计算机图形学图形的几何变换的实现算法

合集下载

几何变换的认识和基本原理

几何变换的认识和基本原理

几何变换的认识和基本原理几何变换是指通过对平面上的点、线、面进行位置、形状或尺寸上的改变,从而得到一个新的图形。

在计算机图形学和计算机视觉等领域,几何变换是非常重要的基础知识。

本文将介绍几何变换的认识和基本原理。

一、平移变换平移变换是指将一个图形沿着某个方向平行移动一定的距离。

平移变换可以用以下公式表示:[x', y'] = [x + dx, y + dy]其中,(x, y)是原始图形上的一个点,(dx, dy)是平移的距离,(x', y')是平移后得到的新点的坐标。

二、旋转变换旋转变换是指将一个图形绕着某个中心点按照一定的角度旋转。

旋转变换可以用以下公式表示:[x', y'] = [x*cosθ - y*sinθ, x*sinθ + y*cosθ]其中,(x, y)是原始图形上的一个点,θ是旋转的角度,(x', y')是旋转后得到的新点的坐标。

三、缩放变换缩放变换是指将一个图形按照一定的比例因子放大或缩小。

缩放变换可以用以下公式表示:[x', y'] = [s*x, s*y]其中,(x, y)是原始图形上的一个点,s是缩放的比例因子,(x', y')是缩放后得到的新点的坐标。

四、对称变换对称变换是指将一个图形关于某一直线或某一点进行对称。

对称变换可以分为关于x轴对称、关于y轴对称、关于原点对称等。

不同类型的对称变换具体的公式略有不同,但原理都是将图形上的点映射到其关于对称轴的对称位置。

五、仿射变换仿射变换是指将一个图形通过平移、旋转和缩放等基本变换来进行综合变换。

仿射变换可以用以下矩阵表示:[x', y'] = [a*x + b*y + c, d*x + e*y + f]其中,a、b、c、d、e、f为变换矩阵中的参数,(x, y)是原始图形上的一个点,(x', y')是变换后得到的新点的坐标。

计算机图形学-变换

计算机图形学-变换
1
第3章 变换
基本的二维几何变换 二维复合变换 其他二维变换 三维几何变换 OpenGL几何变换函数 三维图形的显示流程 投影 裁剪
2
几何变换
应用于对象几何描述并改变它的位置、方 向或大小的操作称为几何变换(geometric transformation) 基本的二维几何变换包括平移、旋转和缩 放
8
矩阵表示和齐次坐标
许多图形应用涉及到几何变换的顺序 需要用一个通式来表示平移、旋转和缩放
P M1 P M 2
将2×2矩阵扩充为3×3矩阵,可以把二维几 何变换的乘法和平移项组合为单一矩阵表示
9
二维平移矩阵
x 1 0 t x x y 0 1 t y y 1 0 0 1 1
三维坐标轴旋转
X轴坐标不变,循环替代x、y、z三个 轴可以得到绕x轴旋转的公式
z
y ' y cos z sin
y
z ' y sin z cos x' x
x
35
三维坐标轴旋转
y轴坐标不变,循环替代x、y、z三个 轴可以得到绕y轴旋转的公式
x
z
y
z ' z cos x sin x' z sin x cos y' y
glMatrixMode (GL_MODELVIEW); glColor3f (0.0, 0.0, 1.0); glRecti (50, 100, 200, 150); //显示蓝色矩形
glColor3f (1.0, 0.0, 0.0); glTranslatef (-200.0, -50.0, 0.0); glRecti (50, 100, 200, 150); //显示红色、平移后矩形

数学几何变换的方法

数学几何变换的方法

数学几何变换的方法几何变换是数学中一项重要的研究内容,通过对图形进行不同的操作,可以实现平移、旋转、缩放等效果。

这些变换方法不仅在几何学中有着广泛的应用,还在计算机图形学、机器人学等领域发挥着重要作用。

本文将介绍几何变换的常见方法及其应用。

一、平移变换平移变换是指将图形沿着指定方向上移动一定距离的操作。

其数学表达式为:平移后的坐标 = 原坐标 + 平移矢量平移矢量的大小和方向决定了平移的距离和方向。

平移变换常用于游戏开发、图像处理等领域,可以实现图形的移动、平移动画效果等。

二、旋转变换旋转变换是指将图形围绕某个中心点按一定角度进行旋转的操作。

其数学表达式为:旋转后的坐标 = 中心点坐标 + R * (原坐标 - 中心点坐标)其中,R为旋转矩阵,通过矩阵乘法将原坐标进行旋转。

旋转变换常用于计算机图形学中,实现图像的旋转、三维模型的变换等。

三、缩放变换缩放变换是指改变图形的尺寸大小的操作。

其数学表达式为:缩放后的坐标 = 原坐标 * 缩放因子缩放因子可以是一个比例因子,用于确定缩放的大小,也可以是一个矩阵,对各个坐标轴进行不同程度的缩放。

缩放变换常用于计算机辅助设计、图像处理等领域,可以实现图形的放大、缩小、图像的拉伸等效果。

四、对称变换对称变换是指将图形绕着中心轴进行镜像翻转的操作。

其数学表达式为:对称后的坐标 = 中心轴坐标 + S * (原坐标 - 中心轴坐标)其中,S为对称矩阵,通过矩阵乘法将原坐标进行对称。

对称变换常用于图像处理中,实现图像的镜像翻转、对称图案的生成等。

五、投影变换投影变换是指将三维物体投影到二维平面上的操作,常见的有透视投影和正交投影两种形式。

投影变换常用于计算机图形学中,实现三维物体的绘制和显示。

总结:数学几何变换的方法包括平移、旋转、缩放、对称和投影等。

这些变换方法在各个领域中都有重要应用,比如游戏开发、图像处理、计算机辅助设计等。

掌握几何变换的方法对于理解和应用相关领域的技术具有重要意义。

计算机图形学第五章图形变换

计算机图形学第五章图形变换

第五章图形变换重 点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。

难 点:理解常用的平移、比例、旋转变换,特别是复合变换。

课时安排:授课4学时。

图形变换包括二维几何变换, 二维观察变换,三维几何变换和三维观察变换。

为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变 换的组合,现都采用齐次坐标系来表示各种变换。

有齐次坐标系齐次坐标系:n 维空间中的物体可用 n+1维齐次坐标空间来表示。

例如二维空间直线 ax+by+c=O ,在齐次空间成为 aX+bY+cW=0 ,以X 、Y 和W 为三维变量,构成没有常数项的 三维平面(因此得名齐次空间)。

点P (x 、y )在齐次坐标系中用P (wx,wy,w )表示,其中 W 是不为零的比例系数。

所以从 n 维的通常空间到 n+1维的齐次空间变换是一到多的变换,而其反变换 是多到一的变换。

例如齐次空间点P (X 、Y 、W )对应的笛卡尔坐标是 x=X/W 和y=Y/W 。

将通一地用矩阵乘法来实现变换的组合。

常笛卡尔坐标用齐次坐标表示时, W 的值取1。

采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统齐次坐标系在三维透视变换中有更重要的作用, 示形它使非线形变换也能采用线形变换的矩阵表式。

图形变换平移变换图示如图所示,它使图形移动位置。

新图 p'的每一图元点是原图形 p 中每个图元点在向分别移动Tx 和Ty 产生,所以对应点之间的坐标值满足关系式x'=x+Tx y'=y+Ty可利用矩阵形式表示成:[x' y' ] = : x y ] + : Tx Ty ]简记为:P'= P+T , T= : Tx Ty ]是平移变换矩阵(行向量)二堆几何变换1 1二维观察变換三维几诃变换平移变换 比例变换 陡转变换 对称变换 错切变换 仿肘变换 复合变换平移变换 比例变换 旋转变换 绕空间任意轴離转 对称变换 蜡切变换三维观察变5.1二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。

实验报告几何变换实验

实验报告几何变换实验

实验报告几何变换实验实验报告:几何变换实验引言:几何变换是计算机图形学中的重要概念,它可以改变图像的形状、位置和大小。

在本次实验中,我们将通过对几何变换的实际操作,深入了解几何变换的原理和应用。

一、实验目的本次实验的主要目的是探究几何变换在图像处理中的应用,具体包括平移、旋转、缩放和翻转等几何变换操作。

通过实际操作和观察,我们将了解几何变换对图像的影响,并学习如何使用计算机编程实现这些变换。

二、实验材料和方法1. 实验材料:- 一台计算机- 图像处理软件(如Photoshop、GIMP等)- 编程软件(如Python、MATLAB等)2. 实验方法:- 步骤一:选择一张图片作为实验对象,并导入到图像处理软件中。

- 步骤二:使用图像处理软件进行平移操作,观察图像的位置变化。

- 步骤三:使用图像处理软件进行旋转操作,观察图像的旋转效果。

- 步骤四:使用图像处理软件进行缩放操作,观察图像的大小变化。

- 步骤五:使用图像处理软件进行翻转操作,观察图像的翻转效果。

- 步骤六:使用编程软件编写程序,实现上述几何变换操作,并观察结果。

三、实验结果与分析1. 平移操作:在实验中,我们发现通过平移操作,可以将图像在水平和垂直方向上进行移动。

通过调整平移的距离和方向,我们可以改变图像在画布上的位置。

这种操作常用于图像的对齐和拼接等应用中。

2. 旋转操作:旋转操作可以改变图像的角度和方向。

通过调整旋转的角度和中心点,我们可以使图像以不同的角度进行旋转。

这种操作常用于图像的矫正、仿射变换等应用中。

3. 缩放操作:缩放操作可以改变图像的大小。

通过调整缩放的比例,我们可以使图像变得更大或更小。

这种操作常用于图像的放大、缩小、裁剪等应用中。

4. 翻转操作:翻转操作可以改变图像的方向。

通过水平或垂直翻转,我们可以使图像在左右或上下方向发生镜像反转。

这种操作常用于图像的镜像处理、对称效果等应用中。

四、实验总结通过本次实验,我们深入了解了几何变换在图像处理中的应用。

《计算机图形学》实验指导书

《计算机图形学》实验指导书

计算机图形学实验指导书袁科计算机技术实验中心目录实验一实现DDA、中点画线算法和Bresenham画线算法 (24)实验二实现Bezier曲线 (25)实验三实现B样条曲线 (26)实验四实现多边形填充的边界标志算法 (27)实验五实现裁剪多边形的Cohen-Sutherland算法 (28)实验六二维图形的基本几何变换 (30)实验七画图软件的编制 (31)实验一实现DDA、中点画线算法和Bresenham画线算法【实验目的】1、掌握直线的多种生成算法;2、掌握二维图形显示原理。

【实验环境】VC++6.0/ BC【实验性质及学时】验证性实验,2学时,必做实验【实验内容】利用任意的一个实验环境,编制源程序,分别实现直线的三种生成算法,即数字微分法(DDA)、中点画线法以及Bresenham画线算法。

【实验原理】1、数字微分法(Digital Differential Analyzer,DDA)算法思想:基于直线的微分方程来生成直线。

ε=1/max(|△x|,|△y|)max(|△x|,|△y|)=|△x|,即|k|≤1 的情况:max(|△x|,|△y|)=|△y|,此时|k|≥1:2、中点画线法算法思想:每次在最大位移方向上走一步,另一方向是否走步取决于误差项的判断。

3、Bresenham画线算法算法思想:其基本思想同中点算法一样,即每次在最大位移方向上走一步,而另一个方向是否走步取决于误差项的判断。

【实验要求】1.上交源程序;2.上交实验报告,实验报告内容如下:(1) 实验名称(2) 实验目的(3) 算法实现的设计方法及程序流程图(4) 程序结果分析【分析与思考】(1) 上述所阐述的三个算法,其基本算法只能适用于直线的斜率(|K|<=1) 的情形,如何将上述算法进行推广,使其能够处理任意斜率的直线?(2) 计算机显示屏幕的坐标圆心在哪里,与我们平时的习惯有什么差异,如何协调二者?实验二 实现Bezier 曲线【实验目的】1、掌握Bezier 曲线的定义;2、能编程实现N 次Bezier 曲线的绘制与显示。

计算机图形学之图形变换

计算机图形学之图形变换

4 T
3
2 p
1
0
012 34 567 8
线段和多边形的平移可以通过顶点的
平移来实现。同样线段和多边形的其它几 何变换也可以通过对顶点的几何变换来实 现。
2. 旋转变换(Rotation) 二维旋转有两个参数:
旋转中心: 旋转角:

6 P’
5
4
3
P
2
1
0
012 34 567 8
设OP与x轴的夹角为 则:
由于采用齐次坐标矩阵表示几何变换, 多个变换的序列相应地可以用矩阵链乘来表 示。
需要注意:先作用的变换其矩阵在右边, 后作用的变换其矩阵在左边。
变换函数
平移变换 void glTanslate{fd}(TYPE x, TYPE y, TYPE z);
旋转变换 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z); 绕矢量v=(x,y,z)T逆时针方向旋转angle指定的角度。 旋转角度的范围是0~360度。当angle=0时, glRotate()不起作用。
二维旋转有两个参数: 旋转中心: 旋转角:
上述变换可以分解为三个基本变换:
•平移:
•旋转:
•平移: 回原位。
使旋转中心移到坐标原点; 使旋转中心再移
二维旋转有两个参数: 旋转中心: 旋转角:
因此上述变换可以写成矩阵乘积形式:
4. 5 基本三维几何变换(Basic three-dimensional geometric transformation)
1. 矩阵表示(Matrix representation) 前面三种变换都可以表示为如下的矩
阵形式

几何变换与变换矩阵

几何变换与变换矩阵

几何变换与变换矩阵几何变换是计算机图形学中常用的一种技术,用于对二维或三维图形进行平移、旋转、缩放和剪切等操作。

这些操作可以通过变换矩阵来描述和计算。

本文将介绍几何变换的基本概念及其与变换矩阵的关系。

一、几何变换的基本概念1. 平移变换平移变换是将图形沿着指定的方向移动一定的距离。

在二维空间中,平移变换可以通过在原始坐标上加上一个向量来实现。

例如,将原始坐标(x, y)进行平移变换得到新的坐标(x', y'),可以表示为:x' = x + dxy' = y + dy其中,dx和dy分别为在x和y方向上的平移距离。

2. 旋转变换旋转变换是将图形绕指定的点或轴旋转一定的角度。

在二维空间中,旋转变换可以通过将原始坐标(x, y)绕着指定点(xc, yc)逆时针旋转θ角度得到新的坐标(x', y'),可以表示为:x' = (x - xc) * cosθ - (y - yc) * sinθ + xcy' = (x - xc) * sinθ + (y - yc) * cosθ + yc其中,(xc, yc)为旋转中心点,θ为旋转角度。

3. 缩放变换缩放变换是将图形沿着指定的方向进行放大或缩小。

在二维空间中,缩放变换可以通过将原始坐标(x, y)分别乘以指定的缩放因子sx和sy得到新的坐标(x', y'),可以表示为:x' = x * sxy' = y * sy其中,sx和sy分别为在x和y方向上的缩放因子。

4. 剪切变换剪切变换是将图形沿着指定的方向进行截取或拉伸。

在二维空间中,剪切变换可以通过将原始坐标(x, y)进行线性变换得到新的坐标(x', y'),可以表示为:x' = x + kx * yy' = y + ky * x其中,kx和ky分别为在x和y方向上的剪切因子。

二、变换矩阵的基本概念与计算方法变换矩阵是一种矩阵表示方法,用于描述几何变换的转换规则。

计算机图形学的基本算法

计算机图形学的基本算法

计算机图形学的基本算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。

图形学的基本算法涵盖了多个方面,包括图像绘制、几何变换、光照和渲染等。

以下将详细介绍计算机图形学的基本算法及其步骤。

1. 图像绘制算法:- 像素绘制算法:基于像素的图形绘制算法包括点绘制、线段绘制和曲线绘制。

例如,Bresenham线段算法可用于绘制直线。

- 多边形填充算法:多边形填充算法用于绘制封闭曲线图形的内部区域。

常见的算法包括扫描线填充算法和种子填充算法。

2. 几何变换算法:- 平移变换:平移变换算法用于将图像在平面上进行上下左右的平移操作。

- 旋转变换:旋转变换算法用于将图像按照一定的角度进行旋转。

- 缩放变换:缩放变换算法用于按照一定的比例对图像进行放大或缩小操作。

- 剪切变换:剪切变换算法用于按照一定的裁剪方式对图像进行剪切操作。

3. 光照和渲染算法:- 光照模型:光照模型用于模拟物体与光源之间的相互作用。

常见的光照模型有Lambert模型和Phong模型等。

- 阴影生成算法:阴影生成算法用于在渲染过程中生成逼真的阴影效果。

例如,阴影贴图和阴影体积等算法。

- 光线追踪算法:光线追踪算法通过模拟光线的路径和相互作用,实现逼真的光影效果。

常见的光线追踪算法包括递归光线追踪和路径追踪等。

4. 图像变换和滤波算法:- 傅里叶变换算法:傅里叶变换算法用于将图像从时域转换到频域进行分析和处理。

- 图像滤波算法:图像滤波算法用于对图像进行平滑、锐化、边缘检测等操作。

常见的滤波算法包括均值滤波、高斯滤波和Sobel算子等。

5. 空间曲线和曲面生成算法:- Bézier曲线和曲面算法:Bézier算法可用于生成平滑的曲线和曲面,包括一阶、二阶和三阶Bézier曲线算法。

- B样条曲线和曲面算法:B样条算法可用于生成具有更高自由度和弯曲度的曲线和曲面。

以上列举的是计算机图形学中的一些基本算法及其应用。

《计算机图形学》实验报告

《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。

三维变换类似于二维,在画图时,把三维坐标转换为二维即可。

三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。

基本的几何变换

基本的几何变换

基本的几何变换几何变换是数学中一个重要的概念,指的是通过平移、旋转、缩放等操作来改变几何图形的形状、大小或位置。

在计算机图形学和计算机视觉领域,几何变换也扮演着至关重要的角色。

本文将介绍几个基本的几何变换,包括平移、旋转、缩放和镜像。

1. 平移在几何变换中,平移是指通过将图形沿着指定的方向移动一定的距离来改变图形的位置。

平移操作可以用以下公式表示:x' = x + dxy' = y + dy其中(x, y)是原始图形上的坐标,(x', y')是平移后的坐标,dx和dy 分别是在x和y方向上的平移量。

2. 旋转旋转是指通过围绕一个指定的点或轴旋转图形来改变图形的方向或角度。

旋转操作可以用以下公式表示:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中(x, y)是原始图形上的坐标,(x', y')是旋转后的坐标,θ表示旋转的角度。

3. 缩放缩放是指通过改变图形的尺寸来改变图形的大小。

缩放操作可以用以下公式表示:x' = x * scaleXy' = y * scaleY其中(x, y)是原始图形上的坐标,(x', y')是缩放后的坐标,scaleX和scaleY分别表示在x和y方向上的缩放比例。

4. 镜像镜像是指通过将图形沿着一个轴对称折叠来改变图形的位置或方向。

镜像操作可以用以下公式表示:x' = -xy' = -y其中(x, y)是原始图形上的坐标,(x', y')是镜像后的坐标。

这些基本的几何变换可以单独应用于图形,也可以组合在一起以实现更复杂的效果。

通过灵活组合这些变换操作,我们可以实现各种各样的几何变换,用于图像处理、游戏开发、计算机辅助设计等领域。

总结几何变换是一种重要的数学概念,可以通过平移、旋转、缩放和镜像等操作来改变几何图形的形状、大小和位置。

数学中的几何变换形的平移旋转缩放与镜像

数学中的几何变换形的平移旋转缩放与镜像

数学中的几何变换形的平移旋转缩放与镜像几何变换是数学中研究空间中图形移动、旋转、缩放和镜像的重要概念。

它们不仅在几何学中广泛应用,还在计算机图形学、物理学、工程学等领域中发挥着重要作用。

本文将探讨数学中的几种常见几何变换:平移、旋转、缩放和镜像,并阐述它们的定义、性质和应用。

一、平移变换平移变换是指通过沿着特定的方向和距离将图形移动至新的位置。

在平面几何中,对于平移变换,原图形和变换后的图形具有相同的形状和大小,只是位置不同。

平移变换可以表示为:T(x,y) = (x+a, y+b)其中,(x,y)为原图形上某点的坐标,(x+a, y+b)为平移后图形上对应点的坐标,a和b分别表示平移的水平和垂直方向的距离。

平移变换具有以下性质:1. 保持形状不变:平移变换后,图形的各边和角度保持不变。

2. 保持大小不变:平移变换后,图形的面积和周长保持不变。

3. 保持平行关系:平移变换后,图形上任意两点之间的距离、平行线之间的距离和夹角大小保持不变。

4. 可叠加性:对于多个平移变换依次进行,结果等价于进行一个平移变换。

平移变换的应用:1. 地图标注:在地理信息系统中,通过平移变换可以实现地图上标注物体的位置调整。

2. 图像处理:在计算机图像处理中,通过平移变换可以实现图像的平移和移动。

3. 动画制作:在动画制作中,通过平移变换可以使图像或物体在屏幕上产生移动效果。

二、旋转变换旋转变换是指将图形绕某一固定点旋转一定角度得到新的图形。

在平面几何中,旋转变换可以围绕坐标原点进行,也可以围绕其他点或轴进行。

旋转变换可以表示为:R(x,y) = (xcosθ - ysinθ, xsinθ + ycosθ)其中,(x,y)为原图形上某点的坐标,(xcosθ - ysinθ, xsinθ+ ycosθ)为旋转后图形上对应点的坐标,θ表示旋转的角度。

旋转变换具有以下性质:1. 保持形状不变:旋转变换后,图形的各边和角度保持不变。

图像几何变换的原理及应用

图像几何变换的原理及应用

图像几何变换的原理及应用1. 引言图像几何变换是指通过对图像进行旋转、平移、缩放和仿射变换等操作,改变图像的位置、大小和形状,以达到特定的目的。

在计算机视觉、图像处理和计算机图形学等领域中,图像几何变换被广泛应用于图像的校正、增强、变换和特征提取等任务。

2. 原理图像几何变换的原理基于几何学的相关理论。

对于二维图像来说,可以通过变换矩阵对图像进行坐标变换,从而实现图像的几何变换。

以下是常见的图像几何变换操作及其原理:2.1 旋转旋转是指将图像按一定角度绕某个中心点进行旋转变换。

旋转操作可以通过变换矩阵实现,变换矩阵如下所示:cosθ -sinθ 0sinθ cosθ 00 0 1其中,θ表示旋转的角度。

通过对每个像素进行坐标变换,可以实现图像的旋转。

2.2 平移平移是指将图像沿着水平或垂直方向进行平移操作,即改变图像的位置。

平移操作可以通过变换矩阵实现,变换矩阵如下所示:1 0 tx0 1 ty0 0 1其中,tx和ty分别表示在x轴和y轴上的平移距离。

通过对每个像素进行坐标变换,可以实现图像的平移。

2.3 缩放缩放是指改变图像的尺寸大小。

缩放操作可以通过变换矩阵实现,变换矩阵如下所示:sx 0 00 sy 00 0 1其中,sx和sy分别表示在x轴和y轴上的缩放比例。

通过对每个像素进行坐标变换,并根据缩放比例进行采样,可以实现图像的缩放。

2.4 仿射变换仿射变换是指通过线性变换和平移来对图像进行变换。

仿射变换可以通过变换矩阵实现,变换矩阵如下所示:a11 a12 txa21 a22 ty0 0 1其中,a11、a12、a21和a22分别表示仿射变换的线性变换部分,tx和ty分别表示平移部分。

通过对每个像素进行坐标变换,并根据变换矩阵进行计算,可以实现图像的仿射变换。

3. 应用图像几何变换在各个领域中有着广泛的应用,以下列举了一些常见的应用场景:3.1 图像校正在图像处理中,由于各种因素的影响,例如相机畸变、透视变换等,图像可能会出现失真或畸变。

几何变换的组合与复合

几何变换的组合与复合

几何变换的组合与复合几何变换是计算机图形学中的重要概念,它指的是对图形进行平移、旋转、缩放等操作,从而改变其位置、大小和形状。

而几何变换的组合与复合则是指多个几何变换按一定顺序进行组合或复合操作,从而得到新的图形。

一、平移变换平移变换是指将图形在平面上沿着指定的方向进行移动,具体的操作可以描述为:对于平面上的一点P(x, y),沿着指定的向量t(i, j) 进行平移,得到新的坐标点P'为P'(x', y')。

其中,x' = x + i, y' = y + j。

平移变换不改变图形的形状和大小,只改变其位置。

二、旋转变换旋转变换是指将图形绕指定点进行旋转的操作,具体的操作可以描述为:对于平面上的一点P(x, y),绕着指定的点O旋转θ度,得到新的坐标点P'为P'(x', y')。

其中,x' = (x - ox) * cosθ - (y - oy) * sinθ + ox,y' = (x - ox) * sinθ + (y - oy) * cosθ + oy。

旋转变换会改变图形的方向、形状和位置。

三、缩放变换缩放变换是指将图形沿着指定的轴进行放大或缩小的操作,具体的操作可以描述为:对于平面上的一点P(x, y),沿着指定的轴缩放,得到新的坐标点P'为P'(x', y')。

其中,x' = x * s,y' = y * s。

缩放变换会改变图形的大小,但不会改变其形状和方向。

四、反射变换反射变换是指将图形关于某一直线进行对称的操作,具体的操作可以描述为:对于平面上的一点P(x, y),关于指定的直线L进行对称,得到新的坐标点P'为P'(x', y')。

其中,x' = x - 2 * (x * n + y * m + d) * n,y' = y - 2 * (x * n + y * m + d) * m。

计算机形学中的几何变换与投影算法基础

计算机形学中的几何变换与投影算法基础

计算机形学中的几何变换与投影算法基础在计算机图形学中,几何变换与投影算法是实现三维对象表示、变换和可视化的基础。

通过对三维空间中的对象进行变换和投影,可以将其呈现在二维平面上,从而实现更直观的可视化效果。

本文将介绍计算机形学中的几何变换和投影算法的基本概念和应用。

一、几何变换几何变换是指通过对三维对象进行平移、旋转、缩放等操作,改变其在空间中的位置和形状。

在计算机图形学中,常用的几何变换包括平移、旋转、缩放和剪切。

1. 平移平移是指将对象沿着指定方向移动一定的距离。

在计算机图形学中,平移变换可以通过将对象的每个顶点坐标增加一个平移向量来实现。

平移变换公式如下:[x'] = [1 0 0 tx] [x][y'] [0 1 0 ty] [y][z'] [0 0 1 tz] [z][1 ] [0 0 0 1] [1]其中,(tx, ty, tz)表示平移向量。

通过对对象的每个顶点应用上述变换矩阵,可以实现平移效果。

2. 旋转旋转是指将对象绕指定轴进行旋转。

在计算机图形学中,常用的旋转有绕X轴、Y轴和Z轴旋转。

旋转变换可以通过将对象的每个顶点坐标乘以一个旋转矩阵来实现。

旋转变换矩阵的形式如下:[x'] = [1 0 0 0] [x][y'] [0 cosθ -sinθ 0] [y][z'] [0 sinθ cosθ 0] [z][1 ] [0 0 0 1] [1]其中,θ表示旋转角度。

通过对对象的每个顶点应用上述变换矩阵,可以实现旋转效果。

3. 缩放缩放是指改变对象的尺寸大小。

在计算机图形学中,缩放变换可以通过将对象的每个顶点坐标乘以一个缩放因子来实现。

缩放因子分别作用于X、Y和Z轴的坐标,从而改变对象在各个轴上的尺寸。

缩放变换公式如下:[x'] = [sx 0 0 0] [x][y'] [0 sy 0 0] [y][z'] [0 0 sz 0] [z][1 ] [0 0 0 1] [1]其中,(sx, sy, sz)表示缩放因子。

图形学实验报告

图形学实验报告

图形学实验报告计算机图形学实验指导书学号:1441901105姓名:谢卉实验一:图形的几何变换实验学时:4学时实验类型:验证实验要求:必修一、实验目的二维图形的平移、缩放、旋转和投影变换(投影变换可在实验三中实现)等是最基本的图形变换,被广泛用于计算机图形学的各种应用程序中,本实验通过算法分析以及程序设计实验二维的图形变换,以了解变换实现的方法。

如可能也可进行裁剪设计。

二、实验内容掌握平移、缩放、旋转变换的基本原理,理解线段裁剪的算法原理,并通过程序设计实现上述变换。

建议采用VC++实现OpenGL程序设计。

三、实验原理、方法和手段1.图形的平移在屏幕上显示一个人或其它物体(如图1所示),用交互操作方式使其在屏幕上沿水平和垂直方向移动Tx和Ty,则有x’=x+Tx y’=y+Ty其中:x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。

其交互方式可先定义键值,然后操作功能键使其移动。

2.图形的缩放在屏幕上显示一个帆船(使它生成在右下方),使其相对于屏幕坐标原点缩小s倍(即x方向和y方向均缩小s倍)。

则有:x’=x*s y’=y*s注意:有时图形缩放并不一定相对于原点,而是事先确定一个参考位置。

一般情况下,参考点在图形的左下角或中心。

设参考点坐标为xf、yf则有变换公式x’=x*Sx+xf*(1-Sx)=xf+(x-xf)*Sxy’=y*Sy+yf*(1-Sy)=yf+(y-yf)*Sy式中的x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。

当Sx>1和Sy>1时为放大倍数,Sx<1和Sy<1时为缩小倍数(但Sx 和Sy必须大于零)。

3.图形的旋转在屏幕上显示一个汽车,根据自己确定的旋转角度和旋转中心对图形进行旋转。

旋转公式为x’=xf+(x-xf)*cos(angle)-(y-yf)*sin(angle)y’=yf+(y-yf)*cos(angle)+(x-xf)*sin(angle)其中:xf,yf为围绕旋转的中心点的坐标。

几何变换的基本概念与操作

几何变换的基本概念与操作

几何变换的基本概念与操作几何变换是计算机图形学中的重要概念,它可以将一个图形对象从一个位置、方向或大小变换到另一个位置、方向或大小,通过不同的变换操作,可以实现各种形状和位置的变化。

本文将介绍几何变换的基本概念和操作,包括平移、旋转、缩放和反射四种变换。

一、平移平移是指将图形对象按照指定的向量在平面内沿着直线移动,其作用是改变图形对象的位置而不改变其形状和大小。

平移操作可以用一个向量表示,向量的坐标分别表示在x轴和y轴方向上的移动距离。

平移操作的数学表达式如下:```P' = P + T```其中,P表示原始点的坐标,P'表示平移后点的坐标,T表示平移向量的坐标。

二、旋转旋转是指将图形对象按照指定的角度围绕一个中心点旋转,其作用是改变图形对象的方向而不改变其形状和大小。

旋转操作可以用一个角度表示,角度的正负决定了旋转的方向。

旋转操作的数学表达式如下:P' = R * P```其中,P表示原始点的坐标,P'表示旋转后点的坐标,R表示旋转矩阵。

三、缩放缩放是指将图形对象按照指定的比例在水平和垂直方向上进行放大或缩小,其作用是改变图形对象的大小而不改变其形状。

缩放操作可以用一个缩放因子表示,缩放因子大于1表示放大,缩放因子小于1表示缩小。

缩放操作的数学表达式如下:```P' = S * P```其中,P表示原始点的坐标,P'表示缩放后点的坐标,S表示缩放矩阵。

四、反射反射是指将图形对象按照指定的轴线进行镜像翻转,其作用是改变图形对象的位置和方向而不改变其形状和大小。

反射操作可以用一个轴线表示,轴线可以是水平、垂直或任意一条直线。

反射操作的数学表达式如下:P' = M * P```其中,P表示原始点的坐标,P'表示反射后点的坐标,M表示反射矩阵。

综上所述,几何变换是计算机图形学中的重要概念,通过平移、旋转、缩放和反射四种基本操作,可以实现对图形对象的位置、方向和大小的变化。

计算机图形学三维图形变换

计算机图形学三维图形变换

主视图变换矩阵
1 0 0 0 1 0 0 0 1 0 0 0
Tv
0 0
0 0
0 1
0
0
0 0
0
0
பைடு நூலகம்
0
0
1 0 0 0
0 0 0 1 0 0
0
0
0
1
0
0 0 1
0
0 0 1
俯视图变换矩阵
1 0 0 0 1
0
0 0 1 0 0 0
TH
0 0
1 0
0 0
0 0 0 0
cos(90) sin(90)
三维图形变换
基本几何变换
基本几何变换都是相对于原点和坐标
轴进行的几何变换,有平移、缩放和 旋转等。在以下的讲述中,均假设用
p(x, y, z) 表示三维空间上一个未被变 换的点,而该点经过某种变换后得到 的新点用 p'(x', y', z') 表示。
平移变换
平移是指将点沿直线路径从一个坐标位置移动 到另一个坐标位置的一个重定位过程。
0 1
0
0
0 0
0 0 0 1 0 0
0
0
0
1
0
0
0
1
0
0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 0 0
0
Rx ( )
0
c
d b
b
d c
0
0
dd
0 0 0 1
Ry ( )
d 0 a 0
Ry
(
)
0
a
1 0
0 d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二图形的几何变换的实现算法班级 08 信计 学号 59 姓名 _____ 分数 _____一、 实验目的和要求:1、 掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;<2、 掌握OpenG 冲模型变换函数,实现简单的动画技术。

3、 学习使用OpenGL 生成基本图形。

4、 巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可 由简单图形得到复杂图形。

加深对变换矩阵算法的理解。

编制利用旋转变换绘制齿轮的程序。

编程实现变换矩阵算法,绘制给出形体 的三视图。

调试程序及分析运行结果。

要求每位学生独立完成该实验,并上传实 验报告。

二、 实验原理和内容:.原理:图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。

图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。

图像几何变换的一般表达式:[u,v ]=[X (x, y ),Y (x, y )],其中,[u,v ]为变换后图像像素的笛卡尔坐标, [x, y ]为原始图像中像素的笛卡尔坐标。

这样就得到了原始图像与变 换后图像的像素的对应关系。

平移变换:若图像像素点(x, y )平移到(x x 。

,y ■ y 。

),则变换函数为u = X (x, y ) =x 沟,v 二丫(x, y ) = y ■ y 。

,写成矩阵表达式为:比例缩放:若图像坐标 (x,y )缩放到(S x ,s y )倍,则变换函数为:S x ,S y 分别为x 和y 坐标的缩放因子,其大于1表示放大, 小于1表示缩小。

旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转 v 角度,则变换后图像坐标为: u COST内容::u l :Sxk ;0 其中,x 0和y 0分别为x 和y 的坐标平移量。

其中,1、对一个三角形分别实现平移,缩放旋转等变化。

2. 在方向、尺寸和形状方面的变换是用改变对象坐标描述的几何变换来完成的。

基本几何变换都是相对于坐标原点和坐标轴进行的几何变换,有平移、旋转、缩放、反射、错切等。

用直线命令画出一个齿(或六边形的一半)7利用旋转变换或对称变换矩阵实现对其余部分的绘制T调试运行程序T输出图形T分析结果T结束。

编写三维变换算法程序7检查程序的正确性7分段调试程序7输入给出的三维形体各顶点的坐标7执行变换7对算法程序进行必要的调整7更换不同的形体数据继续变换7结束。

3.用实验一的方法解决这个问题,某三角形的三个点点坐标为{5.0.0.25.0} ,{150.0.25.0} ,{100.0.100.0} ,创建一个长度分别为600,600 的窗口,窗口的左上角位于屏幕坐标( 100,100 ) 处。

然后绘制一个由上述顶点所绘制的三角形,实现该三角形进行下列几何变换:首先使三角形沿着其中心的x轴和y轴方向缩小50%,然后沿着出示中心旋转90度;最后沿着y轴平移100 个单位。

三、实验代码如下1 实验一#include <GL/glut,h>#include <stdlib.h>Void init (void){glClearVolor (0.0,0.0,0.0,0.0);glShadeModel (GL-FLAT);}Void draw_triangle(void){glBegin(GL_LINE_LOOP);glVertex2f(0.0,25.0);glVertex2f(25.0,-25.0);glVertex2f(-25.0,-25.0);glEnd();}Void display(void){glClear (GL_COLOR_BUEFER_BIT);glColor3f(1.0,1.0,1.0);glLoadIdentity();glColor3f(1.0,1.0,1.0);draw_triangle();glEnable (GL_LINE_STIPPLE);glLineStipple (1,0xF0F0);glLoadIdentity();glTranslatef (-20.0,0.0,0.0);draw_triangle();glLineStipple (1,0xff00);glLoadIdentity ();glScalef (1.5,0.5,1.0);draw_triangle ();glLineStipple (1,0x8888);glLoadIdentity();glRotatef(90.0,0.0,0.0,1.0);draw_triangle ();glDisable (GL_LINE_STIPPLE);glFlush();}Void reshape (int w,,nt h){glViewport (0,0,(GLsizei) w,(GLsizei) h);glMatrixMode (GL_PROJECTION);glLoadIdentity ();if (w<=h)gluOrtho2D(-50.0,50.0,-50.0*(GLfloat)h/(GLfloat)w,50.0*(GLfloat)h/(GLfloat)w); glMatrixMode(GL_MODELVIEW);}int main (int argc,char**argv){glutInit(&argc,argv);glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);glutInitWindowSize (500,500);glutInitWindowPosition (100,100);glutCreatWindow (argv[0]);init ();glutDisplayFunc (display);glutReshapeFunc (reshape);glutMainLoop();return 0;}实验结果如下2实验二代码#in clude<graphics.h>#in clude<math.h>int a[14][4]={{30,0,0,1},{30,40,0,1},{0,40,0,1},{0,40,10,1},{0,30,30,1}, {0,0,30,1},{30,0,30,1},{30,10,30,1},{10,10,30,1},{10,30,30,1},{10,40,10,1}, {10,10,10,1},{30,10,10,1},{30,40,10,1}};float t[4][4],p[14][4];void a400(){int i,j;for(i=0;i<4;i++)for(j=0;j<4;j++)t[i][j]=0;}void a500(){ int k,i,j;for(i=0;i<14;i++){for(j=0;j<4;j++){p[i][j]=0;for(k=0;k<4;k++)p[i][j]=p[i][j]+a[i][k]*t[k][j];}p[i][0]=p[i][0]+280;p[i][1]=-p[i][1]+180;}setcolor(9);moveto(p[0][0],p[0][1]);for(i=0;i<14;i++)lin eto(p[i][0],p[i][1]);lin e(p [6] [0],p[6][1],p[0][0],p[0][1]);lin e(p[7][0],p[7][1],p[12][0],p[12][1]);lin e(p[8][0],p[8][1],p[11][0],p[11][1]);lin e(p[9][0],p[9][1],p[4][0],p[4][1]);lin e(p[10][0],p[10][1],p[3][0],p[3][1]);lin e(p[13][0],p[13][1],p[10][0],p[10][1]);lin e(p[1][0],p[1][1],p[13][0],p[13][1]); getch(); }main (){int driver,mode,i,j;driver=DETECT;in itgraph(&driver, &m ode,"d:\\tc"); setbkcolor(3);a400();t[0][0]=0.7071*3;t[0][1]=-0.4082*3;t[1][0]=-0.7071*3;t[1][1]=-0.4082*3;t[2][1]=0.8165*3;t[3][3]=1;a500();closegraph();}实验结果□1. exe实验三结果■-I GewEiric TrnmifcirMti三、实验结果分析.1、该程序实现了而为图形的简单几何变换,包括平移,缩放旋转等。

2、平移变换时最简单的变换,错切变换实际上是用比例因子乘对象的每一坐标和增加位移值。

3、上面所讨论的图形变换时相对于坐标原点或坐标轴来进行的。

实际中,常常需要相对于人一点或任一轴来进行变换。

相关文档
最新文档