2020年黑龙江省哈尔滨市中考数学模拟优化试卷(四)解析版
黑龙江省哈尔滨市南岗区市级名校2024届中考数学模试卷含解析
黑龙江省哈尔滨市南岗区市级名校2024年中考数学模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是A.B.C.D.2.下列图形不是正方体展开图的是()A.B.C.D.3.已知反比例函数y=kx的图象在一、三象限,那么直线y=kx﹣k不经过第()象限.A.一B.二C.三D.四4.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.45.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A.60°B.50°C.40°D.30°7.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.68.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.309.9的值是()A.±3 B.3 C.9 D.8110.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.12.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.13.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.14.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S 四边形DECA的值为_____.15.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)16.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.17.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.19.(5分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从21.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(15,22)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.22.(10分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.24.(14分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】本题主要考查二次函数的解析式【题目详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为. 故选D.【题目点拨】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.2、B【解题分析】由平面图形的折叠及正方体的展开图解题.【题目详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【题目点拨】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.根据反比例函数的性质得k >0,然后根据一次函数的进行判断直线y=kx-k 不经过的象限.【题目详解】∵反比例函数y =k x的图象在一、三象限, ∴k >0, ∴直线y=kx ﹣k 经过第一、三、四象限,即不经过第二象限.故选:B .【题目点拨】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=k x(k 为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.4、B【解题分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【题目详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =x m ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【题目点拨】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6、C【解题分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.【题目详解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故选:C.【题目点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7、A【解题分析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【题目详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902ππ⨯⨯⨯⨯-=1312π-,故选A.【题目点拨】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8、D【解题分析】试题解析:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.9、C【解题分析】试题解析:∵93∴9的值是3故选C.10、D【解题分析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【题目详解】解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,12、60°【解题分析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°13、2 2【解题分析】首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【题目详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为22.故答案为:2.【题目点拨】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.14、1:1【解题分析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【题目详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【题目点拨】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15、//DF AC 或BFD A ∠=∠【解题分析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.16、5750【解题分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【题目详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%,∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m +40n +xn ,∴W =60m +40n +20n ﹣250=60(m +n )﹣250,∵m +n ≤100,∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【题目点拨】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格17、8【解题分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【题目详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),5,=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x(x <0)中,得k=8. 给答案为:8.【题目点拨】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析.【解题分析】试题分析:(1)选取①②,利用ASA 判定△BEO ≌△DFO ;也可选取②③,利用AAS 判定△BEO ≌△DFO ;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.19、⑴;⑵答案不唯一.如;⑶.【解题分析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.20、【解题分析】试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×35100=126°;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)=61 122.考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.21、(1)(4,6);y=1x1﹣8x+6(1)498;(3)点P的坐标为(3,5)或(711,22).【解题分析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论. 【题目详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=1x1﹣8x+6 ②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+1=.∴P1(,).∵点P1(3,5)、P1(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【题目点拨】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用. 22、(1)m=3,k=12;(2)或【解题分析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=kx,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【题目详解】解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=kx的图像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得236 kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【题目点拨】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.23、(1)见解析;(2)见解析;【解题分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.24、(6+23)米【解题分析】根据已知的边和角,设CQ=x,BC=3QC=3x,PC=3BC=3x,根据PQ=BQ列出方程求解即可.【题目详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,33x,∴在Rt△PBC中3BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3,3PQ=PC-CQ=3x-x=2x=6+23PQ高为(6+23解得33【题目点拨】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.。
2020年黑龙江省哈尔滨市中考数学试题及参考答案(word解析版)
哈尔滨市2020年初中升学考试数学试卷(满分120分,考试时间120分钟)第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.答案与解析第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.【知识考点】倒数.【思路分析】根据乘积为1的两个数互为倒数,可求一个数的倒数.【解题过程】解:﹣8的倒数是﹣,故选:A.【总结归纳】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.【解题过程】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.【总结归纳】本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解题过程】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.【总结归纳】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°【知识考点】圆周角定理;切线的性质.【思路分析】根据切线的性质和圆周角定理即可得到结论.【解题过程】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.【总结归纳】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 【知识考点】二次函数图象与几何变换.【思路分析】根据“上加下减,左加右减”的原则进行解答即可.【解题过程】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.【总结归纳】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【知识考点】轴对称的性质.【思路分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解题过程】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.【总结归纳】本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=9【知识考点】解分式方程.【思路分析】根据解分式方程的步骤解答即可.【解题过程】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.【总结归纳】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】利用概率公式可求解.【解题过程】解:∵从袋子中随机摸出一个小球有9种等可能的结果,其中摸出的小球是红球有6种,∴摸出的小球是红球的概率是=,故选:A.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=【知识考点】相似三角形的判定与性质.【思路分析】根据平行线分线段成比例性质进行解答便可.【解题过程】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.【总结归纳】本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:4790000=4.79×106,故答案为:4.79×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解题过程】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.【知识考点】反比例函数图象上点的坐标特征.【思路分析】把(﹣3,4)代入函数解析式y=即可求k的值.【解题过程】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.【总结归纳】本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.计算+6的结果是.【知识考点】二次根式的性质与化简;二次根式的加减法.【思路分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解题过程】解:原式=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.把多项式m2n+6mn+9n分解因式的结果是.【知识考点】提公因式法与公式法的综合运用.【思路分析】直接提取公因式n,再利用完全平方公式分解因式得出答案.【解题过程】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.抛物线y=3(x﹣1)2+8的顶点坐标为.【知识考点】二次函数的性质.【思路分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解题过程】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).【总结归纳】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.不等式组的解集是.【知识考点】解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解题过程】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.【总结归纳】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.【知识考点】扇形面积的计算.【思路分析】根据扇形面积公式S=,即可求得这个扇形的圆心角的度数.【解题过程】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.【总结归纳】本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.【知识考点】含30度角的直角三角形.【思路分析】在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.【解题过程】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.【知识考点】菱形的性质.【思路分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=x,解得x=2,然后利用勾股定理计算OA,再计算AE 的长.【解题过程】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA===,在Rt△AOE中,AE===2.故答案为2.【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.【知识考点】分式的化简求值;特殊角的三角函数值.【思路分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解题过程】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.【知识考点】等腰三角形的判定;勾股定理;作图—应用与设计作图.【思路分析】(1)画出边长为的正方形即可.(2)画出两腰为5,底为的等腰三角形即可.【解题过程】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.EG==.【总结归纳】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.【知识考点】用样本估计总体;条形统计图.【思路分析】(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的,因此估计总体800名的是最喜欢“剪纸”的人数.【解题过程】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【总结归纳】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.【知识考点】全等三角形的判定与性质;等腰三角形的判定与性质.【思路分析】(1)根据SAS可证△ABD≌△ACE,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.【解题过程】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FBD=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.【总结归纳】考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.【解题过程】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.【总结归纳】本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.【知识考点】圆的综合题.【思路分析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.【解题过程】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.【总结归纳】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.【知识考点】一次函数综合题.【思路分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD (用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR =m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.【解题过程】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).【总结归纳】本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21。
黑龙江省哈尔滨市2020年中考数学试题(解析版)
哈尔滨市2020年初中升学考试数学试卷一、选择题1.8-的倒数是( )A. 18-B. -8C. 8D. 18【答案】A【解析】【分析】由倒数的定义求解即可.【详解】解:∵ ()1--8=18⎛⎫⨯ ⎪⎝⎭,∴根据倒数的定义知:﹣8的倒数是18-. 故选:A .【点睛】本题主要考查了倒数的定义,乘积为1的两数互为倒数.2.下列运算一定正确的是( )A. 224a a a +=B. 248a a a ⋅=C. ()428=a aD. ()222a b a b +=+ 【答案】C【解析】【分析】根据合并同类项、同底数幂的乘法、幂的乘方以及完全平方公式逐项计算即可.【详解】解:∵2222a a a +=,∴选项A 不正确;∵246a a a ⋅=,∴选项B 不正确;∵()428=a a ,∴选项C 正确;∵()2222a b a ab b +=++,∴选项D 不正确;故选C .【点睛】本题考查了整式的运算,熟练掌握运算法则及完全平方公式是解答本题的关键.同底数的幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变. 完全平方公式是(a ±b )2=a 2±2ab +b 2.3.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、该图形是轴对称图形,但不是中心对称图形,故A错误;B、该图形既是轴对称图形又是中心对称图形,故B正确;C、该图形是轴对称图形,但不是中心对称图形,故C错误;D、该图形是轴对称图形,但不是中心对称图形,故D错误;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.五个大小相同的正方体塔成的几何体如图所示,其左视图是()A. B. C. D.【答案】C【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看第一层有两个小正方形,第二层右边有一个小正方形,故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.AD CD OA,若5.如图AB是O直径,点A为切点,OB交O于点C,点D在O上,连接,,∠=︒,则ABO35ADC∠的度数为()A. 25︒B. 20︒C.30 D. 35︒【答案】B【解析】【分析】 根据同弧所对的圆心角等于所对圆周角的2倍,由35ADC ∠=︒可求出∠AOC =70︒.再由AB 为圆O 的切线,得AB ⊥OA ,由直角三角形的两锐角互余,即可求出∠ABO 的度数,【详解】解:∵AC AC = ,∴223570AOC ADC ∠=∠=⨯︒=︒,∵AB 为圆O 的切线,∴AB ⊥OA ,即∠OAB =90°,∴90907020ABO AOC ∠=︒-∠=︒-︒=︒,故选:B .【点睛】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.将抛物线2y x 向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为( ) A . ()235y x =++B. ()235y x =-+C. ()253y x =++D. ()253y x =-+ 【答案】D【解析】【分析】用顶点式表达式,按照抛物线平移的公式即可求解.【详解】解:将抛物线2y x 先向上平移3个单位长度,再向右平移5个单位长度后,函数的表达式为:()253y x =-+.故选:D .【点睛】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.7.如图,在Rt ABC 中,90,50,BAC B AD BC ∠=︒∠=︒⊥,垂足为D ,ADB △与ADB '关于直线AD对称,点的B 对称点是B ',则CAB '∠的度数是( )A. 10︒B. 20︒C. 30D. 40︒【答案】A【解析】【分析】由三角形内角和定理,得到=40C ∠︒,由轴对称的性质,得到=50AB D '∠︒,根据外角的性质即可得到答案.【详解】解:在Rt ABC 中,90,50BAC B ∠=︒∠=︒,∴=40C ∠︒,∵ADB △与ADB '关于直线AD 对称,∴50AB D B '∠=∠=︒,∴504010CAB '∠=︒-︒=︒;故选:A .【点睛】本题考查了轴对称的性质,三角形的外角性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的性质定理,正确的进行角度的计算.8.方程2152x x =+-的解是( ) A. 1x =-B. 5x =C. 7x =D. 9x = 【答案】D【解析】【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解.【详解】解:方程可化简为()225x x -=+245x x -=+9x =经检验9x =是原方程的解故选D【点睛】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键.9.一个不透明的袋子中装有9个小球,其中6个红球,3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是()A. 23B.12C.13D.19【答案】A【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,∴从袋子中随机摸出一个小球,则摸出的小球是红球的概率为62 93 =.故选:A.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.10.如图,在ABC中,点D在BC上,连接AD,点E在AC上,过点E作//EF BC,交AD于点F,过点E作//EG AB,交BC于点G,则下列式子一定正确的是()A. AE EFEC CD= B.EG EFAB CD= C.AF BGFD GC= D.CG AFBC AD=【答案】C【解析】【分析】根据由平行线易得△AEF∽△ACD,△CEG∽△CAB,再根据相似三角形的性质和平行线分线段成比例定理逐个判断即可.【详解】解:∵//EF BC,∴△AEF∽△ACD,∴AE EF AFAC CD AD==,故选项A错误;∴EC CD EF FD AC CD AD-==,∵//EG AB,∴△CEG∽△CAB,∴EG CG EC AB BC AC==, ∴EG CD EF AB CD -=,故选项B 错误;CG FD BC AD =,故选项D 错误; ∵//EF BC , ∴AF AE FD EC=, ∵//EG AB , ∴BG AE CG EC=, ∴AF BG FD CG =,故选项正确C . 故选:C .【点睛】本题考查了平行线分线段成比例定理和相似三角形的性质和判定,能得出正确的比例式是解此题的关键.二、填空题11.将数4790000用科学计数法表示为_____________.【答案】64.7910⨯【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此即可解题. 【详解】解:64790000 4.7910=⨯.故答案为:64.7910⨯.【点睛】此题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.12.在函数7x y x =-中,自变量x 的取值范围是_____________________. 【答案】x ≠7.【解析】【分析】根据分式有意义,分母不等于0,可以求出x 的范围. 【详解】解:由7x y x =-有意义,得故答案为:x ≠7.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.已知反比例函数k y x =的图像经过点()3,4-,则k 的值是____________________. 【答案】﹣12【解析】【分析】直接将点()3,4-代入反比例函数解析式中,解之即可.【详解】依题意,将点()3,4-代入k y x =,得:43k =-, 解得:k =﹣12,故答案为:﹣12.【点睛】本题主要考查反比例函数图象上的点的坐标特征,熟练掌握图象上的坐标与解析式的关系是解答的关键.14.___________________.【答案】【解析】【分析】根据题意可知,本题考察二次根式的运算,根据二次根式的化简,即可进行求解.【详解】解:原式==故答案为:【点睛】本题考察了二次根式的运算,先化简再进行合并二次根式是解决此类问题的关键.15.把多项式269m n mn n ++分解因式结果是________________________.【答案】2(3)n m +先提公因式,再利用完全平方公式进行因式分解即可.【详解】原式=2(69)n m m ++=2(3)n m +,故答案为:2(3)n m +.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解答的关键.16.抛物线23(1)8y x =-+的顶点坐标为______________________________.【答案】(1,8)【解析】【分析】根据题意可知,本题考察二次函数的性质,根据二次函数的顶点式,进行求解.【详解】解:由二次函数性质可知,()2y a x h k =-+的顶点坐标为(h ,k )∴23(1)8y x =-+的顶点坐标为(1,8)故答案为:(1,8)【点睛】本题考查了二次函数的性质,先把函数解析式配成顶点式根据顶点式即可得到顶点坐标. 17.不等式13352x x ⎧≤-⎪⎨⎪+<⎩的解集为_______________.【答案】x≤-3.【解析】【分析】分别求出每个不等式的解集,然后再取它们的公共部分即可. 【详解】13352x x ⎧≤-⎪⎨⎪+<⎩①②解不等式①得,x≤-3;解不等式②得,x <-1;所以,不等式组的解集为:x≤-3.【点睛】本题主要考查了求不等式组的解集,熟记口诀“大大取大,小小取小,大小小大中间找,大大小小找不了(空集)”.18.一个扇形的面积为213cm π,半径为6cm ,则扇形的圆心角是_______________度.【答案】130°.【解析】【分析】设扇形的圆心角是n°,根据扇形的面积公式即可得到一个关于n 的方程,解方程即可求解.【详解】解:设扇形的圆心角是n°,根据扇形的面积公式得:13π=26360n π, 解得n=130.故答案是:130°.【点睛】本题考查了扇形的面积公式,正确理解公式是关键. 19.在ABC ∆中,60ABC ∠=︒,AD 为BC 边上的高,63,1AD CD ==,则BC 的长为___________.【答案】7或5【解析】【分析】如图所示,分D 在BC 之间和BC 延长线上两种情况考虑,先由60ABC ∠=︒求出BD ,再求出BC 的长.【详解】解:如图,∵在Rt △ABD 中,60ABC ∠=︒,63AD =,∴tan AD ABC BD ∠=,即:633BD= ∴6BD =, 当D 在BC 之间时,BC =BD +CD =6+1=7;当D 在BC 延长线上时,BC =BD -CD =6-1=5;故答案为:7或5.【点睛】此题主要考查了解三角形,根据已知得出两种符合要求图形,即三角形为钝角三角形或锐角三角形分别分析是解题关键.20.如图,在菱形ABCD 中,对角线,AC BD 相交于点O ,点E 在线段BO 上,连接AE ,若2CD BE =,DAE DEA ∠=∠,1EO =,则线段AE 的长为_____.【答案】22【解析】【分析】设BE=x ,根据菱形性质可得到AB= AD=CD=2x ,进而得到1=12OE x =,解得x 值,根据勾股定理即可求得AE 值.【详解】解:设BE=x ,∵菱形ABCD ,∴AB= AD=CD=2x ,∵DAE DEA ∠=∠,∴==2DE AD x ,∴BD=3x ,∴OB=OD=32x , ∴1=12OE x =, ∴x=2,∴AB=4,BE=2, ∴227OA AB OB =- ∴227122AE OA OE =++=故答案为:22【点睛】本题考查菱形的性质结合勾股定理的应用,熟练掌握菱形性质是解题的关键.三、解答题21.先化简,再求代数式2211122x x x -⎛⎫-÷ ⎪++⎝⎭的值,其中4cos301x =︒-【答案】原式21x =+【解析】【分析】先根据分式的运算法则化简,再利用cos30=°求得x 的值,代入计算即可. 【详解】解:原式12(1)(1)=12(1)x x x x x +--+÷++ 12(1)=1(1)(1)x x x x x -+⋅+-+ 2=1x +, ∵4cos301x =︒-,∴412x =⨯-1=,∴原式= 【点睛】本题考查了分式的化简求值,特殊角的三角函数值,二次根式的计算,熟练掌握相关运算法则是解决本题的关键.22.如图,方格纸中每个小正方形的边长为1,线段AB 和线段CD 的端点均在小正方形的顶点上. (1)在图中画出以AB 为边的正方形ABEF ,点E 和点F 均在小正方形的顶点上;(2)在图中画出以CD 为边的等腰三角形CDG ,点G 在小正方形的顶点上,且CDG ∆的周长为10连接EG ,请直接写出线段EG 的长.【答案】(1)画图见解析;(2)画图见解析,EG=5.【解析】【分析】(1)根据正方形的判定作图可得;(2)根据等腰三角形与勾股定理可得答案.【详解】解:(1)如图所示,正方形ABEF即为所求;(2)如图所示,△CDG即为所求,由勾股定理,得EG=22+=.125【点睛】本题考查作图-应用与设计、等腰三角形的性质、勾股定理、正方形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢的哪一类?的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%,请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生;(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.【答案】(1)50;(2)见解析;(3)320【解析】【分析】(1)根据最喜欢绘画小组的学生人数占所调查人数的30%求出总人数即可;(2)先求出最喜欢舞蹈的学生人数,进而补全条形统计图即可;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)15÷30%=50(名),答:本次调查共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×2050=320(名), 答:估计该中学最喜欢剪纸小组的学生有320名. 【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.24.已知,在ABC ∆中,AB AC =,点D ,点E 在BC 上,BD CE =,连接,AD AE .(1)如图1,求证:AD AE =;(2)如图2,当45∠=∠=︒DAE C 时,过点B 作//BF AC ,交AD 的延长线于点F ,在不添加任何辅助线的情况下,请直接写出图2中四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.【答案】(1)证明见解析;(2)ADE 、BAE △、BDF 、CAD .【解析】【分析】(1)AB AC =可得A ABC CB =∠∠,进而利用SAS 证明ABD ACE ≅,即可得出结论;(2)由已知计算出图形中角的度数,由等角对等边即可得出结论.【详解】(1)证明:如图1,AB AC =,B C ∴∠=∠,在ABD △和ACE △中,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE ≅(SAS ),∴AD AE =;(2)顶角为45°的等腰三角形有以下四个:ADE 、BAE △、CAD 、BDF .证明:∵45C ∠=︒,AB AC =,∴45ABC ACB ∠=∠=︒,90ACB ∠=︒,∵45DAE ∠=︒,AD AE =,即:ADE 是等腰三角形,45DAE ∠=︒; ∴1804567.52ADE AED ︒-︒∠=∠==︒, ∴67.54522.5BAD CAE ∠=∠=︒-︒=︒,∴22.54567.5BAE CAD ∠=∠=︒+︒=︒,∴67.5BAE BEA CAD CDA ∠=∠=∠=∠=︒,∴CA CD =、AB AE =即:BAE △、CAD 是等腰三角形,45ABC ACB ∠=∠=︒,∵//BF AC∴∠DBF=∠C=45°,67.5F CAD ∠=∠=︒,又∵67.5BDF ADC ∠=∠=︒,∴67.5BDF F ∠=∠=︒,∴BD BF =、即:BDF 是等腰三角形,45DBF ∠=︒.【点睛】本题考察了等腰三角形性质和判定及全等三角形性质和判定,掌握等腰三角形性质和判定是解题关键.25.昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需要136元;若购买2个大地球仪和1个小地球仪需要132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪.【答案】(1)每个大地球仪52元,每个小地球仪28元;(2)昌云中学最多可以购买5个大地球仪.【解析】【分析】(1)设每个大地球仪x 元,每个小地球仪y 元,根据题意列出方程组求解即可;(2)设昌云中学可以购买m 个大地球仪,则购买小地球仪(30-m)个,根据题意列出不等式求解即可. 【详解】解:(1)设每个大地球仪x 元,每个小地球仪y 元,由题意可得31362132x y x y +=⎧⎨+=⎩, 解得:5228x y =⎧⎨=⎩, 答:每个大地球仪52元,每个小地球仪28元;(2)设昌云中学可以购买m 个大地球仪,则购买小地球仪(30-m)个,根据题意得52m+28(30-m)≤960解得m≤5∴昌云中学最多可以购买5个大地球仪.【点睛】本题考查了二元一次方程组的实际应用和一元一次不等式的实际应用,根据题意列出式子是解题关键.26.已知O 是ABC 的外接圆,AD 为O 的直径,AD BC ⊥,垂足为E ,连接BO ,延长BO 交AC 于点F .(1)如图1,求证:3BFC CAD ∠=∠;(2)如图2,过点D 作//DG BF ,交O 于点G ,点H 为GD 的中点,连接OH ,求证:BE OH =; (3)如图3,在(2)的条件下,连接CG ,若,DG DE AOF =∆CG 的长.【答案】(1)见详解;(2)见详解;(3)26.【解析】【分析】(1)先推出∠BAD=∠CAD,然后根据圆周角定理可得出∠BOD=2∠BAD=2∠CAD,根据∠BOD=∠AOF,可得出∠AOF=2∠CAD,根据∠BFC=∠AOF+∠CAD,即可证明结论;(2)连接OG,证明△OBE≌△DOH,即可证明结论;(3)连接AG,过A点作AM⊥CG于点M,过F点作FN⊥AD于点N,先推出DE=2OE,设OE=m,则DE=2m,OB=OD=OA=3m,AE=4m,根据勾股定理得出CE=BE=22m,再求出tan∠BOE=BEOE22m22tan∠EAC=CEAE22m2tan∠AOF=tan∠BOE=22NF ON =22设ON=a,则NF=22,可得tan∠EAC=2222NF aAN AN==,解出AN,根据AN+NO=AO,解出a=35m,再根据S△AOF=12·OA·FN=925m=1,可得出DH=1,OD=3,BE=CE=OH=22AE=4,根据勾股定理可得AC=6OD=OA,DH=HG,得出AG=2OH=42cos∠ADG=cos∠ACM,即可求出26,利用勾股定理可得83,46,即可得出答案.【详解】解:(1)∵AD为O的直径,AD BC⊥,∴=BD CD,BE=CE,∴∠BAD=∠CAD,∵∠BOD=2∠BAD,∴∠BOD=2∠CAD,∵∠BOD=∠AOF,∴∠AOF=2∠CAD,∵∠BFC=∠AOF+∠CAD,∴∠BFC=2∠CAD+∠CAD=3∠CAD;(2)连接OG,∵点H为GD的中点,OG=OD,∴DH=GH,OH⊥DG,∵AD⊥BC,∴∠AEB=∠OHD=90°,∵DG∥BF,∴∠BOH=∠OHD=90°,即∠DOH+∠BOD=90°,∵∠BOD+∠OBE=90°,∴∠OBE=∠DOH,又∵OB=OD,∴△OBE≌△DOH,∴BE=OH;(3)如图,连接AG,过A点作AM⊥CG于点M,过F点作FN⊥AD于点N,由(2)可知DH=OE,∵DG=2DH=2OE,DG=DE,∴DE=2OE,设OE=m ,则DE=2m ,∴OB=OD=OA=3m ,∴AE=4m ,在Rt △OBE 中,=,∴CE=BE=,tan ∠BOE=BE OE =m =tan ∠EAC=CE AE =4m =2,∵tan ∠AOF=tan ∠BOE=∴NF ON =设ON=a ,则NF=,∴tan ∠EAC=2NF AN AN ==, ∴AN=4a ,∵AN+NO=AO ,∴4a+a=3m ,∴a=35m ,∴FN=×35m=5m ,∵S △AOF =12·OA·FN=5∴12· ∴m 2=1,∴m=±1,∵m>0,∴m=1,∴DH=1,OD=3,由(2)得BE=CE=OH=AE=4,在Rt △AEC 中=∵OD=OA ,DH=HG ,∴AG=2OH=∵∠ADG+∠ACG=180°,∠ACM+∠ACG=180°,∴∠ADG=∠ACM ,∴cos ∠ADG=cos ∠ACM , ∴DH CM DO AC=,∴13 ∴, 在Rt △ACM 中,, 在Rt △AGM 中,, ∴CG=GM-CM=3. 【点睛】本题考查了圆周角定理,全等三角形的性质和判定,锐角三角函数,垂径定理,勾股定理,掌握知识点灵活运用是解题关键.27.已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B , OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值; (3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH,若,DHE DPH GQ FG ∠=∠-,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P . 【解析】【分析】 (1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据2GQ FG AF -,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD =,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12, ∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°, ∴四边形MOAC 为矩形, ∴MC=OA=12, ∵NC=OM ,∴NC=9,则MN=MC-NC=3, ∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =, ∴y=3x , 设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D , ∴3(,)4E a a ,(a,0)D , ∴PE=39344a a a -=,OD=a , ∴9944aPEOD a ==; (3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T , ∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR , ∴∠OSR=∠R=∠AOS=∠BSG=90°, 则四边形OSRA 为矩形, ∴OS=AR ,SR=OA=12, ∵OA=OB ,∴∠OBA=∠OAB=45°, ∴∠FAR=90°-∠AFR=45°, ∴∠FAR=∠AFR , ∴FR=AR=OS , ∵QF ⊥OF ,∴∠OFQ=90°, ∴∠OFS+∠QFR=90°, ∵∠SOF+∠OFS=90°, ∴∠SOF=∠QFR , ∴△OFS ≌△FQR , ∴SF=QR ,∵∠SFB=∠AFR=45°, ∴∠SBF=∠SFB , ∴BS=SF=QR , ∵∠SGB=∠RGQ , ∴△BSG ≌△QRG , ∴SG=RG=6, 设FR=m ,则AR=m , ∴QR=SF=12-m ,∴=,∵GQ FG -=,∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4, ∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR , ∴FT=FR=AR=4,∠OTF=90°, ∴四边形OSFT 为矩形, ∴OT=FS=8, ∵∠DHE=∠DPH , ∴tan ∠DHE=tan ∠DPH , ∴DE DHDH PD=, 由(2)可知,DE=34a ,PD=3a ,∴343a DHDH a=,解得:DH=32a,∴tan∠PHD=3232PD aDH a==,∵∠PHD=∠FHT,∴tan∠FHT=2TFHT=,∴HT=2,∵OT=OD+DH+HT,∴3282a a++=,∴a=125,∴1236(,)55P【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.多送一套2019年北京卷,不喜欢可以删除2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN ∥CD(D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组N MD OBCPA成一个命题,组成真命题的个数为(A)0 (B)1 (C)2 (D)38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类别5下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是(A)①③(B)②④(C)①②③(D)①②③④二、填空题(本题共16分,每小题2分)9.若分式1xx的值为0,则x的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.图3图2图115.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s .(填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sinπ----++().18.解不等式组:4(1)2,7.3x xxx-<+⎧⎪+⎨>⎪⎩19.关于x的方程22210x x m-+-=有实数根,且m为正整数,求m的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a(a 为常数),到点O 的距离等于a 的所有点组成图形G , ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.CBA23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4; 第1天第2天第3天 第4天第5天 第6天 第7天 第1组 1x1x1x第2组 2x2x2x第3组第4组4x 4x4x③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .ABCDP小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83 AD/cm0.000.781.542.303.014.005.116.00在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;x /cmy /cm123456654321O(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .。
2020年黑龙江省哈尔滨市中考数学测试试卷(包含答案)
2020年黑龙江省哈尔滨市中考数学测试卷一.选择题(每题3分,满分30分)1.倒数为﹣2的数是()A.2B.﹣2C.﹣D.2.下列运算中,正确的是()A.6a﹣5a=1B.a2•a3=a5C.a6÷a3=a2D.(a2)3=a5 3.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.如图所示,正三棱柱的左视图()A.B.C.D.5.如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A.4B.6C.8D.106.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2D.y=﹣2(x+1)2﹣27.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m8.下列函数中,y是x的反比例函数的是()A.y=2x B.y=﹣x﹣1C.y=D.y=﹣x9.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.△ABE≌△AGF B.AE=AF C.AE=EF D.10.如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为()A.15B.10C.7.5D.5二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.若代数式在实数范围内有意义,则x的取值范围是.13.如图,长方形的长宽分别为a,b,且a比b大5,面积为10,则a2b﹣ab2的值为.14.计算:=.15.对于有理数m,我们规定[m]表示不大于m的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=﹣5,则整数x的取值是.16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.17.在半径为3cm的⊙O中,45°的圆周角所对的弧长为cm.18.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,∠AOB =60°,AC=12,则BE的长为.19.如图,PA,PB是⊙O的两条切线,A,B为切点,点D,E,F分别在线段AB,BP,AP上,且AD=BE,BD=AF,∠P=54°,则∠EDF=度.20.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E 三点在同一条直线上,连接BD,则下列结论正确的是.①△ABD≌△ACE②∠ACE+∠DBC=45°③BD⊥CE④∠EAB+∠DBC=180°三.解答题21.(7分)先化简,再求值:÷,其中x=sin45°,y=cos60°.22.(7分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点为网格线的交点)及过格点的直线l.(1)画出△ABC关于直线l对称的△A1B1C1;(2)将△ABC向上平移3个单位长度,再向左平移1个单位长度,画出平移后的△A2B2C2;(3)以A、A1、A2为顶点的三角形中,tan∠A2AA1=.23.(8分)书籍是人类进步的阶梯.联合国教科文组织把每年的4月23日确定为“世界读书日”.某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了统计图表的一部分:一个学期平均一天阅读课外书籍所有时间统计表时间(分钟)20406080100120人数(名)433115542请你根据以上信息解答下列问题:(1)补全图1、图2;(2)这100名学生一个学期平均每人阅读课外书籍多少本?若该校共有4000名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?(3)根据统计表,求一个学期平均一天阅读课外书籍所用时间的众数和中位数.24.(8分)在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.25.(10分)已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC=3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG ⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案一.选择题1.解:倒数为﹣2的数是﹣.故选:C.2.解:A、6a﹣5a=a,故此选项错误;B、a2•a3=a5,正确;C、a6÷a3=a3,故此选项错误;D、(a2)3=a6,故此选项错误;故选:B.3.解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.4.解:主视图是一个矩形,俯视图是两个矩形,左视图是正三角形,故选:A.5.解:∵AB=10,∵OB=OA=OC=5,过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,∵OB⊥CD,∴∠CEO=90°,由勾股定理得:CE===3,∵OE⊥CD,OE过O,∴CD=2CE=6,∵AB是过E的⊙O的最长弦,AB=10,∴过E点所有弦中,长度为整数的条数为1+2+2+2+1=8,故选:C.6.解:∵把抛物线y=2x2绕原点旋转180°,∴新抛物线解析式为:y=﹣2x2,∵再向右平移1个单位,向下平移2个单位,∴平移后抛物线的解析式为y=﹣2(x﹣1)2﹣2.故选:C.7.解:∵河坝横断面的迎水坡AB的坡比为3:4,BC=6m,∴=,即=,解得:AC=8.故AB===10(m).故选:C.8.解:A、y=2x是正比例函数,故本选项不符合题意.B、y是x的反比例函数,故本选项符合题意;C、y不是x的反比例函数,故本选项不符合题意;D、y=﹣x是正比例函数,故本选项不符合题意;故选:B.9.解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴B结论正确;在Rt△ABE和Rt△AGF中,,∴Rt△ABE≌Rt△AGF(HL),∴A结论正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴D结论正确;∵△AEF不是等边三角形,∴EF≠AF,∴C结论错误.故选:C.10.解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴=()2=,∴=,∵△ACD的面积为15,∴△ABD的面积=×15=5,故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:根据题意得:3﹣2x≥0,解得:x≤.13.解:∵长方形的长宽分别为a,b,且a比b大5,面积为10,∴a﹣b=5,ab=10,则a2b﹣ab2=ab(a﹣b)=5×10=50.故答案为:50.14.解:原式=2×3=6.故答案为:6.15.解:∵[m]表示不大于m的最大整数,∴﹣5≤<﹣4,解得:﹣17≤x<﹣14,∴整数x为﹣17,﹣16,﹣15,故答案为﹣17,﹣16,﹣15.16.解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.17.解:根据圆周角定理,得弧所对的圆心角是90°,根据弧长的公式l==cm,故答案为:π.18.解:在矩形ABCD中,对角线AC与BD相交于点O,∴AC=BD=12,OA=AC=6,OB=BD,∴OA=OB=6,∵∠AOB=60°,∴△ABO是等边三角形,∵AE⊥BD,∴BE=OB=3;故答案为:3.19.解:∵PA,PB是⊙O的两条切线,∴PA=PB,∴∠PAB=∠PBA==63°,在△AFD和△BDE中,,∴△AFD≌△BDE(SAS)∴∠AFD=∠BDE,∴∠EDF=180°﹣∠BDE﹣∠ADF=180°﹣∠AFD﹣∠ADF=∠FAD=63°,故答案为:63.20.解:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故①符合题意,∴BD=CE,∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故②符合题意,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故③符合题意,∵∠BAC+∠DAE+∠BAE+∠DAC=360°,∴∠BAE+∠DAC=180°,∵BD⊥CE,∠ADE=45°,∴∠ADB=45°=∠ACB,∴∠DAC=∠CBD,∴∠BAE+∠DBC=180°,故④符合题意,故答案为:①②③④.三.解答题(共5小题,满分40分)21.解:原式=÷=•=,当x=sin45°=,y=cos60°=时,原式==.22.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图,∵A2A=,A2A1=,∴A2A1=A2A,设AA1交直线l于点O,∴A1O=,∴A1O=AO,∴A2O⊥AA1,∴tan∠A2AA1==2,故答案为:2.23.解:(1)根据题意得:100﹣(9+38+25+11+9+3)=5(人);1﹣(35%+25%+6%)=34%,补全图形,如图所示;(2)根据题意得:=3(本),则这100名学生一个学期平均每人阅读课外书籍3本;根据题意得:3×4000=12000(本),则估计这个学校学生一个学期阅读课外书籍共12000本;(3)根据表格得:众数为20分钟,中位数为40分钟.24.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.25.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。
2021-2022学年黑龙江省哈尔滨市南岗区“FF联盟”市级名校中考数学四模试卷含解析
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.cos30°的值为()A.1 B.12C.33D.322.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤3.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )A.60B.65C.70D.754.如图,在矩形ABCD中,2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD 于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个5.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣26.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,207.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:38.如果关于x的分式方程1311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.99.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.310.在代数式3mm中,m的取值范围是()A.m≤3B.m≠0C.m≥3D.m≤3且m≠0二、填空题(共7小题,每小题3分,满分21分)11.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.12.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)13.已知关于x 的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2 个交点,则m=_______.14.⊙M的圆心在一次函数y=12x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.15.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -(______________+______________).易知,S △ADC =S △ABC ,______________=______________,______________=______________.可得S 矩形NFGD =S 矩形EBMF .16.在ABCD 中,AB =3,BC =4,当ABCD 的面积最大时,下列结论:①AC =5;②∠A +∠C =180o ;③AC ⊥BD ;④AC =BD .其中正确的有_________.(填序号)17.如图,在等腰Rt ABC △中,22AC BC ==,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是________.三、解答题(共7小题,满分69分)18.(10分)(1)计算:2201801()(1)4sin60(π1)2-------(2)化简:221a 4a 2a 1a 2a 1a 1---÷++++ 19.(5分)已知:如图,在矩形纸片ABCD 中,AB 4=,BC 3=,翻折矩形纸片,使点A 落在对角线DB 上的点F 处,折痕为DE ,打开矩形纸片,并连接EF .()1BD 的长为多少;()2求AE 的长;()3在BE 上是否存在点P ,使得PF PC +的值最小?若存在,请你画出点P 的位置,并求出这个最小值;若不存在,请说明理由.20.(8分)解不等式组:()3x 12x x 1x 132⎧-<⎪⎨+-<⎪⎩21.(10分)列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?22.(10分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数m y x =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0x x k b m+-的解集(请直接写出答案).23.(12分)如图,抛物线y =﹣12x 2﹣x +4与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C . (1)求点A ,点B 的坐标; (2)P 为第二象限抛物线上的一个动点,求△ACP 面积的最大值.24.(14分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=34,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】cos30°=32.故选D.2、A由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <2,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2,∴a ﹣(﹣2a )+c=3a+c <2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于2.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(2,c ).3、D【解析】由题意知:△ABC ≌△DEC ,∴∠ACB =∠DCE =30°,AC =DC ,∴∠DAC =(180°−∠DCA )÷2=(180°−30°)÷2=75°.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.4、C【解析】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5、C【解析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6、D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.7、A【解析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.8、D【解析】 解:2()43412a x x x x ①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x ≤2a +4,由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a +4≥﹣2,即a ≥﹣3,分式方程去分母得:a ﹣3x ﹣3=1﹣x ,把a =﹣3代入整式方程得:﹣3x ﹣6=1﹣x ,即72x =-,符合题意; 把a =﹣2代入整式方程得:﹣3x ﹣5=1﹣x ,即x =﹣3,不合题意;把a =﹣1代入整式方程得:﹣3x ﹣4=1﹣x ,即52x =-,符合题意; 把a =0代入整式方程得:﹣3x ﹣3=1﹣x ,即x =﹣2,不合题意;把a =1代入整式方程得:﹣3x ﹣2=1﹣x ,即32x =-,符合题意; 把a =2代入整式方程得:﹣3x ﹣1=1﹣x ,即x =1,不合题意;把a =3代入整式方程得:﹣3x =1﹣x ,即12x =-,符合题意; 把a =4代入整式方程得:﹣3x +1=1﹣x ,即x =0,不合题意,∴符合条件的整数a 取值为﹣3;﹣1;1;3,之积为1.故选D .9、D【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a ,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确;故答案选D .考点:反比例系数的几何意义.10、D根据二次根式有意义的条件即可求出答案.【详解】由题意可知:30mm-≥⎧⎨≠⎩解得:m≤3且m≠0故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.二、填空题(共7小题,每小题3分,满分21分)11、67.1【解析】试题分析:∵图中是正八边形,∴各内角度数和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案为67.1.考点:多边形的内角12、5253πcm1.【解析】求出AD,先分别求出两个扇形的面积,再求出答案即可.【详解】解:∵AB长为15cm,贴纸部分的宽BD为15cm,∴AD=10cm,∴贴纸的面积为S=S扇形ABC﹣S扇形ADE=22120π25120π10525π3603603⨯⨯-=(cm1),故答案为5253πcm1.【点睛】本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键.13、1 或0分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.【详解】解:(1)当m﹣1=0 时,m=1,函数为一次函数,解析式为y=2x+1,与x 轴交点坐标为(﹣12,0);与y 轴交点坐标(0,1).符合题意.(2)当m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣12)2<54,解得m或m.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:.故答案为1 或0 .【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.14、(1,52)或(﹣1,32)【解析】设当⊙M与y轴相切时圆心M的坐标为(x,12x+2),再根据⊙M的半径为1即可得出y的值.【详解】解:∵⊙M的圆心在一次函数y=12x+2的图象上运动,∴设当⊙M与y轴相切时圆心M的坐标为(x, 12x+2),∵⊙M的半径为1,∴x=1或x=−1,当x=1时,y=52,当x=−1时,y=3 2 .∴P点坐标为:(1, 52)或(−1,32).故答案为(1, 52)或(−1,32).【点睛】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.15、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC【解析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【详解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FG C=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分别为S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.16、①②④【解析】由当ABCD的面积最大时,AB⊥BC,可判定ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.【详解】∵当ABCD的面积最大时,AB⊥BC,∴ABCD是矩形,∴∠A=∠C=90°,AC=BD,故③错误,④正确;∴AC==1,故①正确.故答案为:①②④.【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD 是矩形是解此题的关键. 17、π【解析】取AB 的中点E ,取CE 的中点F ,连接PE ,CE ,MF ,则112FM PE ==,故M 的轨迹为以F 为圆心,1为半径的半圆弧,根据弧长公式即可得轨迹长.【详解】解:如图,取AB 的中点E ,取CE 的中点F ,连接PE ,CE ,MF ,∵在等腰Rt ABC 中,22AC BC ==P 在以斜边AB 为直径的半圆上,∴2211222PE AB AC BC =+==, ∵MF 为CPE 的中位线,∴112FM PE ==, ∴当点P 沿半圆从点A 运动至点B 时,点M 的轨迹为以F 为圆心,1为半径的半圆弧,∴弧长180180r ππ︒==︒, 故答案为:π.【点睛】本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.三、解答题(共7小题,满分69分)18、(1)223-(2)-1;(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【详解】(1)2201801()(1)460(1)2sin π-------4141=---=411--=2-(2)2214a 21211a a a a a ---÷++++ =()()222111(1)2a a a a a a +-+-⋅++- =1211a a a +-++ =121a a --+ =()11a a -++=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.19、(1)DB 5=;(2)AE 的长为32;(1)存在,画出点P 的位置如图1见解析,PF PC +的最小值为 5. 【解析】(1)根据勾股定理解答即可;(2)设AE =x ,根据全等三角形的性质和勾股定理解答即可;(1)延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,利用相似三角形的判定和性质解答即可.【详解】(1)∵矩形ABCD ,∴∠DAB =90°,AD =BC =1.在Rt △ADB 中,DB 5===.(2)设AE =x .∵AB =4,∴BE =4﹣x ,在矩形ABCD 中,根据折叠的性质知:Rt △FDE ≌Rt △ADE ,∴FE =AE =x ,FD =AD =BC =1,∴BF =BD ﹣FD =5﹣1=2.在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2,即x 2+4=(4﹣x )2,解得:x 32=,∴AE 的长为32; (1)存在,如图1,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,则点P 即为所求,此时有:PC =PG ,∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC ,∴△BFH ∽△BDC ,∴FH BF BH DC BD BC ==,即2453FH BH ==,∴8655FH BH ,==,∴GH =BG +BH 621355=+=.在Rt △GFH 中,根据勾股定理,得:GF 2222218505555GH FH =+=+=()(),即PF +PC 的最小值为5055. 【点睛】 本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.20、﹣9<x <1.【解析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.【详解】解不等式1(x ﹣1)<2x ,得:x <1,解不等式﹣<1,得:x >﹣9,则原不等式组的解集为﹣9<x <1.【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.21、(1)2000件;(2)90260元.【解析】(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价÷数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)用(1)的结论×2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论.【详解】解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据题意得:1760002x-80000x=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意.答:商场第一批购进衬衫2000件.(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).答:售完这两批衬衫,商场共盈利90260元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.22、(1)y=﹣8x,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B(2,﹣4)在y=mx上,∴m=﹣1.∴反比例函数的解析式为y=﹣8x.∵点A (﹣4,n )在y=﹣8x上, ∴n=2.∴A (﹣4,2). ∵y=kx+b 经过A (﹣4,2),B (2,﹣4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 23、 (1) A (﹣4,0),B (2,0);(2)△ACP 最大面积是4.【解析】(1)令y =0,得到关于x 的一元二次方程﹣12x 2﹣x +4=0,解此方程即可求得结果; (2)先求出直线AC 解析式,再作PD ⊥AO 交AC 于D ,设P (t ,﹣12t 2﹣t +4),可表示出D 点坐标,于是线段PD 可用含t 的代数式表示,所以S △ACP =12PD ×OA =12PD ×4=2PD ,可得S △ACP 关于t 的函数关系式,继而可求出△ACP 面积的最大值.【详解】(1)解:设y =0,则0=﹣12x 2﹣x +4 ∴x 1=﹣4,x 2=2∴A (﹣4,0),B (2,0)(2)作PD⊥AO交AC于D 设AC解析式y=kx+b∴404bk b=⎧⎨=-+⎩解得:14 kb=⎧⎨=⎩∴AC解析式为y=x+4.设P(t,﹣12t2﹣t+4)则D(t,t+4)∴PD=(﹣12t2﹣t+4)﹣(t+4)=﹣12t2﹣2t=﹣12(t+2)2+2∴S△ACP=12PD×4=﹣(t+2)2+4∴当t=﹣2时,△ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.24、(1)证明见解析;(2)25r a48=;(3)证明见解析.【解析】(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=12CD=12a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.【详解】∴∠OAB=∠OBA.∵OA⊥CD,∴∠OAB+∠AGC=90°.又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°.∴OB⊥FB.∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.(2)∵AC∥BF,∴∠ACF=∠F.∵CD=a,OA⊥CD,∴CE=12CD=12a.∵tan∠F=34,∴AE3 tan ACFCE4∠==,即AE3 14a2=.解得3AE a8=.连接OC,设圆的半径为r,则3 OE r a8=-,在Rt△OCE中,222CE OE OC+=,即222 13a r a r28⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,解得25r a48 =.(3)证明:连接BD,∵∠DBG=∠ACF,∠ACF=∠F(已证),∴∠DBG=∠F.又∵∠FGB=∠FGB,∴△BDG∽△FBG.∴DG GBGB GF,即GB2=DG•GF.∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.。
2020年黑龙江哈尔滨中考数学试卷及答案(word解析版)
哈尔滨市2020年初中升学考试数学试卷题序一二三四五六七八总分得分一、选择题(每小题3分,共计30分)1.(2020哈尔滨,1,3分)-13的倒数是( ).A.3B.-3C.-13D.13【答案】B.2.(2020哈尔滨,2,3分)下列计算正确的是( ).A.a3+a2=a3B.a3·a2=a6C.(a2)3=a6D.(a2)2=a22【答案】C.3.(2020哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A.B.C.D.【答案】D.4.(2020哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这( ).【答案】A.5.(2020哈尔滨,5,3分)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=x2+2 D.y=x2-2【答案】D.6.(2020哈尔滨,6,3分)反比例函数y=1-2kx的图象经过点(-2,3),则k的值为( ).A.6B.-6C.72D.-72正面第4题A.【答案】 C . 7.(2020哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ). A .4 B .3 C .52D .2(第7题图) 【答案】 B . 8.(2020哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2020哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2020哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2020哈尔滨,11,3分)把98000用科学记数法表示为_______________. 【答案】9.8×104.12.(2020哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________.【答案】x ≠3.13.(2020哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2020哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1. 15.(2020哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y ); 16.(2020哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2020哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2020哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%.19.(2020哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13.20.(2020哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin ∠BOE 的值为________.EODC B A(第20题图) 【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21.(2020哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2. 【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2,∴原式=1a +2=1 23-2+2=1 23=36.22.(2020哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 223.(2020哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题: (1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2020哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2020哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE . (1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BOAB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt△BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2020哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天. (2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天.27.(2020哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB为等边三角形,∴∠BAC=∠AOB=60º,∵BC⊥AB,∴∠ABC=90º,∴∠ACB=30º,∠OBC=30º,∴∠ACB=∠OBC,∴OC=OB=AB=OA=3,∴AC=6,∴BC=32AC=33.(2)解:如图1,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=60º=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3-t,∴ON=3-(3-t)=t,∴PN=t+t=2t,∵OE∥QN,∴△POE∽△PNQ,∴OEQN=OPPN,∴OE3-t=12,OE=32-12t,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=30º,∴EF=BE,∴m=BE=OB-OE=12t+32(0<t<3).(3)如图2,∵∠BE′F′=∠BEF=180º-∠EBF-∠EFB=120º,∴∠AE′G=60º=∠E′AG,∴GE′=GA,∴△AE′G为等边三角形.∵QE′=BE′-BQ=m-t=12t+32-t=32-12t,∴GE′=GA=AE′=AB-BE′=32-12 t=QE′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA=90º,∴QG=3AG=323-123t,∵EF∥OC,∴BFBC=BEOB,∴BF33=m3,∴BF=3m=323+123t,∵CF=BC-BF=323-123t,CP=CO-OP=3-t,∴CFCB=323-123t33=3-t6=CPAC.∵∠FCP=∠BCA,∴△FCP∽△BCA,∴PFAB=CPAC,∴PF=3-t2,∵2BQ-BF=33QG,∴2t-3-t2=33×(323-123t),∴t=1.∴当t=1时,2BQ-PF=33QG.28.(2020哈尔滨,28,10分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC 和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD点点G.(1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,F A =FC ,∴FE =F A ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GF A ,∴△AFG ∽△BF A ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .友情提示:一、认真对待每一次考试。
【中考冲刺】2023年黑龙江省哈尔滨市中考模拟数学试卷(附答案)
2023年黑龙江省哈尔滨市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.12-的倒数是( ) A . B . C .12- D .12 2.下列运算正确的是( )A .236a a a ⋅=B .352()a a =C .235a a a ÷=D .44()a a -= 3.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D . 4.已知反比例函数k y x =的图象经过点()12P --,,则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 5.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D . 6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是( )A .500sinα米B .500sin a 米C .500cosα米D .500cos a 米 7.某水果园2019年水果产量为50吨,2021年水果产量为75吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .275(1)50x -=B .250(1)75x -=C .250(1)75x +=D .275(1)50x += 8.如图,A 、D 是⊙O 上的两个点,BC 是直径,若⊙D=35°,则⊙OAC 的度数是( )A .35°B .55°C .65°D .70°9.如图,,AB CD AE FD ∥∥,AE ,FD 分别交BC 于点G ,H ,则下列结论中错误的是( )A .DH CH FH BH =B .GE CG DF CB =C .AF HG CE CG =D .=FH BF AG FA 10.小明和小强两名同学同时进行800米耐力跑,小明和小强所跑的路程S (米)与所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,下列说法正确的是( ).A .小明的速度随时间的增大而增大B .小强的平均速度比小明的平均速度大C .在起跑后180秒后,小强的速度为5米/秒D .在起跑后50秒时,小明在小强的前面二、填空题11.根据Worldometer 实时统计数据,截至北京时间2022年5月16日,美国累计确诊新冠肺炎病例约为84000000例,令人触目惊心.同时也为我们伟大的祖国在抗疫上取得的成就而骄傲.把84000000用科学记数法表示为____________.12.在函数x y x 3=+中,自变量x 的取值范围是_____. 13.把22ab ab a -+分解因式的结果是_________.14.计算____________. 15.不等式组21343x x +≤⎧⎨>-⎩的解集为____________. 16.抛物线22(1)3y x =--的顶点坐标为____________.17.在围棋盒中有x 颗白色棋子和6颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋的概率是25,则盒中有白色棋子____________颗. 18.圆心角为60︒的扇形的面积为32π,则扇形的半径为____________. 19.如图,已知矩形ABCD 中,点E 为AD 的中点,F 为CD 中点,4AB =,6AD =,点H 为BC 上一点且EH 为FH 的长为____________.20.如图,四边形ABCD .连接AC 、BD ,AB AD =,3CAD BAC ∠=∠,90CBD ∠=︒,若:5:8AB BD =,若AC =CD 的长为____________.三、解答题21.先化简,再求代数式2122()3x x y x xy x--÷--的值,其中x=2+tan60°,y=4sin30°. 22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上,请在图1、图2中各画一个三角形,满足以下要求:(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,使其面积为5;(2)在图2中,画平行四边形ABEF,点E、F在小正方形的顶点上,且使其面积为7.并直接写出AE的长.23.2022年3月中旬起,哈尔滨市又一次经历了疫情的考验,同学们不得不在线上进行了很长一段时间的学习,在线上上课期间,学校提倡同学们在空余时间多读书来充实自己.某学校为了解学生的疫情期间的课外阅读情况,张老师随机抽查部分学生,并对其疫情期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在疫情期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数;(2)通过计算,将条形统计图补充完整;(3)若规定:疫情阅读3本及3本以上课外书者为良好,据此估计该校1500名学生中,达到良好程度的有多少名学生?24.如图,四边形ABCD为平行四边形,点O为BD的中点,过点O作EF BD,交AD于点F,交BC于点E.(1)如图1,求证:四边形FBED 为菱形(2)如图2,当90A ∠=︒,ABF BDE ∠=∠长的线段.25.某商店购进A 、B 两种商品,B 商品每件进价比A 商品每件进价多1元,若60元购进A 商品的件数与72元购进B 商品的件数相同.(1)求A 、B 商品每件进价分别是多少元?(2)若该商店购进A 、B 两种商品共140件,A 种商品每件售价8元,B 种商品每件售价10元,全部商品售出后,获利不少于460元,求最多购进A 商品多少件?26.已知,BF 为O 直径,弦AB 交弦CD 于点E ,连接AD 、CF 、BC ,连接CG ,AD CF =.(1)如图1,求证:AB CD ⊥;(2)如图2,点G 为BE 上一点,连接CG ,若2CGB F CBF ∠-∠=∠,求证:AE EG =;(3)如图3,连接BD ,BD CG =,过点A 作O 的切线交CF 的延长线于点H ,过点B作BK BC ⊥,作CK BF ∥交BK 于点K ,连接DK ,若1tan 2BCG ∠=,AH =DK 的长.27.如图1,在平面直角坐标系内,点O 为坐标原点,直线4y x =-+交x 轴于C ,交y 轴于A ,点B 与点C 关于y 轴对称.(1)求直线AB 的解析式:(2)如图2,点E 为AC 上一点,以BE 为斜边作等腰直角三角形BEF ,FE FB =,90BFE∠=︒,连接AF,设AF的长为m,EC的长为d,求d与m之间的函数关系式(不要求写出自变量的取值范围)(3)如图3,点G为y轴负半轴上一点,连接,EG交x轴于点H,EG BF=,连接FH交BE于点Q,点I为FQ上一点,且BF BI=,若45AFEH=,求IQ的长参考答案:1.A【解析】【分析】根据倒数的概念求解即可.【详解】的倒数为-2.根据乘积等于1的两数互为倒数,可直接得到-12故选A.2.D【解析】【分析】根据同底数幂乘除法、幂的乘方、积的乘方运算法则,分别进行判断,即可得到答案.【详解】A.235⋅=,故此选项计算错误,不符合题意;a a aB.()326a a=,故此选项计算错误,不符合题意;C.231a a a,故此选项计算错误,不符合题意;()44a a-=,故此选项计算正确,符合题意.故选:D.【点睛】本题考查了整式的运算,熟练掌握同底数幂乘法、幂的乘方、积的乘方、同底数幂除法法则是解题的关键.3.A【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.4.B【解析】【分析】直接根据P的位置和反比例函数关于原点成中心对称,即可得出答案.【详解】解法一:⊙P(-1,-2)在第三象限,⊙反比例函数过第三象限⊙反比例函数图形关于原点对称⊙反比例函数kyx=位于一、三象限故选:B.解法二:将P(-1,-2)代入kyx=得2k=,⊙20k=>,⊙反比例函数kyx=位于一、三象限,故选:B.【点睛】本题考查反比例函数图象,理解k的符号与反比例函数图象的位置是解题的关键.5.D【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看,左边和中间都是2个正方形,右上角是1个正方形, 故选D .【点睛】本题考查了三视图的知识,关键是找准俯视图所看的方向.6.A【解析】【详解】sin 500h α= , 500sin h α∴= .故选A.7.C【解析】【分析】2021年的产量=2019年的产量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:2020年的产量为50(1+x ),2021年的产量为50(1+x )(1+x )=50(1+x )2,即所列的方程为50(1+x )2=75.故选:C .【点睛】考查列一元二次方程;得到2021年产量的等量关系是解决本题的关键. 8.B【解析】【详解】解:⊙⊙D=35°,⊙⊙AOC=2⊙D=70°,⊙⊙OAC=(180°-⊙AOC)÷2=110°÷2=55°.故选B.9.D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可.【详解】解:⊙AB∥CD,⊙DH CH FH BH=,⊙A选项正确,不符合题目要求;⊙AE∥DF,⊙⊙CGE=⊙CHD,⊙CEG=⊙D,⊙⊙CEG⊙⊙CDH,⊙GE CG DH CH=,⊙EG DH CG CH=,⊙AB∥CD,⊙CH DH CB DF=,⊙DH DF CH CB=,⊙GE DF CG CB=,⊙GE CG DF CB=,⊙B选项正确,不符合题目要求;⊙AB∥CD,AE∥DF,⊙四边形AEDF是平行四边形,⊙AF=DE,⊙AE∥DF,⊙DE GH CE GC=,⊙AF HG CE CG=; ⊙C 选项正确,不符合题目要求;⊙AE∥DF ,⊙⊙BFH ⊙⊙BAG , ⊙FH BF AG AB=, ⊙AB >F A , ⊙FH BF AG FA≠ ⊙D 选项不正确,符合题目要求.故选D .【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键.10.C【解析】【分析】根据函数图像对各个选项分别进行判断,选项主要判断的是速度,要把图像中路程和时间的关系换算成速度再判断.【详解】A.小明的函数图像是OA ,是一条直线,所以小明是匀速跑动,速度不随时间变化,与题意不符,故此选项错误;B.跑相同的路程800米时,小强用时220秒,小明用时180秒,小强用时更长,所以小强的平均速度比小明的平均速度要小,与题意不符,故此选项错误;C.从图像可知,小强在起跑180秒后在图像CD 上,此期间为匀速跑动,速度为8006005220180-=-(米/秒),符合题意,故此选项正确; D.从图像可知,起跑50秒时,小明的图像在小强的图像下面,即:小明在小强的后面,与题意不符,故此选项错误.故选 C .【点睛】此题考查了一次函数的应用,解题关键是要利用数形结合,找出所求问题需要的条件,要明确理解每个选项的题意.11.78.410⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:84000000=78.410⨯.故答案为:78.410⨯.【点睛】本题考查科学计数法,科学计数法是将一个数写成10n a ⨯ 的形式,其中110a ≤<是易错点.12.x ≠-3【解析】【详解】解:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使x x 3+在实数范围内有意义,必须x +3≠0, ⊙x ≠-3.故答案为:x ≠-3.13.2(1)a b -【解析】【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:22ab ab a -+=()221-+a b b=2(1)a b -故答案为:2(1)a b -.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.14.【解析】【分析】首先分母有理化,然后再进行减法运算即可.【详解】解:====故答案为:【点睛】此题主要考查了二次根式的加减与分母有理化,熟练掌握分母有理化的运算是解题的关键.15.11x -<【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:21343x x +≤⎧⎨>-⎩①② 由⊙得,1x ≤,由⊙得,1x ->故此不等式组的解集为:11x -<.故答案为:11x -<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(1,3)-【解析】【分析】根据二次函数顶点式2()y a x h k =-+的顶点坐标为(,)h k 即可求出.【详解】⊙二次函数2()y a x h k =-+的顶点坐标为(,)h k ,⊙抛物线22(1)3y x =--的顶点为(1,-3).故答案为:(1,-3).【点睛】本题考查了二次函数的顶点式,需熟练理解二次函数顶点式2()y a x h k =-+的顶点坐标为(,)h k .17.4【解析】【分析】根据概率计算公式可知摸出白色棋子的概率等于白色棋子的数量除以总棋子数,由此列出分式方程求解即可.【详解】 解:由题意得:265x x =+, 解得4x =,经检验4x =是原方程的解,⊙盒中有白色棋子4颗,故答案为:4.【点睛】本题主要考查了概率计算公式,解分式方程,正确理解题意列出方程求解是解题的关键. 18.3【解析】【分析】根据扇形面积公式S扇=2360n rπ(n为圆心角度数),代入圆心角,已知面积求半径即可.【详解】⊙扇形面积公式S扇=2360n rπ(n为圆心角度数),⊙S扇=222603 36036062 n R r rππππ===,⊙2369 2rππ⨯==,⊙3r==.故答案为:3.【点睛】本题考查了扇形面积,要能熟练掌握扇形面积公式并进行相关计算.19【解析】【分析】分情况讨论,第一种情况,过点E作EM⊙BC于点M,当H点在M点左侧时,连接HF、HE,利用勾股定理即可求解;第二种情况,过点E作EM⊙BC于点M,当H点在M点右侧时,连接HF、HE,同理可求出HF,问题得解.【详解】如图,第一种情况,过点E作EM⊙BC于点M,当H点在M点左侧时,连接HF、HE,在矩形ABCD中,AD=BC=6,AB=DC=4,⊙E点为AD中点,F点为DC中点,⊙AE=ED=3,DF=FC=2,⊙EM⊙BC,⊙可知四边形AEMB是矩形,⊙EMB=90°,⊙BM =AE =3,ME =DC =4,即MC =BC -BM =6-3=3,⊙Rt ⊙EMH 中,EH =⊙2HM ==,⊙HC =MH +MC =2+3=5,⊙R t⊙HFC 中,⊙HF =第二种情况,过点E 作EM ⊙BC 于点M ,当H 点在M 点右侧时,连接HF 、HE ,如图,同理HM =2,则有HC =MC -HM =3=2=1,⊙Rt ⊙HFC 中,HF.【点睛】本题考查了矩形的判定与性质、勾股定理等知识,注重分类讨论的思想是解答本题的关键.20【解析】【分析】过点A 作AE ⊙BD 于点E ,AC 、BD 交于点F ,从而证明AE BC ∥,得出BCA CAE ∠=∠,根据等腰三角形的性质和3CAD BAC ∠=∠,得出EAF BAC ∠=∠,即可得出BAC BCA ∠=∠,证明BC BA =,根据:5:8AB BD =,得出:5:4AB BE =,设5AB a =,则4BE a =,根据勾股定理算出AE =3a ,根据平行线分线段成比例定理,得出35AF EF AE CF BF BC ===,求出58CF =⨯5582BF BE a ==,根据勾股定理列出关于a 的方程,解方程即可得出a 的值,最后求出CD 即可.【详解】解:过点A 作AE ⊙BD 于点E ,AC 、BD 交于点F ,如图所示:⊙90AEB CBD ∠=∠=︒,⊙AE BC ∥,⊙BCA CAE ∠=∠,AB AD =,AE BD ⊥,⊙BAE DAE ∠=∠,12BE DE BD ==, ⊙3CAD BAC ∠=∠,⊙设BAC x ∠=,则3CAD x ∠=,⊙34DAB x x x ∠=+=, ⊙1422BAE x x ∠=⨯=, EAF BAC x ∴∠=∠=,⊙BAC BCA ∠=∠,⊙BC BA =,⊙:5:8AB BD =,:5:4AB BE ∴=,设5AB a =,则4BE a =,则3AE a ==,3355AE a AB a ∴==, 35AE BC ∴=, AE BC ∥,⊙~AEF CBF ⊙35AF EF AE CF BF BC ===,⊙AF CF AC +==⊙58CF =⨯= ⊙4BF EF BE a +==, ⊙5582BF BE a ==, ⊙5BC AB a ==,222CF BC BF =+,⊙()222552a a ⎛⎫=+ ⎪⎝⎭, 解得:1a =或1a =-(舍去),⊙5BC =,8BD =,⊙CD【点睛】本题主要考查了等腰三角形的判定和性质,勾股定理,相似三角形的判定和性质,平行线的判定和性质,作出辅助线,根据角度之间的关系,得出AB =BC ,是解题的关键. 21【解析】【分析】首先将括号里面的分式进行通分,然后将除法改成乘法进行约分化简,最后将x 和y 根据三角函数的计算法则求出x 和y 的值,最后代入进行计算.【详解】解:原式=23()2x xx x y x-⋅--=3x y-y=4×12=2⊙原式【点睛】本题考查分式的化简求值.22.(1)见解析(2)图见解析,AE=【解析】【分析】(1)先确定90A∠=︒,求出AB,根据面积公式及AB的长即可求得AC,进而可求解.(2)根据平行四边形的性质,确定EF,再利用面积即可求解.(1)解:如图所示,在Rt ABC在,90A∠=︒,AC==AB=11522ABCS AB AC∴=⋅=⨯,ABC∴即为所求.(2)如图所示,AB EF=AF=BE,AB EF AF BE∴==,∴四边形ABEF是平行四边形,1135122322722ABEF S =⨯-⨯⨯⨯-⨯⨯⨯=,AE ==, ∴平行四边形ABEF 即为所求,AE =【点睛】本题考查了作图—复杂作图、三角形面积、平行四边形面积、勾股定理,解题的关键是利用数形结合思想解决问题.23.(1)50人(2)见解析(3)1080名【解析】【分析】(1)通过条形图可知阅读量为2本的人数是10人,用人数除以其占比即可求解;(2)用总人数减去阅读量为1本、2本、3本、5本的人数,即可求出阅读量为4本的人数,据此画条形图即可;(3)先求出样本中阅读量在3本及以上人数的占比,在与全校总人数相乘即可求解.(1)1020%50÷=(人),即调查总人数为50人;(2)阅读量为4本的人数:5041015615----=(人),补全条形统计图如图所示,(3)151561*********++⨯=(人), 即全校阅读量在3本及以上达到良好的人数估计有1080人.【点睛】本题考查了条形统计图、用样本估计总体的知识,注意数形结合是解答本题的关键. 24.(1)证明见解析(2)OB ,OD ,AB ,CD【解析】【分析】(1)先根据平行四边形的性质可得AD BC ∥,再根据三角形全等的判定定理证出BOE DOF ≅△△,根据全等三角形的性质可得BE DF =,然后根据平行四边形的判定可得四边形FBED 为平行四边形,最后根据菱形的判定即可得证;(2)先根据矩形的判定与性质可得,90AB CD ABC =∠=︒,再根据菱形的性质可得,DBF DBC DBF BDE ∠=∠∠=∠,从而可得30ABF DBF DBC ∠=∠=∠=︒,然后分别在Rt BOF △和Rt ABF 中,解直角三角形即可得.(1) 证明:四边形ABCD 为平行四边形,AD BC ∴,,OBE ODF OEB OFD ∴∠=∠∠=∠,点O 为BD 的中点,OB OD ∴=,在BOE △和DOF △中,OBE ODF OEB OFD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOE DOF AAS ∴≅,BE DF ∴=,∴四边形FBED 为平行四边形,又EF BD ⊥,∴四边形FBED 为菱形.(2) 解:四边形ABCD 为平行四边形,且90A ∠=︒,∴四边形ABCD 为矩形,AB CD =,90ABC ∴∠=︒,由(1)已证:四边形FBED 为菱形,BF DE ∴∥,DBF DBC ∠=∠,DBF BDE ∴∠=∠,ABF BDE ∠=∠,1303ABF DBF DBC ABC ∴∠=∠=∠=∠=︒,在Rt BOF △中,tan OF OB DBF==∠,2BF OF =,OD ∴=,在Rt ABF 中,cos 2cos30AB BF ABF OF =⋅∠=⋅︒=,CD ∴,长的线段有OB ,OD ,AB ,CD .【点睛】本题考查了菱形的判定与性质、矩形的判定与性质、解直角三角形等知识点,熟练掌握特殊四边形的判定与性质是解题关键.25.(1)A 种进价每个为5元,则B 每个进价为6元(2)100件【解析】【分析】(1)设购进A 商品每件进价x 元,B 商品每件进价x +1元.等量关系:60元购进A 商品的件数与72元购进B 商品的件数相同.据此列出方程,并解答;(2)设购进A 种m 件,则购进B 种()140m -件,根据购进A 、B 两种商品降价前后共获利不少于460元列出不等式解答即可.(1)解:设A 种进价每个为x 元,则B 每个为(1)x +元, 由题意列得:60721x x =+, 解得:5x =经检验5x =是原分式方程的解,答:A 种进价每个为5元,则B 每个进价为6元.(2)设购进A 种m 件,则购进B 种()140m -件,根据题意得(85)(106)(140)460m m -+--,解得100m ,答:最多购进A 商品100件.【点睛】本题考查了一元一次不等式的应用和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等或等量关系.26.(1)见解析(2)见解析(3)【解析】【分析】(1)连接DB ,先利用BF 为直径,证得90BCF ∠=︒ ,则90F FBC ∠+∠=︒,再利用弧、弦与圆周角的关系,得到FBC ABD ∠=∠,CFB BDC ∠=∠,即可得90CDB ABD ∠+∠=︒,求得90BED ∠=︒即可得答案.(2)连接AC ,设CBF α∠=,证明ECG CGB CEG α∠=∠-∠=,ACD FBC GCE α∠=∠==∠,再加上CE CE =,可证ACE GCE △△≌,即可求得AE GE =;(3)先证得BED CEG △△≌,得求出45NGB NBG ∠=∠=︒,则NG NB =,即可求得13GE CE = ,再证得1tan tan 2FBA BCG ∠=∠=,再通过解直角三角形,求得6AF AM MF =+=,12AB =, =AD BDCFBK 为平行四边形,BK CF AD ===1tan tan2DBL FBA ∠=∠=,则BD =DL =BL =得KL BL BK =+=(1)BF 为直径90BCF ∴∠=︒90F FBC ∴∠+∠=︒CF AD =⊙CF AD =FBC ABD ∴∠=∠CFB ∠与BDC ∠同对弧BCCFB BDC ∴∠=∠90CDB ABD ∴∠+∠=︒18090BED CDB ABD ∴∠=︒-∠-∠=︒AB CD ∴⊥(2)连接AC设CBF α∠=,则90CFB α∠=︒-2CGB F CBF ∠-∠=∠90CGB α∴∠=︒+由(1)可知AB CD ⊥90CEG ∴∠=︒ECG CGB CEG α∴∠=∠-∠=AD CF =∵CF AD ∴=弧弧ACD FBC GCE α∴∠=∠==∠90CEA CEG ∠=∠=︒,CE CE =ACE GCE ∴△△≌AE GE ∴=(3)连接OA ,F A ,AC ,过点H 作HM FA ⊥于点M ,过点G 作GN BC ⊥于点N ,过点D 作DL KB ⊥交KB 的延长线于点L .⊙ACE GCE △△≌⊙⊙CAB =⊙EGC⊙⊙CAB =⊙EDB ,⊙⊙EGC =⊙EDB又⊙⊙CEG =⊙BED =90°,BD =CG⊙BED CEG △△≌EB EC ∴=45EBC ECB ∴∠=∠=︒GN BC ⊥45NGB NBG ∴∠=∠=︒NG NB ∴=设NB NG k ==1tan 2BCG ∠=2CN k ∴=,BG =3BC k ∴=CE BE ∴==,EG 13GE CE ∴= AE EG =AG BG ∴=180HFA AFC ∠+∠=︒ ,180CBA AFC ∠+∠=︒45HFA CBA ∴∠=∠=︒45ECG BCG ∠+∠=︒,45FBA CBF ∠+∠=︒,ECG CBF ∠=∠BCG FBA ∴∠=∠1tan tan 2FBA BCG ∴∠=∠= OA OF =OAF OFA ∴∠=∠ HA 切O 于点A⊙=HAF FBA ∠∠(弦切角定理)1tan tan 2HAF FBA ∴∠=∠=⊙sin HAF ∠=⊙5sin 25HM HAF AH =∠=,4tan HM AM HAM ==∠ ⊙2FM HM ==⊙6AF AM MF =+=212AB AF ∴==⊙162AG BG AB === ⊙132AE AG ==,9BE =⊙=AD BD =⊙BK BC ⊥,90FCB ∠=︒⊙FCB CBH ∠=∠又⊙//FC BF⊙四边形CFBK 为平行四边形BK CF AD ∴===⊙FC AD =⊙FBC ABD ∠=∠⊙45FBC FBA ∠+∠=︒,45ABD DBL ∠+∠=︒⊙DBL FBA ∠=∠ ⊙1tan tan 2DBL FBA ∠=∠=⊙BD =⊙解Rt BDL 得DL =BL =⊙KL BL BK =+=⊙利用勾股定理得:DK =【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了切线的性质、圆周角定理、特殊锐角三角函数值,平行四边形的判定和性质,能构造直角三角形是解题的关键. 27.(1)4y x =+ (2)d =【解析】【分析】(1)先求解A ,B 的坐标,再利用待定系数法求解一次函数的解析式即可;(2)过点F 作FH FA ⊥交AB 于点H ,记,AB EF 的交点为P ,证明FAE FHB △△≌,可得BH AE =,,FH AF 从而可得结论;(3)过点E 作EL y ⊥轴于点L ,过点B 作BK FH ⊥于点K ,过点E 作EN x ⊥轴于点N ,交F A 的延长线于点M .证明FME GLE △△≌,MFE HEN ∠=∠,由(2)问可知EC =,又CE =, 可得AF EN =,结合45AF EH = ,证明4an 3t FEM ∠=,设4AF EN m ==,EM EL a AM ===,可得344tan MF a m FEM ME a +∠=== ,可得12a m =,164FM m MN ===,可得14m = ,再求解FQ =2222,FB FK BH KH 求解517,17FK 从而可得答案. (1)解: 直线4y x =-+交x 轴于C ,交y 轴于A , 当0,y = 则4,x = 当0,x = 则4,y = 4,0,0,4C A ,点B 与点C 关于y 轴对称.4,0,B设AB 为,y kx b =+4,40b k b 解得:1,4k b 所以AB 为: 4.yx (2)过点F 作FH FA ⊥交AB 于点H ,记,AB EF 的交点为P ,0,4,4,0,4,0,A B C,OA OB OC ∴==45,OAB OBA OAC OCA ∴ 90BAC ∠=︒, 90,BAC BFE,FPB APE ,FBP FEA 90,BAC BFE ∴ 90,BFH HFE HFE AFE ,BFH EFA ∴ FAE FHB △△≌,BH AE ∴=,,FH AFAB BH AC AE ∴-=-,2,AHAF AH CE ∴=, 2,CE AFd ∴=(3)过点E 作EL y ⊥轴于点L ,过点B 作BK FH ⊥于点K ,过点E 作EN x ⊥轴于点N ,交F A 的延长线于点M .由(2)问可知45,BAFBAO 则AF y ⊥轴, ∴ FA BC ∥ ,,FA EN则45CAO MAE ∠=∠=︒,,EL EM AM ∴==而,,EG BF BF EF 则,EF EG = 90,M GLE∴ FME GLE △△≌,FEM GEL ∴∠=∠,90FEL FEM ∠+∠=︒,90GEL FEL ∴∠+∠=︒,90FEG ∴∠=︒,90HEN FEM ∴∠+∠=︒,90EFM FEM ∠+∠=︒,MFE HEN ∴∠=∠,由(2)问可知EC =,又CE =, AF EN ∴=, 45AF EH = , 45EN EH ∴=, 4sin 5EHN ∴∠= , 4tan ,3EHN4tan 3FEM ∴∠=, 设4AF EN m ==,EM EL a AM ===, 344tan MF a m FEM ME a+∴∠=== , 12a m ∴=,164FM m MN ∴===,14m ∴= , 1AF ∴=,3,EM∴ 5FE =, 过点Q 作QR EF ⊥于R , 31,4,1,,3,4AF AO EN HNON AM 91,4,3,1,,0,4F E H 同理可得:BE 为14,77y x FH 为1636,1313y x答案第25页,共25页 1477,16361313yx y x 解得:85,45x y 84,,55Q FQ ∴ 2241045,BI BF 229514017,44FH由勾股定理可得:2222,FB FK BH KH 2222951754,44FK FK517,17FK,,BF BI BK FH∴FK IK==2IQ ∴= 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,锐角三角函数的应用,本题的综合程度高,属于中考压轴题.。
2020年黑龙江省哈尔滨市中考数学模拟优化试卷(四)
中考数学模拟优化试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.-6的绝对值是()A. -6B. 6C.D. -2.下列运算中,正确的是()A. 6a-5a=1B. a3•a3=a9C. a6÷a3=a2D. (a2)3=a63.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.4.如图所示的由六个小正方体组成的几何体的俯视图是()A. B. C. D.5.如图,AC是⊙O的直径,CB与⊙O相切于点C,AB交⊙O于点D.已知∠B=51°,则∠DOC等于()A. 78°B. 88°C. 102°D. 110°6.将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A. y=(x+1)2+2B. y=(x-1)2+2C. y=(x-1)2-2D. y=(x+1)2-27.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. 20%B. 25%C. 50%D. 62.5%8.分式方程=的解为()A. x=0.75B. x=0C. x=D. x=19.点(-2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A. (2,4)B. (-1,-8)C. (-2,-4)D. (4,-2)10.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A. B. C.D.二、填空题(本大题共10小题,共30.0分)11.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为______.12.函数y=中,自变量x的取值范围是______.13.分解因式:4xy2-4x2y-y3= ______ .14.不等式组的解集是______.15.若二次函数y=mx2-3x+2m-m2的图象经过原点,则m= ______ .16.如图,将边长为3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分面积为______.17.一个扇形的圆心角为60°,它所对的弧长为2cm,则这个扇形的面积为______cm2.18.在矩形ABCD中,E是AD的中点,F是BC上一点,连接EF、DF,若AB=4,BC=8,EF=2,则DF的长为______.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是______ .20.如图,在△ABC中,∠ACB=90°,点E为AB中点,点L在AC的延长线上,连接LE交BC于点D,过点E作AB的垂线交∠LCB的平分线于点F,若∠CAB=3∠L,EF=3,则DL的长为______.三、解答题(本大题共7小题,共60.0分)21.先化简,再求代数式:÷(a-)的值,其中a=sin60°+tan45°,b=tan30°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.23.为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳光体育”运动,毛毛对该班同学参加锻炼的情况进行了统计(每人只能选其中一项),并绘制了如图两个统计图,请根据图中提供的信息解答下列问题:(1)毛毛这次一共调查了多少名学生?(2)补全条形统计图,并求出扇形统计图中“足球”所在扇形的圆心角度数;(3)若该校有1800名学生,请估计该校喜欢乒乓球的学生约有多少人.24.已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.25.艾琳服装店10月份以每套1200元的进价购进一批羽绒服,当月以标价销售,销售额是28000元,进入11月份搞促销活动,每件让利100元,这样11月份的销售额比10月份增加了11000元,销售量是10月份的1.5倍.(1)求每件羽绒服的标价是多少元?(2)进入12月份,该服装店决定把剩余的羽绒服九折甩货,全部卖掉,这批羽绒服总获利不少于9940元,问这批羽绒服至少购进多少件?26.四边形ABCD内接于⊙O,连接AC、BD,AC是⊙O的直径,BD平分∠ADC.(1)如图1,求证:△ABC是等腰直角三角形;(2)如图2,过点D作DP⊥AB交⊙O于点P,连接BP,求证:CD=BP;(3)如图3,在(2)的条件下,过点C作CL∥AB交DF于点L,点E在AF上,且EF=BF,点G在DP的延长线上,连接AG交LE的延长线于点H,若AE=AH=10,FG=8,求DL的长.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.答案和解析1.【答案】B【解析】【分析】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据负数的绝对值是它的相反数,可得答案.【解答】解:-6的绝对值是6.故选:B.2.【答案】D【解析】解:A、6a-5a=a,故本选项错误;B、a3•a3=a6,故本选项错误;C、a6÷a3=a3,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.根据合并同类项法则、同底数幂的乘法和除法,幂的乘方分别求出每个式子的值,再判断即可.本题考查了并同类项法则、同底数幂的乘法和除法,幂的乘方的应用,能灵活运用知识点进行计算是解此题的关键.3.【答案】A【解析】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.4.【答案】D【解析】解:从上面看易得左边第一列有3个正方形,中间第二列有1个正方形,最右边一列有1个正方形.故选D.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.【答案】A【解析】解:∵CB与⊙O相切于点C∴AC⊥BC∵∠B=51°∴∠A=90°-∠B=39°∴∠COD=2∠A=78°.根据切线的性质定理及三角形内角和可求得∠A的度数,再根据一条弧所对的圆周角等于它所对的圆心角的一半即可求解.本题考查了切线的性质,圆周角定理,熟练掌握切线的性质是解题的关键.6.【答案】B【解析】解:由“左加右减、上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,则平移后的抛物线的表达式为y=(x-1)2+2.故选:B.根据“左加右减、上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】C【解析】【分析】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选C.8.【答案】A【解析】解:方程两边同乘x(x+3),得:x+3=5x,解得:x=0.75,经检验x=0.75是原方程的解,∴原分式方程的解是x=0.75.故选:A.观察可知方程的最简公分母为:x(x+3),去分母将分式方程化为整式方程后再求解,注意检验.此题考查了解分式方程.解题的关键是掌握解分式方程的方法,利用了转化的思想,解分式方程注意要检验.9.【答案】D【解析】解:∵点(-2,4)在反比例函数y=(k≠0)的图象上,∴k=-2×6=-8,四个选项中只有D符合.故选:D.将(-2,4)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.【解析】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.此题主要考查平行线分线段成比例定理,关键是根据平行线分线段成比例定理列出比例式并能进行灵活变形.11.【答案】1.496×108【解析】解:将数149600000用科学记数法表示为1.496×108.故答案为:1.496×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法.解题的关键是掌握科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.12.【答案】x≤3【解析】解:由题意得,3-x≥0,解得x≤3.故答案为:x≤3.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.【答案】-y(2x-y)2【解析】解:4xy2-4x2y-y3,=-y(-4xy+4x2+y2),=-y(2x-y)2.先提取公因式-y,再对余下的多项式利用完全平方公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】x≥3【解析】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥-,∴不等式组的解集为x≥3,故答案为:x≥3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【答案】2【解析】解:由于二次函数y=mx2-3x+2m-m2的图象经过原点,代入(0,0)得:2m-m2=0,解得:m=2,m=0;又∵m≠0,∴m=2.故答案为:2.此题可以将原点坐标(0,0)代入y=mx2-3x+2m-m2,求得m的值即可.本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解,较为简单.16.【答案】9-3【解析】解:连接AE,如图所示:由旋转的性质可知:AB=AB′.在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL).∴∠DAE=∠B′AE,S△ADE=S△AB′E.∵∠BAB′=30°,∴∠DAE=×(90°-30°)=30°.又∵AB=3,∴DE=AB=,∴S△ADE=××3=,又∵S正方形ABCD=32=9,∴S阴影=9-2×=9-3.故答案为:9-3.连接AE.根据HL即可证明△AB′E≌△ADE,可得到∠DAE=30°,然后可求得DE的长,从而可求得△ADE的面积,由正方形的面积减去△AB′E和△ADE的面积即可得出答案.本题考查了旋转的性质、正方形的性质以及全等三角形的判定与性质、特殊锐角三角函数值的应用,证得△AB′E≌△ADE是本题的关键.17.【答案】【解析】解:设这个扇形的半径为rcm,∵一个扇形的圆心角为60°,它所对的弧长为2cm,∴2=,解得,r=,∴这个扇形的面积为:×2×=(cm2),故答案为:.根据一个扇形的圆心角为60°,它所对的弧长为2cm,可以求得这个扇形的半径,再根据扇形面积公式=lr,即可求得这个扇形的面积.本题考查扇形面积的计算、弧长的计算,解答本题的关键是明确弧长公式和扇形面积计算公式.18.【答案】2或2【解析】解:①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4-2=2,∴Rt△DFG中,DF==2;②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,DF==2,故答案为:2或2.分两种情况进行讨论,先过F作FG⊥AD于G,构造直角三角形,根据勾股定理求得EG 的长,再根据勾股定理求得DF的长即可.本题主要考查了矩形的性质以及勾股定理的应用,解决问题的关键是作辅助线构造直角三角形,解题时注意分类思想的运用.19.【答案】【解析】解:解:分别用红1、红2代表2个红色小汽车模型,白1、白2代表2个白色小汽车模型,根据题意,列表如下:红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)由表可知,可能的结果共有种,且它们都是等可能的,同时摸出的两个小汽车都是红色的有4种情况,∴摸出的两个小汽车都是红色的概率=.故答案为:.列出表格,然后根据概率公式列式计算即可得解.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意是否是放回还是不放回事件是解题的关键.20.【答案】6【解析】解:如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.∵∠ACB=90°,AE=EB,∴CE=AAE=EB,∴∠EAC=∠A=3x,∵∠ECA=∠L+∠AEL,∴∠CEL=2x,∵HC=HL,∴∠L=∠HCL=x,∴∠CHE=∠L+∠HCL=2x,∴∠CHE=∠CEH,∴CE=CH,∵CF平分∠LCD,∴∠LCF=∠FCD=45°,∵∠F+∠LEF=∠L+∠LCF,∴∠F+90°-(180°-4x)=x+45°,∴∠F=135°-3x,∵∠FCE=45°+∠ECB=45°+90°-3x=135°-3x,∴∠F=∠ECF,∴EC=EF=3,∴CH=3,∵∠L+∠ADH=90°,∠HCD+∠HCL=90°,∠L=∠HCL,∴∠HCD=∠HDC,∴CH=DH,∴LH=CH=DH=3,∴LD=6.故答案为6.如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.只要证明CH=CE=HD,CE=EF即可解决问题.本题考查直角三角形斜边中线的性质,线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题,属于中考常考题型.21.【答案】解:原式=÷=•=,∵a=sin60°+tan45°,=+1,b=tan30°=×=1,∴原式==.【解析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.22.【答案】解:(1)如图所示:△ABC即为所求;(2)如图所示:菱形ABDE即为所求,EC==.【解析】(1)利用直角三角形的性质结合勾股定理得出答案;(2)利用菱形的性质结合勾股定理得出答案.此题主要考查了应用设计与作图以及勾股定理以及菱形的性质,正确借助网格得出各边长是解题关键.23.【答案】解:(1)20÷40%=50(名),答:毛毛一共调查了50名学生;(2)50-20-10-15=5(名),360°×=72°,答:扇形统计图中“足球”所在扇形的圆心角为72°,补全条形统计图如图所示:(3)1800×=180(名),答:该校1800名学生中喜欢乒乓球的约有180名.【解析】(1)从两个统计图可得,喜欢“篮球”的有20人,占调查人数的40%,可求出调查人数;(2)求出喜欢“乒乓球”的人数,即可补全条形统计图:样本中,喜欢“足球”的占,因此圆心角占36°0的,可求出度数;(3))样本估计总体,样本中喜欢“乒乓球”占,估计总体1800人的是喜欢“乒乓球”人数.考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.24.【答案】(1)证明:∵AB=AC,AD⊥BC,∴BC=2BD,∵BE=2BD,∴BC=BE,∵F是AC的中点,G是AE的中点,∴BG∥AC,BF∥AE,∴四边形AGBF是平行四边形.(2)∵F是AC的中点,G是AE的中点,∴GF∥BC,∵BG∥AC,∴四边形BGFC是平行四边形,∴GF=BC,∵GF=AB,AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∵GF∥BC,DF∥AB,BG∥AC,∴△AHF∽△ABC,△CDF∽△CBA,△GBH∽△FAH,∴△AHF,△CDF,△GHB是等边三角形,综上可得:图2中等边三角形有:△ABC,△AHF,△CDF,△GHB.【解析】(1)由AB=AC,AD⊥BC,根据三线合一的知识,可得BC=2BD,又由BE=2BD,可得B是EC的中点,又由F是AC的中点,G是AE的中点,根据三角形中位线的性质,即可得BG∥AC,BF∥AE,即可判定:四边形AGBF是平行四边形.(2)易证得四边形BGFC是平行四边形,由GF=AB,可判定△ABC是等边三角形,继而可得△AHF,△CDF,△GHB是等边三角形.此题考查了平行四边形的性质以及等边三角形的判定与性质.注意证得B是EC的中点,根据三角形中位线的性质求解是关键.25.【答案】解:(1)设每件羽绒服的标价为x元,则10月份售出件,根据题意得:=×1.5,解得:x=1400,经检验x=1400是原方程的解,答:每件羽绒服的标价为1400元.(2)设这批羽绒服购进a件,10月份售出28000÷1400=20(件),11月份售出20×1.5=30(件)根据题意得:28000+(11000+28000)+1400×0.9(a-20-30)-1200a≥9940解得:a≥99,所以a至少是99,答:这批羽绒服至少购进99件.【解析】(1)设每件羽绒服的标价为x元,则10月份售出件,等量关系:11月份的销售量是10月份的1.5倍;(2)设这批羽绒服购进a件,不等量关系:羽绒服总获利不少于9940元.本题考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.26.【答案】(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∵DB平分∠ADC,∴∠ADB=∠CDB,∵∠ACB=∠ADB,∠BAC=∠CDB,∴∠ACB=∠BAC,∴AB=CB,∴△ABC是等腰直角三角形;(2)证明:如图2,延长DC,PB交于点T,∵DP⊥AB,∴∠DFA=90°,∴∠CBA=∠DFA,∴CB∥DP,∴∠TCB=∠CDP,∠CBT=∠BPD,∵∠CDP+∠CBP=180°,∠CBT+∠CBP=180°,∴∠CBT=∠CDP,∴∠CBT=∠TCB=∠CDP=∠BPD,∴CT=BT,DT=PT,∴CD=BP;(3)解:如图3,延长FA到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF=α,EF=x,∴∠LEF=90°-α=∠AEH,∵AE=AH,∠AEH=∠AHE=90°-α,∴∠EAH=2α,∵FK=FG,AF=AF,∠KFA=∠GFA=90°,∴△KAF≌△GAF(SAS),∴∠KAF=∠GAF=2α,∴∠MAR=180°-2α,∵NM=LF,AM=EF,∠M=∠LFE=90°,∴△NMA≌△LFE(SAS),∴∠NMA=∠FLE=α,∴∠NAM=90°-α,∴∠NAR=90°-α,∴∠ANR=α,∵AN=AN,∠M=∠ARN=90°,∴△NMA≌△NRA(AAS),∴NR=MN,AM=AR=EF=x,∵AB=BC,BC=LF,∴AB=LF,∵AM=EF,EF=BF,∴AM=BF,∴MF=AM+AF=BF+AF=AB=LF,∴四边形MNLF是正方形,∴NL=NM=NR,∵KN=KN,∠NLK=∠NRK=90°,∴△NLK≌△NRK(SAS),∵AB=10+2x,∴LK=LF-KF=2+2x=RK,∴AK=AR+RK=2+3x,在Rt△AFK中,AF2+FK2=AK2,∴(10+x)2+82=(2+3x)2,解得:x=5,x=-4(不合题意舍去),∴AF=15,LF=20,BF=5,∵∠ADP+∠PDC=90°,∠DCL+∠LDC=90°,∴∠ADP=∠DCL,∵∠ABP=∠ADP,∴∠ABP=∠DCL,∵DC=BP,∠DLC=∠BFP=90°,∴△DLC≌△PFB(AAS),∴DL=PF,设DL=a,则DF=20+a,PF=a,∵tan∠ADF=tan∠PBF,∴=,∴=,解得:a=5-10,a=-5-10(不合题意,舍去),∴DL=5-10.【解析】(1)根据圆周角定理得到∠ABC=90°,根据角平分线的定义得到∠ADB=∠CDB,等量代换得到∠ACB=∠BAC,由等腰三角形的判定定理即可得到结论;(2)证明:如图2,延长DC,PB交于点T,根据垂直的定义得到∠DFA=90°,根据平行线的判定得到CB∥DP,求得∠TCB=∠CDP,∠CBT=∠BPD,推出∠CBT=∠CDP,根据等腰三角形的性质即可得到结论;(3)如图3,延长FA到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF=α,EF=x,得到∠LEF=90°-α=∠AEH根据等腰三角形的性质得到∠AEH=∠AHE=90°-α,推出△KAF≌△GAF(SAS),根据全等三角形的性质得到∠KAF=∠GAF=2α,求得∠MAR=180°-2α,推出△NMA≌△LFE(SAS),根据全等三角形的性质得到∠NMA=∠FLE=α,NR=MN,AM=AR=EF=x,得到四边形MNLF是正方形,由正方形的性质得到NL=NM=NR,根据全等三角形的判定定理得到△NLK≌△NRK(SAS),求得AK=AR+RK=2+3x,根据勾股定理得到AF=15,LF=20,BF=5又根据全等三角形的性质得到DL=PF,设DL=a,则DF=20+a,PF=a,根据三角函数的定义即可得到结论.本题考查了圆的综合题,圆周角定理,全等三角形的判定和性质,勾股定理,正方形的判定和性质,等腰直角三角形的判定,正确的作出辅助线构造全等三角形是解题的关键.27.【答案】解:(1)由题可求A(0,6),B(-3,0),∴AO=6,BO=3,∵AO=BC,∴BC=6,∴CO=BC-BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=-2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,-2t+6),∴PM=-2t+6,∴S△PBC=BC•PM=×6×(-2t+6)=-6t+18,S△ABC=BC•AO=18,∴S=S△ABC-S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF ∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠FAO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠FAD=∠EAD,AD=AD,∴△AFD≌△AED(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,∴DL=6+.【解析】(1)由题可求A(0,6),B(-3,0),C(3,0),再由待定系数法求AC 直线的解析式即可;(2)过点P作PM⊥x轴交于点M,P(t,-2t+6),可求S△PBC=BC•PM=×6×(-2t+6)=-6t+18,S△ABC=BC•AO=18,则有S=S△ABC-S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF,证明△ABF≌△ACE(SAS),过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,再证明△AFD≌△AED(SAS),过点C作CN⊥BP于点N,再证明△AOC≌△LNC(HL),可得tan∠NDC=,=,DN=,DL=6+.本题考查一次函数的综合;熟练掌握一次函数的图象及性质,通过构造三角形解题是关键.。
哈尔滨市风华中学2024届中考数学模拟精编试卷含解析
哈尔滨市风华中学2024届中考数学模拟精编试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且0k≠C.k<-14D.k≥-14且0k≠2.如图,函数y1=x3与y2=1x在同一坐标系中的图象如图所示,则当y1<y2时()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0D.﹣1<x<0或x>13.﹣2×(﹣5)的值是()A.﹣7 B.7 C.﹣10 D.104.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13 14 15 16频数 5 15 x 10- xA.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数5.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233πB.2233π-C.433πD.4233π-6.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B 的度数是()A.100°B.80°C.60°D.50°7.|﹣3|的值是()A.3 B.13C.﹣3 D.﹣138.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣19.下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.10.下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a611.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±312.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).14.用换元法解方程2231512x x x x -+=-,设y=21x x -,那么原方程化为关于y 的整式方程是_____.15.若分式67x--的值为正数,则x 的取值范围_____. 16.已知△ABC 中,BC=4,AB=2AC ,则△ABC 面积的最大值为_______.17.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)18.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点.一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A .点MB .点NC .点PD .点Q三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在△ABC 中,AB=AC ,∠BAC=α,点P 是△ABC 内一点,且∠PAC+∠PCA=2α,连接PB ,试探究PA 、PB 、PC 满足的等量关系.(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP ≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.20.(6分)如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.求点B的坐标;若△ABC的面积为4,求2l的解析式.21.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:AC CE=;(2)若32DEDF=,求tan∠CED的值.22.(8分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元) 3 4 5 6 7 8 10 销售员人数(单位:人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?23.(8分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.24.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?25.(10分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.26.(12分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).27.(12分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【题目详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14且k≠1.故选B.【题目点拨】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.2、B【解题分析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【题目详解】根据图象知,一次函数y1=x3与反比例函数y2=1x的交点是(1,1),(-1,−1),∴当y1<y2时,, 0<x<1或x<-1;故答案选:B.【题目点拨】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.3、D【解题分析】根据有理数乘法法则计算.【题目详解】﹣2×(﹣5)=+(2×5)=10.故选D.【题目点拨】考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0.4、D【解题分析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.【题目详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.故选D.5、D【解题分析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.6、B【解题分析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B7、A【解题分析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,-=3 3.故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.8、B【解题分析】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【题目点拨】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.9、C【解题分析】根据中心对称图形,轴对称图形的定义进行判断.【题目详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【题目点拨】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.10、B【解题分析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【题目详解】A. a3+a4≠a7 ,不是同类项,不能合并,本选项错误;B. a4÷a3=a4-3=a;,本选项正确;C. a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【题目点拨】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.11、B【解题分析】解:由题意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x=9,9的算术平方根是1.故选B.12、C【解题分析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°. 故选C .考点:勾股定理.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、AE=AD (答案不唯一). 【解题分析】要使△ABE ≌△ACD ,已知AB=AC ,∠A=∠A ,则可以添加AE=AD ,利用SAS 来判定其全等;或添加∠B=∠C ,利用ASA 来判定其全等;或添加∠AEB=∠ADC ,利用AAS 来判定其全等.等(答案不唯一). 14、6y 2-5y+2=0 【解题分析】 根据y =21xx -,将方程变形即可. 【题目详解】 根据题意得:3y +152y =, 得到6y 2-5y +2=0 故答案为6y 2-5y +2=0 【题目点拨】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键. 15、x>1 【解题分析】 试题解析:由题意得:67x-->0, ∵-6<0, ∴1-x <0, ∴x >1. 16、163【解题分析】设AC =x ,则AB =2x ,根据面积公式得S △ABC =2 ,由余弦定理求得 cos C 代入化简S△ABC=222569809169x⎛⎫--⎪⎝⎭,由三角形三边关系求得443x<<,由二次函数的性质求得S△ABC取得最大值.【题目详解】设AC=x,则AB=2x,根据面积公式得:c=1sin2sin2AC BC C x C⋅⋅==2x21cos C-.由余弦定理可得:2163cos8xCx-=,∴S△ABC=2x21cos C-=2x2216318xx⎛⎫-- ⎪⎝⎭=222569809139x⎛⎫--⎪⎝⎭由三角形三边关系有2442x xx x+>⎧⎨+>⎩,解得443x<<,故当453x=时,443x<<取得最大值163,故答案为: 16 3.【题目点拨】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.17、>【解题分析】由图像可知在射线上有一个特殊点,点到射线的距离,点到射线的距离,于是可知,利用锐角三角函数,即可判断出【题目详解】由题意可知:找到特殊点,如图所示:设点到射线的距离,点到射线的距离由图可知,,,【题目点拨】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.18、D【解题分析】D .试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M ,AM 最小,与图2不符,可排除A.若微型记录仪位于图1中的点N ,由于AN=BM ,即甲虫从A 到B 时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P ,由于甲虫从A 到OP 与圆弧的交点时甲虫与微型记录仪之间的距离y 逐渐减小;甲虫从OP 与圆弧的交点到A 时甲虫与微型记录仪之间的距离y 逐渐增大,即y 与t 的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D .考点:1.动点问题的函数图象分析;2.排他法的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)150,222PA PC PB +=(1)证明见解析(3)22224sin2PA PC PB α+=【解题分析】(1)根据旋转变换的性质得到△PAP ′为等边三角形,得到∠P ′PC =90°,根据勾股定理解答即可;(1)如图1,作将△ABP 绕点A 逆时针旋转110°得到△ACP ′,连接PP ′,作AD ⊥PP ′于D ,根据余弦的定义得到PP ′3,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.试题解析:【题目详解】解:(1)∵△ABP ≌△ACP′,∴AP =AP ′,由旋转变换的性质可知,∠PAP ′=60°,P ′C =PB ,∴△PAP ′为等边三角形,∴∠APP ′=60°,∵∠PAC +∠PCA =12×60° =30°, ∴∠APC =150°,∴∠P ′PC =90°,∴PP ′1+PC 1=P ′C 1,∴PA 1+PC 1=PB 1,故答案为150,PA 1+PC 1=PB 1; (1)如图,作120PAP =∠'°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点.∵120BAC PAP '∠∠==°, 即BAP PAC PAC CAP ∠∠∠∠'+=+,∴BAP CAP =∠∠'.∵AB =AC ,AP AP '=,∴BAP CAP '≌.∴P C PB '=,180302PAP APD AP D -∠∠''∠===°. ∵AD ⊥PP ',∴90ADP ∠=°. ∴在Rt APD △中,3cos 2PD AP APD AP ⋅∠=. ∴23PP PD '==.∵60PAC PCA ∠∠+=°, ∴180120APC PAC PCA ∠-∠-∠==°. ∴90P PC APC APD ==∠∠-∠'°. ∴在Rt P PC '中,222P P PC P C ''+=.∴2223PA PC PB +=;(3)如图1,与(1)的方法类似,作将△ABP 绕点A 逆时针旋转α得到△ACP ′,连接PP ′,作AD ⊥PP ′于D ,由旋转变换的性质可知,∠PAP ′=α,P ′C =PB ,∴∠APP ′=90°-2α, ∵∠PAC +∠PCA =2α, ∴∠APC =180°-2α, ∴∠P ′PC =(180°-2α)-(90°-2α)=90°, ∴PP ′1+PC 1=P ′C 1,∵∠APP ′=90°-2α, ∴PD =PA •cos (90°-2α)=PA •sin 2α, ∴PP ′=1PA •sin 2α, ∴4PA 1sin 12α+PC 1=PB 1, 故答案为4PA 1sin 12α+PC 1=PB 1. 【题目点拨】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.20、(1)(0,3);(2)112y x =-. 【解题分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【题目详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.21、(1)见解析;(2)tan ∠CED=5 【解题分析】(1)欲证明AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD •BE =BC •BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题.【题目详解】(1)证明:如下图,连接AE ,∵AD 是直径,∴90ACD ∠︒=,∴DC ⊥AB ,∵AC =CB ,∴DA =DB ,∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=,∴∠BDC =∠EAC ,∵∠AEC =∠ADC ,∴∠EAC =∠AEC ,∴AC CE =;(2)解:如下图,连接OC ,∵AO =OD ,AC =CB ,∴OC ∥BD ,∴EDF COF ∆∆∽, ∴32ED OC DF OF ==, 设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,∵∠BAD =∠BEC ,∠B =∠B ,∴BAD BEC ∆∆∽,∴BD •BE =BC •BA ,设AC =BC =x ,则有2267.5x a a ⨯=,∴3102x a =, ∴3102AC a =, ∴22362CD AD AC a =-=, ∴36152tan tan 53102a DC EDC DAC AC ∠=∠===.【题目点拨】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.22、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解题分析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答.【题目详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【题目点拨】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.23、(1) 1;(2)1 7【解题分析】(1)由勾股定理求AB,设⊙O的半径为r,则r=12(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则2x,由(1)可知22,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得22AC BC,∴☉O的半径r=12(AC+BC-AB)=12(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴x3=4x4-,解得x=127,即GP=127,CG=1227,∴OG=CG-CO=1227-2=527,在Rt△ODG中,DG=22OG OD-=1 7 .24、(1)(300﹣10x).(2)每本书应涨价5元.【解题分析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.25、证明见解析.【解题分析】过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证.【题目详解】证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D +∠DCE =90°,∵∠BCD =90°,∴∠BCF +∠DCE =90°∴∠BCF =∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BCF ≌△CDE (AAS ),∴BF =CE ,又∵∠A =90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE =BF ,∴AE =CE .26、小船到B 码头的距离是2海里,A 、B 两个码头间的距离是(3【解题分析】试题分析:过P 作PM ⊥AB 于M ,求出∠PBM=45°,∠PAM=30°,求出PM ,即可求出BM 、AM 、BP .试题解析:如图:过P 作PM ⊥AB 于M ,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=12AP=10,33BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=10103+∴BP=sin 45PM =102B 码头的距离是2A 、B 两个码头间的距离是(10103+考点:解直角三角形的应用-方向角问题.27、(1)见解析(2)见解析【解题分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【题目详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形。
2020年黑龙江省哈尔滨市中考数学试卷(有详细解析)
2020年黑龙江省哈尔滨市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30.0分)1.−8的倒数是()A. −18B. −8 C. 18D. 82.下列运算一定正确的是()A. a2+a2=a4B. a2⋅a4=a8C. (a2)4=a8D. (a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A. 扇形B. 正方形C. 等腰直角三角形D. 正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A. 25°B. 20°C. 30°D. 35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A. y=(x+3)2+5B. y=(x−3)2+5C. y=(x+5)2+3D. y=(x−5)2+37.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,则∠CAB′的度数为()A. 10°B. 20°C. 30°D. 40°8. 方程2x+5=1x−2的解为( ) A. x =−1 B. x =5 C. x =7 D. x =99. 一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是( )A. 23B. 12C. 13D. 19 10. 如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF//BC ,交AD 于点F ,过点E 作EG//AB ,交BC 于点G ,则下列式子一定正确的是( )A. AE EC =EF CDB. EF CD =EG ABC. AF FD =BG GCD. CG BC =AFAD 二、填空题(本大题共10小题,共30.0分)11. 将数4790000用科学记数法表示为______.12. 在函数y =xx−7中,自变量x 的取值范围是______.13. 已知反比例函数y =k x 的图象经过点(−3,4),则k 的值为______.14. 计算√24+6√16的结果是______. 15. 把多项式m 2n +6mn +9n 分解因式的结果是______.16. 抛物线y =3(x −1)2+8的顶点坐标为______.17. 不等式组{x3≤−1,3x +5<2的解集是______. 18. 一个扇形的面积是13πcm 2,半径是6cm ,则此扇形的圆心角是______度.19. 在△ABC 中,∠ABC =60°,AD 为BC 边上的高,AD =6√3,CD =1,则BC 的长为______.20. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 在线段BO 上,连接AE ,若CD =2BE ,∠DAE =∠DEA ,EO =1,则线段AE 的长为______.三、解答题(本大题共7小题,共60.0分)21. 先化简,再求代数式(1−2x+1)÷x 2−12x+2的值,其中x =4cos30°−1.22. 如图,方格纸中每个小正方形的边长均为1,线段AB 和线段CD 的端点均在小正方形的顶点上.(1)在图中画出以AB 为边的正方形ABEF ,点E 和点F 均在小正方形的顶点上;(2)在图中画出以CD 为边的等腰三角形CDG ,点G 在小正方形的顶点上,且△CDG23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF//AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG//BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为9√2,求线段5 CG的长.27.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于x,过点C作CM⊥y轴,垂足为M,OM=9.点C,直线OC的解析式为y=34(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求PE的值;OD(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ−FG=√2AF,求点P的坐标.答案和解析1.A,解:−8的倒数是−182.C解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2⋅a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.3.B解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.4.C解:从左边看第一层是两个小正方形,第二层右边一个小正方形,5.B解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°−70°=20°.6.D解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x−5)2+3;7.A解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,∴∠AB′B=∠B=50°,∴∠CAB′=∠AB′B−∠C=10°,8.D解:方程的两边同乘(x+5)(x−2)得:2(x−2)=x−5,解得x=9,经检验,x=9是原方程的解.9.A解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是69=23,10.C解:∵EF//BC,∴AFFD =AEEC,∵EG//AB,∴AEEC =BGGC,∴AFFD =BGGC,11.4.79×106解:4790000=4.79×106,12.x≠7解:由题意得x−7≠0,解得x≠7.13.−12解:∵反比例函数y=kx的图象经过点(−3,4),∴k=−3×4=−12,14.3√6解:原式=2√6+√6=3√6.15.n(m+3)2解:原式=n(m2+6m+9)=n(m+3)2.16. (1,8)解:∵抛物线y =3(x −1)2+8是顶点式,∴顶点坐标是(1,8).17. x ≤−3解:{x 3≤−1 ①3x +5<2 ②, 由①得,x ≤−3;由②得,x <−1,故此不等式组的解集为:x ≤−3.18. 130解:设这个扇形的圆心角为n°,nπ×62360=13π,解得,n =130,19. 5或7解:在Rt △ABD 中,∠ABC =60°,AD =6√3,∴BD =AD tanB =√3√3=6,如图1、图2所示:BC =BD +CD =6+1=7,BC =BD −CD =6−1=5,20. 2√2解:设BE =x ,则CD =2x ,∵四边形ABCD 为菱形,∴AB =AD =CD =2x ,OB =OD ,AC ⊥BD ,∵∠DAE =∠DEA ,∴DE =DA =2x ,∴BD =3x ,∴OB =OD =32x ,∵OE +BE =BO ,∴1+x =32x ,解得x =2,即AB =4,OB =3,在Rt △AOB 中,OA =√42−32=√7,在Rt △AOE 中,AE =√12+(√7)2=2√2.21.解:原式=x−1x+1⋅2(x+1) (x−1)(x+1)=2x+1,∵x=4cos30°−1=4×√32−1=2√3−1,∴原式=2√3−1+1=√33.22.解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.23.解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50−15−20−5=10(名),补全条形统计图如图所示:(3)800×2050=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.24.(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,{AB=AC ∠B=∠C BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF//AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.25. 解:(1)设每个大地球仪x 元,每个小地球仪y 元,根据题意可得: {x +3y =1362x +y =132, 解得:{x =52y =28, 答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a 台,则每个小地球仪为(30−a)台,根据题意可得: 52a +28(30−a)≤960,解得:a ≤5,答:最多可以购买5个大地球仪.26. 证明:(1)∵AD 为⊙O 的直径,AD ⊥BC ,∴BE =EC ,∴AB =AC ,又∵AD ⊥BC ,∴∠BAD =∠CAD ,∵OA =OB ,∴∠BAD =∠ABO ,∴∠BAD =∠ABO =∠CAD ,∵∠BFC =∠BAC +∠ABO ,∴∠BFC =∠BAD +∠EAD +∠ABO =3∠CAD ;(2)如图2,连接AG ,∵AD 是直径,∴∠AGD =90°,∵点H 是DG 中点,∴DH =HG ,又∵AO =DO ,∴OH//AG ,AG =2OH ,∴∠AGD =∠OHD =90°,∵DG//BF ,∴∠BOE =∠ODH ,又∵∠OEB =∠OHD =90°,BO =DO ,∴△BOE≌△ODH(AAS),∴BE =OH ;(3)如图3,过点F 作FN ⊥AD ,交AD 于N ,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE=√OB2−OE2=√9x2−x2=2√2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=BEAE =NFAN,∴2√2x4x =NFAN,∴AN=√2NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=BEOE =NFON,∴2√2xx =NFON,∴ON=√24NF,∴AO=AN+ON=5√24NF,∵△AOF的面积为9√25,∴12×AO×NF=12×5√24NF2=9√25,∴NF=6√25,∴AO=5√24NF=3=3x,∴x=1,∴BE=2√2=OH,AE=4,DG=DE=2,∴AC=√AE2+CE2=√16+8=2√6,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4√2,∵四边形ADGC 是圆内接四边形,∴∠ACM =∠ADG ,又∵∠AMC =∠AGD =90°,∴△ACM∽△ADG , ∴AD AC =AG AM =DG CM , ∴2√6=4√2AM =2CM ,∴CM =2√63,AM =8√33, ∴GM =√AG 2−AM 2=√32−643=4√63, ∴CG =GM −CM =2√63.27. 解:(1)∵CM ⊥y 轴,OM =9,∴y =9时,9=34x ,解得x =12,∴C(12,9),∵AC ⊥x 轴,∴A(12,0),∵OA =OB ,∴B(0,−12),设直线AB 的解析式为y =kx +b ,则有{b =−1212k +b =0, 解得{k =1b =−12, ∴直线AB 的解析式为y =x −12.(2)如图2中,∵∠CMO =∠MOA =∠OAC =90°,∴四边形OACM 是矩形,∴AO =CM =12,∵NC =OM =9,∴MN=CM−NC=12−9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=34x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD−DE=12a−3a=9a,∴PEOD =94.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF//x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°−45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB =∠AFR =45°, ∴∠SBF =∠SFB =45°, ∴SF =SB =QR ,∵∠SGB =∠QGR ,∠BSG =∠R , ∴△BSG≌△QRG(AAS), ∴SG =GR =6,设FR =m ,则AR =m ,AF =√2m ,QR =SF =12−m , ∵GQ −FG =√2AF ,∴GQ =√2×√2m +6−m =m +6, ∵GQ 2=GR 2+QR 2, ∴(m +6)2=62+(12−m)2, 解得m =4,∴FS =8,AR =4,∵∠OAB =∠FAR ,FT ⊥OA ,FR ⊥AR , ∴FT =FR =AR =4,∠OTF =90°, ∴四边形OSFT 是矩形, ∴OT =SF =8,∵∠DHE =∠DPH ,∴tan∠DHE =tan∠DPH , ∴DE DH =DH PD ,由(2)可知DE =3a ,PD =12a , ∴3a DH =DH 12a ,∴DH =6a ,∴tan∠PHD =PD DH =12a 6a =2,∵∠PHD =∠FHT ,∴tan∠FHT =TF HT =2, ∴HT =2,∵OT =OD +DH +HT , ∴4a +6a +2=8,∴a =35,∴OD =125,PD =12×35=365, ∴P(125,365).。
黑龙江省哈尔滨市2024届中考数学押题卷含解析
黑龙江省哈尔滨市2024年中考数学押题卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.一元二次方程x 2-2x=0的解是( )A .x 1=0,x 2=2B .x 1=1,x 2=2C .x 1=0,x 2=-2D .x 1=1,x 2=-23.下列四个命题,正确的有( )个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A .1B .2C .3D .44.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 5.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°6.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )A .中位数B .众数C .平均数D .方差7.如图,在ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ,DF BA .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .48.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A .13;13B .14;10C .14;13D .13;149.在△ABC 中,∠C =90°,1cos 2A =,那么∠B 的度数为( ) A .60°B .45°C .30°D .30°或60° 10.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 二、填空题(本大题共6个小题,每小题3分,共18分)112x -x 的取值范围是_____.12.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.13.如图,抛物线2y x 2x 3=-++交x 轴于A ,B 两点,交y 轴于点C ,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为__________.14.已知,直接y=kx+b (k >0,b >0)与x 轴、y 轴交A 、B 两点,与双曲线y=16 x (x >0)交于第一象限点C ,若BC=2AB ,则S △AOB =________.15.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.16.如图,在△ABC 中,DE ∥BC ,1=2AD DB ,则ADE BCED 的面积四边形的面积=_____.三、解答题(共8题,共72分)17.(8分)先化简,再求值:先化简22211x x x -+-÷(11x x -+﹣x +1),然后从﹣2<x 5为x 的值代入求值.18.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.19.(8分)当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?20.(8分)在△ABC中,∠A,∠B都是锐角,且sinA=12,tanB=3,AB=10,求△ABC的面积.21.(8分)如图,△ABC中,∠C=90°,∠A=30°.用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);连接BD,求证:BD平分∠CB A.22.(10分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.23.(12分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为底边的等腰CAB∆,其面积为5,点C在小正方形的顶点上;在图中面出以线段AB为一边的ABDE,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.24.如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解. 【题目详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【题目点拨】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2、A【解题分析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.3、A【解题分析】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如22-+=0,0是有理数,故本小题错误;④例如(﹣2)×2=﹣2,﹣2是有理数,故本小题错误.故选A.点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.4、B【解题分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【题目详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【题目点拨】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.5、C【解题分析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.6、A【解题分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键. 7、D【解题分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.【题目详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.【题目点拨】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.8、C【解题分析】根据统计图,利用众数与中位数的概念即可得出答案.【题目详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C.【题目点拨】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.9、C【解题分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【题目详解】解:∵1 cos2A=,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.10、B【解题分析】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、x<1【解题分析】要使代数式12x-有意义时,必有1﹣x>2,可解得x的范围.【题目详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【题目点拨】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.12、【解题分析】根据概率的公式进行计算即可.【题目详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【题目点拨】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.13258+【解题分析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.【题目详解】如图,在y =﹣x 2+2x +3中,当x =0时,y =3,即点C (0,3),∵y =﹣x 2+2x +3=﹣(x -1)2+4,∴对称轴为x =1,顶点D (1,4),则点C 关于对称轴的对称点E 的坐标为(2,3),作点D 关于y 轴的对称点D′(﹣1,4),作点E 关于x 轴的对称点E′(2,﹣3),连结D′、E′,D′E′与x 轴的交点G 、与y 轴的交点F 即为使四边形EDFG 的周长最小的点,四边形EDFG 的周长=DE +DF +FG +GE=DE +D′F +FG +GE′=DE +D′E′ =2222(12)(43)(12)(43)-+-+﹣-++=258+∴四边形EDFG 周长的最小值是258+. 【题目点拨】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案. 14、43【解题分析】根据题意可设出点C 的坐标,从而得到OA 和OB 的长,进而得到△AOB 的面积即可.【题目详解】∵直接y=kx+b 与x 轴、y 轴交A 、B 两点,与双曲线y=16x 交于第一象限点C ,若BC=2AB ,设点C 的坐标为(c,16c ) ∴OA=0.5c,OB=1163c =163c ,∴S△AOB=1·2OA OB=1160.523cc⨯⨯=43【题目点拨】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.15、16【解题分析】设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+53a=83a,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答. 【题目详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=53a,m=a+b= a+53a=83a,因为1020m<<,所以10<83a<20,解得:154<a<152,又因为小长方形的边长为整数,a=4、5、6、7,因为b=53a,所以5a是3的倍数,即a=6,b=53a=10,m= a+b=16.故答案为:16.【题目点拨】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.16、1 8【解题分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【题目详解】解:∵DE∥BC,AD1=DB2,∴AD1= AB3,由平行条件易证△ADE~△ABC, ∴S△ADE:S△ABC=1:9,∴ADE S ADEBCED S ABC S ADE的面积四边形的面积=-=18.【题目点拨】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.三、解答题(共8题,共72分)17、﹣1x,﹣12.【解题分析】根据分式的减法和除法可以化简题目中的式子,然后在-2<x<5中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.【题目详解】原式=2x-11(1)(1) x+1(1)1x x xx x---+÷-+()()=2x-1x+1x+1x-1-x+1⋅=x-1-x x-1()=1x-,∵-2<x<5(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-1 2 .【题目点拨】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.18、(1)14;(2)112.【解题分析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为1 12.19、2,1【解题分析】根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.20、253 2【解题分析】根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.【题目详解】如图:由已知可得:∠A=30°,∠B=60°,∴△ABC为直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=1012⨯=5,AC=AB·cos30°=103=3∴S△ABC=125 AC?BC3 22=【题目点拨】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.21、(1)作图见解析;(2)证明见解析.【解题分析】(1)分别以A、B为圆心,以大于12AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.【题目详解】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE 是AB 边上的中垂线,∠A =30°,∴AD =BD ,∴∠ABD =∠A =30°,∵∠C =90°,∴∠ABC =90°﹣∠A =90°﹣30°=60°,∴∠CBD =∠ABC ﹣∠ABD =60°﹣30°=30°,∴∠ABD =∠CBD ,∴BD 平分∠CB A .【题目点拨】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.22、(1)33(2)3311m <<;②△AOB 与半圆D 的公共部分的面积为4+33π(3)tan ∠AOB 的值为157125. 【解题分析】(1)根据题意由勾股定理即可解答(2)①根据题意可知半圆D 与数轴相切时,只有一个公共点,和当O 、A 、B 三点在数轴上时,求出两种情况m 的值即可②如图,连接DC ,得出△BCD 为等边三角形,可求出扇形ADC 的面积,即可解答(3)根据题意如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答【题目详解】(1)当半圆与数轴相切时,AB ⊥OB ,由勾股定理得m =22227433OA AB -=-= ,故答案为33 .(2)①∵半圆D 与数轴相切时,只有一个公共点,此时m =33,当O 、A 、B 三点在数轴上时,m =7+4=11,∴半圆D 与数轴有两个公共点时,m 的取值范围为3311m <<.故答案为3311m <<.②如图,连接DC ,当BC =2时,∵BC =CD =BD =2,∴△BCD 为等边三角形,∴∠BDC =60°,∴∠ADC =120°,∴扇形ADC 的面积为212024=3603ADCS ⨯⨯=扇形ππ , 12332BDC S =⨯⨯=△ , ∴△AOB 与半圆D 的公共部分的面积为4+33π ; (3)如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4+x )2=42﹣x 2, 解得x =178 ,OH =498,AH 715 ,∴tan∠AOB=157,如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4﹣x)2=42﹣x2,解得x=87,OH=417,AH=1257,∴tan∠AOB=125 41.综合以上,可得tan∠AOB的值为157或12541.【题目点拨】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线23、(1)见解析;(2)见解析;(3)见解析,5CE .【解题分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【题目详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=5.【题目点拨】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.24、3-4)米【解题分析】延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.【题目详解】解:如图,延长OC,AB交于点P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=12AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC•tan60°=23米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴PC BC PA OA=,∴PA=PC OABC⋅=23102⨯=103米,∴AB=PA﹣PB=(1034-)米.答:路灯的灯柱AB高应该设计为(1034-)米.。
2020年黑龙江省哈尔滨市中考数学试卷(含答案)
黑龙江省哈尔滨市2020年中考数学试卷1.(3分)(2020年黑龙江哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃分析:根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解答:解:28﹣21=28+(﹣21)=7,故选:C.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2.(3分)(2020年黑龙江哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于927 000有6位,所以可以确定n=6﹣1=5.解答:解:927 000=9.27×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2020年黑龙江哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A、B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、不是同底数幂的乘法,指数不能相加,故B错误;C、底数不变指数相加,故C正确;D、积的乘方等于每个因式分别乘方,再把所得的幂相乘;故D错误;故选:C.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.4.(3分)(2020年黑龙江哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2020年黑龙江哈尔滨)在反比例函数的图象的每一条曲线上,y都随x 的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1考点:反比例函数的性质.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.6.(3分)(2020年黑龙江哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)(2020年黑龙江哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°考点:切线的性质.分析:根据切线的性质求出∠OAC,求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)(2020年黑龙江哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.9.(3分)(2020年黑龙江哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4C.3D.3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B 是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.10.(3分)(2020年黑龙江哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据函数的图象和已知条件分别分析探讨其正确性,进一步判定得出答案即可.解答:解:①由图可知打电话时,小刚和妈妈的距离为1250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过5+15+3=23分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是1250÷5﹣100=150米/分,走的路程为150×5=750米,回家的速度是750÷15=50米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为750+(15+3)×100=2550米,所以是正确的.正确的答案有①②④.故选:C.点评:此题考查了函数的图象的实际意义,结合题意正确理解函数图象,利用基本行程问题解决问题.二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2020年黑龙江哈尔滨)计算:=.考点:二次根式的加减法.分析:先化简=2,再合并同类二次根式即可.解答:解:=2﹣=.故应填:.点评:本题主要考查了二次根式的加减,属于基础题型.12.(3分)(2020年黑龙江哈尔滨)在函数y=中,自变量x的取值范围是x≠﹣2.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,2x+4≠0,解得x≠﹣2.故答案为:x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2020年黑龙江哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式3,再利用完全平方公式进行二次分解.解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2020年黑龙江哈尔滨)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2020年黑龙江哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)(2020年黑龙江哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两次摸取的小球标号都是1的情况数,即可求出所求的概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2020年黑龙江哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD 边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为5或6.考点:矩形的性质;等腰三角形的判定;勾股定理.专题:分类讨论.分析:需要分类讨论:PB=PC和PB=BC两种情况.解答:解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.在Rt△ABP中,由勾股定理得PB===5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.点评:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.18.(3分)(2020年黑龙江哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(3分)(2020年黑龙江哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB 边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.考点:正方形的性质;勾股定理;等腰直角三角形.分析:由四边形ABCD是正方形,AC为对角线,得出∠AFE=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.解答:解:∵四边形ABCD是正方形,AC为对角线,∴∠AFE=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.点评:本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.20.(3分)(2020年黑龙江哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=5m.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2020年黑龙江哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式===,当x=2×+2=+2,y=2时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2020年黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.考点:作图-轴对称变换.专题:作图题.分析:(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图象,重叠部分为两个直角三角形的面积的差,列式计算即可得解.解答:解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.点评:本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.23.(6分)(2020年黑龙江哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(6分)(2020年黑龙江哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.25.(8分)(2020年黑龙江哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.26.(8分)(2020年黑龙江哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.解答:解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.点评:本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.(10分)(2020年黑龙江哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B 的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.考点:二次函数综合题.分析:(1)利用已知得出A,B点坐标,进而利用待定系数法得出a,b的值;(2)利用已知得出AD=BD则∠BAD=∠ABD=45°,进而得出tan∠BOD=tan∠MPF,故==3,MF=3PF=3t,即可得出d与t的函数关系;(3)首先利用S△ACN=S△PMN,则AC2=2t2,得出AC=2t,CN=2t,则M(4﹣2t,6t),求出t的值,进而得出△PMQ∽△NBR,求出R点坐标.解答:解:(1)∵y=﹣x+4与x轴交于点A,∴A(4,0),∵点B的横坐标为1,且直线y=﹣x+4经过点B,∴B(1,3),∵抛物线y=ax2+bx经过A(4,0),B(1,3),∴,解得:,∴a=﹣1,b=4;(2)如图,作BD⊥x轴于点D,延长MP交x轴于点E,∵B(1,3),A(4,0),∴OD=1,BD=3,OA=4,∴AD=3,∴AD=BD,∵∠BDA=90°,∠BAD=∠ABD=45°,∵MC⊥x轴,∴∠ANC=∠BAD=45°,∴∠PNF=∠ANC=45°,∵PF⊥MC,∴∠FPN=∠PNF=45°,∴NF=PF=t,∵∠DFM=∠ECM=90°,∴PF∥EC,∴∠MPF=∠MEC,∵ME∥OB,∴∠MEC=∠BOD,∴∠MPF=∠BOD,∴tan∠BOD=tan∠MPF,∴==3,∴MF=3PF=3t,∵MN=MF+FN,∴d=3t+t=4t;(3)如备用图,由(2)知,PF=t,MN=4t,∴S△PMN=MN×PF=×4t×t=2t2,∵∠CAN=∠ANC,∴CN=AC,∴S△ACN=AC2,∵S△ACN=S△PMN,∴AC2=2t2,∴AC=2t,∴CN=2t,∴MC=MN+CN=6t,∴OC=OA﹣AC=4﹣2t,∴M(4﹣2t,6t),由(1)知抛物线的解析式为:y=﹣x2+4x,将M(4﹣2t,6t)代入y=﹣x2+4x得:﹣(4﹣2t)2+4(4﹣2t)=6t,解得:t1=0(舍),t2=,∴PF=NF=,AC=CN=1,OC=3,MF=,PN=,PM=,AN=,∵AB=3,∴BN=2,作NH⊥RQ于点H,∵QR∥MN,∴∠MNH=∠RHN=90°,∠RQN=∠QNM=45°,∴∠MNH=∠NCO,∴NH∥OC,∴∠HNR=∠NOC,∴tan∠HNR=tan∠NOC,∴==,设RH=n,则HN=3n,∴RN=n,QN=3n,∴PQ=QN﹣PN=3n﹣,∵ON==,OB==,∴OB=ON,∴∠OBN=∠BNO,∵PM∥OB,∴∠OBN=∠MPB,∴∠MPB=∠BNO,∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,∴∠BRN=∠MQP,∴△PMQ∽△NBR,∴=,∴=,解得:n=,∴R的横坐标为:3﹣=,R的纵坐标为:1﹣=,∴R(,).点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和勾股定理等知识,得出△PMQ∽△NBR,进而得出n的值是解题关键.28.(10分)(2020年黑龙江哈尔滨)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.考点:相似形综合题.分析:(1)根据等式的性质,可得∠APE=∠ADE,根据等腰三角形的性质,可得∠PAD=2β,根据直角三角形的性质,可得∠AEB+∠CBE=90°,根据等式的性质,可得∠ABC=∠ACB,根据等腰三角形的判定,可得答案;(2)根据相似三角形的判定与性质,可得∠ABE=∠ACD,根据等腰三角形的性质,可得∠GND=∠GDN,根据对顶角的性质,可得∠AGF的度数,根据三角形外角的性质,∠AFG 的度数,根据直角三角形的性质,可得BF与MH的关系,根据等腰三角形的性质,可得∠FRM=∠FMR,根据平行线的判定与性质,可得∠CBD=∠RMB,根据相似三角形的判定与性质,可得,根据线段的和差,可得BR=BF﹣FR,根据等量代换,可得答案.解答:(1)证明:如图1,作∠BAP=∠DAE=β,AP交BD于P,设∠CBD=α,∠CAD=β,∵∠ADB=∠CAD+∠ABD,∠APE=∠BAP+∠ABD,∴∠APE=∠ADE,AP=AD.∵AC⊥BD∴∠PAE=∠DAE=β,∴∠PAD=2β,∠BAD=3β.∵∠BAD=3∠CBD,∴3β=3α,β=α.∵AC⊥BD,∴∠ACB=90°﹣∠CBE=90°﹣α=90°﹣β.∵∠ABC=180°﹣∠BAC﹣∠ACB=90°﹣β,∴∠ACB=∠ABC,∴△ABC为等腰三角形;(2)2MH=FM+CD.证明:如图2,由(1)知AP=AD,AB=AC,∠BAP=∠CAD=β,∴△ABP∽△ACD,∴∠ABE=∠ACD.∵AC⊥BD,∴∠GDN=90°﹣β,∵GN=GD,∴∠GND=∠GDN=90°﹣β,∴∠NGD=180°﹣∠GND﹣∠GDN=2β.∴∠AGF=∠NGD=2β.∴∠AFG=∠BAD﹣∠AGF=3β﹣2β=β.∵FN平分∠BFM,∴∠NFM=∠AFG=β,∴FM∥AE,∴∠FMN=90°.∵H为BF的中点,∴BF=2MH.在FB上截取FR=FM,连接RM,∴∠FRM=∠FMR=90°﹣β.∵∠ABC=90°﹣β,∴∠FRM=∠ABC,∴RM∥BC,∴∠CBD=∠RMB.∵∠CAD=∠CBD=β,∴∠RMB=∠CAD.∵∠RBM=∠ACD,∴△RMB∽△DAC,∴,∴BR=CD.∵BR=BF﹣FR,∴FB﹣FM=BR=CD,FB=FM+CD.∴2MH=FM+CD.精品试卷点评:本题考查了相似形综合题,(1)利用了等腰三角形的性质,等腰三角形的判定,直角三角形的性质;(2)相似三角形的判定与性质,直角三角形的性质,三角形外角的性质,平行线的判定与性质,利用的知识点多,题目稍有难度,相似三角形的判定与性质是解题关键.友情提示:一、认真对待每一次考试。
黑龙江省哈尔滨市2020年中考数学测试试卷(含解析)
2020年黑龙江省哈尔滨市中考数学测试试卷一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S△BCF=20,求DE的长.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P 的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠P AC=30°,∠PBC=60°,在Rt△ACP中,tan∠P AC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,F A=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠F AC=∠CAB,∴∠F AC=∠FCA,∴F A=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是2.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9.【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144.【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G 为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB =AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S△BCF=20,求DE的长.【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB =∠CDB=2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F 作FH⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F 作FH⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P 的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN =PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ (ASA),求得RZ=FM根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。
2020年哈尔滨市中考数学试题(解析版)
【详解】解:(1)15÷30%=50(名),
答:本次调查共抽取了50名学生;
(2)50﹣15﹣20﹣5=10(名),
补全条形统计图如图所示:
(3)800× =320(名),
(2)如图所示,△CDG即为所求,由勾股定理,得EG= .
【点睛】本题考查作图-应用与设计、等腰三角形的性质、勾股定理、正方形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.
23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢的哪一类?的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的 ,请你根据图中提供的信息回答下列问题:
6.将抛物线 向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为()
A B. C. D.
【答案】D
【解析】
【分析】
用顶点式表达式,按照抛物线平移的公式即可求解.
【详解】解:将抛物线 先向上平移3个单位长度,再向右平移5个单位长度后,函数的表达式为: .
故选:D.
【点睛】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.
【详解】解:∵ ,
∴△AEF∽△ACD,
∴ ,故选项A错误;
∴ ,
∵ ,
∴△CEG∽△CAB,
∴ ,
∴ ,故选项B错误; ,故选项D错误;
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,故选项正确C.
2020年黑龙江省哈尔滨市中考数学模拟优化试卷(四)解析版
2020年黑龙江省哈尔滨市中考数学模拟优化试卷(四)一.选择题(共10小题)1.﹣6的绝对值是()A.﹣6B.6C.D.﹣2.下列运算中,正确的是()A.6a﹣5a=1B.a3•a3=a9C.a6÷a3=a2D.(a2)3=a63.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.5.如图,AC是⊙O的直径,CB与⊙O相切于点C,AB交⊙O于点D.已知∠B=51°,则∠DOC等于()A.78°B.88°C.102°D.110°6.将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A.y=(x+1)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2 7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%8.分式方程=的解为()A.x=0.75B.x=0C.x=D.x=19.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)10.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.二.填空题(共10小题)11.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.分解因式:4xy2﹣4x2y﹣y3=.14.不等式组的解集是.15.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=.16.如图,将边长为3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分面积为.17.一个扇形的圆心角为60°,它所对的弧长为2cm,则这个扇形的面积为cm2.18.在矩形ABCD中,E是AD的中点,F是BC上一点,连接EF、DF,若AB=4,BC=8,EF=2,则DF的长为.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.20.如图,在△ABC中,∠ACB=90°,点E为AB中点,点L在AC的延长线上,连接LE 交BC于点D,过点E作AB的垂线交∠LCB的平分线于点F,若∠CAB=3∠L,EF=3,则DL的长为.三.解答题(共7小题)21.先化简,再求代数式:÷(a﹣)的值,其中a=sin60°+tan45°,b=tan30°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.23.为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳光体育”运动,毛毛对该班同学参加锻炼的情况进行了统计(每人只能选其中一项),并绘制了如图两个统计图,请根据图中提供的信息解答下列问题:(1)毛毛这次一共调查了多少名学生?(2)补全条形统计图,并求出扇形统计图中“足球”所在扇形的圆心角度数;(3)若该校有1800名学生,请估计该校喜欢乒乓球的学生约有多少人.24.已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.25.艾琳服装店10月份以每套1200元的进价购进一批羽绒服,当月以标价销售,销售额是28000元,进入11月份搞促销活动,每件让利100元,这样11月份的销售额比10月份增加了11000元,销售量是10月份的1.5倍.(1)求每件羽绒服的标价是多少元?(2)进入12月份,该服装店决定把剩余的羽绒服九折甩货,全部卖掉,这批羽绒服总获利不少于9940元,问这批羽绒服至少购进多少件?26.四边形ABCD内接于⊙O,连接AC、BD,AC是⊙O的直径,BD平分∠ADC.(1)如图1,求证:△ABC是等腰直角三角形;(2)如图2,过点D作DP⊥AB交⊙O于点P,连接BP,求证:CD=BP;(3)如图3,在(2)的条件下,过点C作CL∥AB交DF于点L,点E在AF上,且EF =BF,点G在DP的延长线上,连接AG交LE的延长线于点H,若AE=AH=10,FG =8,求DL的长.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.参考答案与试题解析一.选择题(共10小题)1.﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.下列运算中,正确的是()A.6a﹣5a=1B.a3•a3=a9C.a6÷a3=a2D.(a2)3=a6【分析】根据合并同类项法则、同底数幂的乘法和除法,幂的乘方分别求出每个式子的值,再判断即可.【解答】解:A、6a﹣5a=a,故本选项错误;B、a3•a3=a6,故本选项错误;C、a6÷a3=a3,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.4.如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得左边第一列有3个正方形,中间第二列有1个正方形,最右边一列有1个正方形.故选:D.5.如图,AC是⊙O的直径,CB与⊙O相切于点C,AB交⊙O于点D.已知∠B=51°,则∠DOC等于()A.78°B.88°C.102°D.110°【分析】根据切线的性质定理及三角形内角和可求得∠A的度数,再根据一条弧所对的圆周角等于它所对的圆心角的一半即可求解.【解答】解:∵CB与⊙O相切于点C∴AC⊥BC∵∠B=51°∴∠A=90°﹣∠B=39°∴∠COD=2∠A=78°.故选:A.6.将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A.y=(x+1)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:由“左加右减、上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,则平移后的抛物线的表达式为y=(x﹣1)2+2.故选:B.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.8.分式方程=的解为()A.x=0.75B.x=0C.x=D.x=1【分析】观察可知方程的最简公分母为:x(x+3),去分母将分式方程化为整式方程后再求解,注意检验.【解答】解:方程两边同乘x(x+3),得:x+3=5x,解得:x=0.75,经检验x=0.75是原方程的解,∴原分式方程的解是x=0.75.故选:A.9.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】将(﹣2,4)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵点(﹣2,4)在反比例函数y=(k≠0)的图象上,∴k=﹣2×6=﹣8,四个选项中只有D符合.故选:D.10.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.二.填空题(共10小题)11.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为 1.496×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数149600000用科学记数法表示为1.496×108.故答案为:1.496×108.12.函数y=中,自变量x的取值范围是x≤3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.13.分解因式:4xy2﹣4x2y﹣y3=﹣y(2x﹣y)2.【分析】先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解.【解答】解:4xy2﹣4x2y﹣y3,=﹣y(﹣4xy+4x2+y2),=﹣y(2x﹣y)2.14.不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.15.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=2.【分析】此题可以将原点坐标(0,0)代入y=mx2﹣3x+2m﹣m2,求得m的值即可.【解答】解:由于二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,代入(0,0)得:2m﹣m2=0,解得:m=2,m=0;又∵m≠0,∴m=2.故答案为:2.16.如图,将边长为3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分面积为9﹣3.【分析】连接AE.根据HL即可证明△AB′E≌△ADE,可得到∠DAE=30°,然后可求得DE的长,从而可求得△ADE的面积,由正方形的面积减去△AB′E和△ADE的面积即可得出答案.【解答】解:连接AE,如图所示:由旋转的性质可知:AB=AB′.在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL).∴∠DAE=∠B′AE,S△ADE=S△AB′E.∵∠BAB′=30°,∴∠DAE=×(90°﹣30°)=30°.又∵AB=3,∴DE=AB=,∴S△ADE=××3=,又∵S正方形ABCD=32=9,∴S阴影=9﹣2×=9﹣3.故答案为:9﹣3.17.一个扇形的圆心角为60°,它所对的弧长为2cm,则这个扇形的面积为cm2.【分析】根据一个扇形的圆心角为60°,它所对的弧长为2cm,可以求得这个扇形的半径,再根据扇形面积公式=lr,即可求得这个扇形的面积.【解答】解:设这个扇形的半径为rcm,∵一个扇形的圆心角为60°,它所对的弧长为2cm,∴2=,解得,r=,∴这个扇形的面积为:×2×=(cm2),故答案为:.18.在矩形ABCD中,E是AD的中点,F是BC上一点,连接EF、DF,若AB=4,BC=8,EF=2,则DF的长为2或2.【分析】分两种情况进行讨论,先过F作FG⊥AD于G,构造直角三角形,根据勾股定理求得EG的长,再根据勾股定理求得DF的长即可.【解答】解:①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4﹣2=2,∴Rt△DFG中,DF==2;②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,DF==2,故答案为:2或2.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.【分析】列出表格,然后根据概率公式列式计算即可得解.【解答】解:解:分别用红1、红2代表2个红色小汽车模型,白1、白2代表2个白色小汽车模型,根据题意,列表如下:红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)由表可知,可能的结果共有16种,且它们都是等可能的,同时摸出的两个小汽车都是红色的有4种情况,∴摸出的两个小汽车都是红色的概率=.故答案为:.20.如图,在△ABC中,∠ACB=90°,点E为AB中点,点L在AC的延长线上,连接LE 交BC于点D,过点E作AB的垂线交∠LCB的平分线于点F,若∠CAB=3∠L,EF=3,则DL的长为6.【分析】如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.只要证明CH=CE=HD,CE=EF即可解决问题.【解答】解:如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.∵∠ACB=90°,AE=EB,∴CE=AAE=EB,∴∠EAC=∠A=3x,∵∠ECA=∠L+∠AEL,∴∠CEL=2x,∵HC=HL,∴∠L=∠HCL=x,∴∠CHE=∠L+∠HCL=2x,∴∠CHE=∠CEH,∴CE=CH,∵CF平分∠LCD,∴∠LCF=∠FCD=45°,∵∠F+∠LEF=∠L+∠LCF,∴∠F+90°﹣(180°﹣4x)=x+45°,∴∠F=135°﹣3x,∵∠FCE=45°+∠ECB=45°+90°﹣3x=135°﹣3x,∴∠F=∠ECF,∴EC=EF=3,∴CH=3,∵∠L+∠ADH=90°,∠HCD+∠HCL=90°,∠L=∠HCL,∴∠HCD=∠HDC,∴CH=DH,∴LH=CH=DH=3,∴LD=6.故答案为6.三.解答题(共7小题)21.先化简,再求代数式:÷(a﹣)的值,其中a=sin60°+tan45°,b=tan30°.【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:原式=÷=•=,∵a=sin60°+tan45°,=+1,b=tan30°=×=1,∴原式==.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.【分析】(1)利用直角三角形的性质结合勾股定理得出答案;(2)利用菱形的性质结合勾股定理得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:菱形ABDE即为所求,EC==3.23.为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳光体育”运动,毛毛对该班同学参加锻炼的情况进行了统计(每人只能选其中一项),并绘制了如图两个统计图,请根据图中提供的信息解答下列问题:(1)毛毛这次一共调查了多少名学生?(2)补全条形统计图,并求出扇形统计图中“足球”所在扇形的圆心角度数;(3)若该校有1800名学生,请估计该校喜欢乒乓球的学生约有多少人.【分析】(1)从两个统计图可得,喜欢“篮球”的有20人,占调查人数的40%,可求出调查人数;(2)求出喜欢“乒乓球”的人数,即可补全条形统计图:样本中,喜欢“足球”的占,因此圆心角占36°0的,可求出度数;(3))样本估计总体,样本中喜欢“乒乓球”占,估计总体1800人的是喜欢“乒乓球”人数.【解答】解:(1)20÷40%=50(名),答:毛毛一共调查了50名学生;(2)50﹣20﹣10﹣15=5(名),360°×=72°,答:扇形统计图中“足球”所在扇形的圆心角为72°,补全条形统计图如图所示:(3)1800×=180(名),答:该校1800名学生中喜欢乒乓球的约有180名.24.已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.【分析】(1)由AB=AC,AD⊥BC,根据三线合一的知识,可得BC=2BD,又由BE=2BD,可得B是EC的中点,又由F是AC的中点,G是AE的中点,根据三角形中位线的性质,即可得BG∥AC,BF∥AE,即可判定:四边形AGBF是平行四边形.(2)易证得四边形BGFC是平行四边形,由GF=AB,可判定△ABC是等边三角形,继而可得△AHF,△CDF,△GHB是等边三角形.【解答】(1)证明:∵AB=AC,AD⊥BC,∴BC=2BD,∵BE=2BD,∴BC=BE,∵F是AC的中点,G是AE的中点,∴BG∥AC,BF∥AE,∴四边形AGBF是平行四边形.(2)∵F是AC的中点,G是AE的中点,∴GF∥BC,∵BG∥AC,∴四边形BGFC是平行四边形,∴GF=BC,∵GF=AB,AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∵GF∥BC,DF∥AB,BG∥AC,∴△AHF∽△ABC,△CDF∽△CBA,△GBH∽△F AH,∴△AHF,△CDF,△GHB是等边三角形,综上可得:图2中等边三角形有:△ABC,△AHF,△CDF,△GHB.25.艾琳服装店10月份以每套1200元的进价购进一批羽绒服,当月以标价销售,销售额是28000元,进入11月份搞促销活动,每件让利100元,这样11月份的销售额比10月份增加了11000元,销售量是10月份的1.5倍.(1)求每件羽绒服的标价是多少元?(2)进入12月份,该服装店决定把剩余的羽绒服九折甩货,全部卖掉,这批羽绒服总获利不少于9940元,问这批羽绒服至少购进多少件?【分析】(1)设每件羽绒服的标价为x元,则10月份售出件,等量关系:11月份的销售量是10月份的1.5倍;(2)设这批羽绒服购进a件,不等量关系:羽绒服总获利不少于9940元.【解答】解:(1)设每件羽绒服的标价为x元,则10月份售出件,根据题意得:=×1.5,解得:x=1400,经检验x=1400是原方程的解,答:每件羽绒服的标价为1400元.(2)设这批羽绒服购进a件,10月份售出28000÷1400=20(件),11月份售出20×1.5=30(件)根据题意得:28000+(11000+28000)+1400×0.9(a﹣20﹣30)﹣1200a≥9940解得:a≥99,所以a至少是99,答:这批羽绒服至少购进99件.26.四边形ABCD内接于⊙O,连接AC、BD,AC是⊙O的直径,BD平分∠ADC.(1)如图1,求证:△ABC是等腰直角三角形;(2)如图2,过点D作DP⊥AB交⊙O于点P,连接BP,求证:CD=BP;(3)如图3,在(2)的条件下,过点C作CL∥AB交DF于点L,点E在AF上,且EF =BF,点G在DP的延长线上,连接AG交LE的延长线于点H,若AE=AH=10,FG =8,求DL的长.【分析】(1)根据圆周角定理得到∠ABC=90°,根据角平分线的定义得到∠ADB=∠CDB,等量代换得到∠ACB=∠BAC,由等腰三角形的判定定理即可得到结论;(2)证明:如图2,延长DC,PB交于点T,根据垂直的定义得到∠DF A=90°,根据平行线的判定得到CB∥DP,求得∠TCB=∠CDP,∠CBT=∠BPD,推出∠CBT=∠CDP,根据等腰三角形的性质即可得到结论;(3)如图3,延长F A到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF =α,EF=x,得到∠LEF=90°﹣α=∠AEH根据等腰三角形的性质得到∠AEH=∠AHE =90°﹣α,推出△KAF≌△GAF(SAS),根据全等三角形的性质得到∠KAF=∠GAF=2α,求得∠MAR=180°﹣2α,推出△NMA≌△LFE(SAS),根据全等三角形的性质得到∠NMA=∠FLE=α,NR=MN,AM=AR=EF=x,得到四边形MNLF是正方形,由正方形的性质得到NL=NM=NR,根据全等三角形的判定定理得到△NLK≌△NRK(SAS),求得AK=AR+RK=2+3x,根据勾股定理得到AF=15,LF=20,BF=5又根据全等三角形的性质得到DL=PF,设DL=a,则DF=20+a,PF=a,根据三角函数的定义即可得到结论.【解答】(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∵DB平分∠ADC,∴∠ADB=∠CDB,∵∠ACB=∠ADB,∠BAC=∠CDB,∴∠ACB=∠BAC,∴AB=CB,∴△ABC是等腰直角三角形;(2)证明:如图2,延长DC,PB交于点T,∵DP⊥AB,∴∠DF A=90°,∴∠CBA=∠DF A,∴CB∥DP,∴∠TCB=∠CDP,∠CBT=∠BPD,∵∠CDP+∠CBP=180°,∠CBT+∠CBP=180°,∴∠CBT=∠CDP,∴∠CBT=∠TCB=∠CDP=∠BPD,∴CT=BT,DT=PT,∴CD=BP;(3)解:如图3,延长F A到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF=α,EF=x,∴∠LEF=90°﹣α=∠AEH,∵AE=AH,∠AEH=∠AHE=90°﹣α,∴∠EAH=2α,∵FK=FG,AF=AF,∠KF A=∠GF A=90°,∴△KAF≌△GAF(SAS),∴∠KAF=∠GAF=2α,∴∠MAR=180°﹣2α,∵NM=LF,AM=EF,∠M=∠LFE=90°,∴△NMA≌△LFE(SAS),∴∠NMA=∠FLE=α,∴∠NAM=90°﹣α,∴∠NAR=90°﹣α,∴∠ANR=α,∵AN=AN,∠M=∠ARN=90°,∴△NMA≌△NRA(AAS),∴NR=MN,AM=AR=EF=x,∵AB=BC,BC=LF,∴AB=LF,∵AM=EF,EF=BF,∴AM=BF,∴MF=AM+AF=BF+AF=AB=LF,∴四边形MNLF是正方形,∴NL=NM=NR,∵KN=KN,∠NLK=∠NRK=90°,∴△NLK≌△NRK(SAS),∵AB=10+2x,∴LK=LF﹣KF=2+2x=RK,∴AK=AR+RK=2+3x,在Rt△AFK中,AF2+FK2=AK2,∴(10+x)2+82=(2+3x)2,解得:x=5,x=﹣4(不合题意舍去),∴AF=15,LF=20,BF=5,∵∠ADP+∠PDC=90°,∠DCL+∠LDC=90°,∴∠ADP=∠DCL,∵∠ABP=∠ADP,∴∠ABP=∠DCL,∵DC=BP,∠DLC=∠BFP=90°,∴△DLC≌△PFB(AAS),∴DL=PF,设DL=a,则DF=20+a,PF=a,∵tan∠ADF=tan∠PBF,∴=,∴=,解得:a=5﹣10,a=﹣5﹣10(不合题意,舍去),∴DL=5﹣10.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.【分析】(1)由题可求A(0,6),B(﹣3,0),C(3,0),再由待定系数法求AC直线的解析式即可;(2)过点P作PM⊥x轴交于点M,P(t,﹣2t+6),可求S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,则有S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF,证明△ABF≌△ACE(SAS),过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,再证明△AFD≌△AED(SAS),过点C作CN⊥BP于点N,再证明△AOC≌△LNC(HL),可得tan∠NDC=,=,DN=,DL=6+.【解答】解:(1)由题可求A(0,6),B(﹣3,0),∴AO=6,BO=3,∵AO=BC,∴BC=6,∴CO=BC﹣BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=﹣2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,﹣2t+6),∴PM=﹣2t+6,∴S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,∴S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠F AO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠F AD=∠EAD,AD=AD,∴△AFD≌△AED(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,∴DL=6+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年黑龙江省哈尔滨市中考数学模拟优化试卷(四)一.选择题(共10小题)1.﹣6的绝对值是()A.﹣6B.6C.D.﹣2.下列运算中,正确的是()A.6a﹣5a=1B.a3•a3=a9C.a6÷a3=a2D.(a2)3=a63.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.5.如图,AC是⊙O的直径,CB与⊙O相切于点C,AB交⊙O于点D.已知∠B=51°,则∠DOC等于()A.78°B.88°C.102°D.110°6.将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A.y=(x+1)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2 7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%8.分式方程=的解为()A.x=0.75B.x=0C.x=D.x=19.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)10.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.二.填空题(共10小题)11.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.分解因式:4xy2﹣4x2y﹣y3=.14.不等式组的解集是.15.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=.16.如图,将边长为3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分面积为.17.一个扇形的圆心角为60°,它所对的弧长为2cm,则这个扇形的面积为cm2.18.在矩形ABCD中,E是AD的中点,F是BC上一点,连接EF、DF,若AB=4,BC=8,EF=2,则DF的长为.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.20.如图,在△ABC中,∠ACB=90°,点E为AB中点,点L在AC的延长线上,连接LE 交BC于点D,过点E作AB的垂线交∠LCB的平分线于点F,若∠CAB=3∠L,EF=3,则DL的长为.三.解答题(共7小题)21.先化简,再求代数式:÷(a﹣)的值,其中a=sin60°+tan45°,b=tan30°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.23.为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳光体育”运动,毛毛对该班同学参加锻炼的情况进行了统计(每人只能选其中一项),并绘制了如图两个统计图,请根据图中提供的信息解答下列问题:(1)毛毛这次一共调查了多少名学生?(2)补全条形统计图,并求出扇形统计图中“足球”所在扇形的圆心角度数;(3)若该校有1800名学生,请估计该校喜欢乒乓球的学生约有多少人.24.已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.25.艾琳服装店10月份以每套1200元的进价购进一批羽绒服,当月以标价销售,销售额是28000元,进入11月份搞促销活动,每件让利100元,这样11月份的销售额比10月份增加了11000元,销售量是10月份的1.5倍.(1)求每件羽绒服的标价是多少元?(2)进入12月份,该服装店决定把剩余的羽绒服九折甩货,全部卖掉,这批羽绒服总获利不少于9940元,问这批羽绒服至少购进多少件?26.四边形ABCD内接于⊙O,连接AC、BD,AC是⊙O的直径,BD平分∠ADC.(1)如图1,求证:△ABC是等腰直角三角形;(2)如图2,过点D作DP⊥AB交⊙O于点P,连接BP,求证:CD=BP;(3)如图3,在(2)的条件下,过点C作CL∥AB交DF于点L,点E在AF上,且EF =BF,点G在DP的延长线上,连接AG交LE的延长线于点H,若AE=AH=10,FG =8,求DL的长.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.参考答案与试题解析一.选择题(共10小题)1.﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.下列运算中,正确的是()A.6a﹣5a=1B.a3•a3=a9C.a6÷a3=a2D.(a2)3=a6【分析】根据合并同类项法则、同底数幂的乘法和除法,幂的乘方分别求出每个式子的值,再判断即可.【解答】解:A、6a﹣5a=a,故本选项错误;B、a3•a3=a6,故本选项错误;C、a6÷a3=a3,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.4.如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得左边第一列有3个正方形,中间第二列有1个正方形,最右边一列有1个正方形.故选:D.5.如图,AC是⊙O的直径,CB与⊙O相切于点C,AB交⊙O于点D.已知∠B=51°,则∠DOC等于()A.78°B.88°C.102°D.110°【分析】根据切线的性质定理及三角形内角和可求得∠A的度数,再根据一条弧所对的圆周角等于它所对的圆心角的一半即可求解.【解答】解:∵CB与⊙O相切于点C∴AC⊥BC∵∠B=51°∴∠A=90°﹣∠B=39°∴∠COD=2∠A=78°.故选:A.6.将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A.y=(x+1)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:由“左加右减、上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,则平移后的抛物线的表达式为y=(x﹣1)2+2.故选:B.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.8.分式方程=的解为()A.x=0.75B.x=0C.x=D.x=1【分析】观察可知方程的最简公分母为:x(x+3),去分母将分式方程化为整式方程后再求解,注意检验.【解答】解:方程两边同乘x(x+3),得:x+3=5x,解得:x=0.75,经检验x=0.75是原方程的解,∴原分式方程的解是x=0.75.故选:A.9.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】将(﹣2,4)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵点(﹣2,4)在反比例函数y=(k≠0)的图象上,∴k=﹣2×6=﹣8,四个选项中只有D符合.故选:D.10.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.二.填空题(共10小题)11.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为 1.496×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数149600000用科学记数法表示为1.496×108.故答案为:1.496×108.12.函数y=中,自变量x的取值范围是x≤3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.13.分解因式:4xy2﹣4x2y﹣y3=﹣y(2x﹣y)2.【分析】先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解.【解答】解:4xy2﹣4x2y﹣y3,=﹣y(﹣4xy+4x2+y2),=﹣y(2x﹣y)2.14.不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.15.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=2.【分析】此题可以将原点坐标(0,0)代入y=mx2﹣3x+2m﹣m2,求得m的值即可.【解答】解:由于二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,代入(0,0)得:2m﹣m2=0,解得:m=2,m=0;又∵m≠0,∴m=2.故答案为:2.16.如图,将边长为3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分面积为9﹣3.【分析】连接AE.根据HL即可证明△AB′E≌△ADE,可得到∠DAE=30°,然后可求得DE的长,从而可求得△ADE的面积,由正方形的面积减去△AB′E和△ADE的面积即可得出答案.【解答】解:连接AE,如图所示:由旋转的性质可知:AB=AB′.在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL).∴∠DAE=∠B′AE,S△ADE=S△AB′E.∵∠BAB′=30°,∴∠DAE=×(90°﹣30°)=30°.又∵AB=3,∴DE=AB=,∴S△ADE=××3=,又∵S正方形ABCD=32=9,∴S阴影=9﹣2×=9﹣3.故答案为:9﹣3.17.一个扇形的圆心角为60°,它所对的弧长为2cm,则这个扇形的面积为cm2.【分析】根据一个扇形的圆心角为60°,它所对的弧长为2cm,可以求得这个扇形的半径,再根据扇形面积公式=lr,即可求得这个扇形的面积.【解答】解:设这个扇形的半径为rcm,∵一个扇形的圆心角为60°,它所对的弧长为2cm,∴2=,解得,r=,∴这个扇形的面积为:×2×=(cm2),故答案为:.18.在矩形ABCD中,E是AD的中点,F是BC上一点,连接EF、DF,若AB=4,BC=8,EF=2,则DF的长为2或2.【分析】分两种情况进行讨论,先过F作FG⊥AD于G,构造直角三角形,根据勾股定理求得EG的长,再根据勾股定理求得DF的长即可.【解答】解:①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4﹣2=2,∴Rt△DFG中,DF==2;②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,DF==2,故答案为:2或2.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.【分析】列出表格,然后根据概率公式列式计算即可得解.【解答】解:解:分别用红1、红2代表2个红色小汽车模型,白1、白2代表2个白色小汽车模型,根据题意,列表如下:红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)由表可知,可能的结果共有16种,且它们都是等可能的,同时摸出的两个小汽车都是红色的有4种情况,∴摸出的两个小汽车都是红色的概率=.故答案为:.20.如图,在△ABC中,∠ACB=90°,点E为AB中点,点L在AC的延长线上,连接LE 交BC于点D,过点E作AB的垂线交∠LCB的平分线于点F,若∠CAB=3∠L,EF=3,则DL的长为6.【分析】如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.只要证明CH=CE=HD,CE=EF即可解决问题.【解答】解:如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.∵∠ACB=90°,AE=EB,∴CE=AAE=EB,∴∠EAC=∠A=3x,∵∠ECA=∠L+∠AEL,∴∠CEL=2x,∵HC=HL,∴∠L=∠HCL=x,∴∠CHE=∠L+∠HCL=2x,∴∠CHE=∠CEH,∴CE=CH,∵CF平分∠LCD,∴∠LCF=∠FCD=45°,∵∠F+∠LEF=∠L+∠LCF,∴∠F+90°﹣(180°﹣4x)=x+45°,∴∠F=135°﹣3x,∵∠FCE=45°+∠ECB=45°+90°﹣3x=135°﹣3x,∴∠F=∠ECF,∴EC=EF=3,∴CH=3,∵∠L+∠ADH=90°,∠HCD+∠HCL=90°,∠L=∠HCL,∴∠HCD=∠HDC,∴CH=DH,∴LH=CH=DH=3,∴LD=6.故答案为6.三.解答题(共7小题)21.先化简,再求代数式:÷(a﹣)的值,其中a=sin60°+tan45°,b=tan30°.【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:原式=÷=•=,∵a=sin60°+tan45°,=+1,b=tan30°=×=1,∴原式==.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.【分析】(1)利用直角三角形的性质结合勾股定理得出答案;(2)利用菱形的性质结合勾股定理得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:菱形ABDE即为所求,EC==3.23.为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳光体育”运动,毛毛对该班同学参加锻炼的情况进行了统计(每人只能选其中一项),并绘制了如图两个统计图,请根据图中提供的信息解答下列问题:(1)毛毛这次一共调查了多少名学生?(2)补全条形统计图,并求出扇形统计图中“足球”所在扇形的圆心角度数;(3)若该校有1800名学生,请估计该校喜欢乒乓球的学生约有多少人.【分析】(1)从两个统计图可得,喜欢“篮球”的有20人,占调查人数的40%,可求出调查人数;(2)求出喜欢“乒乓球”的人数,即可补全条形统计图:样本中,喜欢“足球”的占,因此圆心角占36°0的,可求出度数;(3))样本估计总体,样本中喜欢“乒乓球”占,估计总体1800人的是喜欢“乒乓球”人数.【解答】解:(1)20÷40%=50(名),答:毛毛一共调查了50名学生;(2)50﹣20﹣10﹣15=5(名),360°×=72°,答:扇形统计图中“足球”所在扇形的圆心角为72°,补全条形统计图如图所示:(3)1800×=180(名),答:该校1800名学生中喜欢乒乓球的约有180名.24.已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.【分析】(1)由AB=AC,AD⊥BC,根据三线合一的知识,可得BC=2BD,又由BE=2BD,可得B是EC的中点,又由F是AC的中点,G是AE的中点,根据三角形中位线的性质,即可得BG∥AC,BF∥AE,即可判定:四边形AGBF是平行四边形.(2)易证得四边形BGFC是平行四边形,由GF=AB,可判定△ABC是等边三角形,继而可得△AHF,△CDF,△GHB是等边三角形.【解答】(1)证明:∵AB=AC,AD⊥BC,∴BC=2BD,∵BE=2BD,∴BC=BE,∵F是AC的中点,G是AE的中点,∴BG∥AC,BF∥AE,∴四边形AGBF是平行四边形.(2)∵F是AC的中点,G是AE的中点,∴GF∥BC,∵BG∥AC,∴四边形BGFC是平行四边形,∴GF=BC,∵GF=AB,AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∵GF∥BC,DF∥AB,BG∥AC,∴△AHF∽△ABC,△CDF∽△CBA,△GBH∽△F AH,∴△AHF,△CDF,△GHB是等边三角形,综上可得:图2中等边三角形有:△ABC,△AHF,△CDF,△GHB.25.艾琳服装店10月份以每套1200元的进价购进一批羽绒服,当月以标价销售,销售额是28000元,进入11月份搞促销活动,每件让利100元,这样11月份的销售额比10月份增加了11000元,销售量是10月份的1.5倍.(1)求每件羽绒服的标价是多少元?(2)进入12月份,该服装店决定把剩余的羽绒服九折甩货,全部卖掉,这批羽绒服总获利不少于9940元,问这批羽绒服至少购进多少件?【分析】(1)设每件羽绒服的标价为x元,则10月份售出件,等量关系:11月份的销售量是10月份的1.5倍;(2)设这批羽绒服购进a件,不等量关系:羽绒服总获利不少于9940元.【解答】解:(1)设每件羽绒服的标价为x元,则10月份售出件,根据题意得:=×1.5,解得:x=1400,经检验x=1400是原方程的解,答:每件羽绒服的标价为1400元.(2)设这批羽绒服购进a件,10月份售出28000÷1400=20(件),11月份售出20×1.5=30(件)根据题意得:28000+(11000+28000)+1400×0.9(a﹣20﹣30)﹣1200a≥9940解得:a≥99,所以a至少是99,答:这批羽绒服至少购进99件.26.四边形ABCD内接于⊙O,连接AC、BD,AC是⊙O的直径,BD平分∠ADC.(1)如图1,求证:△ABC是等腰直角三角形;(2)如图2,过点D作DP⊥AB交⊙O于点P,连接BP,求证:CD=BP;(3)如图3,在(2)的条件下,过点C作CL∥AB交DF于点L,点E在AF上,且EF =BF,点G在DP的延长线上,连接AG交LE的延长线于点H,若AE=AH=10,FG =8,求DL的长.【分析】(1)根据圆周角定理得到∠ABC=90°,根据角平分线的定义得到∠ADB=∠CDB,等量代换得到∠ACB=∠BAC,由等腰三角形的判定定理即可得到结论;(2)证明:如图2,延长DC,PB交于点T,根据垂直的定义得到∠DF A=90°,根据平行线的判定得到CB∥DP,求得∠TCB=∠CDP,∠CBT=∠BPD,推出∠CBT=∠CDP,根据等腰三角形的性质即可得到结论;(3)如图3,延长F A到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF =α,EF=x,得到∠LEF=90°﹣α=∠AEH根据等腰三角形的性质得到∠AEH=∠AHE =90°﹣α,推出△KAF≌△GAF(SAS),根据全等三角形的性质得到∠KAF=∠GAF=2α,求得∠MAR=180°﹣2α,推出△NMA≌△LFE(SAS),根据全等三角形的性质得到∠NMA=∠FLE=α,NR=MN,AM=AR=EF=x,得到四边形MNLF是正方形,由正方形的性质得到NL=NM=NR,根据全等三角形的判定定理得到△NLK≌△NRK(SAS),求得AK=AR+RK=2+3x,根据勾股定理得到AF=15,LF=20,BF=5又根据全等三角形的性质得到DL=PF,设DL=a,则DF=20+a,PF=a,根据三角函数的定义即可得到结论.【解答】(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∵DB平分∠ADC,∴∠ADB=∠CDB,∵∠ACB=∠ADB,∠BAC=∠CDB,∴∠ACB=∠BAC,∴AB=CB,∴△ABC是等腰直角三角形;(2)证明:如图2,延长DC,PB交于点T,∵DP⊥AB,∴∠DF A=90°,∴∠CBA=∠DF A,∴CB∥DP,∴∠TCB=∠CDP,∠CBT=∠BPD,∵∠CDP+∠CBP=180°,∠CBT+∠CBP=180°,∴∠CBT=∠CDP,∴∠CBT=∠TCB=∠CDP=∠BPD,∴CT=BT,DT=PT,∴CD=BP;(3)解:如图3,延长F A到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF=α,EF=x,∴∠LEF=90°﹣α=∠AEH,∵AE=AH,∠AEH=∠AHE=90°﹣α,∴∠EAH=2α,∵FK=FG,AF=AF,∠KF A=∠GF A=90°,∴△KAF≌△GAF(SAS),∴∠KAF=∠GAF=2α,∴∠MAR=180°﹣2α,∵NM=LF,AM=EF,∠M=∠LFE=90°,∴△NMA≌△LFE(SAS),∴∠NMA=∠FLE=α,∴∠NAM=90°﹣α,∴∠NAR=90°﹣α,∴∠ANR=α,∵AN=AN,∠M=∠ARN=90°,∴△NMA≌△NRA(AAS),∴NR=MN,AM=AR=EF=x,∵AB=BC,BC=LF,∴AB=LF,∵AM=EF,EF=BF,∴AM=BF,∴MF=AM+AF=BF+AF=AB=LF,∴四边形MNLF是正方形,∴NL=NM=NR,∵KN=KN,∠NLK=∠NRK=90°,∴△NLK≌△NRK(SAS),∵AB=10+2x,∴LK=LF﹣KF=2+2x=RK,∴AK=AR+RK=2+3x,在Rt△AFK中,AF2+FK2=AK2,∴(10+x)2+82=(2+3x)2,解得:x=5,x=﹣4(不合题意舍去),∴AF=15,LF=20,BF=5,∵∠ADP+∠PDC=90°,∠DCL+∠LDC=90°,∴∠ADP=∠DCL,∵∠ABP=∠ADP,∴∠ABP=∠DCL,∵DC=BP,∠DLC=∠BFP=90°,∴△DLC≌△PFB(AAS),∴DL=PF,设DL=a,则DF=20+a,PF=a,∵tan∠ADF=tan∠PBF,∴=,∴=,解得:a=5﹣10,a=﹣5﹣10(不合题意,舍去),∴DL=5﹣10.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.【分析】(1)由题可求A(0,6),B(﹣3,0),C(3,0),再由待定系数法求AC直线的解析式即可;(2)过点P作PM⊥x轴交于点M,P(t,﹣2t+6),可求S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,则有S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF,证明△ABF≌△ACE(SAS),过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,再证明△AFD≌△AED(SAS),过点C作CN⊥BP于点N,再证明△AOC≌△LNC(HL),可得tan∠NDC=,=,DN=,DL=6+.【解答】解:(1)由题可求A(0,6),B(﹣3,0),∴AO=6,BO=3,∵AO=BC,∴BC=6,∴CO=BC﹣BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=﹣2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,﹣2t+6),∴PM=﹣2t+6,∴S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,∴S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠F AO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠F AD=∠EAD,AD=AD,∴△AFD≌△AED(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,∴DL=6+.。