3、无向图的各连通分支
连通分支的定义
连通分支的定义一、引言连通分支是图论中的一个重要概念,用于描述图中的连通性。
在图中连接在一起的节点构成一个连通分支。
在本文中,我们将详细讨论连通分支的定义、性质以及如何在图中找到连通分支,旨在帮助读者更深入地了解和理解这一概念。
二、定义连通分支是指图中的节点集合,其中的任意两个节点之间都存在一条路径。
换句话说,对于连通分支中的任意两个节点,我们可以通过边来沿路径相互到达。
连通分支是图中的一个最大连通子图,因为它包含了图中所有可以通过路径相互到达的节点。
三、性质连通分支具有以下性质:1. 最大性质连通分支是一个最大连通子图,即它不包含在其他的连通分支中。
换句话说,如果我们将连通分支中的任意一个节点添加到该分支外的节点中,将会破坏连通性。
2. 无向图中的连通分支对于无向图而言,连通分支是无向图中的极大连通子图。
一个无向图可以包含多个连通分支,每个连通分支都是一个独立的连通子图。
3. 有向图中的连通分支对于有向图而言,连通分支是有向图中的极大强连通子图。
强连通子图是指其中的所有节点之间互相可达,即对于连通分支中的任意两个节点,存在一条有向路径可以从一个节点到达另一个节点。
四、寻找连通分支的算法在图中寻找连通分支的算法是一项基本的图算法,下面介绍两种常见的算法:广度优先搜索(BFS)和深度优先搜索(DFS)。
1. 广度优先搜索(BFS)广度优先搜索是一种用于遍历或搜索图中节点的算法。
它从一个起始节点开始,逐层地遍历其邻接节点,直到遍历完所有连通的节点。
在遍历过程中,我们可以记录下每个连通分支的节点。
以下是广度优先搜索的基本步骤: 1. 创建一个队列,并将起始节点放入队列中。
2. 从队列中取出一个节点,并标记为已访问。
3. 遍历该节点的所有邻接节点,并将未访问的邻接节点放入队列中。
4. 重复步骤2和步骤3,直到队列为空。
5. 如果还存在未访问的节点,重复步骤2到步骤4。
2. 深度优先搜索(DFS)深度优先搜索也是一种用于遍历或搜索图中节点的算法。
图论知识点
图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。
图由节点(或顶点)和连接这些节点的边组成。
本文将概述图论的基本概念、类型、算法以及在各种领域的应用。
1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。
边可以是有向的(指向一个方向)或无向的(双向连接)。
1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。
环是一条起点和终点相同的路径。
1.3 度数节点的度数是与该节点相连的边的数量。
对于有向图,分为入度和出度。
1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。
2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。
2.2 简单图和多重图简单图是没有多重边或自环的图。
多重图中,可以有多条边连接同一对节点。
2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。
有向图的连通性称为强连通性。
2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。
3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。
3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。
3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。
4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。
4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。
4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。
5. 结论图论是数学中一个非常重要和广泛应用的领域。
它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。
随着科技的发展,图论在新的领域中的应用将会不断涌现。
本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。
离散数学(图与树(2))
无向树的定义及其性质
(5)=>(6).首先证明G是连通图.否则,设G1,G2是G的两 个连通分支.v1和v2分别是G1与G2中的一个顶点. 在G 中加边(v1,v2)不形成回路,这与已知条件矛盾.若G中存 在边e=(u,v),G-e仍连通.说明在G-e中存在u到v的通 路. 此通路与e构成G中回路,这与G中无回路矛盾. (6)=>(1).只需证明G中无回路.若G中含回路C.在C上 删除一边e后,G-e连通,这与(6)中条件矛盾. • 除了由定理6.1.1.给出的树的充分必要条件外,树还有 下述重要的必要条件. 定理6.1.2 设T=<V,E>是非平凡的无向树,则T至少有两 片树叶. 证明: 设T是非平凡树,有n个顶点m条边.由树的定义易知, 非平凡的树中,每个顶点的度数均大于等于1.设G中有k
无向树的定义及其性质
所得6棵非同构的树如图所示:
(2)画出所有非同构的无向树不是件易事,但当n较小时 还是不难画出的. 本题是7阶非同构无向树度数分配方 案中的一种,它有3个2度顶点,1个3度顶点,3个1度顶点, 3度顶点与1个2度顶点相邻;与2个2度顶点相邻;与3个2 度顶点相邻,所得3棵树显然非同构, 所以共有3棵非同 构的树:
生成树与基本回路和基本割集
树枝.称这样的回路为基本回路.定义如下: 定义6.1.3 设G是m条边的n阶连通图,T是G的一棵生成树, T的m-n+1条弦为e1,e2,…,em-n+1.G中仅含T的一条弦 er(1 ≤r≤m-n+1)的回路Cr称作对应弦er的基本回路.{C1,C2, …,Cm-n+1}称作对应生成树T的基本回路系统. • 在例6.1.3中,树②对应弦e1的基本回路是e1e4e2e3;对 应弦e6的基本回路是e6e4e5. 基本回路系统 为:{e1e4e2e3, e6e4e5}. 树③的基本回路系统是{e3e1e4e2, e6e4e5}. • 一般,G的不同生成树的基本回路可能不同,但基本回路 的个数是相同的,都等于m-n+1. • 再看例6.1.3图②,{e5,e6},{e4,e1,e6},{e2,e1},{e3,e1}
3图的连通性
• 设G=<V,E>为无向图,对于任意的 v∈V, 为无向图, 为无向图 对于任意的u, ∈ , 是连通的, 若u和v是连通的,则称 v之间长度最短的通 和 是连通的 则称u, 之间长度最短的通 路为u, 之间的短程线 短程线的长度为u, 之间的短程线, 路为 v之间的短程线,短程线的长度为 v 距离, 之间的距离 记为d(u, v)。规定当 和v不连 。规定当u和 不连 之间的距离,记为 通时, 通时,d(u, v) = ∞ 。 • 在无向图 中,任何两点之间的距离最大值 在无向图G中 称为G的直径,记为d(G)。 称为 的直径,记为 。 在下图中, 【例】在下图中,d(2, 6)=2,d(2, 7)=3,而d(G) , , = 4正是图中的最大距离 正是图中的最大距离d(1, 7)。 正是图中的最大距离 。
存在一条通路, 到vj (vi≠vj)存在一条通路,则从 i到vj存在一条长 存在一条通路 则从v 度不大于n 的通路 的通路。 度不大于 −1的通路。 设在一个具有n个顶点的图中存在一条长度 证明 设在一个具有 个顶点的图中存在一条长度 的通路v 其中v 为m的通路 0v1…vm,其中 0=vi,vm=vj。 的通路 若m ≤n − 1,则存在所求的通路; ,则存在所求的通路; 若m >n − 1,则通路上的顶点数 +1 >n,因 ,则通路上的顶点数m , 为图中只有n 个顶点,所以必然有m 为图中只有 个顶点,所以必然有 +1 − n个顶点 个顶点 在通路中重复出现,即存在回路。 在通路中重复出现,即存在回路。在通路中去掉 的通路, 回路所得到的仍然是从v 回路所得到的仍然是从 i到v j的通路,且长度至少 比原通路少1。重复以上过程, 比原通路少 。重复以上过程,将通路中的所有回 路去掉,必然可得到一条长度不多于n 的通路。 路去掉,必然可得到一条长度不多于 − 1的通路。 的通路
任务8.1 认知图
谢谢,精品课件
资料搜集
任务8.1
项目8 图论
• 任务8.1 • 任务8.2 • 任务8.3 • 任务8.4
认知图 用矩阵表示图 认知欧拉图与哈密顿图 求最优树
Konigsberg七桥问题 如图,能否从某个桥出发,走过所 有的桥,但每座桥只经过一次?
D
?
?
A
B
D
A
B
C
Байду номын сангаас
C
D3
A
3
B
5
C 3
E,称 vi 邻接到 vj , vj邻接于 vi .还称 vi 是 ek 的始点,vj 是 ek的终点.
(9)边与边的相邻:若 ek 和 el 至少有一个公共端点,则称 ek 与 el 相邻.
(10)平行边:若在无向图中,关联一对顶点的无向边多于1条,称这 些边为平行边.平行边的条数称为重数.
若在有向图中,关联一对顶点的有向边多于1条,并且有向边的 始点和终点相同,称这些边为平行边.
n
deg(vi ) 2m.
i 1
即,顶点度数之和等于边数之和的两倍.
定理2 在任何无向图中,度数为奇数的结点必定是偶数个.
(15)有向图中的度: 设 D = < V, E > 为有向图,以顶点v 为 始点的边的条数称为 v 的出度,记作 d +(v ).
以顶点 v 为终点的边的条数称为 v 的入度,记作 d- (v ).
(2)支撑子图
若 H 是 G 的子图且V (H) = V(G) ,则称 H 是G的支撑子图(或 生成子图).
(3)诱导子图
设图 H = < V′,E′> 是 图 G=<V ,E >的子图.若对任意结 点 u 和 v,如果 (u,v)∈ E ,有(u,v)∈E′,则 H 由 V′ 唯一 地确定,并称 H 是结点集合 V′ 的点诱导子图,记作 G(V′);如 果 H无孤立结点,且由 E′ 所唯一确定,则称 H 是边集 E′ 的边 诱导子图,记为G(E′).
图的连通性
图的连通性一、求一个图的连通分支1 设图G=(V,E)是一个无向图,G的一个连通分支是一个最大的连通子图,即一个连通分支是不包含在任何更大的连通子图中。
2 对DFS稍作改变,就可用来求无向图的连通分支。
从任意一点出发,作DFS,则就可找出在同一个分支中的其它顶点和边。
3 算法3.4:DFS(深度优先搜索)G=(V,E)是一个图或有向图,v∈V。
从顶点v开始搜索,其中S是一个栈,初始为空,栈顶用top来表示。
算法:访问,标志并让v进栈while S 非空do〖while有一个邻接于top而未作标记的顶点 w do【访问,标记以及w进栈;】出栈S〗4“有一个邻接于top而未作标记的顶点 w”可用链接表来实现,而且每次寻找邻接于top而未作标记的顶点 w时,无必要从头开始寻找,只要记住上次寻找时的位置便可,故链表中每一个单元只被访问过一次。
故算法在最坏情况下复杂性最多也只是θ(n+e)。
算法3.6 CONNECTED COMPONETNTS(连通分支)输入:G=(V,E)是一个用连接表表示的图。
假设V为{1,2,…,n}。
输出:MARK个连通分支中的边表,而且对每个顶点加上编号来指明顶点是在哪一个分支中。
注:一个MARK数组用于对顶点编号,PTR是一个数组(有个项),使PTR指向的邻接表中下一个顶点,而搜索将从开始,下一次力图从分叉出去。
算法:for v←1 to n do【MARK(v)←0; PTR(v) ←ADJLIST(v);】j←1 [j用于对一个分支中顶点编号]for v←1 to n do〖if MARK(v)=0 then do【output 第j个分支的标题;DFS(v,j);j←j+1;】〗DFS(v,j)算法:MARK(v)←j;v进栈;while S 非空do〖while PTR(top)≠∧ do【w←VTX(PTR(top));OUTPUT(top,w); []PTR(top) ←LINK(PTR(top));If MARK(w)=0 then do〖MARK(w) ←jw进栈;〗】出栈S〗最坏情况下复杂性可能是θ(n+m)二、深度优先生成森林1概念树边:对一个有向图进行深度优先搜索,在这个过程中,如果某条边所到达的顶点是未被访问过的,则称这条边为树边。
图论path的概念
图论path的概念图论(Graph Theory)是研究图的组合结构和定量特性的数学分支学科。
在图论中,Path是指由边依次连接起来的一系列节点,这些节点间没有重复,也没有形成环的情况。
Path是图中最基本的概念之一,研究Path的性质和算法在图论中具有重要意义。
一、Path的定义和类型Path是由边依次连接起来的一系列节点,这些节点间没有重复,也没有形成环的情况,它是一条单向路线。
路径起始点和终点的节点分别被称之为起点和终点。
具体来说,Path可分为以下两种类型:1. 简单Path:简单Path是指除起点和终点外,Path上的所有其他节点都只经过一次的Path。
简单Path可以含有重复的边(两个节点之间的边可能会被反复经过),但是不允许有重复的节点。
2. 回路(Circuit):回路是指Path的起点和终点都是同一个节点的Path。
回路允许经过相同的节点或边,但是相同的边不能重复经过。
二、Path的性质Path作为图论中的基本概念之一,具有以下重要性质:1. 长度:Path的长度是指连接起点和终点之间经过的边数。
2. 相交:在同一张图上,两个不同的Path可以重叠,但是它们不能穿过彼此,也就是说两条Path不能通过完全相同的节点和边同时连接起点和终点。
3. 连通:在一个无向图中,如果两个节点之间存在一条Path,那么这两个节点就是连通的。
特别地,如果一幅无向图中,每一个节点都可以通过Path到达所有其他节点,则该图是连通的。
4. 路径的存在性:对于无向图和有向图来说,两个节点之间存在Path的充分必要条件就是它们连通,即起点和终点之间必须存在通路。
三、Path的算法Path是许多图论算法的基础,也是许多实际问题中需要解决的问题。
在图论算法中, Path算法是指通过搜索、遍历等方式寻找连接两个节点之间的Path的算法。
常用的Path算法有以下几种:1. 深度优先搜索(DFS):深度优先搜索算法是图论算法中用于遍历或搜索图形和树的一种算法。
《离散数学》第6章 图的基本概念
E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。
无向图的连通性
小结
1 理解无向图的连通性、连通分支等概念;理解距离的概念和性质。 2深刻理解无向图的点连通度、边连通度等概念及其之间的关系,并能熟练地求出给 定 的较为简单的图的点连通度与边连通度。关于无向图的连通性的思维形式注记图如下:
u、v是关节点 充要条件
u 存在路
无向图
连通
所有结点
v
结点 连通图
边
删 删真子集
删 删真子集
子图不连通 子图连通
子图不连通 子图连通
点割集 点连通度 边割集 边连通度
ቤተ መጻሕፍቲ ባይዱ
定理11.2 对于任何无向图G=<V, E>,有(G)≤λ(G)≤(G)
证:(1)若G 不连通,则(G)=λ(G)=0,故上式成立。
(2)若G 连通, ① 证明λ(G)≤δ(G) 若G 是平凡图,则λ(G)=0≤δ(G),若G 是非平凡图,则因每一结点的所有关联边构成的集合必 包含一个边割集,故λ(G)≤δ(G)
根据上述定义可知,图(a)的割点分别为b, c, e,点割集 分别为{b}, {c}, {e}。图(b) 为边割集。
定义11.4
• 若G 无向连通图且不是完全图,定义(G)=min{|V’| |V’是G 的点割集}为G 的点连通度(或 连通度)。
• (G)是使G 不连通需要删去的最少的结点数。 • 规定:
• 短程线与距离 • u与v之间的短程线:uv,u与v之间长度最短的通路 • u与v之间的距离:d(u,v)——短程线的长度 • d(u,v)的性质: • d(u,v)0, u≁v时d(u,v)= • d(u,v)=d(v,u) • d(u,v)+d(v,w)d(u,w)
连通分支:
根据图G 中的一个结点v定义图G 的子图 如下:
图的基本概念 无向图及有向图
d (v4)=4
d (v5)=2
31
最大(出/入)度,最小(出/入)度
在无向图G中, 最大度: Δ(G) = max{ dG(v) | v∈V(G) } 最小度: δ(G) = min{ dG(v) | v∈V(G) } 在有向图D中, 最大出度: Δ+(D) = max{ dD+(v) | v∈V(D) } 最小出度: δ+(D) = min{ dD+(v) | v∈V(D) } 最大入度: Δ-(D) = max{ dD-(v) | v∈V(D) } 最小入度: δ-(D) = min{ dD-(v) | v∈V(D) } + + - 简记为Δ, δ, Δ , δ , Δ , δ
i 1
i
证明 必要性。由握手定理显然得证。 充分性。由已知条件可知,d中有偶数个奇数 度点。 奇数度点两两之间连一边,剩余度用环来实现。
5 3
3
1
例7.1: 1. (3, 3, 2, 3), (5, 2, 3, 1, 4)能成为图的度 数序列吗?为什么? 2. 已知图G中有10条边,4个3度顶点,其余顶点的 度数均小于等于2,问G中至少有多少个顶点?为 什么? 解: 1.由于这两个序列中,奇数度顶点个数均为奇数, 由握手定理的推论可知,它们都不能成为图的度 数序列。 2.显然,图G中的其余顶点度数均为2时G图的顶点 数最少. 设G图至少有x个顶点. 由握手定理可知, 3×4+2×(x-4)=2 ×10 解得: x=8 所以G至少有8个顶点。
度数列举例
按顶点的标定顺序,度数列为 4,4,2,1,3。
度数列举例
按字母顺序, 度数列:5,3,3,3 出度列:4,0,2,1
Ch 7.4 无向图的连通度
引理1
引理1: 设E’是边割集,则 p(G-E’)=p(G)+1. 证明: 如果p(G-E’)>p(G)+1, 则E’不是边割集, 因为 不满足定义中的极小性. # 说明: 点割集无此性质
16
引理2
引理2: 设E’是非完全图G的边割集, λ(G)=|E’|, G-E’的2个连通分支是G1,G2,则 存在u∈V(G1),v∈V(G2),使得(u,v)∉E(G) 证明: (反证) 否则, λ(G)=|E’| =|V(G1)|×|V(G2)|≥|V(G1)|+|V(G2)|-1=n-1, 即需要至少删n-1条边才能破坏G的连通性,与G非完全 图相矛盾. # 说明: a≥1∧b≥1
λ(G)≤n1-2 #
33
定理7.12(λ=δ的充分条件)
定理7.12: G是6阶以上连通简单无向图. (1) δ(G)≥ n/2 ⇒ λ(G)=δ(G) (2) 若任意一对不相邻顶点 u, v 都有
d(u)+d(v)≥n-1, 则λ(G)=δ(G). (3) d(G)≤2 ⇒ λ(G)=δ(G). 证明:由定理7.11和推论可得. #
G1
G2
Kn1
Kn2
E1
31
定理7.11(证明)
证明(续): λ(G)<δ(G)≤δ(G*)≤n1-1+ λ(G)/n1 (抽屉原理) ⇒ λ(G)<n1-1+λ(G)/n1 ⇔ (n1-1)(n1-λ(G))>0 ⇒ λ(G)<n1 ⇒ λ(G) ≤ n1-1. 若 λ(G)=n1-1 ⇒ λ(G)=n1-1+ λ(G)/n1 . ⇒ λ(G)<δ(G)≤δ(G*)≤λ(G) (矛盾!) λ(G)<n1-1 ⇒ λ(G) ≤ n1-2 ⇒ λ(G)+2≤n1. #
图论II 图的基本概念
单向连通
弱连通
定理(强连通判别法) D强连通当且仅当D中存在经 过每个顶点至少一次的回路 定理(单向连通判别法) D单向连通当且仅当 D中存 在经过每个顶点至少一次的路
13
1.3 带权图、最短路径、图着色
带权图与最短路径 图着色问题
14
最短路径
带权图G=<V,E,w>, 其中w:ER. eE, w(e)称作e的权. 若e=(vi,vj), 记w(e)=wij . 若vi,vj不相邻, 记wij =. 路L的权: L的所有边的权之和, 记作w(L). u和v之间的最短路径: u和v之间权最小的路.
按通畅性要求由高到低: 通路 > 迹 > 路
按可能的复杂或曲折程度由高到低:路 > 迹 >通路
2
路与回路
试分别画出:
一条通路 一条非通路的迹 一条非迹的路 从中直观感受一下路、迹和通路对通畅程度的
不同要求
路与回路实例
4
路与回路(续)
说明: 表示方法 ① 用顶点和边的交替序列(定义), 如=v0e1v1e2…elvl ② 用边的序列, 如=e1e2…el ③ 简单图中, 用顶点的序列, 如=v0v1…vl ④ 非简单图中,可用混合表示法,如=v0v1e2v2e5v3v4v5 环是长度为1的圈, 两条平行边构成长度为2的圈. 在无向简单图中, 所有圈的长度3; 在有向简单图 中, 所有圈的长度2.
1.2 路、回路、图的连通性
路,通路,迹 无向图的连通性
无向连通图, 连通分支
有向连通图
弱连通图, 单向连通图, 强连通图
点割集与割点 边割集与割边(桥)
1
路与回路
离散数学--第7章 图论-2(路与连通)
15
连通图可以看成是只有一个连通分支的图,即 w(G ) 1 。
返回 结束
7.2.2 图的连通性
4、有向图的连通
强连通—— G 中任一对顶点都互相可达 (双向) 连通 单向连通—— G 中任一对顶点至少一 向可达
路
10
(vi v j ) ,则从 vi 到 v j 存在长度小于等于
n 1的路。
证明思路:多于n-1条边的路中必有重复出现的结点,反 复删去夹在两个重复结点之间的边之后,剩余的边数不会 超过n-1条边。
v n 在一个 阶图中,若从顶点 i 到 v j 存在 推论:
通路(vi v j ) ,则从 vi 到 v j 存在长度小于等于
返回 结束
7.2.2 图的连通性
7.2.2 图的j 存在路,称 有向图中,从 vi 到 v j 存在路,称 (注意方向) 2、短程线,距离。 短程线——连通或可达的两点间长度最短的 路。 距离——短程线的长度,
12
vi 到 v j 是 连通的(双向)。 vi 可达 v j 。
1 v1e1v2e5v5e7v6 2 v1e1v2e2v3e3v4e4v2e5v5e7v6
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路
简单通路
复杂通路
返回 结束
7.2.1 路
例1、(2)
7
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
7.2 路与连通
内容:图的通路,回路,连通性。 重点:
111图的基本概念(双)
或ek与vj关联。
e1 v2
e2
e3
v1
e5 e6 v3 v4
e2
v5 e4
v2
e3
e1 e4 v3
v1 e6 e5 v4
顶与顶相邻:如果ekk=<vi ,vj> E,称vi与vj相邻; e = (v ) 若ek为有向边,则称vi邻接到vj, vj邻接于vi 。 边与边相邻:如果ek和ei至少有一个公共顶点关联,
例8.6 就下图中V1到 V3初级通路多少条?简 单通路?通路?, V1到 V1长度为6的 初级回路?简单回路?回路?。
v1 e1 v5 e7 v4 e4
e3
e2 v2 e5 v3
e6
解: 7, 9,?,0, 4,?(不考虑同构性)
三、无向图的连通性
两顶点连通:u,v为无向图G的两个顶点,u到v
则称ek与ei相邻。
孤立点:无边关联的顶点。
环: ek = < vi,vj > 中,若 vi = vj,则ek称为环。 平行边:无向图中,关联一对结点的无向边
多于一条,平行边的条数为重数; 有向图中,关联一对顶点的有向边
多于一条,且始、终点相同。 多重图:?包含平行边的图。
简单图: ?既不包含平行边又不包含环的图。
e4
v4 e5
2. 有向图
有向图:有向图D是一个二元组< V,E >,其中 (1) V是非空集 ––– 顶点集 V(D) (2) E是笛卡尔积VV 的可重子集, 其元素为有向边 实际中,画法同无向图,只是要根据E中元素 的次序,由第一元素用方向线段指向第二元素。
如(a):D=<V, E>,V={v1,v2,v3,v4}, E={<v2,v1>,<v2,v2>,<v3,v2>,<v3,v4>,<v4,v3>,<v4,v4>}
第五章 图的基本概念-离散数学
Co
e4
e7
bo
oc
8
图 论
无向完全图:每对顶点间均有边相连的无向 简单图。N阶无向完全图记作Kn.
o o K2 o K3 o o o o K4
1 2
o o
o o o K5 o o
无向完全图Kn, 有边数
n( n − 1)
竞赛图:在的每条边上任取一个方向的有 向图.
9
图 论
有向完全图:每对顶点间均有一对方向相反 的边相连的有向图。例如:
2
图 论
5.1 图的定义及相关术语 5.2 通路 回路 图的连通性 5.3 图的矩阵表示 5.4 无向树 5.5 欧拉图和哈密顿图 5.6 平面图
3
图 论
§5.1 图的定义及相关术语
例1. 多用户操作系统中的进程状态变换图:
就绪 r 进程调度 ro 执行 e o w V={r,e,w}
E={<r,e>,<e,w>,<w,r>}
图 论
2
2. 回路:如果一条路的起点和终点是一个顶 点,则称此路是一个回路. ov e e 如右图中的 v o ov e e L1=v0 e1v1 e5v3 e6v2e4v0 e e L2= v0 e1v1 e5v3e2v0
0 1 4 1 2 3 5 6
2
o v3
22
3. 迹与闭迹
图 论
简单通路(迹) 顶点可重复但边不可重复的通路。 简单回路(闭迹) 边不重复的回路。 4. 路径与圈 初级通路(路径) 顶点不可重复的通路。 初级回路(圈) 顶点不可重复的回路。 例如右图中: o v0 L1=v0 e1v1 e5v3 e6v2e4v0 e1 e4 L2= v0 e1v1 e5v3e2v0 o v2 e2 e3 L3=v0 e1v1 e5v3 e2v0 e3v3 e6v2e4v0 v1 o e5 e6 L1和L2是闭迹, 也是圈. o v3 L3是闭迹,而不是圈.
图的连通性
有关割边的四个等价命题
以下四个命题等价:
(1) e是割边。 (2) e不在G的任一简单回路上。(注意:割点没有相应结论) (3) 存在V的分划{V1, V2}, 使得u∈V1, w∈V2, uw-通路均
包含e。 (4) 存在顶点u,w,使得任意的uw-通路均包含e。
17
连通图“连接的牢固度”不一样
图的连通性
离散数学─图论初步 南京大学计算机科学与技术系
内容提要
通路与回路 通路与同构 无向图的连通性
连通度 2-连通图
有向图的连通性
无向图的定向
2
通路的定义
定义:图G中从v0到vn的长度为n的通路是G的n条边 e1,…, en的序列,满足下列性质
存在viV (0in), 使得vi-1和vi是ei的两个端点 (1in)。
同构图的不变量:长度为k的回路的存在性。
7
通路与同构
u1
u6
u2
v1
v6
v2
u5
u3
v5
u4
u2
v3 v4 v2
u1
u3
v1
v3
u5
定义:无向图G称为是连通的,如果G中任意两个不 同顶点之间都有通路。
b
a
c
b
a
c
e
d
G1
e
d
G2
9
连通分支
连通分支
极大连通子图
定义:使非平凡连通图G成为不连通图或者平凡图需要 删除的最少顶点数称为图G的(点)连通度,记为κ(G)。
(注意:这不意味着任意删除κ(G)个点就一定会使该图不连通)
约定:不连通图或平凡图的连通度为0,而κ(Kn)=n-1 若图G的连通度不小于 k, 则称G是k-连通图;
《离散数学》第七章图的基本概念讲稿
《离散数学》第七章图的基本概念讲稿7.1 ⽆向图及有向图⼀、本节主要内容⽆向图与有向图顶点的度数握⼿定理简单图完全图⼦图补图⼆、教学内容⽆序对: 两个元素组成的⼆元组(没有顺序),即⽆论a,b是否相同,(a,b )=(b, a )⽆序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合⽆向图与有向图定义⽆向图G=, 其中(1) V?≠为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义⽆向图G=, 其中(1) V≠?为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} ⽆向图与有向图(续)定义有向图D=, 其中(1) V同⽆向图的顶点集, 元素也称为顶点(2) E为V?V的多重⼦集,其元素称为有向边,简称边.⽤⽆向边代替D的所有有向边所得到的⽆向图称作D的基图右图是有向图,试写出它的V和E⽆向图与有向图(续)通常⽤G表⽰⽆向图, D表⽰有向图,也常⽤G泛指⽆向图和有向图,⽤ek表⽰⽆向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=?平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是⽆向图G=的⼀条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.⽆边关联的顶点称作孤⽴点.定义设⽆向图G=, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el⾄少有⼀个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=?vi,vj?是有向图的⼀条边, vi,vj是ek端点,⼜称vi 是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设⽆向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=为⽆向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边 G 的最⼤度?(G)=max{d(v)| v ∈V} G 的最⼩度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ?(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的⼊度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最⼤出度?+(D), 最⼩出度δ+(D) 最⼤⼊度?-(D), 最⼩⼊度δ-(D) 最⼤度?(D), 最⼩度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,+(D)=4, δ+(D)=0, ?-(D)=3, δ-(D)=1, ?(D)=5, δ(D)=3. 图论基本定理——握⼿定理定理任意⽆向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点⼊度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供⼀个⼊度和⼀个出度, 故所有顶点⼊度之和等于出度之和等于边数. 握⼿定理(续)推论在任何⽆向图和有向图中,度为奇数的顶点个数必为偶数. 证设G=为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=?,由握⼿定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设⽆向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的⼊度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 ⼊度序列:1,3,1,2 握⼿定理的应⽤例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均⼩于等于2, 问G ⾄少有多少个顶点? 解设G 有n 个顶点. 由握⼿定理, 4?3+2?(n-4)≥2?10 解得 n ≥8握⼿定理的应⽤(续)例3 给定下列各序列,哪组可以构成⽆向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在⽆向图中,如果有2条或2条以上的边关联同⼀对顶点, 则称这些边为平⾏边, 平⾏边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平⾏边, 简称平⾏边, 平⾏边的条数称为重数.(3) 含平⾏边的图称为多重图.(4) 既⽆平⾏边也⽆环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平⾏边重数为2不是简单图e2和e3 是平⾏边,重数为2 e6和e7不是平⾏边不是简单图图的同构定义设G1=, G2=为两个⽆向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(∈E1)当且仅当(f(vi),f(vj))∈E2(∈E2),并且,(vi,vj)()与(f(vi),f(vj))()的重数相同,则称G1与G2是同构的,记作G1?G2.图的同构(续)⼏点说明:图之间的同构关系具有⾃反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有⾮同构的⽆向简单图例2 判断下述每⼀对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构⼊(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶⽆向完全图Kn: 每个顶点都与其余顶点相邻的n阶⽆向简单图.简单性质: 边数m=n(n-1)/2, ?=δ=n-1n阶有向完全图: 每对顶点之间均有两条⽅向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ?=δ=2(n-1),+=δ+=?-=δ-=n-1n阶k正则图: ?=δ=k 的n阶⽆向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶⽆向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图⼦图定义设G=, G '=是2个图(1) 若V '?V且E '?E, 则称G '为G的⼦图, G为G '的母图, 记作G '?G(2)若G '?G且G '≠ G(即V '?V 或E '?E),称G '为G的真⼦图(3) 若G '?G 且V '=V,则称G '为G的⽣成⼦图(4) 设V '?V 且V '≠?, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的⼦图称作V '的导出⼦图,记作G[V '](5) 设E '?E且E '≠?, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的⼦图称作E '的导出⼦图, 记作G[E ']⼦图(续)例画出K4的所有⾮同构的⽣成⼦图补图定义设G=为n阶⽆向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G?G.若G ? G , 则称G 是⾃补图.例画出5阶7条边的所有⾮同构的⽆向简单图⾸先,画出5阶3条边的所有⾮同构的⽆向简单图然后,画出各⾃的补图7.2 通路、回路与图的连通性⼀、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路⽆向连通图, 连通分⽀弱连通图, 单向连通图, 强连通图点割集与割点边割集与割边(桥) ⼆、教学内容通路与回路定义给定图G=(⽆向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若?i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. ⼜若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路⼜称作路径, 初级回路⼜称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在⽆向图中,环是长度为1的圈, 两条平⾏边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条⽅向相反边构成长度为2的圈. 在⽆向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通路,则从vi 到vj 存在长度⼩于等于n -1的通路.推论在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ??例设与均为⽆向简单图,当且仅当路,则从vi到vj存在长度⼩于等于n-1的初级通路.定理在⼀个n阶图G中,若存在vi到⾃⾝的回路,则⼀定存在vi到⾃⾝长度⼩于等于n的回路.推论在⼀个n阶图G中,若存在vi到⾃⾝的简单回路,则⼀定存在长度⼩于等于n的初级回路.⽆向图的连通性设⽆向图G=,u与v连通: 若u与v之间有通路. 规定u与⾃⾝总连通.连通关系R={| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分⽀: V关于R的等价类的导出⼦图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分⽀, 其个数记作p(G)=k.G是连通图? p(G)=1u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ? u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三⾓不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设⽆向图G=, 如果存在顶点⼦集V'?V, 使p(G-V')>p(G),⽽且删除V'的任何真⼦集V''后(? V''?V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设⽆向图G=, E'?E, 若p(G-E')>p(G)且?E''?E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上⼀页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?⼏点说明:Kn⽆点割集n阶零图既⽆点割集,也⽆边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=u可达v: u到v有通路. 规定u到⾃⾝总是可达的.可达具有⾃反性和传递性D弱连通(连通): 基图为⽆向连通图D单向连通: ?u,v∈V,u可达v 或v可达uD强连通: ?u,v∈V,u与v相互可达强连通?单向连通?弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d: u到v的短程线的长度若u不可达v, 规定d=∞.性质:d+d ≥d注意: 没有对称性7.3 图的矩阵表⽰⼀、本节主要内容⽆向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵⼆、教学内容⽆向图的关联矩阵定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义设⽆环有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ?m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义设有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ?n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G=1100010111()0000101110M D ---?=-??-??平⾏边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到⾃⾝长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度⼩于或等于l 的通路数,为D 中长度⼩于或等于l 的回路数. 例有向图D 如图所⽰, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多少条?其中回路分别为多少条? (2) D 中长度⼩于或等于4的通路为多少条?其中有多少条回路?12100010()00010010A D=有向图的可达矩阵定义设D=为有向图, V={v1, v2, …, vn}, 令称(pij)n ?n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对⾓线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例右图所⽰的有向图D 的可达矩阵为7.4 最短路径及关键路径⼀、本节主要内容最短路关键路线⼆、教学内容对于有向图或⽆向图G 的每条边,附加⼀个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=,G 中每条边的权都⼤于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通=1101110111110001P路中带权最⼩的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======?=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==?=-=+i i i i 号:第2步(r=2):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为⼀个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=是n 阶有向带权图1. D 是简单图2. D 中⽆环路3. 有⼀个顶点出度为0,称为发点;有⼀个顶点⼊度为0,称为收点4. 记边的权为wij,它常常表⽰时间1. 最早完成时间:⾃发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ),i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n -∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的⼀条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,⾃发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。
树与生成树
定理1 T是棵完全m叉树, 有t个叶结点, i个分支结点, 则(m-1)i=t -1 . 证明:T的所有结点的出度总和为 mi. 入度总和(i-1)+t. 故 mi=i-1+t 所以(m-1)i=t-1
七. m叉有序树转化成二叉树 因为二叉树便于存贮, 也便于处理, 所以通常可以将多叉 树化成二叉树.方法是: 1.每个结点保留左儿子结点, 剪掉右边其分支. 被剪掉 的结点如下处理(重新嫁接). 2.同一个层次的结点, 从左到右依次画出(被剪掉的结 点 嫁接到它的哥哥结点上).
先将权按照升序排序设为w为儿子结点构造它们的父结点且其权为再与其余权一起排序再从此队列中取出前面两个权值为儿子结点同的方法构造它们的父结点
8-9 树与生成树
树是一种特殊的图, 它是图论中重要的概念之一, 它有 着广泛的应用.在计算机科学中有如判定树、语法树、分 类树、搜索树、目录树等等. 一.树 (Tree) (a) 1.树的定义:一个连通无回路的 无向图T,称之为树. 如(a) 2.叶结点:度数为1的结点, 称为叶结点. (b) 3.分支结点(内结点):度数大于1的结点. 4.森林:一个无向图的每个连通分支都是树.如(b)
⑷ T连通的,且每条边都是割边. ⑸ T连通的且m=n-1. ⑷⑸:关于点数用归纳法证明。 当n=1或2时,T是平凡图或K2,显然有m=n-1。 假设nk时结论成立,往证n=k+1时成立。 当n=k+1时。取T的一条边e,由⑷,e是割边, 所以T-e有两个分支T1和T2, 因为|V(T1)|k, |V(T2)|k, 所以,由归纳假设,有 |E(T1)|=|V(T1)|-1, |E(T2)|=|V(T2)|-1 故m=|E(T1)|+|E(T2)|+1 =|V(T1)|-1+ |V(T2)|-1+1 =n-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、无向图的各连通分支
成绩10 开启时间 2017年11月19日星期日08:00
折扣0.8 折扣时间 2017年12月9日星期六23:55
允许迟交否关闭时间 2017年12月16日星期六23:55
3.求解无向图的各连通分支
输入:
第一行为图的节点数n(节点编号0至n-1,0<n<=10)
从第二行开始列出图的边,-1表示输入结束
输出:
输出每个连通分支的广度优先搜索序列(从连通分支的最小编号开始),不同分支以最小编号递增顺序列出
sample:
input:
8
0 5
5 2
4 5
5 6
6 2
3 7
0 2
-1
output:
0-5-2-4-6
1
3-7
解题:这题是WA样例2,3,因为按照样例的解法就是这样wa,并不是bfs的问题。
改正方法:将每一个点的邻接点按从小到大的顺序先排一下序,如样例,0的邻接点本该为5,2排完序后该为2,5.
这样,样例的正确答案为:
0-2-5-6-4(好像是这个)
1
3-7。