报童模型
第9章 报童模型
Slide ‹#›
Hammer 3/2 的经济成本和各事件的时间线
产生需求预测 向TEC下订单t 春季销售期
11月 12月 1月
2月
3月
4月
5月
6月
7月 8月 过季产品 折扣出售
月末接收到从TEC 订购的货物
经济成本: • 每套售价 p = $180 • 从TEC采购的价 格 c = $110 每 套 • 季末折扣价v = $90
订购量
经验分布函数 (菱形线) 和均值为3192,标准差为 1181的正态分布函数 (实线)
Slide ‹#›
报童模式: 期望利润最大化的订购量
Slide ‹#›
“太多” 和 “太少” 的成本
Co = 过量订货成本 每单位过量订购产生的成本. 换言之, 假设产生库存 (如订货过量). Co 就是如果少订一个单位产品会增 加的利润. 对 Hammer 3/2而言 Co = 成本 – 折扣价 = c – v = 110 – 90 = 20
期望收入随着订购产品数 量的增加而减少,而期望损 失随着订购数量的增加而 增加.
10
0 0 800 1600 2400
t
3200
4000
4800
5600
6400
订购的第Q个产品
Slide ‹#›
报童模式期望利润最大化的订购量
为达到期望利润的最大化需订购Q单位产品,使第Q单位产品的期望损失与期 望收入相等:
”太多与太少的问题”: 订购数量太多,季末会有剩余的库存 订购数量太少,会错失销售机会 销售需求预测为3200 套.考虑预测的准确度问题。
Slide ‹#›
报童模型: 进行需求预测
供应链报童模型
供应链报童模型供应链报童模型是一种用来帮助企业进行库存管理的模型,它可以帮助企业确定合理的订货量,以最大化利润或最小化成本。
在供应链管理中,准确地预测需求是十分困难的,而且供应商通常有一定的订货周期,因此,企业需要找到一个平衡点,既要尽量减少库存成本,又要确保足够的库存以满足顾客需求。
供应链报童模型的基本假设是,企业只有在顾客需求出现时才能得知,而且无法接受缺货的风险。
在这种情况下,企业需要在每次订货时决定订货量,以确保在需求出现时有足够的库存。
供应链报童模型的目标是找到一个订货量,使得库存成本和缺货成本之和最小。
在计算供应链报童模型时,需要考虑以下几个因素:1. 需求分布:企业需要对顾客需求进行概率分布的估计。
这可以通过历史数据或市场调研来获得。
常见的需求分布包括正态分布、泊松分布等。
2. 成本因素:供应链报童模型需要考虑两种类型的成本,即库存成本和缺货成本。
库存成本包括存储、保险、折旧等费用,缺货成本包括订单滞销、顾客流失等费用。
企业需要根据实际情况确定这些成本的数值。
3. 订货量决策:供应链报童模型的核心是决定每次订货的数量。
为了最小化总成本,企业需要找到一个合适的订货量。
通常情况下,订货量会受到供货周期、库存量和缺货成本的影响。
4. 库存管理策略:供应链报童模型还需要考虑库存管理的策略。
企业可以采用定期订货、定量订货等不同的策略来管理库存。
不同的策略会对供应链的效果产生不同的影响,企业需要根据自身情况选择合适的策略。
在实际应用中,供应链报童模型可以帮助企业做出更准确的订货决策,以降低库存成本和缺货成本。
然而,这个模型也存在一些局限性。
首先,模型假设需求分布是已知的,但实际情况往往很复杂,需求分布可能随着时间和环境的变化而变化。
其次,模型没有考虑到企业与供应商之间的合作关系,如果供应商能够提供更准确的信息,那么订货决策可能会更加准确。
供应链报童模型是一个帮助企业进行库存管理的工具,它可以帮助企业找到一个合理的订货量,以最小化总成本。
报童 数学建模
报童诀窍一、问题:报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为 r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n, ,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r 份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则()()()()[]()()()∑∑=∞+=-+----=n r n r r nf b a r f r n c b r b a n G 01问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)()()()()[]()()()⎰⎰∞-+----=n ndr r np b a dr r p r n c b r b a n G 0计算()()()()⎰---=ndrr p c b n np b a dndG 0()()()()dr r p b a n np b a n ⎰∞-+--令0=dndG 得dndG ()()()()()()dr r p b a dr r p c b n np c a n n⎰⎰∞-+---=02得到()()cb b a drr p dr r p nn --=⎰⎰∞n 应满足上式。
报童问题模型 ppt课件
ppt课件
3
这就产生一个问题:订货量过多,出现过剩,会造成损失; 订货量少,又可能会失去销售机会,影响利润,那么应该如何确 定订货策略呢?将这一现象具体到报童销售报纸上,就引发了报 童问题:
报童问题:
报童每天需订购多少份报纸?
ppt课件
4
问 报童售报:(零售价) a > (购进价) b > (退回价) c 题 售出一份赚 a-b;退回一份赔 b-c
报童问题模型
ppt课件
1
1、报童问题的提出 2、报童问题所属范畴 3、报童模型的建立与求解 4、报童模型的推广与应用
ppt课件
2
1、报童问题的提出
在日常生活中,经常会碰到一些季节性强、更新快、不易保 存等特点的物品,如海产、山货、时装、生鲜食品和报纸等,当 商店购进这些商品时,买的数量越多,价格越便宜获利越大。但 买得太多也可能卖不出去,需要削价处理,人力物力都受损;如 果进货太少,又可能发生缺货现象,失去销售机会而减少利润。
每天购进多少份使收入最大?
分 购进太多卖不完退回赔钱 析 购进太少不够销售赚钱少
应根据需求确定购进量
存在一个合适的 购进量
每天需求量是随机的
每天收入是随机的
优化问题的目标函数应是长期的日平均收入
等于每天收入的期望
ppt课件
5
2、报童问题所属范畴
单周期随机型存贮模型
这种单周期购入—售出(报纸、日历、杂志,各种季节性货物、时 装),并且超出该购入—售出周期商品就会严重贬值的存贮问题,存 贮论中统称为卖报童问题。 这类问题的库存控制策略是以利润期望最大为目标,确定一次购入的 经济订货批量。
ppt课件
9
4、报童问题的推广与应用
报童模型
缺货损失厌恶的报童问题摘要:报童问题是随机存贮管理的基本问题之一。
在预期理论的框架下,我们通过引入损失厌恶参数,基于损失期望最小原则,对经典的报童问题进行了重新思考,给出了缺货损失厌恶的报童的最优定货量的计算公式及订购量与期望损失关系的数学模型.关键词:存贮管理;预期理论;期望损失1、引言不确定性决策一直都是决策理论的基本问题之一。
报童问题是随机存贮理论的基本模型之一,国内外关于报童问题的研究已有很长一段时间,人们也从不同的角度得出了一些令大家可接受且比较满意的方案和数学模型。
如Tsan rt.al[1]提出报童问题的均值方差模型,并且得出如果报童可能最大化期望利润,使得利润方差受到限制,那么其最佳订购量总是小于经典报童问题的订购量;Schweitzer, Cachon[2] 提出效用最大化的报童问题,且得出基于偏爱的不同而有不同的效用函数,(这些偏爱对报童的决策进程有着重要影响);Eeckhoudt et.al[5]研究了风险及风险厌恶对报童问题的效应;Porteus[5]通过对敏感度的定量分析,研究了带风险效用和风险厌恶的报童问题;文平[6]关于损失厌恶的报童—预期理论下的报童问题新解一文,基于Kahneman 和Tversky[6]于1979年提出的预期理论,也得出了比较理想的模型。
然而他们中的多数都是从获利期望值最大和期望效用理论的角度来考察的。
但是,报童问题也是一种经典的单阶段存贮问题。
对报童而言,他每一天的报纸都有三种结果:报纸卖不完、不够卖、刚好够卖。
这三种结局只有最后一种情况下才能达到报童的最大利润,因为报童的最大利润是订购量刚好和市场需求一致,即刚好够卖,也刚好卖完。
在过去关于报童问题的种种模型中,都很少考虑到报纸不够卖,即脱销的情况,此时大多是以刚好满足市场需求的情况来处理。
其实不然,对于这类薄利多销的报童问题而言,他们都不希望自己是做保本生意,都希望充分利用好市场,最大限度地获取利润。
报童数学建模
报童数学建模 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】报童诀窍一、问题: 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n,,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)计算令0=dn dG 得dn dG ()()()()()()dr r p b a dr r p c b n np c a n n ⎰⎰∞-+---=02 得到()()c b b a dr r p dr r p n n--=⎰⎰∞0 n 应满足上式。
()10=⎰∞dr r p 使报童日平均收入达到最大的购进量为()ca b a dr r p n --=⎰0 根据需求量的概率密度p(r)的图形可以确定购进量n 在图中用p1,p2分别表示曲线p(r)下的两块面积,则cb b a P P --=21 O nr因为当购进n 份报纸时,()dr r p P n ⎰=01是需求量r 不超过n 的概率; ()dr r p P n ⎰∞=2是需求量r 超过n 的概率,既卖完的概率,所以上式表明,购进的份数n 应使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔的钱b-c 之比。
报童模型――物流案例
o表示超储成本。
根据假设:
欠储成本=机会利润损失+客户流失损失(c
u=p-c+x
);
超储成本=库存维持费用(h)
处理后的报童模型公式:
F(q*)= (p-c+x) /( p-c+x+h)
-1
即q*=F[(p-c+x) /( p-c+x+h)]
单位库存费用h=
年库存总费用/平均库存水平=4098
3、若工厂存货不足,则导致欠储成本。基于综合因素的考虑,我们假定欠储成本包括两个部分:
一是机会损失,即本应该获得的利润损失(=售价—成本);二是由缺货引起的商家信誉受损或客户流失造成的损失(用x表示)。
三、无预算约束的报童模型
公式:
F(q*)=c
u/(c
u+c
o)
其中,F(X)为蜂蜜需求分布函数(可能是正态分布函数,也可能是负指数分布等),c
关于确定订货量的参考方法
引言:
报童模型的引入:
公司目前采用的订货策略是根据现有的资金最大限度的采购原蜜,对于其科学性,我们暂时保留意见,下面我们将引入一种更加有说服力的确定订货量的方法——报童模型。
一、已知数据:
年销量/产量output=5000
吨;年产值sales=14250
万;利税B=777
万;年库存总费用H=700
元/(年*吨);
单位产品平均售价p=
年产值/年销量=28500
元/吨;
1、缺货不存在客户流失的情况(更符合实际情况,因蜂蜜目前属于供不应求产品,即x=0
)直接将数据带入公式计算,查需求分布函数值表,最后可求得最优订货量。
eg:以五月份采购的洋槐为例,假设其需求分布符合均值为E(d)=1200t,标准差为σ=
报童模型概念
报童模型概念引言报童模型(Newsboy Model)是供应链管理中常用的一种模型,用于帮助企业决策商品订购量。
它的目标是在不确定需求的情况下,最大化企业的利润。
本文将从报童模型的基本概念入手,深入探讨其原理、适用范围以及在实际应用中的注意事项。
什么是报童模型?报童模型是一种在需求不确定的情况下,进行商品订购量决策的模型。
它的名称源自于一位报童,在购买报纸时不知道具体有多少人会买报纸,只能根据过去的数据和一些预测来决定购买的数量。
报童模型的目标是最大化利润,即最大化销售额与成本之间的差额。
原理报童模型的核心原理是基于销售量与利润之间的关系。
一般来说,销售量越高,利润越大,但过高的销售量也会导致库存积压和浪费。
因此,企业需要在平衡销售量与成本之间做出决策。
具体而言,报童模型需要考虑以下几个关键因素:需求分布需求不确定是报童模型的前提条件之一。
一般来说,需求可以被建模为一个概率分布,比如正态分布、泊松分布等。
通过分析过去的销售数据和市场趋势,可以对需求分布进行估计。
订购成本订购成本是指企业为了获得一定数量的商品而需要支付的费用,包括采购成本、运输成本等。
订购成本一般随着订购量的增加而增加。
销售收益是指企业通过销售商品所获得的收入。
销售收益与销售量成正比,但一般销售收益与销售量之间并非线性关系。
在报童模型中,一般假设销售收益可以通过销售价格和销售量之间的函数关系来描述。
库存损失库存损失是指由于库存过剩导致的商品价值降低、过期等损失。
库存损失是报童模型考虑的一个重要因素,过高的库存会增加企业的成本。
基于以上因素,报童模型的目标是找到一个最优的订购量,使得销售收益与订购成本之间的差额最大化。
通常使用数学模型和优化算法来求解最优解。
适用范围报童模型在许多行业中都有广泛的应用。
以下是几个适用范围的示例:零售业零售业是报童模型应用最广泛的领域之一。
对于一些季节性商品或者具有一定时效性的商品,企业需要根据过去的销售数据和市场趋势来进行订购决策,以最大化利润。
应对不确定需求:报童模型
考虑一下 …
尽管借着电影”玩具总动员” 尽管借着电影”玩具总动员”的热潮生产了 50百万的玩具 Burger King 还是经历了 百万的玩具, 百万的玩具 大面积的缺货. 大面积的缺货 在一年内 IBM由于 由于ThinkPad笔记本缺货 笔记本缺货 由于 百万. 预期损失达到 100百万 百万 2001年许多科技公司 (如., Palm, 年许多科技公司 如 Cisco) 由于库存问题产生了重大的削减 由于库存问题产生了重大的削减. Kmart 和 Sears 在边缘挣扎而 WalMart 的业绩仍然引人注目 的业绩仍然引人注目..
报童模型适用性很广,其本质是必须在随机 事件发生之前作出决策。最后在随机事件发 生后你才能了解你是订购太多(需求小于订 购量)还是订购太少(需求大于订购量)。 IMB损失1亿美元的案例.
考虑一下 …
图书零售商将 30%的精装新书返还给出版 的精装新书返还给出版 商. 航空公司的上座率为72.4%, 而 70.4% 航空公司的上座率为 的上座率才可以达到收支平衡. 的上座率才可以达到收支平衡 在新车市场上,有53%的消费者对至少一项 在新车市场上 有 的消费者对至少一项 主要产品特性不满意. 主要产品特性不满意
9.0
25000
8.0 20000
7.0
6.0 15000 5.0 Turns 销售 (百万美元) BBY turns CC turns BBY Sales CC Sales
4.0 10000 3.0
2.0
5000
1.0
0.0 1985 1987 1989 1991 1993 1995 1997 1999 2001
概率
日产出量 (千桶))
英国石油的投资方案
两个方案:
第八章(下)-报童模型《运营管理》ppt课件
超额预售问题பைடு நூலகம்解法
设 X 为超额预售的机票数,设 Y 为有票没来的人数。
X > Y 就意味着超额预售的机票数超过了有票没来的人数。 再多售一张机票就要蒙受400美元的损失, co = $.
X < Y 则意味着超额预订的数量小于没有登机的人数,预订 数量减少一个就蒙受100美元的损失, cu = $100.。
– P{Y>X*} 表示需求Y大于X*的概率。
– P{Y<X*} 表示需求Y小于X*的概率。
– CuP{Y>X*} – CoP{Y<X*}
第X*件产品售出时所带来的收益; 第X*件产品未售出时所带来的损失。
Y小于X*的概率
X的分布 0
X 安全库存 z
公式推导过程
Cu P Y X * CO P Y X * CO 1 P Y X *
晚到一分钟)。 • 都需要测算 Y 的概率分布。
• 缺货成本= Cu = 单位销售额-单位成本 • 过量成本 =Co =原始单位成本-单位残值
• X* 会随着 cu 增加而增加。 • X* 会随着 co 增加而减少。
报童问题推导过程
推导原理
• 销售最后一件所得的收益大于或等于最后一件未被售出时 所带来的损失。(边际收益接近边际损失)
Y小于X*的概率
X的分布 0
X 安全库存 z
超额预售机票问题的解
• 一家航空公司发现,一趟航班的持有机票而 未登机(“不露面”)的人数具有平均值为 20人、标准偏差为10人的正态分布。根据这 家航空公司的测算,每一个空座位的机会成 本为100美元。乘客确认票后但因满座不能 登机有关的罚款费用估计为400美元。该航 空公司想限制该航班的“超额预订”。飞机 上共有150个座位。确认预订的截止上限应 当是多少?
供应链管理中报童模型的研究
供应链管理中报童模型的研究
市场经济竞争日益激烈,报童模型作为供应链管理中重要的一个环节也越来越受到学者和企业家的重视。
本文主要有这样几个方面的工作:(1)介绍了经典报童模型收益和方差,继续研究了此模型的收益半方差,并提出了用于平衡收益和风险的效能函数。
(2)研究了可追加订购报童模型收益期望和风险,并且从不同的市场需求分布角度进行了模型的仿真,并对结果进行比较。
(3)研究可追加订购及可降价销售的报童模型,这是对(2)的扩展。
(4)分析了带有缺货损失的报童模型的收益风险的另一种衡量方式:半方差,并且在模型仿真中,分别就收益期望风险等方面与经典报童模型和可追加订购报童模型做了比较。
(5)带预算约束的报童模型的建模分析及可替代产品的简单介绍。
本论文主要有这几方面的创新点:(1)将用半方差衡量风险的方法扩展到了带缺货损失的报童模型中。
(2)提出了效能函数以有效平衡收益和风险。
(3)分析了不同的市场需求下模型的收益风险图,并对各情况分别进行了比较。
基于报童模型对某电商平台商家订货策略
02
报童模型概述
报童模型的定义
• 报童模型是一种经典的库存管理模型,主要用于描述商品订货策略与库存水平之间的关系。在报童模型中,商 家需要在每天开始时决定当天的订货量,以最大化自己的利润或最小化自己的损失。由于商品的销售情况是不 确定的,因此商家需要根据自己对销售情况的预测以及历史销售数据进行订货决策。
加强季节性商品管理 针对季节性商品,某电商平台应 加强市场调研和分析,为商家提 供有针对性的订货策略和建议。
优化库存管理 某电商平台应进一步优化库存管 理,实现库存共享和调配,降低 商家的库存成本和风险。
07
参考文献
参考文献
[1] 张三. "基于报童模型的电商订货策 略研究." 电子商务研究 10.3 (2019): 23-34.
调整订货策略,以提高销售业绩。
库存管理不合理
商家在订货策略中需要合理规划库存水平 ,避免出现过多的库存积压或过少的库存 缺货现象。
季节性变化影响
季节性变化对商家的订货策略有一定影响 ,商家需要密切关注季节性变化,及时调 整订货策略,以适应市场需求的变化。
04
基于报童模型的商家订货 策略优化方案
建立数学模型
• 报童模型的优化问题主要涉及如何根据历史销售数据和当前库存情况,选择最优的订货量,以最大化商家的利 润或最小化商家的损失。由于商品的销售情况是不确定的,因此需要对未来一段时间内的销售情况进行预测, 并根据预测结果进行订货决策。此外,还需要考虑商品的采购成本、销售价格、存储和运输成本、缺货成本和 过期成本等因素,以做出更加全面和准确的订货决策。
本文旨在利用报童模型,研究某电商平台的商家 订货策略,以提高商家的库存管理和运营效率。
研究内容与方法
报童模型
关于报童卖报的问题摘要报童模型在1956年首次被提出来以后,就成为学术界的关注焦点,有着大量的学者或经济领域的人士对它进行研究和分析,由于报童模型问题中涉及到很多不确定因素的影响,人们为了研究和确定这些因素在模型中的量化,通过很多不同的计算方法和理论方法来使这些非量化的因素最大化的量化表达,使之趋近于理性决策,但是又不是完全能够明确和量化的,这些就是报童模型中的有限理性。
报童模型中关于有限理性涉及到的问题与方法到如今已将发展到很多方面,在随机因素方面首先就是不确定环境下的随机需求,还有库存管理,供应链协调等,在做有限理性决策的时候,人们尽量通过具体的推算方法来做出最优化决策,虽然不是完全理性决策,但是确实使利润接近最大化的有限理性决策。
本论文讨论的是报童卖报问题,报童卖报问题实际上就是通过分析,找出几种可能的方案,通过求解,找出一个最优的方案来订报,使得报童赢利取得最大期望值或报童损失的最小期望值的临界值,也就是使报童获得的利益最大。
本文首先建立了最大期望值和最小期望值的模型,然后分别用连续的方法和离散的方法求解,最后得出结论。
尽管报童赢利最大期望值和损失最小期望值是不相同的,但是确定最佳订购量的条件是相同的。
关键词:报童模型、概率统计、概率分布建模、离散引言在报童模型中,有限理性决策主要面对的随机性因素是需求和时间,报童模型是典型的单价段,随机需求模型,主旨是寻找产品的最佳订货量,来最大化期望收益或最小化期望损失。
本文首先通过理论回顾解释出什么是报童模型中的有限理性,然后罗列了部分在报童模型中有限理性问题上进行研究的部分文献成果。
再得出有报童模型有限理性的发展。
一、问题重述报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份进购价为b,零售价为a,退回价为c,自然地假设a>b>c.也就是说,报童售出一份报纸赚a-b,退回一份赔b-c,。
试为报童筹划一下每天购进报纸的数量,使得收入最大,那么报童每天要购进多少份报纸?二、模型分析如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
考虑决策者行为的报童模型研究
考虑决策者行为的报童模型研究报童模型是运作管理的一个重要研究课题,是随机需求订货问题的典型实例。
报童问题自提出以来就受到广大学者的关注,其有关研究已经扩展到多个方面。
经典报童模型应用期望效用理论求得收益最大时的最优订货量,但是大量的研究证明经典模型的结果并不符合决策者的实际决策。
之后,各学者开始从心理认知和行为的角度来研究报童模型,并取得了一定的研究成果。
但现有的考虑行为因素的报童模型通常利用数学建模的方法在模型中加入决策者风险态度、损失厌恶程度等行为因素,但仍缺乏系统的研究。
后悔理论是行为决策的重要理论,近年来得到了很大的发展,已应用到诸多研究领域。
后悔情绪的存在会影响决策者的决策行为,但目前有关报童模型的研究中考虑决策者的后悔情绪的研究还比较少。
因此,把后悔理论引入报童模型,对决策者的后悔心理进行研究,具有重要的理论价值;同时,在实际应用中,考虑决策者后悔情绪的报童模型将更加符合决策者的实际决策行为,可广泛应用于制造业订货决策、服务业和零售业等行业,具有重要的实践意义。
本文在分析归纳国内外有关报童模型的扩展研究及后悔理论的提出和发展研究的基础上,对考虑决策者后悔心理的报童决策问题进行了研究。
其研究目的和意义在于:在理论上丰富了考虑决策者行为的报童问题的研究,同时也是行为运作管理的又一研究成果;在应用层面,本文在提出考虑后悔情绪的报童模型后,给出了具体的算例分析,为模型应用于实践提供了指导。
本文主要完成了以下两个方面的研究工作:(1)基于后悔理论的报童模型。
本文针对随机需求下的报童订货问题,应用后悔理论,建立了考虑决策者后悔心理的报童模型,并给出了模型的具体求解方法。
分析了后悔心理对报童决策的影响,并给出了具体的算例分析,验证了后悔心理对决策的影响。
(2)基于后悔理论的报童定价问题。
本文建立了考虑决策者后悔心理的报童定价模型,并给出了具体的求解算法。
针对价格决策影响产品需求的报童问题,本文考虑了线性的价格需求函数,此时的报童模型转化为同时确定价格和订货量两个决策变量的期望效用最大化的决策问题。
知识点2聪明的报童模型
报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.若每份报纸的购进价为b 元/份,售价为a 元/份;若不能售出,退回价c 元/份.假设a>b>c. 这就是说,报童售出一份报纸赚a-b ,退回一份赔b-c .报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱.请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.问题的分析众所周知,应该根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r份的概率是),2,1,0()( =r r f .有了)(r f 和a ,b,c,就可以建立关于购进量的优化模型了.模型假设假设每天购进量为n份,因为需求量r是随机的,r可以小于n,等于n或大于n,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.建模与求解记报童每天购进n 份报纸时的平均收入为)(n G ,如果这天的需求量n r ≤,则他售出r 份,退回r n -份;如果这天的需求量n r >,则n 份将全部售出.考虑到需求量为r 的概率是)(r f ,所以∑∑∞+==-+----=10)()()()])(()[()(n r n r r nf b a r f r n c b r b a n G (5.4.1) 问题归结为在c b a r f ,,),(已知时,求n 使)(n G 最大.通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量更便于分析和计算,这时概率)(r f 转化为概率密度函数)(r p ,(5.4.1)式变成⎰⎰∞-+----=n n dr r np b a dr r p r n c b r b a n G )()()()])(()[()(0 5.4.2)计算⎰⎰∞-+-----=n n dr r p b a n np b a dr r p c b n np b a dndG )()()()()()()()(0 ⎰⎰∞-+--=n n dr r p b a dr r p c b )()()()(0 令0=dndG ,得到 cb b a dr r p drr p nn --=⎰⎰∞)()(0 (5.4.3)使报童日平均收入达到最大的购进量n 应满足(5.4.3)式.因为1)(0=⎰∞dr r p ,所以(5.4.3)式又可以表为ca b a dr r p n --=⎰0)( (5.4.4) 根据需求量的概率密度)(r p 的图形很容易从(5.4.3)式确定购进量n .在图5-4中用21,P P 分别表示曲线)(r p 下的两块面积,则(5.4.3)式可记作ca b a P P --=21(5.4.5)因为当购进n 份报纸时,dr r p P n ⎰=01)( 是需求量r 不超过n 的概率,即卖不完的概率; dr r p P n⎰∞=)(2是需求量r 超过n 的概率,即 卖完的概率,所以(5.4.3)表明,购进的份数n应该使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱b a -与退回一份赔的钱c b -之比.显然,当报童与报社签订的合同使报童每 图5-4 由)(r p 确定n 的图解法 份赚钱与赔钱之比越大时,报童购进的份数就应该越多.评注:在问题的分析中,我们假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,但没有指明其概率的具体分布,其实也可以假定需求量为r份的概率是一个具体的分布,如泊松分布,然后再具体分析计算,其结果也会与上面的讨论结果相近.。
统计应用案例——报童模型
Q* 1200 0.65130 1,285
从A-1看出, 对于面积=0.74, z=0.65 。因此
f(x)
面积=0.74
130
1200
Q*
需求量, X
9
O’Neill’s Hammer 3/2 wetsuit
Hammer 3/2 timeline and economics
Forecasts and actual demand for surf wet-suits from the previous season
Empirical distribution of forecast accuracy
Product description JR ZEN FL 3/2 EPIC 5/3 W/HD JR ZEN 3/2 WMS ZEN-ZIP 4/3 HEATWAVE 3/2 JR EPIC 3/2 WMS ZEN 3/2 ZEN-ZIP 5/4/3 W/HOOD WMS EPIC 5/3 W/HD EVO 3/2 JR EPIC 4/3 WMS EPIC 2MM FULL HEATWAVE 4/3 ZEN 4/3 EVO 4/3 ZEN FL 3/2 HEAT 4/3 ZEN-ZIP 2MM FULL HEAT 3/2 WMS EPIC 3/2 WMS ELITE 3/2 ZEN-ZIP 3/2 ZEN 2MM S/S FULL EPIC 2MM S/S FULL EPIC 4/3 WMS EPIC 4/3 JR HAMMER 3/2 HAMMER 3/2 HAMMER S/S FULL EPIC 3/2 ZEN 3/2 Forecast 90 120 140 170 170 180 180 270 320 380 380 390 430 430 440 450 460 470 500 610 650 660 680 740 1020 1060 1220 1300 1490 2190 3190 Actual demand 140 83 143 163 212 175 195 317 369 587 571 311 274 239 623 365 450 116 635 830 364 788 453 607 732 1552 721 1696 1832 3504 1195 Error* A/F Ratio** -50 1.56 37 0.69 -3 1.02 7 0.96 -42 1.25 5 0.97 100% -15 1.08 -47 1.17 90% -49 1.15 80% -207 1.54 70% -191 1.50 60% 79 0.80 50% 156 0.64 40% 191 0.56 -183 1.42 30% 85 0.81 20% 10 0.98 10% 354 0.25 0% -135 1.27 0.25 0.50 0.75 1.00 1.25 1.50 -220 1.36 0.00 286 0.56 A/F ratio -128 1.19 Empirical distribution function for the historical A/F ratios. 227 0.67 133 0.82 288 0.72 -492 1.46 499 0.59 -396 1.30 -342 1.23 -1314 1.60 1995 0.37
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
报童模型(Newsboy model)
问题:
报童出售报纸,零售价a>购进价b>退回价c。
因此,每售出一份报纸,赚a-b,每退回一份报纸赔b-c。
那么,报童每天要购进多少份报纸才能使收入最大?
分析:
如果购进太多,就会卖不完,从而赔钱;如果购进过少,导致报纸不够销售,就会减少收入。
因此,存在一个最优的购进量,使得收入最大。
因此,应当根据需求来确定购进量。
然而,每天的需求是随机的,进而每天的收入也是随机的。
因此,优化问题的目标函数应是长期日平均收入,等于每天收入的期望。
准备:
调查随机量的需求规律——每天需求量为r 的概率f(r), r=0,1,2…
建模:
设每天购进n 份,日平均收入为G(n)。
已知售出一份赚a-b;退回一份赔b-c。
若r<=n,则售出r,返回n-r => 赚(a-b)r,赔(b-c)(n-r)。
若r>n,则售出n,赚(a-b)n。
目标函数
求n使G(n)最大。
求解:
视r为连续变量f(r)=>p(r)(概率密度)
结果解释:
取n,使
其中,a-b即售出一份报纸赚的钱,b-c即退回一份报纸赔的钱。