传热学介绍

合集下载

传热学手册 下册 1987

传热学手册 下册 1987

传热学手册下册1987引言概述传热学是热力学的一个重要分支,研究热量如何在物质之间传递的规律。

《传热学手册下册1987》是一部经典的教材,深入剖析了传热学的各个方面,为学习者提供了丰富的知识和深刻的理解。

本文将对该手册进行全面介绍,以帮助读者更好地理解其中的关键内容。

一、基本概念与原理1.1 传热学基础热传递机制:介绍传热的基本机制,包括传导、传热与对流,并深入解析不同物质中的热传递规律。

传热方程:探讨传热方程的推导和应用,阐释不同传热问题中的数学模型。

传热原理:阐述传热的基本原理,如热平衡、热传递速率等,为读者奠定坚实的理论基础。

1.2 传热材料与性质导热材料:对导热材料的分类、选择和性质进行详细介绍,探讨不同材料在传热中的应用。

相变材料:分析相变材料在传热中的独特性质,包括潜热的利用和相变对传热的影响。

传热流体:讨论传热流体的特性,研究不同流体在热交换中的效果和应用。

1.3 传热设备与应用传热设备分类:对传热设备进行分类,包括换热器、冷却塔等,介绍其结构和工作原理。

传热设备选型:分析传热设备的选型依据,包括流体特性、传热效率等因素。

实际应用案例:通过实际案例,展示传热学在工程领域的应用,使读者更好地理解理论知识的实际运用。

二、深度解读与案例分析2.1 传热实验技术实验仪器与方法:详细介绍进行传热实验所需的仪器设备和实验方法,确保读者能够独立进行相关实验。

数据分析与处理:强调实验数据的采集、整理和分析方法,培养读者实际应用传热学知识的能力。

实验案例:提供一些典型的传热实验案例,通过案例分析,帮助读者更好地理解实验技术的应用。

2.2 传热系统优化优化理论:探讨传热系统的优化理论,包括传热表面增大、传热介质选择等方面的优化方法。

能源效率:分析传热系统在提高能源效率方面的策略,减少能源浪费,实现可持续发展。

案例研究:通过一些实际案例,展示传热系统优化在工程实践中的成功经验。

2.3 新兴技术与未来发展新材料应用:探讨新型材料在传热领域的应用前景,如纳米材料、复合材料等。

传热学

传热学
等温线
华北电力大学
传热学 Heat Transfer
2、温度梯度
• 定义:沿等温面法线方向上的温度增量与法向 距离比值的极限。温度梯度表示为:
t t grad t n lim n n 0 n n
式中,n
是等温面法线方向上的单位矢量。
华北电力大学
传热学 Heat Transfer

华北电力大学
传热学 Heat Transfer
沿x 轴方向导入与导出微元体净热量
Φx Φx dx
同理可得:
t dxdydz x x
沿 y 轴方向导入与导出微元体净热量
Φy Φy dy
t dxdydz y y
t ( ) Φ 0 x x
华北电力大学
传热学 Heat Transfer
三、其它坐标系中的导热微分方程式
1. 圆柱坐标系(r, , z)
x r cos ; y r sin ; z z
t 1 t 1 t t c (r ) 2 ( ) ( ) r r r r z z
(3)微元体内热源生成的热量
ΦV Φdxdydz
5. 导热微分方程的基本形式
t t t t c ( ) ( ) ( ) Φ x x y y z z
非稳态项
华北电力大学
三个坐标方向净导入的热量
内热源项
传热学 Heat Transfer
传热学 Heat Transfer
利用两个边界条件
t
x 0, t t1 x , t t2
c2 t1 t 2 t1 c1
t1 t 2

传热学完整课件PPT课件

传热学完整课件PPT课件

原子、分子在其平衡位置附近的振动产生的)
的作用。
说明:只研究导热现象的可宏编观辑课规件 律。
18
2 、导热的基本规律
❖ 1 )傅立叶定律 ❖ ( 1822 年,法国物理学家)
如图 1-1 所示的两个表面分别维持均匀
恒定温度的平板,是个一维导热问题。对于
x方向上任意一个厚度为的微元层来说,根
据傅里叶定律,单位时间内通过该层的导热
可编辑课件
8
b 微电子: 电子芯片冷却
c 生物医学:肿瘤高温热疗;生物芯片;组 织与器官的冷冻保存
d 军 事:飞机、坦克;激光武器;弹药贮 存
e 制 冷:跨临界二氧化碳汽车空调/热泵; 高温水源热泵
f 新能源:太阳能;燃料电池
可编辑课件
9
三、传热学的特点、研究对象及研究方法
1、特点
❖ 1 )理论性、应用性强
机、工况改变时的传热过程则属 非稳态传热
过程。
可编辑课件
4
二、讲授传热学的重要性及必要性
1 、传热学是热工系列课程教学的主要内容 之一,是建环专业必修的专业基础课。是 否能够熟练掌握课程的内容,直接影响到 后续专业课的学习效果。
2 、传热学在生产技术领域中的应用十分广 泛。如:
(1) 日常生活中的例子:
❖ 3 、研究方法
❖ 研究的是由微观粒子热运动所决定的
宏观物理现象,而且主要用经验的方法寻
求热量传递的规律,认为研究对象是个连
续体,即各点的温度、密度、速度是坐标
的连续函数,即将微观粒子的微观物理过
程作为宏观现象处理。
可编辑课件
13
由前可知,热力学的研究方法仍是如此,但 是热力学虽然能确定传热量(稳定流能量方 程),但不能确定物体内温度分布。

传热学

传热学

传热学就是研究热量传递规律的一门科学。

只要不同物体或物体不同部分之间存在温度差,它们之间就会发生热量的传递,热量传递有三种方式:导热、对流换热和辐射换热。

在制冷空调领域,热量传递普遍存在。

例如在压缩式制冷系统中,从蒸发器回来的气态制冷剂进入压缩机,被压缩为高温高压的气体,然后进入冷凝器内放热,把热量传递给周围的介质(一般为空气或水),同时制冷剂被冷却成液态,然后经节流进入蒸发器,在蒸发器内沸腾吸热,即可得到我们需要的冷却的水或空气。

因此,认识、掌握热量传递的过程和规律,在制冷空调技术实践中有着极其重要的意义。

在传热学的工程应用中,通常要达到两个基本目的:(1)能准确计算所研究系统中传递的热量;(2)能准确预测所研究物体中的温度分布。

第一章 稳态导热在三种热量传递方式中,导热是最容易利用数学工具进行分析和处理,对传热学的深入学习就从导热开始。

本章首先引出导热的基本定律和一般数学表达式,然后介绍制冷空调装置中常见壁面(如平壁和圆筒壁)中热流量和温度分布的规律和计算方法。

第一节 导热基本概念和傅里叶定律一、导热的概念导热即热传导,是指发生在物质本身各部分之间或直接接触的物质与物质之间的热量传递现象。

它是依靠物质的分子、原子或自由电子等微观粒子的热运动来传递热量的,也就是说,导热是在分子集团不发生宏观相对运动时,单纯由微观粒子的直接作用(如迁移、碰撞或振动等)而引起的热量传递现象。

导热是物质的属性,导热过程可以在固体、液体及气体中发生。

但是在重力场下,单纯的导热一般只发生在密实的固体中,这是因为,在有温差时,液体和气体的密度会改变从而形成对流,不能维持单纯的导热。

在专业学习和实践中,一般把发生在换热器管壁、肋片、管道保温层、墙壁等固态材料中的热量传递过程都看成导热问题。

二、温度场在工程应用中,常常需要预测物体的温度分布,通常将某一时刻物体中各点温度分布的状况称为温度场。

一般来说,温度场是空间和时间的函数,其数学表达式为),,,(τz y x t = 1-1式中,x,y 和z 是空间坐标;τ是时间坐标;t 代表温度。

传热学知识点

传热学知识点

传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。

h 是对流换热系数单位 w/(m 2 k) q ''是热流密度(导热速率),单位(W/m 2) φ是导热量W6. 热辐射的特点。

a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

(w))(∞-=''t t h q w 2/)(m w t t Ah A q w ∞-=''=φ第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):dx dT k q x ∂∂-='' )(zT y T x T k T k q ∂∂+∂∂+∂∂-=∇-=''k j i T(x,y,z)为标量温度场nT k q n ∂∂-='' 圆筒壁表面的导热速率drdT rL k dr dT kA q r )2(π-=-= 垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

2 传热学基本知识

2  传热学基本知识

t = f ( x, y, z,τ )
t = f ( x, y , z )
• 如果在上式的基础上温度场内的温度变化仅 与两个或一个坐标有关, 与两个或一个坐标有关,则称为二维或一维 稳态温度场, 稳态温度场,即 • t = f (x, y ) 或 t = f ( y, z ) 或 t = f x, z
2.1.1 温度场 • 导热与物体内的温度场密切相关。温度场是某一时 导热与物体内的温度场密切相关。 刻空间中各点温度分布的总称。一般来说, 刻空间中各点温度分布的总称。一般来说,温度场 是空间坐标和时间的函数, 是空间坐标和时间的函数,即 • 上式表示物体内部温度在x、y、z三个方向和在时 上式表示物体内部温度在x 间上均发生变化的三维非稳态温度场。 间上均发生变化的三维非稳态温度场。如果温度场 不随时间变化, 不随时间变化,则上式变为
(
)
(3)湿度 (3)湿度
• 保温隔热性的多孔材料很容易吸收水分,吸水后,由于孔隙中充 保温隔热性的多孔材料很容易吸收水分,吸水后, 满了水,水导热系数大于空气导热系数, 满了水,水导热系数大于空气导热系数,加之在温度梯度的推动 下引起水分迁移而传递热量。 下引起水分迁移而传递热量。 • 结论:物质湿度越大,它的导热系数较大;反之,导热系数较小 。 结论:物质湿度越大,它的导热系数较大;反之, 所以,在寒冷地区保温隔热时要特别注意防潮。 所以,在寒冷地区保温隔热时要特别注意防潮。
2
传热学基本知识
2.1 2.2 2.3 2.4 稳定传热的基本概念 对流换热 辐射换热的基本概念 传热
2.1
稳定传热的基本概念
• 温度 • 宏观定义:表示物体冷热程度的物理量。 宏观定义:表示物体冷热程度的物理量。 • 微观定义:表示物体内部大量粒子热运动的剧烈程度,反 微观定义:表示物体内部大量粒子热运动的剧烈程度, 映了物体内粒子热运动平均动能的大小。 映了物体内粒子热运动平均动能的大小。 • 温标:温度的标尺 温标: • ①绝对温标:国际单位制规定热力学温度温标,符号为 , 绝对温标:国际单位制规定热力学温度温标,符号为T, 单位为K(开尔文),中文代号为开。 ),中文代号为开 单位为 (开尔文),中文代号为开。热力学温标规定纯水 三相点温度(即水的汽、 固三相平衡共存时的温度) 三相点温度(即水的汽、液、固三相平衡共存时的温度) 为基本定点,并指定为273.16K。 为基本定点,并指定为 。 • ②摄氏温标:实用温标,又称百分温标。它是把在标准大 摄氏温标:实用温标,又称百分温标。 气压下,纯水开始结冰的温度(冰点)定为零度, 气压下,纯水开始结冰的温度(冰点)定为零度,把纯水

传热学nu,re,pr,gr表达式含义

传热学nu,re,pr,gr表达式含义

传热学是研究热量如何通过传导、对流和辐射进行传递的学科。

在传热学中,有一些常用的表达式,如Nu数、Re数、Pr数和Gr数,它们分别表示不同的传热特性。

本文将对这些表达式的含义进行详细的介绍。

一、 Nu数的含义Nu数是Nusselt数的缩写,它表示流体中的对流传热能力。

Nu数的计算公式为:Nu = hL/k其中,h是对流传热系数,L是特征长度,k是流体的导热系数。

Nu 数是对流传热与导热的比值,它越大表示对流传热能力越强,反之则表示导热能力较强。

Nu数的大小与流体的性质、流动状态和流体与固体界面的情况有关。

二、 Re数的含义Re数是Reynolds数的缩写,它表示流体的流动状态。

Re数的计算公式为:Re = ρVD/μ其中,ρ是流体密度,V是流体流速,D是特征长度,μ是流体的动力黏度。

Re数反映了流体的惯性力与黏性力之间的比值,它的大小决定了流体的流动状态,当Re数较小时,流体呈现层流状态,当Re数较大时,流体呈现湍流状态。

Re数对流体的流动特性以及传热和传质过程都有重要影响。

三、 Pr数的含义Pr数是Prandtl数的缩写,它表示流体的热传导能力与动力黏度之间的比值。

Pr数的计算公式为:Pr = μCp/κ其中,μ是动力黏度,Cp是定压比热,κ是流体的导热系数。

Pr数越大,流体的热传导能力越强,而动力黏度的影响越小,反之则动力黏度的影响越大。

Pr数的大小对对流传热和边界层的发展都有重要影响。

四、 Gr数的含义Gr数是Grashof数的缩写,它表示自然对流传热的能力。

Gr数的计算公式为:Gr = gβΔTL^3/ν^2其中,g是重力加速度,β是体积膨胀系数,ΔT是温度差,L是特征长度,ν是运动黏度。

Gr数的大小决定了自然对流传热的强弱,当Gr数较大时,自然对流传热能力越强,当Gr数较小时,传热能力较弱。

总结在传热学中,Nu数、Re数、Pr数和Gr数是常用的表达式,它们分别代表了对流传热能力、流体流动状态、热传导能力与动力黏度之间的比值以及自然对流传热的能力。

(完整PPT)传热学

(完整PPT)传热学

(完整PPT)传热学contents •传热学基本概念与原理•导热现象与规律•对流换热原理及应用•辐射换热基础与特性•传热过程数值计算方法•传热学实验技术与设备•传热学在工程领域应用案例目录01传热学基本概念与原理03热辐射通过电磁波传递热量的方式,不需要介质,可在真空中传播。

01热传导物体内部或两个直接接触物体之间的热量传递,由温度梯度驱动。

02热对流流体中由于温度差异引起的热量传递,包括自然对流和强制对流。

热量传递方式传热过程及机理稳态传热系统内的温度分布不随时间变化,热量传递速率保持恒定。

非稳态传热系统内的温度分布随时间变化,热量传递速率也随时间变化。

传热机理包括导热、对流和辐射三种基本传热方式的单独作用或相互耦合作用。

生物医学工程研究生物体内的热量传递和温度调节机制,为医学诊断和治疗提供理论支持。

解决高速飞行时的高温问题,保证航空航天器的安全运行。

机械工程用于优化机械设备的散热设计,提高设备运行效率和可靠性。

能源工程用于提高能源利用效率和开发新能源技术,如太阳能、地热能等。

建筑工程在建筑设计中考虑保温、隔热和通风等因素,提高建筑能效。

传热学应用领域02导热现象与规律导热基本概念及定律导热定义物体内部或物体之间由于温度差异引起的热量传递现象。

热流密度单位时间内通过单位面积的热流量,表示热量传递的强度和方向。

热传导定律描述导热过程中热流密度与温度梯度之间关系的定律,即傅里叶定律。

导热系数影响因素材料性质不同材料的导热系数差异较大,如金属通常具有较高的导热系数,而绝缘材料则具有较低的导热系数。

温度温度对导热系数的影响因材料而异,一般情况下,随着温度的升高,导热系数会增加。

压力对于某些材料,如气体,压力的变化会对导热系数产生显著影响。

稳态与非稳态导热过程稳态导热物体内部各点温度不随时间变化而变化的导热过程。

在稳态导热过程中,热流密度和温度分布保持恒定。

非稳态导热物体内部各点温度随时间变化而变化的导热过程。

《传热学基本知识》PPT课件

《传热学基本知识》PPT课件
《传热学基本知识》PPT 课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
教学目标:
➢了解稳定传热的根本概念; ➢理解稳定tbt1)F
q(tbt1)
Q -单位时间的对流换热量。
q -对流换热热流强度。
F -墙壁的换热面积。 t b -墙面的温度。
t 1 -流体的温度。
-对流换热系数,
其大小反映了对流换热的强弱。
变换公式的形式,可得:
q tb t1 tb t1
1
R
R -对流换热热阻,与对流换热系数成反比。
▪ 黑体:能吸收全部热射线的物体,即 。1
▪ 白体:能反射全部热射线的物体,即 。1 ▪ 透明体:能透过全部热射线的物体,即 。1 ▪ 在自然界中,绝对黑体、白体和透明体的是不存在的。
三、热辐射的根本定律 在所有的物体中,黑体辐射能力最强,
其他物体辐射能力小于黑体,称灰体。
c( T )4 100
3、传热的根本方式 导热 热对流 热辐射 4、稳定传热的根本概念 稳定传热
传热中温度差保持一恒定值,即不随时间有 所变化。 不稳定传热 传热中温度差随时间变化而变化。
§2-2 稳定导热
一、定义
温度不同的物体直接接触,温度较高的 物体把热能传给温度较低的物体,或 在同一物体内部,热能从温度较高的 局部传给温度较低局部的传热现象。
本概念; ➢了解稳定传热的过程及传热的增强与削弱。
▪ 传热学是研究热量传递过程规律的一门学 科。
▪ 本章介绍传热的根本方式,分析导热、热 对流和辐射的根本特性及应用。

传热学PDF

传热学PDF

1传热学2传热学内容介绍一、导热二、对流换热三、辐射换热四、换热器31.传热学定义传热学是研究热量传递过程规律的一门科学。

2. 传热的动力——温度差3.三种基本传热方式导热、对流、辐射或热传导、热对流、热辐射¾注意:对流换热、辐射换热都不是基本传热方式41.传热的基本方式说法正确的是。

A.导热、对流和辐射B.导热、对流换热和辐射C.热传导、热对流和热辐射D.导热、对流换热和辐射换热答案:A 、C52.夏季在维持20℃的室内工作时一般穿单衣感到舒适,而冬季在保持20℃的室内工作时却必须穿绒衣才觉得舒适,这主要是因为。

A.冬季和夏季人的冷热感觉不一样B.在室内冬季人周围物体(墙体)的温度低于夏季人周围物体(墙体)的温度C.冬季房间的湿度小于夏季房间的湿度D.冬季房间的风速大于夏季房间的风速答案:B63.减少保温瓶的散热,将瓶胆的两层玻璃之间抽成真空,镀成镜面,可以减少。

A.辐射换热散热B.导热散热C.对流散热D.对流换热散热和辐射换热散热答案:D7第一章导热理论基础1.1 导热基本概念1.2 傅里叶定律1.3 导热系数1.4 导热微分方程1.5 导热过程的单值性条件81、导热定义:物体各部分无相对位移或不同物体直接接触时依靠分子、原子及自由电子等微观粒子热运动而进行的热量传递现象。

2、导热机理:气体:分子不规则热运动;介电体:晶格振动金属:电子相互作用和振动;液体:晶格振动。

2、特点:导热是物质的属性,可在固体、液体及气体中发生;单纯的导热只发生在固体中。

91.1导热基本概念1、温度场1)定义:指某一时刻空间所有各点温度分布的总称。

(时间、空间)2)表示:(1)稳态温度场(2)一维稳态温度场(3)二维稳态温度场(),,,t f x y z τ=(),,t f x y z =()t f x =(),t f x y =102 、等温面与等温线1)特点:不相交2)作用:描述温度场3、温度梯度1)定义:自等温面上某点到另一个等温面,以该点法线方向为方向,数值等于该点法线方向的温度变化率的向量,称为温度梯度,用gradt 表示,正向朝着温度增加的方向。

(完整PPT)传热学

(完整PPT)传热学
因此,温度场内任一点的温度为该点位置和时 间的函数,即:
t f ( x, y, z, )
考虑时 间因素
考虑空 间因素
不稳定温度场
t 0 加热

t 0 冷却

稳定温度场 t 0

一维温度场 二维温度场 三维温度场
t f (x, ) t f (x, y, ) t f (x, y, z, )
– 另一种观点认为其导热机理类似于非导电固体, 即主要依靠原子、分子在其平衡位置附近的振 动,只是振动的平衡位置间歇地发生移动。
• 总的来说,关于导热过程的微观机理,目前 仍不很清楚。
• 本章只讨论导热现象的宏观规律。
【热对流(对流)】
(1)定义:由于流体质点发生相对位移而引起的
热量传递过程。 如炉墙外表面向大气散热;
背景问题:
(1)冬天,木凳与铁凳温度一样,但人们坐在铁凳 上比作在木凳上感到冷得多,这是问什么?
(2)一杯热牛奶,放在水里比摆在桌子上冷得快, 这又是为什么?
人体热量向凳子传递,由于铁比木头传热速 率快得多,使人体表面散热快,而体内向体
表补充热量又跟不上,所以感觉凉。 同是固体,材质不同则传热快慢不同。
(2)特点:
炉内高温气体与被加热物 料或炉墙内衬间的换热
✓热对流只发生在流体中。
✓流体各部分间产生相对位移
【热对流(对流)】
(3)产生对流的原因 ➢ 由于流体内部温度不同形成密度的差异,在浮力的
作用下产生流体质点的相对位移,使轻者上浮,重 者下沉,称为自然对流; ➢ 由于泵、风机或搅拌等外力作用而引起的质点强制 运动,称为强制对流。
• 传热的特点:传热发生在有温度差的地方,并 且总是自发地由高温处向低温处传递。

传热学完整课件PPT课件

传热学完整课件PPT课件
( 1 )稳态传热过程; ( 2 )非稳态传热过程。 1 )稳态传热过程(定常过程)
凡是物体中各点温度不随时间而变的热传递 过程均称稳态传热过程。) 凡是物体中各点温度随时间的变化而变化
的热传递过程均称非稳态传热过程。 各种热力设备在持续不变的工况下运行时
的热传递过程属稳态传热过程;而在启动、停 机、工况改变时的传热过程则属 非稳态传热 过程。
.
❖ 3 )教育思想发生了本质性的变化 ❖ 传热学课程教学内容的组织和表达方
面从以往单纯的为后续专业课学习服务转 变到重点培养学生综合素质和能力方面, 这是传热学课程理论联系实际的核心。从 实际工程问题中、科学研究中提炼出综合 分析题,对培养学生解决分析综合问题的 能力起到积极的作用。
.
❖ 2 、研究对象
第一章


.
§1-0 概 述
一、基本概念 ❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物体之间存在温差时,热量就会自发
的从高温物体传向低温物体。
.
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
❖ ( 3 )非导电固体:导热是通过晶格结构 的振动所产生的弹性波来实现的,即原子、 分子在其平衡位置附近的振动来实现的。
.
❖( 4 )液体的导热机理:存在两种不同的 观点:第一种观点类似于气体,只是复杂些, 因液体分子的间距较近,分子间的作用力对 碰撞的影响比气体大;第二种观点类似于非 导电固体,主要依靠弹性波(晶格的振动, 原子、分子在其平衡位置附近的振动产生的) 的作用。
.
b 微电子: 电子芯片冷却 c 生物医学:肿瘤高温热疗;生物芯片;组 织与器官的冷冻保存 d 军 事:飞机、坦克;激光武器;弹药贮 存 e 制 冷:跨临界二氧化碳汽车空调/热泵; 高温水源热泵 f 新能源:太阳能;燃料电池

传热学知识点

传热学知识点

传热学主要知识点1.热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。

[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。

a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h因素:流速、流体物性、壁面形状大小等。

传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:;空气:;保温材料:<;水垢:1-3;烟垢:。

8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

9.复杂传热过程Upside surface: adiabaticDownside surface: adiabatic xai LL2L A/A/A/第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

高等传热学ppt课件

高等传热学ppt课件
阐述复合换热过程的基本概念,包括其定义、分类以及在实际工程 中的应用。
复合换热过程的数学模型
建立复合换热过程的数学模型,包括热传导、对流换热和辐射换热 的综合效应,以及不同换热方式之间的耦合关系。
复合换热过程的数值模拟
采用数值模拟方法,对复合换热过程进行仿真分析,揭示其温度场 、流场和传热特性的变化规律。
06
高等传热学应用领域探讨
Chapter
微尺度传热现象研究
微尺度传热机制
探讨在微米和纳米尺度下,热传导、热对流 和热辐射等传热机制的特点和规律。
微尺度效应
分析微尺度下,表面积与体积比增大、热边界层变 薄等效应对传热过程的影响。
微纳器件热管理
研究微纳电子器件、MEMS器件等的热设计 、热分析和热控制方法,以提高器件性能和 可靠性。
多维稳态导热问题求解
多维稳态导热
物体内部温度分布不随时间变化,但热量在多 个方向上传递。
求解方法
通过求解多维导热微分方程,结合给定的定解 条件,得到物体内部的温度分布。
应用举例
求解复杂形状物体、多层材料组成的复合结构等在稳态导热下的温度分布。
03
对流换热过程分析与计算
Chapter
对流换热现象及分类
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以 与机械能或其他能量互相转换,但是在转换过程 中,能量的总值保持不变。
牛顿冷却定律
当物体表面与周围存在温度差时,单位时间从单 位面积散失的热量与温度差成正比。
热力学第二定律
不可能把热从低温物体传到高温物体而不产生其 他影响,或不可能从单一热源取热使之完全转换 为有用的功而不产生其他影响,或不可逆热力过 程中熵的微增量总是大于零。

传热学基础知识

传热学基础知识
2
T −绝 温 , ; 对 度 K c1 − 普 克 律 一 数 c1 = 3.743×108W ⋅ µm4 / m2; 朗 定 第 常 , c2 − 普 克 律 二 数 c2 =1.439×104 µm⋅ K. 朗 定 第 常 ,
维恩(位移)定律 λmax ⋅ T = 2897.6µm ⋅ K 斯蒂芬-波尔兹曼定律表达了黑体的辐射力和绝对温度之间的关系。其函 数关系式为: Eb = σ bT 4
J = E + ρG 式中 J − 有效辐射, E − 灰体表面的辐射力; W / m 2;
式中σ b — 黑体辐射常数,σ b = 5.67 × 10 −8 W (m 2 ⋅ K 4 ). /
该定律表明,黑体辐射力仅是温度的函数,黑体的辐射力和绝对温度的4次方 成正比.故斯蒂芬-波尔兹曼定律又称四次方定律。 为了计算方便,斯蒂芬-波尔兹曼定律还可以表示为
T 4 ) 100 式中Cb − 黑体辐射系数,Cb = 5.67W /(m 2 ⋅ K 4 )。 Eb = Cb (
黑体:如果物体能完全吸收外来的投射能量,即α=1,这样的物体称为绝对黑体, 简称黑体。 白体:如果物体能完全反射外来的透射能量,即ρ=1,这样的物体称为绝对白体, 简称白体。 透明体:如果物体能完全透射外来的透射能量,即τ=1,这样的物体称为透明体, 或称透热体。 必须指出的是上述的黑体、白体和透明体都是对全波长而言的。因此在一般 温度条件下,物体对外来射线的吸收和反射能力,并不能简单地按照物体颜色来 判断。
∆t ∂t =n ∆n→0 ∆ n ∂x 式 n −法 方 上 单 向 ; 中 线 向 的 位 量 ∂t 示 发 方 温 的 向 数 −表 沿 现 向 度 方 倒 。 ∂n gradt = n lim gradt = i ∂t ∂t ∂t + j +k ∂x ∂y ∂z

传热学教材 DOC 全套

传热学教材 DOC 全套

第一章绪论1-1 传热学概述一、什么是传热学传热学是研究热量传递规律的科学。

(热量传递由什么引起的)基于热力学的定义,热是一种传递中的能量。

传递中的能量不外乎是处于无序状态的热和有序状态的功,他们的传递过程常常发生在能量系统处于不平衡的状态下,而系统的状态是可以用其状态参数来确定的。

热力学的基本状态参数是压力p、温度T以及比容积v。

对于一个不可压缩的热力学系统而言,温度的高低就反映了系统能量状态的高低和单位质量系统内热能(或称热力学能,简称内能)的多少。

热力学第二定律告诉我们,能量总是自发地从高能级状态向低能级状态传递和迁移。

因此,热的传递和迁移就会发生在热系统的高内能区域和低内能区域之间,也就是高温区域和低温区域之间。

对于自然界的物体和系统,将其视为热力学系统时,他们常常是处于不平衡的能量状态之下,各部位存在着压力差和温度差,因而功和热的传递是一种非常普遍的自然现象。

因此,凡是有温度差的地方就有热量传递。

热量传递是自然界和工程领域中极普遍的现象。

我们学习传热学就是要掌握各种热量传递现象的规律,从而为设计满足一定生产工艺要求的换热设备,提高现有换热设备的操作和管理水平,或者对一定的热过程实现温度场的控制打下理论基础。

(课程安排)在本课程中,我们将首先简要的介绍传热学的主要研究内容,给出导热、对流与辐射这三种热量传递基本方式的概念及所传递热量的计算公式。

然后分别讨论导热、对流换热和辐射换热的基本规律,最后,在此基础上,把上述知识综合起来,介绍传热过程及换热设备的计算方法。

二、传热学的重要性几乎在每个工程技术部门中都会遇到传热问题。

(例子)例如建筑物的供热与降温。

自然界(沙尘暴)。

三、传热学与工程热力学在研究方法上的异同工程热力学与传热学都是研究热现象的,都以热能的传递与转换过程中的基本规律作为研究对象。

但是,工程热力学与传热学从不同的角度来研究热现象,因此在研究内容与方法上有很大区别。

1. 工程热力学着重研究的是在能量转换与传递过程中各种形式的能量在数量方面的关系以热能在质量方面的情况。

传热学 第一二章

传热学 第一二章
对于一维情况, A
dt dx
对于三维直角坐标系情况,有
q x t x
q y t y
q z
t z
t t t grad t t i j k x y z
图2-2 温度梯度
t t t t q i j k t n y z n x
(3) 对流换热热阻 t t t t Φ q 1 (hA) Rh 1 h rh
Rh 1 (hA) [ C W ]

rh 1 h [m2 C W ]
图1-6
3 热辐射
(1) 热辐射的研究方法:
黑体
修正(黑度)
实际物体
黑体的 辐射控 制方程
AT 4
AT 4
W
0

x
:热流量,单位时间通过给定面积的热量[W] q:热流密度,单位时间通过单位面积的热量[W/m2] A:垂直于导热方向的截面积[m2]
负号:代表热量传递方向与温度升高方向相反
(2) 导热系数
金属 非金属固体 液体 气体
(3) 一维稳态导热及其导热热阻
q dx
1 导热微分方程式的推导 理论基础:
Fourier 定律 + 能量守恒定律 导热微分方程式 下面我们来考察一个矩形微元六面体,如下图所示。
x z
x+dx
y
x
dx
假设:(1) 所研究的物体是各向同性的连续介质 (2) 导热系数、比热容和密度均为已知 (3) 物体内具有内热源;强度 [W/m3]; 内热源均匀分布;
根据能量守恒定律有:
导入微元体的总热流量in + 微元体内热源的生成热 g =

传热学基本知识

传热学基本知识

由式(2-1)可知导热系数是表征该材料导热能力的 物理量。材料的导热系数越大,则表示其导热性越好。不 同材料的导热系数是不同的;即使对于同一种材料,导热 系数的数值也随所处状态不同而有差异。各种材料的值在 有关热工手册中可查到。
如果对式(2-1)写成一般的微分形式,就获得一维 稳定导热的傅立叶定律表达式:
热辐射的本质决定了热辐射过程有如下三个特点:
1、一切物体只要其物理温度高于绝对零度,就会不断地 发射热射线。
2、辐射换热过程伴随着能量形式的两次转化,即物体的 部分内能转化为电磁波能发射出去,当它射线达到另 一物体表面而被其吸收时,电磁波能又重新转换为内 热能。
3、辐射换热与导热、对流换热不同,它不依靠物质的接 触而进行热量传递,如阳光能够穿越辽阔的低温太空 向地面辐射。
Q
1
1 2 1
F
1 2 1 /(1 F )
1 R ,1
( 1
2)
Q
2
2 3 2
F
2 3 2 /(2 F )
1 R ,2
( 2
3 )
Q
3
3 4 3
F
3 44 3 /(4 F )
1 R ,3
( 3
4
)
(2-4b)
式中 1、2、3 ——各层平壁导热系数,W/(m·℃);
1、 2、 3——各层平壁厚度,m;
1
1
1
0,则 1
3.黑体辐射力
试验和理论分析证明黑体的辐射能为:
E0= C0T 4
(2-7)
式中 E0——黑体单位时间内单位面积向外辐射时的能
量,W/m2,称为黑体的辐射力;
C0——黑体的辐射常数:5.67×10-8(W/(m2·K4));
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
微电子: 微电子: 电子芯片冷却
生物医学:肿瘤高温热疗;生物芯片; c 生物医学 : 肿瘤高温热疗 ; 生物芯片 ; 组织与器官的冷冻保存 d 军 贮存 飞机、坦克;激光武器; 事 : 飞机 、 坦克 ; 激光武器 ; 弹药
跨临界二氧化碳汽车空调/热泵; e 制 冷:跨临界二氧化碳汽车空调/热泵; 高温水源热泵 f 新能源:太阳能; 新能源:太阳能;燃料电池
第一章
绪论
1-1 传热学的研究内容及其在科学技术和 工程中的应用 1-2 热量传递的三种基本方式 1-3 传热过程和传热系数 1-4 传热学发展简史和研究方法
1-1 传热学的研究内容及其在科学技术和 工程中的应用
热电厂 (热能 (热能 机械能)
冰箱(机械能 热能)
在几个特殊领域中也有许多应用
a
航空航天: 航空航天:高温叶片气膜冷却与发汗冷
火箭推力室的再生冷却与发汗冷却; 却 ; 火箭推力室的再生冷却与发汗冷却 ; 卫星与空间站热控制; 空间飞行器重返大 卫星与空间站热控制 ; 气层冷却;超高音速飞行器(Ma=10 冷却; 10) 气层冷却;超高音速飞行器(Ma=10)冷却; 核热火箭、 电火箭; 微型火箭( 电火箭、 核热火箭 、 电火箭 ; 微型火箭 ( 电火箭 、 化学火箭) 化学火箭);太阳能高空无人飞机
传热学在生产技术等众多领域中的应用十分广泛: 传热学在生产技术等众多领域中的应用十分广泛:
特别是在下列技术领域大量存在传热问题
动力、化工、制冷、建筑、机械制造、 动力、化工、制冷、建筑、机械制造、新 能源、微电子、核能、航空航天、 能源、微电子、核能、航空航天、微机电 系统(MEMS)、新材料、军事科学与技术、 系统(MEMS)、新材料、军事科学与技术、 )、新材料 生命科学与生物技术… 生命科学与生物技术…
81. 81.heat pipe 热管 82. 82.heat transfer rate 热流量 83. 83.time constant 时间常数 84. 84.numerical solution 数值解 85.Stefan-Boltzmann’s 斯特潘85.Stefan-Boltzmann s law 斯特潘-波耳兹曼定律 86. 86.velocity boundary layer 速度边界层 87. 87.solar radiation 太阳辐射 88. 88.characteristic length 特征长度 89. 特征数(准则数) 89.characteristic number 特征数(准则数) 90. 90.irradiation 投入辐射 91. 91.turbulent flow 湍流 92. 92.external flow 外部流动 93. 93.flow along a flat plate 外掠平板 94.Wien’s 94.Wien s displacement law 维恩位移定律 95. 95.green house effect 温室效应 96. 96.steady –state heat conduction 稳态导热 state 97. 97.thermal resistance of fouling 污垢热阻 98. 98.absorptivity 吸收比 99. 99.back difference 向后差分 100. 100.forward difference 向前差分 101. 101.similarity principle 相似原理 102. 102.shape factor 形状因子 103.1103.1-dimensional steady state heat conduction 一维稳态导热
深入提高: 深入提高:
1.《Heat Transfer》J.P holaman-9th-9.ed 2002。 《 》 。 2. 《高等传热学》贾力等. 北京:高等教育出版社 2003 高等传热学》贾力等 北京: 3. 《微米 纳米尺度传热学》刘静 北京:科学出版社 2001 微米/纳米尺度传热学 刘静. 北京: 纳米尺度传热学》
传热学是研究热量传递规律 传热学是研究热量传递规律的科学 热量传递规律的科学
(以及热量传递的机理、规律、计算和测试方法) 以及热量传递的机理、规律、计算和测试方法)
热量传递过程的推动力: 热量传递过程的推动力:温差
凡是有温度差的地方就有热量传递;热量传递是 凡是有温度差的地方就有热量传递; 自然界和生产技术中一种非常普遍的现象。 自然界和生产技术中一种非常普遍的现象。 传热学在生产技术领域中的应用十分广泛。 传热学在生产技术领域中的应用十分广泛。 分为两大类: 分为两大类: 稳态热传递过程 非稳态热传递过程
传热学
Heat Transfer 教材: 教材
陶文铨北京: 《传热学》杨世铭,陶文铨北京:高等教育出版社,2007。 传热学》杨世铭 陶文铨北京 高等教育出版社, 。
参考书: 参考书
1. 《传热学》戴锅生 北京:高等教育出版社 2000。 传热学》戴锅生. 北京: 。 2. 《传热学(重点难点及典型题精解)》,王秋旺 传热学(重点难点及典型题精解) 王秋旺. 西安:西安交通大学出版社, 西安:西安交通大学出版社,2001。 。
参考书: 深入提高 ---- 参考书
传热学》课程专业英语词汇 《传热学》课程专业英语词汇
1. heat transfer 传热学 2. heat conduction 导热 3. convection heat transfer 对流换热 4. thermal radiation 热辐射 5. condensation heat transfer 凝结换热 6. boiling heat transfer 沸腾换热 7. number of heat transfer unit 传热单元数 8. heat exchanger 换热器 10. Fourier’s 9. temperature field 温度场 10. Fourier s law 傅里叶定律 11. 12. 11. Isothermal surface 等温面 12. temperature gradient 温度梯度 13. 14. 13. unsteady heat conduction 非稳态导热 14. Isotherms 等温线 15. 16. 15. lumped method 集总参数法 16. thermal conductivity 导热系数 17. 18. 17. heat flux 热流密度 18. thermal resistance 热阻 19. Newton’s 20. 19. Newton s law of cooling 牛顿冷却公式 20. boundary layer 边界层 21. 22. 21. thermal boundary layer 热边界层 22. continuity equation 连续性方程 23. 24. 23. laminar flow in tube 管内层流 24. turbulent flow in tube 管内湍流 25. in26. 25. in-tube boiling 管内沸腾 26. dimensional analysis 量纲分析 27. 28. 27. flow boundary layer 流动边界层 28. fin 肋片 29. 30. 29. fin efficiency 热效率 30. Reynolds number 雷诺数 31. 32. 31. Nusselt number 努谢尔数 32. Prandtl number 普朗克数 33. Planck’slaw 33. Planck slaw 普朗克定律 34. 34. boundary layer integral equation 边界层积分方程
35. 35.boundary layer differential equation 边界层微分方程 36. 36.boundary condition 边界条件 37.finite difference 差分 37. 38. 38.initial condition 初始条件 39. 39.transmissivity 穿透比 40. 40.mass transfer process 传质过程 41. 41.natural convection in infinite space 大空间自然对流 42.poor boiling 大容器沸腾 42. 43. 43.partial differential equation of heat conduction 导热微分方程 44. 44.numerical solution of heat conduction 导热问题数值解 45. 45.directional radiation intensity 定向辐射强度 46.log46.log-mean temperature difference 对数平均温差 47.multidimensional steady state heat conduction 多维稳态导热 47. 48. 48.emissivity 发射率 49. 49.analytical solution of transient heat conduction 非稳态导热问题分析解 50. 50.Fourier number 傅里叶数 51. work method of radiation heat exchange 辐射换热的网络法 52.emissive power 辐射力 52. 53. 53.Grashof number 格拉晓夫数 54. 隔热材料(保温材料,绝热材料) 54.insulating material 隔热材料(保温材料,绝热材料) 55. 55.spectral emissive power 光谱辐射力 56. 56.excess temperature 过余温度 57.nucleate boiling 核态沸腾 57.
58. 黑体(绝对黑体) 58.black body 黑体(绝对黑体) 59. 59.flow across single tube 横掠单管 60.flow across non-circular cylinder 横掠非圆形截面柱体 60. non61. 61.flow across tube bundles 横掠管束 62. 62.gray body 灰体 63. 63.effectiveness of heat exchanger 换热器的效能 64. 64.mixed convection 混合对流 65.Kirchhoff’s law 基尔霍夫定律 65.Kirchhoff s 66. 66.cross strings method 交叉线法 67. 67.view factor ,angle factor 角系数 68. 68.heat conduction with internal heat source 具有内热源的导热 69. erning equation 控制方程 place equation 拉普拉斯方程 70. mbert’s mbert s law 兰贝特定律 72. 72.discretized equation 离散方程 73. 73.critical insulation radius 临界绝缘直径 74 diffuse surface 漫射表面 75.film-wise condensation 膜状凝结 75.film76. 76.internal flow 内部流动 77.counter77.counter-flow 逆流 78. 78.gaseous radiation 气体辐射 79. 79.enhancement of heat transfer 强化传热 80.forced convection 强制对流 80.
相关文档
最新文档