 常 规 油 气 藏 ( 页 岩 气 及 致 非 如 密 砂岩 气 ) 心 通 常 表 现 为水 湿 , 储 层 原 始 条 岩 且
件下其含水饱和度往往远低于束缚水饱 和度 , 这
细
由 彳 七
工
进
展
A ANCES I FI E N N PETR0CHEMI ALS C
第 l 一 ’6期 3卷第 ’
很低 , 而在 高剪切 速率下 压裂 液黏度 较低 , 有利 于
压裂液国内外研究现状
1. 压裂液国内外发展概况压裂技术是我国油气田开发必不可少的重要措施之一,它在增加产量和储量动用方面起到了重要的作用。
压裂的目的主要是形成具有一定几何形状的高导流能力裂缝,改善油气通道,从而增加油气产量。
而压裂液在压裂中起着非常重要的作用,压裂液体系的性能是关乎整个压裂施工作业成败及压裂效果的关键点之一,性能好的压裂液不但能够保障压裂施工的顺利进行,而且能够保护储层,获得理想的增产效果[1]。
压裂液通常是由各种化学添加剂按一定比例配制成具有良好粘弹性的冻胶状物质,主要分为水基压裂液、油基压裂液、泡沫压裂液、清洁压裂液[2]。
1947年,水力压裂首次在现场成功应用的初期,主要使用以原油、成品油所配成的油基压裂液,原因是水基压裂液会对水敏地层造成损害.五十年代,出现了控制水敏地层损害的方法以后,水基压裂液才被应用在压裂作业中,但油基压裂液仍为主要的压裂液。
到六、七十年代,增稠剂瓜胶及其衍生物的出现,使水基压裂液迅速发展并占据主要地位.到了八十年代,由于致密气藏开采和部分低压油井压后返排困难等问题,出现了泡沫压裂液。
到九十年代及以后,为了解决常规压裂液在返排过程中由于破胶不彻底对油藏渗透率造成很大伤害的问题,又开发研制了粘弹性表面活性剂压裂液,即清洁压裂液。
1.1 水基压裂液水基压裂液是以水作溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的,主要采用三种水溶性聚合物作为稠化剂,即植物胶(瓜胶、田菁、香豆、魔芋等)、纤维素衍生物及合成聚合物.这几种高分子聚合物在水中溶胀成溶胶,交联后形成粘度极高的冻胶。
具有低摩阻、稳定性好、携砂能力强、低损害、施工简单、货源广、廉价等特点。
通常,水基压裂液按加入稠化剂种类大致可分为三种类型:天然植物胶压裂液、纤维素压裂液以及合成聚合物压裂液。
1.1.1 天然植物胶压裂液国内外最先研究和应用的是天然植物胶压裂液,因而这类压裂液使用最多,其中瓜胶及其改性产品为典型代表[3]。
水力压裂技术的近期发展及展望
二、技术原理
二、技术原理
水力压裂技术的基本原理是利用高压水流将岩层压裂,形成裂缝,从而增加 石油或天然气的渗透率和流动性。具体来说,水力压裂过程包括以下几个步骤:
二、技术原理
1、注入高压流体:通过泵站将高压流体(如水、化学溶液等)注入油井或气 井。
二、技术原理
2、压裂岩层:高压流体在井筒内产生巨大的压力,当压力超过岩层的强度极 限时,岩层产生裂缝。
二、技术原理
3、裂缝扩展:高压流体继续注入,裂缝逐渐扩展并连接成网络,增加了石油 或天然气的储层渗透率。
二、技术原理
4、流体返排:在完成压裂后,高压流体逐渐排出,石油或天然气通过裂缝和 储层网络流向井口。
三、近期发展
三、近期发展
近年来,随着技术的进步和应用经验的积累,水力压裂技术在提高产量和采 收率方面取得了显著的成果。以下是水力压裂技术的近期发展亮点:
பைடு நூலகம்、案例分析
五、案例分析
以某油气田为例,该油气田采用水力压裂技术成功增产了油气资源。通过应 用新型高效压裂液和微地震监测技术,实现了对裂缝的精确控制和优化。同时, 结合数字化技术和实时压力监测,提高了增产效果和采收率。这一案例表明水力 压裂技术在实践中的应用具有重要价值和发展潜力。
六、总结
六、总结
三、近期发展
4、实时压力监测:在压裂过程中进行实时压力监测,及时调整压裂参数,确 保压裂效果的优化。
三、近期发展
然而,水力压裂技术在应用过程中也存在一些问题,如环境污染、地层伤害 等,这些问题在未来发展中需要加以解决。
四、展望未来
四、展望未来
展望未来,水力压裂技术将继续发挥重要作用,为满足全球能源需求和可持 续发展目标做出贡献。以下是水力压裂技术的未来发展趋势和挑战:
关于新型压裂液进展的研究与分析
关于新型压裂液进展的研究与分析【摘要】压裂液是压裂技术的重要组成部分,是决定压裂成败的关键,随着时代的发展,压裂液体系也经历了聚合物压裂液,聚合物交联压裂液,泡沫压裂液和粘弹性表面活性剂压裂液四个发展阶段的变革.而高效,低伤害,低成本,是压裂液技术发展的方向,也是当下研究压裂液的首要问题,本文结合目前国内外对当下压裂液体系的发展情况以及现在压裂液存在的问题。
针对这些问题出现了一种新型压裂液体系粘弹性表面活性剂(VES)基压裂液(又称清洁压裂液),通过对国外清洁压裂液和聚合物压裂液体系的性能对比研究发现;清洁的压裂液具备高效能,低伤害,低成本的优势,迎合了压裂液未来发展的潮流,也是未来新型压裂液发展的方向。
【关键词】压裂液压裂液的发展与现状清洁压裂液性能方向1 压裂液的概述压裂液是压裂技术的重要组成部分,压裂主要用于油气藏增产,增注,因此压裂技术在油气勘探中得到迅速发展和广泛的应用。
我国的压裂液体系也经历了聚合物压裂液,聚合物交联压裂液,泡沫压裂液和粘弹性表面活性剂压裂液四个阶段的发展,压裂液也在逐步完善化,水基压裂液是目前国内外最普遍用的压裂液。
目前随着国外加大对油气田的开采力度,对压裂液的要求也越来越高,无(低)伤害的压裂液已在国外油气田中广泛应用。
2 国内压裂液的发展与现状自1947年压裂液首次用于油田增产之后压裂液也随之发生巨大的演变。
初期人们利用原油成品油配置油基压裂液,避免了使用水基压裂液对水敏地层造成伤害,五十年代后,随着研究出对水敏地层伤害的控制方法之后,水基压裂液才被推广与应用,但是仍以油基压裂液为主导,六十年代后随着胍尓胶增稠剂被研制成功,标志着压裂技术进入了现代压裂化学的新起点。
七十年代后成功的把胍尓胶化学改性尓获得了其他多种衍生物的产品完善了相应的交联体系,随之水基压裂液也逐步被认可,在实践中也被广泛的采用,替代了油基压裂液占据了主导地位,到八十年代时,伴随着致密气藏的开采和部分低压油井返排困难等问题的出现一部分的水基压裂液逐渐被泡沫压裂液所取代到了九十年代以后压裂液技术的体系日益成熟水力压裂液,油基压裂液,乳化压裂液和醇基压裂液等都被广泛应用于油气田的开采中,但是水基压裂液其自身具备成本低,配方方便等优点因而被广泛的推广,目前国内使用最普遍的压裂液是水基压裂液,它的使用量约占总量的70%,但是水基压裂液也有一定的缺陷,水基压裂液不能够完全的破胶,而破胶后残渣留在了缝隙中,从而使支撑剂充填层的渗透率严重降低,最终导致影响产层,大大降低了压裂液的使用效果和功效。
压裂液的研究进展调研报告
压裂液的研究进展调研报告压裂已经广泛应用于增产当中, 压裂液的性能在作业中起到至关重要的作用。
压裂液存在着破胶难,污染环境,污染储层,抗温抗盐性能差的问题。
为此,在研究大量文献的基础上,回顾了压裂液技术的发展和现状,总结了适合不同地层条件的国内外压裂液新技术,以及现阶段存在的问题,展望了未来的发展方向。
研究结果表明,目前仍是以聚合物增黏剂为主的水基体系,并且研究出了抗高温清洁压裂液,微束聚合物压裂液,无聚合物压裂液以及新型原油基压裂液等等。
水基压裂液残液五步处理法,在现场应用效果明显,残渣,破胶性能,相容性,水锁伤害是储层伤害的主要原因。
压裂液将主要朝着地层伤害小,抗温抗盐,地层适应性强,环境友好的方向发展。
压裂液的类型:水基压裂液、油基压裂液、酸基压裂液、泡沫压裂液。
压裂液自从1947年首次用于裂缝增产以来经历了巨大的演变。
早期的压裂液是向汽油中添加足以压开和延伸裂缝的黏性流体;后来,随着井深的增加和井温的升高,对压裂液的黏度提出了更高的要求,开始采用瓜胶及其衍生物基压裂液。
为了在高温储层中达到足够的黏度和提高其高温稳定性,研究出了高温油基压裂液。
最初使用的压裂液是炼制油和原油,由于最初担心压裂液和含有非酸性水液的油气储层接触,可能产生不利影响,后来实验已经证明,用适当的添加剂(粘土控制物质,表面活性剂等),使用水基液能处理大部分油气储层,在一个已知储层的压裂液处理中,最好是通过实验室地层岩心实验(或者一贯的现场结果)来确定水基压裂液的可用性。
水基压裂液体系及技术包括:非交联型黄原胶/魔芋胶水基冻胶压裂液技术、PAC阳离子聚合物压裂液体系、有机硼交联水基压裂液技术、哈利伯顿微束聚合物压裂液体系、高黏度水基压裂液、无聚合物压裂液体系、低凝胶硼酸压裂液、无固相压裂液、无破胶剂压裂液技术压裂液。
油基压裂液体系及技术:低渗、低压、水敏性油气藏储量占每年探明储量的1/3 而且有继续上升的趋势,有效合理地开发这部分油气藏对稳定增加油气产量意义重大。
压裂液调研报告
压裂液的研究进展调研报告压裂已经广泛应用于增产当中,压裂液的性能在作业中起到至关重要的作用。
压裂液存在着破胶难,污染环境,污染储层,抗温抗盐性能差的问题。
为此,在研究大量文献的基础上,回顾了压裂液技术的发展和现状,总结了适合不同地层条件的国内外压裂液新技术,以及现阶段存在的问题,展望了未来的发展方向。
研究结果表明,目前仍是以聚合物增黏剂为主的水基体系,并且研究出了抗高温清洁压裂液,微束聚合物压裂液,无聚合物压裂液以及新型原油基压裂液等等。
水基压裂液残液五步处理法,在现场应用效果明显,残渣,破胶性能,相容性,水锁伤害是储层伤害的主要原因。
压裂液将主要朝着地层伤害小,抗温抗盐,地层适应性强,环境友好的方向发展。
压裂液的类型:水基压裂液、油基压裂液、酸基压裂液、泡沫压裂液。
压裂液自从1947年首次用于裂缝增产以来经历了巨大的演变。
早期的压裂液是向汽油中添加足以压开和延伸裂缝的黏性流体;后来,随着井深的增加和井温的升高,对压裂液的黏度提出了更高的要求,开始采用瓜胶及其衍生物基压裂液。
为了在高温储层中达到足够的黏度和提高其高温稳定性,研究出了高温油基压裂液。
最初使用的压裂液是炼制油和原油,由于最初担心压裂液和含有非酸性水液的油气储层接触,可能产生不利影响,后来实验已经证明,用适当的添加剂(粘土控制物质,表面活性剂等),使用水基液能处理大部分油气储层,在一个已知储层的压裂液处理中,最好是通过实验室地层岩心实验(或者一贯的现场结果)来确定水基压裂液的可用性。
水基压裂液体系及技术包括:非交联型黄原胶/魔芋胶水基冻胶压裂液技术、pac阳离子聚合物压裂液体系、有机硼交联水基压裂液技术、哈利伯顿微束聚合物压裂液体系、高黏度水基压裂液、无聚合物压裂液体系、低凝胶硼酸压裂液、无固相压裂液、无破胶剂压裂液技术压裂液。
油基压裂液体系及技术:低渗、低压、水敏性油气藏储量占每年探明储量的1/3而且有继续上升的趋势,有效合理地开发这部分油气藏对稳定增加油气产量意义重大。
压裂液体系研究的进展与展望
求 ,发展 了聚合物 交联 ” ’ 与延迟破胶 技术 。 足压裂 工程的需 要 来满
交联聚合物所片 到的聚合物除了聚合物压裂液 中所 采用的聚合物外 , {
还有合成聚合物 ,合成聚合物有聚丙烯酰胺 、 丙烯 酸钠 、聚丙烯酸 , 聚 酯 、聚乙烯基胺 、 乙烯醇 、 聚 聚乙烯吡咯烷酮 、聚乙烯 吗啉 、丙烯 酰 胺与乙烯基苯 甲基磺酸盐或乙烯基 苯磺酸盐 共聚物等。
H C CMHE 应 用最 多 E和 C 2 聚 合 物 交 联 压 裂 液
1 9 年 ,随着粘弹性表 面活性 剂技 术的发腱 ,压裂液的研制和开 97 发取 得 了 突破 性 进 聪 。 S hu eg t 荐了 一 种 粘弹 性 流 体 用 于 c lmb re推 ‘ G o a n 的 修井 作 业 ,即所 没 计的 压裂 液 使用 粘 弹性 表 面 活性 剂 i na v (E) V S而不 用聚合物 V S E 压裂液粘 度低 ,但能 有效地输送 支撑 剂 . 原 因在 于V S E 压裂液携带 支撑 剂是依靠流体的塑性和结构而不是流体 的粘 度 ,矧时能降低摩阻 力 .该压裂液配制简单 .主要州VE 在盐 水 S } 配, J 溶解性 能 良好 ,不需要交联剂 、 破胶剂和其它化学添』 剂 , 』 u 无地层 伤害并 能使 充填层保持 良好的导流能 力,凶此也叫清洁型压 裂
植物胶具有增粘 、 降阻 、 热降解等特点 ,人们对其冻胶性 能的研 究较多 。冻胶体系组成有植物胶 、交联剂和破胶 剂等 . 交联 剂包括有 . 机硼或硼酸盐 、有机锆 、有机硼锆等 .破胶剂为过疏酸铵 。采用硼 交 . 联 的植 物胶压裂液对剪切敏感性较 小 ,且具有价廉 、清洁 、 毒 、 无 粘 弹性好 等优点 有机硼 交联植物 胶压裂 液具有 明显延迟 交联 、高弹 性 、剪切恢 复能力 、悬浮圊相颗粒 能力和低滤失特性 。有机锆 交联的 羟丙基 香豆胶 冻胶具有耐热 剪切的应 用性 能。有机硼锆交联羟丙基瓜 尔胶 ,交联时 约 10 , 8 s 耐温高于 10 6o C。
水力压裂技术研究现状及发展趋势
水力压裂技术研究现状及发展趋势一、引言水力压裂技术是一种通过高压水将岩石裂开的方法,以便在其中注入液体或气体。
该技术广泛应用于石油和天然气勘探和生产领域。
本文旨在通过对水力压裂技术的现状和发展趋势进行研究,以了解该技术的最新进展和未来发展方向。
二、水力压裂技术的基本原理1.1 原理介绍水力压裂技术是一种将高压水注入地层中,以产生足够的裂缝来释放储层中的天然气或石油的方法。
该技术可以通过在井口附近钻孔并注入高压水来实现。
当高压水进入地层后,它会向外扩张,并在地层中形成裂缝。
这些裂缝可以增加储层中可供采集的天然气或石油量。
1.2 水力压裂技术的主要步骤(1)井口附近钻孔;(2)注入高压水;(3)形成地层中的裂缝;(4)释放储层中的天然气或石油。
三、水力压裂技术的现状2.1 技术应用范围水力压裂技术广泛应用于石油和天然气勘探和生产领域。
在美国,该技术已被广泛应用于页岩气和页岩油的开采。
2.2 技术发展历程水力压裂技术最早是在20世纪40年代开发出来的。
当时,该技术主要用于增加储层中可供采集的天然气或石油量。
随着时间的推移,该技术得到了不断改进,并被广泛应用于各种类型的储层中。
2.3 技术优势和不足之处水力压裂技术具有以下优势:(1)可以提高储层中可供采集的天然气或石油量;(2)可以增加能源产量;(3)可以减少对进口能源的依赖;(4)可以创造就业机会。
但是,该技术也存在一些不足之处:(1)可能会对环境造成负面影响;(2)可能会导致地震活动;(3)可能会对地下水资源造成污染。
四、水力压裂技术的发展趋势3.1 技术改进和创新随着技术的不断发展,水力压裂技术将继续得到改进和创新。
例如,可以通过改变注入液体的化学成分来提高效率,并减少对环境的影响。
3.2 研究新的能源资源随着传统石油和天然气储层的逐渐枯竭,研究新的能源资源将成为未来水力压裂技术发展的重点。
例如,可以研究深层天然气、页岩气和煤层气等资源。
3.3 加强环保措施由于水力压裂技术可能会对环境造成负面影响,因此加强环保措施将成为未来该技术发展的重点。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望1. 引言1.1 研究背景水平井压裂是一种通过注入高压液体使岩石裂缝扩展,从而提高油气流动性的技术。
随着油气资源勘探难度的增加和需求的持续增长,水平井压裂技术逐渐成为油气开发中的重要手段。
研究人员通过不断改进和创新,使水平井压裂技术在提高产能、延长井寿命、降低成本等方面取得显著成效。
研究背景部分主要围绕水平井压裂技术在油气开发中的重要性展开,包括技术的发展历程、应用范围和取得的成果等方面。
还需对当前水平井压裂技术存在的问题和局限性进行分析,为后续的技术展望和发展方向提供参考。
水平井压裂技术的研究背景可以帮助读者全面了解该技术的来源、发展和应用背景,为正文部分的技术现状分析和展望打下基础。
1.2 研究目的研究目的是深入探讨水平井压裂工艺技术在油气勘探开发中的应用现状及存在的问题,进一步分析其在提高油气产量、延长井筒寿命、降低生产成本等方面的优势和局限性。
通过对当前水平井压裂工艺技术的实际案例进行分析,总结出其在不同地质条件下的适用情况,并对未来水平井压裂工艺技术发展方向和应用前景进行展望。
本文旨在探讨水平井压裂工艺技术在提高油气资源开发利用效率、保障能源安全、推动油气行业可持续发展方面的重要性,为相关领域的研究和实践提供参考和借鉴。
2. 正文2.1 水平井压裂工艺技术现状分析水平井压裂是一种常用的油气田开发技术,通过水平井钻井技术和压裂技术结合应用,可以有效提高油气田产量。
目前,水平井压裂工艺技术在油气田开发中得到了广泛应用,取得了显著的效果。
水平井压裂工艺技术可以有效提高储层的产能。
通过水平井的钻井,可以延长井底与储层的接触长度,从而提高了储层的开采效率。
通过压裂技术,可以有效破裂储层岩石,增加储层的渗透率,提高了油气的采收率。
水平井压裂工艺技术可以减少油气井的生产成本。
相比传统垂直井,在水平井的钻井工艺中,可以减少钻井长度和材料消耗,从而减少了工程投入。
水平井的压裂技术可以避免井底多次压裂导致的井壁损坏和井筒塌陷问题,减少了维护成本。
CO_(2)压裂技术现状与发展趋势
CO2压裂技术现状与发展趋势闫琪(延长气田质量监督中心,陕西延安 716000)摘要:CO2压裂是国内外近年发展起来的一项压裂新技术。
对其压裂的主要技术特点、技术分类及应用做了较详细的介绍和分析,得出CO2 压裂的发展趋势。
关键词:CO2压裂;现状;发展趋势中图分类号:F403.6 文献标志码:A 文章编号:1008-4800(2021)11-0089-02DOI:10.19900/ki.ISSN1008-4800.2021.11.044Current Status and Development Trend of CO2 Fracturing TechnologyYAN Qi(Quality Supervision Center of the Oil and Gas Exploration Company, Yan'an 716000, China) Abstract: CO2 fracturing is a new fracturing technology developed at home and abroad in recent years. The main technical characteristics, technical classification and application of its fracturing are introduced and analyzed in more detail, and the development trend of CO2 fracturing is obtained.Keywords: CO2 fracturing; current status; development trend0引言国外于20世纪50年代开始CO2泡沫压裂试验,1981年纯液态CO2压裂技术首次于加拿大应用并申请专利,1986年德国成功进行了CO2泡沫压裂,其后美国开展了大量的CO2泡沫压裂。
关于水平井压裂工艺技术现状及展望
关于水平井压裂工艺技术现状及展望发布时间:2021-07-28T10:40:18.250Z 来源:《基层建设》2021年第13期作者:张云龙[导读] 摘要:随着我国经济的不断发展,石油能源的需求量也是不断提升,而我国石油储备正处于逐渐衰竭的趋势,所以石油开采行业需要进一步改革。
中国石油渤海钻探井下作业分公司河北任丘 062552摘要:随着我国经济的不断发展,石油能源的需求量也是不断提升,而我国石油储备正处于逐渐衰竭的趋势,所以石油开采行业需要进一步改革。
油水井压裂技术属于重要的石油开采工程,随着资源不断困乏、环境污染的加大,油水井压裂技术也出现了各种问题。
因此,为了满足我国经济发展的需求和人们对环境保护的要求,需要对油水井压裂技术进行改造,具体方案也需要进一步优化设计。
在油气开采中,水平井压裂工艺具有泄油面积大和单井产量高的特点,在油气开采中得到了广泛应用。
关键词:水平井;压裂工艺;展望前言石油开发问题关系着我国经济的发展和人们的正常生活、生产,而随着我国石油开采量的增大、石油储备的降低,导致油水井压裂改造成为开采工程的重中之重。
本文就是针对目前油水井压裂改造技术存在的问题进行分析,顺应经济发展和石油开采的需求。
本文首先分析了油水井压裂技术的相关理论,然后剖析了油水井压裂技术存在的主要问题,最后总结了改造方案优化设计的相关对策。
一、水平井的优势及压裂原理1.水平井压裂原理在油气开采中,水平井压裂所生产的裂缝和水平井筒轴线方向有关系。
在水平井压裂中,如果井筒和最大应力方向相同,就会形成和最小应力方向垂直的纵向裂缝。
如果井筒和最大主应力方向垂直,就会形成最大主应力方向延伸的横向裂缝。
在油气开采中,在进行水平井压裂之前,油气通常是以径向流的流动趋势聚集在井壁周围,相对来说渗流阻力比较大。
通过水平井压裂后,流向会平行于裂缝的缝面,相对来说阻力会有所降低,能够更好地对油气资源进行开采。
2.水平井的优势在油气开采中,由于水平井所接触油气储层长度比较大,能够很好地增加储层的泄油面积,提高油气产量。
压裂技术现状及发展趋势
压裂技术(jìshù)现状及发展趋势(长城(Chángchéng)钻探工程技术(jìshù)公司(ɡōnɡsī)) 在近年(jìn nián)油气探明储量中,低渗透储量所占比例上升速度在逐年加大。
低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开辟中的作用日益明显。
1、压裂技术发展历程自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开辟效果的重要手段。
压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。
压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。
(2)1970年-1990年:中型压裂。
通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开辟。
(3)1990年-1999年:整体压裂。
压裂技术开始以油藏整体为单元,在低渗透油气藏形成为了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开辟中发挥了巨大作用。
(4)1999年-2005年:开辟压裂。
考虑井距、井排与裂缝长度的关系,形成最优开辟井网,从油藏系统出发,应用开辟压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。
(5)2005年-今:广义的体积压裂。
从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。
2、压裂技术(jìshù)发展现状经过五个阶段的发展,压裂技术(jìshù)日益完善,形成为了三维压裂设计软件和压裂井动态预测(yùcè)模型,研制(yánzhì)出环保(huánbǎo)的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开辟的重要手段之一。
压裂液课多媒体
3.乳化压裂液
两份油 + 一份稠化水(聚合物)
油相<50%,压裂液粘度太低 >80%,不稳定或粘度太高
4.泡沫压裂液
适用:
K<1MD, 粘土含量高的砂岩气藏 低压、低渗油气层压裂
液相 + 气相 + 添加剂泡沫液 液相:
清水、盐水、冻胶水、原油或成品油、酸液
气相
氮气、二氧化碳、空气、天然气等
油田的压裂液现状
压裂液-①低粉比胍胶压裂液
对常规胍胶压裂液体系,在确保携砂能力的条件下,尽可能
减少胍胶浓度,以减小残渣对地层的伤害。优选具有较宽交联
比范围和良好延缓交联性能的交联剂, 减少管内和裂缝内的流动 摩阻。
井深:3000~3700m 井深:2500~3000m , 井深:1500~2500m, 井深:小于1500m, 0.55%GRJ 0.50%GRJ 0.40~0.45%GRJ 0.35%GRJ
羧甲基纤维素(CMC)水基冻胶压裂液 聚丙烯酰胺(PAM)与甲叉基聚丙烯酰胺 (PAMM)水基压裂液 羟丙基胍胶压裂液 羧甲基羟丙基胍胶(CMHPG)
2.油基压裂液
发展历程: 20世纪60年代—羧酸铝盐; 20世纪70年代—铝磷酸酯盐; 如今--铝磷酸酯化学剂
适应: 水敏性地层、有些气层 基液: 原油、汽油、柴油、煤油、凝析油 稠化剂:脂肪酸皂、脂肪酸铝皂、磷酸脂铝盐等 特点: 遇地层水后会自动破乳
在压裂液类型中占有主导作用。
80年代泡沫压裂液大规模的现场应用,取代了部分水基压裂液。 目前仍是以水基压裂液为主(占65%),泡沫压裂液(占30%),油
基压裂液、乳化压裂液(占5%)共存的局面。其中,在水基压裂液中,硼交