数学公式大全分析
数学公式定律大全

数学公式定律大全1、定理:加法交换律两边加上相同的数都会得到同样的结果,即a+b=b+a2、定理:乘法交换律两边乘以相同的数也会得到同样的结果,即a*b=b*a3、定理:乘法分配律乘法可以分配给加法,即a*(b+c)=a*b+a*c4、定理:乘法结合律加法可以结合乘法,即a*(b*c)=(a*b)*c5、定理:乘方律数的平方等于这个数乘以它本身,即a^2=a*a6、定理:乘方公式三个数的乘方相加等于这三个数乘以它们的积,即a^3+b^3+c^3=(a*b*c)^37、定理:算术和的计算公式一个有n项的等差数列和可表示为 Sn = n * (a1 + an) / 28、定理:算术积的计算公式一个有n项的等差数列的积可表示为 Pn = (an - a1) * (a2 - a1) * (a3 - a1) *…* (an - an - 1)9、定理:立方和公式一个有n项的立方数列和可表示为 Sn = n * (a1^3 + an^3) / 210、定理:立方积公式一个有n项的立方数列的积可表示为 Pn = (an - a1)^3 * (a2 - a1)^3 * (a3 - a1)^3 *…* (an - an - 1)^311、定理:平方差公式设a1,a2,a3,…,an为n个数,则它们的平方差为:A2 = (a1 -a2)^2 + (a2 - a3)^2 + …+ (an - an - 1)^212、定理:立方差公式设a1,a2,a3,…,an为n个数,则它们的立方差为:A2 = (a1 -a2)^3 + (a2 - a3)^3 + … + (an - an - 1)^313、定理:二次根式定理一元二次方程的一般解为:ax^2 + bx + c = 0,其中a≠0。
初中数学全套公式大全

初中数学全套公式大全1.代数公式- 分配律:a(b+c) = ab + ac-结合律:(a+b)+c=a+(b+c)- 因式分解:ab+ac = a(b+c)-二次方差:(a+b)(a-b)=a^2-b^2- 三次方差:a^3 + b^3 = (a+b)(a^2-ab+b^2)- 一次方程求解:ax + b = 0 => x = -b/a- 二次方程求解:ax^2 + bx + c = 0 => x = (-b±√(b^2-4ac))/(2a)- 三次方程求解:ax^3 + bx^2 + cx + d = 0 => 需用牛顿法等等2.几何公式-周长:正方形周长=4×边长矩形周长=2×(长+宽)圆周长=π×直径-面积:正方形面积=边长×边长矩形面积=长×宽三角形面积=底×高/2圆面积=π×半径^2-体积:长方体体积=长×宽×高圆柱体积=圆面积×高圆锥体积=圆面积×高/3-相似三角形面积比:AB/CD=BC/EF=AC/DE-圆的性质:正切与切线垂直相等弧所对的圆心角是相等的相等弧的扇形所对的弧长和扇形的面积也相等3.概率公式-事件的概率:P(A)=事件A发生的次数/总的样本空间次数-对立事件:P(A')=1-P(A)-全概率公式:事件B在事件A发生的条件下发生的概率为P(A)×P(B,A),而总概率为P(A)-乘法公式:两个同时发生的独立事件A和B的概率为P(A∩B)=P(A)×P(B)-加法公式:两个互不相容(即不能同时发生)的事件A和B的概率为P(A∪B)=P(A)+P(B)4.超越函数的公式- e^x、e^(-x)、ln(x)、log(x)等函数的展开公式-三角函数的和差化积公式和倍角公式-反三角函数的公式-指数函数、对数函数的性质及展开公式5.统计学公式-平均值:平均值=总和/总数-中位数:将数据从小到大排列,如果总数是奇数,则中位数为中间的那个数;如果总数是偶数,则中位数为中间两个数的平均值-众数:出现次数最多的数-极差:最大值-最小值-方差:各数据与平均数的差的平方和的均值-标准差:方差的平方根-相关系数:相关系数范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无关。
数学计算公式表大全

数学计算公式表大全一、小学数学计算公式。
1. 加法交换律。
- 公式:a + b=b + a- 示例:3+5 = 5+3=82. 加法结合律。
- 公式:(a + b)+c=a+(b + c)- 示例:(2 + 3)+4=2+(3 + 4)=93. 乘法交换律。
- 公式:a× b = b× a- 示例:2×3=3×2 = 64. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 示例:(2×3)×4=2×(3×4)=245. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c- 示例:2×(3 + 4)=2×3+2×4 = 6 + 8=146. 减法的性质。
- 公式:a - b - c=a-(b + c)- 示例:10-3 - 2=10-(3 + 2)=57. 除法的性质。
- 公式:a÷ b÷ c=a÷(b× c)(b≠0,c≠0)- 示例:12÷2÷3 = 12÷(2×3)=28. 长方形的周长公式。
- 公式:C=(a + b)×2(a为长,b为宽)- 示例:长为5厘米,宽为3厘米的长方形,周长C=(5 + 3)×2=16厘米。
9. 长方形的面积公式。
- 公式:S = a× b- 示例:长为6厘米,宽为4厘米的长方形,面积S=6×4 = 24平方厘米。
10. 正方形的周长公式。
- 公式:C = 4× a(a为边长)- 示例:边长为5厘米的正方形,周长C=4×5=20厘米。
11. 正方形的面积公式。
- 公式:S=a^2- 示例:边长为4厘米的正方形,面积S = 4^2=16平方厘米。
高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:X1+X2=-b/aX1*X2=c/a,注:韦达定理。
(5)判别式1)b2-4a=0,注:方程有相等的两实根。
2)b2-4ac\u003e0,注:方程有一个实根。
3)b2-4ac\u003c0,注:方程有共轭复数根。
2、三角函数公式(1)两角和公式sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。
(2)倍角公式tan2A=2tanA/(1-tan2A);ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2);cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2);tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA));ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA))。
世界上所有的数学公式大全

世界上所有的数学公式大全01工作效率×工作时间=工作总量工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作效率=工作效率02单价×数量=总价通过单价×数量=总价,我们可以将数学中的计算公式应用到实际问题中。
03速度×时间=路程速度×时间=路程÷速度=时间路程÷时间=速度04被减数-减数=差被减数-减数=差,即被减数和减数分别相减,得到差。
05被除数÷除数=商被除数÷除数=商06一元一次方程式一元一次方程式是指含有一个未知数,并且未知数的次数是一次的等式。
例如,ax+by+cz=d,其中a、b、c为已知数,x、y、z为未知数,且满足a+bx=d。
07V=ShV=Sh是圆柱的体积的计算公式,其中底面面积和体积是圆柱的侧面积和底面高。
通过将底面面积乘以高,可以得到圆柱的总体积。
这个公式可以用来计算圆柱的体积。
08S=a×a长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr209S=ch=πdh=2πrh圆柱的表面积等于底面的周长乘以高再加上两头的圆的面积。
表面积等于底面的周长乘以高,再加上两头的圆的面积。
10带分数带分数是指将假分数写成整数和真分数的形式。
通过将分数的分母化为相同的数位,然后对分子进行约分,可以得到带分数。
11V=abh长方体的体积=长×宽×高。
在这个公式中,长方体的长度和宽度分别表示长和宽的长度,高度表示长的高度。
长方体的体积可以通过将底面积乘以高来计算。
12V=aaaV=aaa是长方体的体积公式,其中a表示长方体的长度,b表示宽,高表示长方体的宽度和高度。
数学公式大全

数学公式大全数学公式是数学中重要的概念和工具,用于描述和解决各种数学问题。
下面是数学公式的大全,包括代数、几何、概率与统计、微积分等方面的公式。
一、代数公式1. 二次方程的求根公式:对于一般的二次方程ax²+bx+c=0,其解可以通过求根公式计算:x=(-b±√(b²-4ac))/(2a)2. 四则运算法则:加法:a+b=b+a乘法:a*b=b*a减法:a-b=-(b-a)除法:a/b=1/(b/a)3. 指数与对数的关系:指数和对数是互为反函数的,即:a^loga(x)=xloga(a^x)=x二、几何公式1. 三角形的面积:对于已知底和高的三角形,其面积可以计算为:A=1/2 * 底 * 高2. 圆的面积和周长:圆的面积可以计算为:A=πr²圆的周长可以计算为:C=2πr3. 直角三角形的勾股定理:直角三角形的三边满足勾股定理:a²+b²=c²三、概率与统计公式1. 期望值的计算公式:对于一个离散型随机变量X,其期望值可以计算为:E(X)=∑(xP(X=x)),即各个取值x乘以相应的概率的加和2. 标准差的计算公式:标准差是描述变量离散程度的指标,可以计算为:σ=√(∑((x-μ)²P(X=x))),其中μ为随机变量X的期望值四、微积分公式1. 导数的定义:导数是函数在某一点处切线的斜率,可以定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h2. 求导法则:常见函数的求导法则包括:常数函数导数为0幂函数求导为幂次减1乘以导数指数函数求导为指数乘以导数对数函数求导为倒数乘以导数三角函数求导可以利用导数的定义累加求导数公式等以上是数学公式的部分内容,其中涵盖了代数、几何、概率与统计、微积分等方面的公式。
数学公式在数学领域中具有重要的应用价值和意义,可以帮助我们描述、分析和解决各种数学问题。
数学分析公式总结

数学分析公式总结数学分析是数学中的一门重要课程,它主要研究函数的性质和运算法则,以及极限、导数和积分等概念及其应用。
在学习数学分析时,我们经常会遇到各种各样的公式。
下面是对其中一些重要的数学分析公式进行总结。
一、极限公式1.常值函数的极限公式:\(\lim_{x\to a} c = c\)2.幂函数的极限公式:\(\lim_{x\to a} x^{m} = a^{m}\) (其中m为整数)3.正弦函数和余弦函数的极限公式:\(\lim_{x\to 0} \dfrac{\sin x}{x} = 1\)\(\lim_{x\to 0} \dfrac{1-\cos x}{x} = 0\)4.自然对数函数的极限公式:\(\lim_{x\to 0} \dfrac{e^{x}-1}{x} = 1\)5.无穷小替换公式:当\(x\to a\)时,若\(\lim_{x\to a} f(x) = 0\),\(\lim_{x\to a} g(x) = 0\),且\(\lim_{x\to a} \dfrac{f(x)}{g(x)}\)存在,则:\(\lim_{x\to a} \dfrac{f(x)}{g(x)} = \lim_{x\to a}\dfrac{f'(x)}{g'(x)}\)二、导数公式1.基本导数公式:\((c)'=0\)(其中c为常数)\((x^{n})' = nx^{n-1}\) (其中n为整数)\((\sin x)' = \cos x\)\((\cos x)' = -\sin x\)\((e^{x})'=e^{x}\)2.乘积法则:\((f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\)3.商法则:\((\dfrac{f(x)}{g(x)})' = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2}\)4.链式法则:若y=f(u)和u=g(x)都可导,则\(y'(x)=f'(u)g'(x)\)三、积分公式1.基本积分公式:\(\int cdx = cx + C\) (其中c为常数,C为常数)\(\int x^{n}dx = \dfrac{x^{n+1}}{n+1} + C\) (其中n不等于-1)\(\int \sin xdx = -\cos x + C\)\(\int \cos xdx = \sin x + C\)\(\int e^{x}dx = e^{x} + C\)2.基本换元公式:\(\int f(g(x))g'(x)dx = \int f(u)du\) (其中u = g(x))四、泰勒展开公式泰勒展开公式是一种将一个函数在其中一点附近用多项式逼近的方法。
数学重点归纳常见公式大全

数学重点归纳常见公式大全在学习数学过程中,公式是我们必不可少的工具之一。
它们是数学知识的核心,帮助我们解决各种问题。
本文将为大家整理一份数学重点归纳常见公式的大全,以帮助学习者更好地掌握数学知识。
一、代数公式1. 二项式定理:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n, n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n2. 平方差公式:(a + b) * (a - b) = a^2 - b^23. 三次方差公式:(a + b) * (a^2 - ab + b^2) = a^3 + b^34. 二次方差公式:(a + b) * (a^2 - ab + b^2) = a^3 - b^35. 求和公式:Σ(n) = (n/2) * (a + l),其中n为项数,a为首项,l为末项,Σ表示求和二、几何公式1. 周长和面积:矩形:周长=2(a+b),面积=a*b;正方形:周长=4a,面积=a^2;圆:周长=2πr,面积=πr^2;三角形:周长=a+b+c,其中a、b、c为三边长,面积=S=√(p(p-a)(p-b)(p-c)),其中p为半周长;2. 体积和表面积:立方体:体积=边长^3,表面积=6*(边长^2);圆柱体:体积=πr^2*h,侧面积=2πrh,表面积=2πrh+2πr^2;球体:体积=(4/3)πr^3,表面积=4πr^2;三、三角函数公式1. 正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为外接圆半径。
2. 余弦定理:c^2 = a^2 + b^2 - 2ab*cosC,其中c为斜边,a、b为两边,C为夹角。
3. 正切定理:tanA = sinA/cosA,其中A为角度。
4. 和差公式:sin(A±B) = sinA*cosB ± cosA*sinBcos(A±B) = cosA*cosB ∓ sinA*sinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanA*tanB)四、微积分公式1. 导数公式:基本导数公式:(常数)' = 0, (x^n)' = n*x^(n-1), (e^x)' = e^x,(a^x)' = ln(a)*a^x, (sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec^2(x);导数的四则运算公式:(u±v)' = u' ± v', (c*u)' = c*u', (u*v)' = u'*v + v'*u, (u/v)' = (u'*v - v'*u) / (v^2);复合函数求导法则:(f(g(x)))' = f'(g(x))*g'(x),链式法则。
数学公式大全

数学公式大全数学是一门研究数量、结构、变化以及空间等概念和关系的学科,广泛应用于自然科学、工程技术等领域。
在数学中,公式是表达数学关系和概念的一种形式化语言,通过公式可以准确地描述数学问题,并进行推导和求解。
本文将为您介绍一些常见的数学公式,包括代数、几何、微积分和概率统计等方面的公式。
一、代数公式1. 一次方程求解公式一次方程是一种只含有一个未知数的代数方程,可用以下公式进行求解:ax + b = 0,其中a ≠ 0。
解得 x = -b/a。
2. 二次方程求解公式二次方程是一种含有一个未知数的二次多项式方程,可用以下公式进行求解:ax^2 + bx + c = 0,其中a ≠ 0。
解得 x = (-b ± √(b^2 - 4ac))/(2a)。
3. 贝叶斯定理贝叶斯定理是一种计算条件概率的公式,可用于根据已知信息更新概率的计算。
P(A|B) = (P(B|A) * P(A))/P(B),其中 P(A|B) 表示在 B 发生的条件下A 发生的概率。
二、几何公式1. 长方形面积公式长方形的面积可以用以下公式计算:面积 = 长 ×宽。
2. 圆的面积公式圆的面积可以用以下公式计算:面积= πr^2,其中 r 表示圆的半径,π 是一个无理数,约等于3.14159。
3. 三角形面积公式三角形的面积可以用以下公式计算:面积 = 1/2 ×底边长 ×高,其中底边长和高分别表示三角形的边长和垂直于底边的高。
三、微积分公式1. 导数定义公式导数是函数在某一点的变化率,可以用以下公式表示:f'(x) = lim(h→0) [f(x + h) - f(x)]/h。
2. 积分定义公式积分是导数的逆运算,可以用以下公式表示:∫f'(x)dx = f(x) + C,其中 C 是常数。
3. 泰勒展开公式泰勒展开是一种用多项式逼近函数的方法,可以用以下公式表示:f(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2! + ...,其中 a 表示展开的中心点。
数学总结—公式大全

数学总结—公式大全1.代数方面的公式1.1 一次方程:ax + b = 0,其中a≠0。
1.2 二次方程:ax² + bx + c = 0,其中a≠0。
1.3 一元二次不等式:ax² + bx + c > 0或ax² + bx + c < 0。
1.4勾股定理:a²+b²=c²,其中a、b为直角三角形的两条直角边,c 为斜边。
1.5 二项式定理:(a + b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... +C(n,n-1)abⁿ⁻¹ + C(n,n)bⁿ,其中C(n,k)表示组合数。
1.6四则运算规则:加法:a+b=b+a,乘法:a×b=b×a。
2.几何方面的公式2.1 三角形面积公式:S = 1/2bh,其中S表示三角形的面积,b表示底边的长度,h表示高。
2.2直角三角形三边关系:a²+b²=c²,其中a、b为直角三角形的两条直角边,c为斜边。
2.3 正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c为三角形的边长,A、B、C为对应的内角,R为三角形外接圆的半径。
2.4 余弦定理:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的内角。
2.5 面积公式:三角形面积S = 1/2absinC,其中a、b为三角形的两条边,C为对应的夹角。
2.6弧长公式:L=rθ,其中L表示弧长,r表示弧的半径,θ表示圆心角的度数。
3.微积分方面的公式3.1 导数定义:f'(x) = lim (f(x + h) - f(x))/h,其中f'(x)表示函数f(x)在x处的导数。
3.2导数的基本运算法则:常数法则、乘法法则、除法法则、链式法则等。
3.3反函数导数:(f⁻¹)'(y)=1/f'(x),其中f⁻¹表示f的反函数。
数学函数公式大全

数学函数公式大全一、代数函数1. 线性函数:y = ax + b,其中a和b是常数,x是自变量。
2. 二次函数:y = ax^2 + bx + c,其中a、b和c是常数,x是自变量。
3. 三次函数:y = ax^3 + bx^2 + cx + d,其中a、b、c和d是常数,x是自变量。
4. 指数函数:y = a^x,其中a是常数,x是自变量。
5. 对数函数:y = log_a(x),其中a是常数,x是自变量。
二、三角函数1. 正弦函数:y = sin(x),其中x是自变量。
2. 余弦函数:y = cos(x),其中x是自变量。
3. 正切函数:y = tan(x),其中x是自变量。
4. 余切函数:y = cot(x),其中x是自变量。
5. 正割函数:y = sec(x),其中x是自变量。
6. 余割函数:y = csc(x),其中x是自变量。
三、反三角函数1. 反正弦函数:y = arcsin(x),其中x是自变量。
2. 反余弦函数:y = arccos(x),其中x是自变量。
3. 反正切函数:y = arctan(x),其中x是自变量。
4. 反余切函数:y = arccot(x),其中x是自变量。
5. 反正割函数:y = arcsec(x),其中x是自变量。
6. 反余割函数:y = arccsc(x),其中x是自变量。
四、双曲函数1. 双曲正弦函数:y = sinh(x),其中x是自变量。
2. 双曲余弦函数:y = cosh(x),其中x是自变量。
3. 双曲正切函数:y = tanh(x),其中x是自变量。
4. 双曲余切函数:y = coth(x),其中x是自变量。
5. 双曲正割函数:y = sech(x),其中x是自变量。
6. 双曲余割函数:y = csch(x),其中x是自变量。
数学函数公式大全五、积分函数1. 不定积分:∫f(x)dx,其中f(x)是函数,x是自变量。
2. 定积分:∫a^bf(x)dx,其中f(x)是函数,a和b是积分区间。
(完整版)数学分析复习资料及公式大全

导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。
常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。
常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。
数学公式大全(数学)

数学公式大全(数学)数学公式大全数学是一门抽象而精确的学科,它以符号和公式为基础,通过逻辑推理和严密推导来研究数量、结构、变化和空间等概念。
在数学中,公式是表达数学关系的一种形式,它以符号和特定的排列组合方式来描述数学中的规律和定理。
在这篇文章中,我们将探讨一些常见的数学公式,它们涵盖了数学的多个分支,希望能帮助读者更好地理解和学习数学。
1. 代数公式1.1 一元二次方程公式一元二次方程公式是形如ax^2 + bx + c = 0的方程,其中a、b和c是常数,且a≠0。
它的解的公式为:x = (-b ± √(b^2 - 4ac))/(2a)这个公式也称为二次方程的求根公式,可以用来求解任意二次方程的根。
1.2 二项式定理二项式定理是指对于任意实数a和b以及自然数n,有以下公式成立:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n其中C(n, k)表示从n个元素中选取k个元素的组合数,也称为二项式系数。
2. 几何公式2.1 勾股定理勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
具体表达式为:a^2 + b^2 = c^2其中a和b分别表示直角边的长度,c表示斜边的长度。
2.2 圆的面积和周长圆的面积公式为:S = πr^2其中S表示圆的面积,r表示圆的半径。
圆的周长公式为:C = 2πr其中C表示圆的周长,r表示圆的半径。
3. 概率统计公式3.1 基本概率公式基本概率公式是指对于任意事件A,其概率的计算公式为:P(A) = N(A) / N(S)其中P(A)表示事件A发生的概率,N(A)表示事件A发生的次数,N(S)表示样本空间中事件发生的总次数。
3.2 期望公式期望是概率统计中衡量随机变量平均取值的指标。
对于随机变量X和它的概率分布P(X)而言,其期望的计算公式为:E(X) = ∑(x * P(x))其中x表示随机变量X可能取到的值,P(x)表示X取到x的概率。
数学公式大全

数学公式大全一、代数公式1. 一次方程的解:对于方程ax + b = 0,其解为x = -b/a。
2. 二次方程的解:对于方程ax² + bx + c = 0,其解为x = (-b ± √(b² - 4ac)) / (2a)。
3.二次根式的求和与差:a) √a ± √b = (√2 ± 1) * √(a ± √ab + b)b)√a±√b=(√a+√b)*(√a-√b)二、几何公式1.周长和面积:a) 矩形:周长P = 2(l + w),面积A = lwb)正方形:周长P=4s,面积A=s²c)圆:周长C=2πr,面积A=πr²d)三角形:周长P=a+b+c,海伦公式:A=√(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2为半周长e)梯形:面积A=(a+b)h/2,其中a和b为上下底边长,h为高f) 平行四边形:面积A = bh,其中b为底边长,h为高2.三角函数:a) 正弦定理:a/sinA = b/sinB = c/sinCb) 余弦定理:c² = a² + b² - 2ab*cosCc) 正弦、余弦和正切值:sin²θ+ cos²θ = 1,tanθ =sinθ/cosθ三、微积分公式1.导数与微分:a)基本导数:-常数函数:(c)'=0- 幂函数:(x^n)' = nx^(n-1)-指数函数:(e^x)'=e^x- 对数函数:(lnx)' = 1/xb)基本微分:- 常数函数积分:∫c dx = cx + C- 幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1- e^x函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln,x, + C2.积分法则:a) 线性法则:∫(cf(x) + dg(x)) dx = c∫f(x) dx + d∫g(x) dxb) 乘法法则:∫(f(x)*g'(x)) dx = f(x)*g(x) - ∫(f'(x)*g(x)) dxc) 代换法则:∫f(g(x))g'(x) dx = ∫f(u) du,其中u = g(x)四、概率与统计公式1.排列组合:a)排列公式:An=n!b)组合公式:C(n,r)=n!/[(n-r)!r!]2.期望与方差:a)期望:E(X)=∑(xP(x)),其中x为随机变量的取值,P(x)为该取值发生的概率b) 方差:Var(X) = ∑((x-E(X))²P(x))以上是一些常见的数学公式,在数学的各个领域中都有广泛的应用。
高中数学公式大全概率计算与统计分析的实例公式

高中数学公式大全概率计算与统计分析的实例公式高中数学公式大全:概率计算与统计分析的实例公式一、概率计算公式1. 事件的概率计算公式:P(A) = (事件A的样本点数) / (样本空间的样本点数)2. 加法法则:对于两个互斥事件A和B,有P(A或B) = P(A) + P(B)3. 减法法则:对于事件A和B,有P(A且B的补集) = P(A的补集) - P(A且B)4. 乘法法则:对于两个独立事件A和B,有P(A且B) = P(A) × P(B)5. 条件概率公式:对于事件A和B,有P(A|B) = P(A且B) / P(B)6. 全概率公式:对于事件A和B1、B2、...、Bn构成的样本空间分割,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)二、统计分析的实例公式1. 平均数(均值)公式:对于一组数据x1、x2、...、xn,均值(平均数)为平均数 = (x1 + x2 + ... + xn) / n2. 加权平均数公式:对于一组数据x1、x2、...、xn及其对应的权重w1、w2、...、wn,加权平均数为加权平均数 = (x1w1 + x2w2 + ... + xnwn) / (w1 + w2 + ... + wn)3. 中位数公式:对于一组有序数据,中位数为若数据个数为奇数,中位数为第(n+1)/2个数据;若数据个数为偶数,中位数为第n/2个数据和第(n/2+1)个数据的平均数。
4. 众数公式:对于一组数据,众数为数据中出现次数最多的值。
5. 方差公式:对于一组数据x1、x2、...、xn,均值为μ,方差为方差 = ( (x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2 ) / n6. 标准差公式:对于一组数据x1、x2、...、xn,均值为μ,标准差为标准差= √方差7. 相关系数公式:对于两组数据x1、x2、...、xn和y1、y2、...、yn,其相关系数为相关系数 = (协方差) / (x的标准差 × y的标准差)其中,协方差的计算公式为协方差 = ( (x1 - μx)(y1 - μy) + ... + (xn - μx)(yn - μy) ) / n8. 样本方差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本方差为样本方差 = ( (x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2 ) / (n - 1)9. 样本标准差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本标准差为样本标准差= √样本方差综上所述,以上是高中数学中概率计算和统计分析的常用公式。
数学公式大全 全套

数学公式大全:全套数学是科学世界中的语言,而公式则是数学中的词汇和语法。
掌握数学公式是理解和应用数学的关键。
本文将为您呈现全套数学公式,帮助您系统地掌握数学基础。
一、代数公式1.乘法分配律:a(b+c) = ab + ac2.乘法结合律:(ab)c = a(bc)3.乘法交换律:ab = ba4.除法定义:a÷b = c 表示a = b × c5.指数法则:a^m × a^n = a^(m+n)6.根式性质:√a^2 = |a|二、几何公式1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2= c^22.圆周率公式:π = 22/7 或π =3.141593.圆的面积公式:S = πr^24.圆柱的体积公式:V = πr^2h三、三角函数公式1.正弦函数公式:sin(x) = sin(x + 2kπ)2.余弦函数公式:cos(x) = cos(x + 2kπ)3.正切函数公式:tan(x) = tan(x + kπ)4.余切函数公式:cot(x) = 1/tan(x)5.反正弦函数公式:arsin(x) = -i(log(iz))6.反余弦函数公式:arccos(x) = π - arcsin(x)7.反正切函数公式:arctan(x) = π/2 - arcsin(x/√(1+x^2))8.反余切函数公式:arccot(x) = π/2 - arctan(x)四、微积分公式1.导数定义:f'(x) = lim (h->0) [f(x+h) - f(x)] / h2.积分基本公式:∫ a dx = ax + C3.定积分公式:∫ [a, b] f(x) dx = F(b) - F(a)4.微分方程公式:dy/dx = f(x, y)5.级数求和公式:∑ [n=1,∞] a_n = S - S_n (n->∞)6.级数收敛判别法:∑ [n=1,∞] a_n 收敛当且仅当lim (n->∞) a_n = 07.多重积分公式:∫ [a, b] f(x, y, z) dV = Σ [S_k] F_k (S_k为k维曲面上的小区元)8.傅里叶变换公式:f(t) = Σ [n=-∞, ∞] c_n e^(i n t) (c_n为傅里叶系数)9.拉普拉斯变换公式:f(t) = Σ [n=0, ∞] s^n * (f^{(n)}(0)/n!) (s为复数变换参数)。
数学公式大全

数学公式大全数学作为一门科学,有着丰富的理论和方法,其中最为重要的莫过于数学公式。
数学公式通过简洁的符号表示,能够准确表达各种数学关系和定理,是数学研究和应用不可或缺的工具。
下面将介绍一些常用的数学公式,以帮助读者更好地理解和应用数学知识。
一、代数公式1. 一次方程的求解公式:对于方程ax + b = 0,其中a、b为已知常数且a ≠ 0,解x的公式是x = - b / a。
2. 二次方程的求解公式:对于方程ax² + bx + c = 0,其中a、b、c为已知常数且a ≠ 0,解x 的公式是:x = ( -b ± √(b² - 4ac) ) / 2a3. 勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。
即a² + b²= c²,其中a、b为直角边,c为斜边。
二、几何公式1. 面积公式:- 三角形的面积公式:对于三角形,面积S等于底乘以高的一半。
即S = (1/2) * 底 * 高。
- 矩形的面积公式:对于矩形,面积S等于长乘以宽。
即S = 长 * 宽。
- 正方形的面积公式:对于正方形,面积S等于边长的平方。
即S = 边长²。
- 圆的面积公式:对于圆,面积S等于半径的平方乘以π(圆周率)。
即S = π * 半径²。
2. 体积公式:- 立方体的体积公式:对于立方体,体积V等于边长的立方。
即V = 边长³。
- 圆柱体的体积公式:对于圆柱体,体积V等于底面积乘以高。
即V = 圆的面积 * 高。
- 球体的体积公式:对于球体,体积V等于4/3乘以π乘以半径的立方。
即V = (4/3) * π * 半径³。
三、微积分公式1. 导数公式:- 基本导数公式:- (常数函数导数准则)(k)' = 0,其中k为常数;- (幂函数导数准则)(x^n)' = nx^(n-1),其中n为正整数;- (指数函数导数准则)(a^x)' = ln(a) * a^x,其中a为大于0且不等于1的常数;- (对数函数导数准则)(logₐ(x))' = 1 / (x * ln(a)),其中a为大于0且不等于1的常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式 1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin=AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注释:xx tan 1cot =5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtan tan 1tan tan )tan(∙-+=+④βαβαβαtan tan 1tan -tan )tan(∙+=-6.二倍角公式:(含万能公式)①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-==θθ22tan 1tan 1+- ③θθθ2tan 1tan 22tan -=④ 22cos 1sin 2θθ-= ⑤ 22cos 1cos 2θθ+=⑥ Sin 2x+cos 2x=1 ⑦ 1+tan 2x=sec 2x ⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=-高等数学必备公式1、指数函数(4个): 幂函数5-8(1)nm n m aa a +=⋅ (2)nm n m a aa -=(3)nmn ma a= (4)m m aa 1=- (5) nm n m xx x +=⋅2、对数函数(4个):(1)b a ab ln ln ln += (2)b a b a ln ln ln -=(3)a b a bln ln = (4)N N e e N ln ln ==3、三角函数(10个):(1)1cos sin 22=+x x (2)x x x cos sin 22sin = (3)x x x x x 2222sin 211cos 2sin cos 2cos -=-=-= (4)21cos 2sin 2x x -= (5)21cos 2cos 2xx +=(6)x x 22sec tan 1=+ (7) xx 22csc cot 1=+(8)x x csc 1sin =(9)x x sec 1cos = (10)xx cot 1tan =4、等价无穷小(11个):(等价无穷小量只能用于乘、除法)23330sin ~ arcsin ~ tan ~ arctan ~1~ln(1)~ 1cos ~11~20tan sin ~ tan ~ sin ~236n e nx x x x x x x x x x →-+-+-→---当时: 当时:幂函数:(1))('c =0 (2)1)(-='μμμx x(3)211x x '⎛⎫=-⎪⎝⎭(4)'指数对数:(5)a a a xx ln )(=' (6)x x e e =')((7)a x x a ln 1)(log =' (8)x x 1)(ln ='三角函数:(9)x x cos )(sin =' (10)x x sin )(cos -='(11)x x 2sec )(tan =' (12)x x 2csc )(cot -='(13)x x x tan sec )(sec =' (14)x x x cot csc )(csc -='反三角函数:(15)211)(arcsin x x -=' (16)211)(arccos x x --=' (17)211)(arctan x x +=' (18)211)cot (x x arc +-='求导法则: 设u=u(x),v=v(x)1. (u —+v )’=u ’—+v ’ 2. (cu)’=cu ’(c 为常数) 3. (uv)’=u ’v+uv ’ 4. (vu )’=2''u v uv v -幂函数:(1)⎰+=C kx kdx (2)⎰-≠++=+)1(11μμμμC x dx x(3)211dx C x x=-+⎰ (4)C =(5)C x dx x +=⎰ln 1指数函数:(6)C a a dx a xx+=⎰ln (7)⎰+=C e dx e x x三角函数:(8) ⎰+-=C x xdx cos sin (9) ⎰+=C x xdx sin cos (10) tan ln cos xdx x C =-+⎰ (11)cot ln sin xdx x C =+⎰ (12)⎰+=C x xdx x sec tan sec (13)⎰+-=C x xdx x csc cot csc (14)⎰⎰+==Cx xdx xdxtan sec cos22(15)⎰⎰+-==Cx xdx dx x cot csc sin 122(16)sec ln sec tan xdx x x C =++⎰ (17)csc ln csc cot xdx x x C =-+⎰(18)Cx dx x +=-⎰arcsin 112(19)arcsinx C a=+(20)Cx dx x +=+⎰arctan 112 (21)2211arctan xdx C ax a a =++⎰(22)Ca x x dx a x +++=+⎰2222ln 1 (23)Ca x x dx ax +-+=-⎰2222ln 1 (24)2211ln 2x a dx C xa a x a-=+-+⎰补充:完全平方差:222)(b ab a b a +-=- 完全平方和:222)(b ab a b a ++=+ 平方差:))((22b a b a b a +-=- 立方差:))((2233b ab a b a b a ++-=- 立方和:))((2233b ab a b a b a +-+=+常见的三角函数值奇/偶函的班别方法:偶函数:f(-x )= f(x) 奇函数:f(-x)= -f(x)常见的奇函数:Sinx , arcsinx , tanx , arctanx , cotx , x2n+1常见的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法则:若lim f(x)=A,lim g(x)=B,则有:1. lim [f(x)—+g(x)]=lim f(x)—+lim g(x)=A —+B 2. lim [f(x).g(x)]=lim f(x).—+lim g(x)=A .B3. 又B 不等于0,则BAx g x f x f ==)(lim )(lim g(x))(lim两个重要极限:11sin lim 0=→x x x 1)()(s i n lim 0)(=−−→−→x g x g x g 推广 2.e x g e x e xx g x xx x x =+−−→−=+=+∞→∞→∞→)(11))(1(lim )1(lim )11(lim 推广;;.无穷小的比较: 设:lim α=0,lim β=01. 若lim αβ=0,则称β是比α较高价的无穷小量2. 若lim αβ=c ,(c 不等于0),则称β是比α是同阶的无穷小量3. 若lim αβ=1,则称β是比α是等价的无穷小量4. 若lim αβ=∞,则称β是比α较低价的无穷小量抓大头公式:mm m mn n n n b x b a x a a xx xx +⋯⋯++++⋯⋯++----11101110b b a lim={mn m n mn b >∞<=,,0,a 0积分:1.直接积分(带公式)2.换元法:① 简单根式代换a. 方程中含nb ax +,令nb ax +=t b.方程中含ndcx bax ++,令ndcx b ax ++=tc. 方程中含nb ax +和mb ax +,令pb ax +(其中p 为n,m 的最小公倍数)② 三角代换: a. 方程中含22a x -,令X=asint; t ⊂(-2π,2π)b. 方程中含22a x +,令X=atant; t ⊂(-2π,2π)c. 方程中含22x a -,令X=asect; t ⊂(0,2π)③ 分部积分∫uv ’ dx=uv-∫u ’v dx反(反三角函数)对幂指三,谁在后面,谁为v ’,根据v ’求出v.无穷级数:1. 等比级数:∑∞=1n n aq ,{发散收敛,1q ,1q ≥<2. P 级数:∑∞=11n pn,{发散收敛,1p ,1p ≤>3. 正项级数:nn n uu 10lim +→=ρ,{判别法,无法判断,改用比较发散收敛1,1,1=><ρρρ4.比较判别法:重找一个V n (一般为p 级数),敛散性一致与,∑∑∞=∞=∞→=1n 1n n lim n n v u A nnv u5. 交错级数:)0()1(1>-∑∞=n n n n u u ,莱布尼茨判别法:{0lim 1=∞→+≥u n n n u u ,则级数收敛。