气凝胶的详细介绍共28页
气凝胶简介演示
降低导热系数
气凝胶的导热系数较高,限制了 其在一些需要低导热系数领域的 应用,需要研发新型材料和制备 方法来降低其导热系数。
增强隔声性能
气凝胶的隔声性能有待提高,需 要研究如何通过改进结构和材料 来增强其隔音效果。
性能优化与改性研究
表面修饰
通过化学或物理方法对气凝胶表 面进行修饰,以提高其润湿性、
耐腐蚀性和抗氧化性等性能。
多孔结构调控
通过改变制备工艺参数,调控气凝 胶的孔径、孔隙率和比表面积等参 数,以提高其吸附性能、隔热性能 和机械性能等。
复合增强
将气凝胶与其他材料进行复合,以 提高其力学性能、电学性能和光学 性能等。
04
气凝胶的研究进展
新型制备方法研究Biblioteka 溶胶-凝胶法通过将无机盐或金属醇盐溶液进行水解、聚合,形成凝胶,再经干燥和热处理得 到气凝胶。此方法制备的气凝胶孔径较小,结构均匀,但制备过程复杂,需要大 量有机溶剂。
超临界干燥法
在超临界状态下,将凝胶置于高压反应釜中,通过控制压力和温度,使凝胶中的 溶剂变成超临界流体,然后迅速释放压力,使凝胶内部形成大量微孔,得到气凝 胶。此方法制备的气凝胶孔径较大,结构较均匀,但需要高压力设备。
3
经过老化、干燥和高温处理后,即可得到气凝胶 。
化学气相沉积法
化学气相沉积法是一种常用于制 备无机气凝胶的方法。
该方法将气体反应物引入反应室 ,在一定条件下发生化学反应, 生成固态物质并沉积在基底上。
通过控制反应条件和沉积时间, 可以制备出具有不同结构和性能
的气凝胶。
模板法
模板法是一种通过使用模板来制备气 凝胶的方法。
简单介绍气凝胶产品特点
其实气凝胶是一种固体物质形态,是世界上密度小的固体之一。
一般常见的气凝胶为硅气凝胶,也有碳气凝胶存在。
目前轻的硅气凝胶仅有3毫克每立方厘米,比空气重三倍,所以也被叫做“冻结的烟”或“蓝烟”。
气凝胶气凝胶物理性能包装形式:卷状厚度:3mm,5mm,6mm,10mm。
宽度:910mm,1200mm,1500mm。
密度:200kg/m3。
高适用温度:650℃或800℃。
疏水性:整体疏水。
导热系数:<0.018w/mk(25℃时)。
A1级防火气凝胶特点:孔隙率很高,可高达99.8%;纳米级别孔洞(20~100nm)和三维纳米骨架颗粒(2~5nm);高比表面积,可高达1000m2/g;低密度,可低至0.003g/cm3;气凝胶独特的结构决定了其具有极低的热导率,常温下可以低至0.013W/(mK);强度低,脆性大,由于其比表面积和孔隙率很大,密度很低,导致其强度很低。
气凝胶物理性能:参数密度12.5-18kg/m3,比表面积500-650m2/g,孔隙率95-98%,孔径20-70nm,孔容3.5ml/g,导热系数0.01-0.018w/mk,疏水性:疏水或亲水两类。
产品特性:1、独特纳米结构材料内部孔隙均在50-80纳米之间,本材料孔隙率高达90%以上。
气凝胶材料不同于传统隔热材料,相比传统隔热材料(玻璃纤维毡,硅酸铝棉)可以在达到同样隔热效果的前提下降低3至8倍的厚度及重量。
2、优越的隔热性能常温下(25℃)导热系数可达到0.015w/mk。
3、良好的耐温性能不同系列的本材料可分别耐受高600℃-1000℃的高温,低温使用范围接近绝对零度。
以上就是对于气凝胶讲述,相信大家已经有所了解,产品在使用时是有着很好的作用,当然我们的产品是有保证的,也有着很好的使用效果。
气凝胶简介ppt课件
气凝胶的热学特性及其应用
Ⅰ.气凝胶材质透明,光线可自由透射 Ⅱ.低折射率,对入射光几乎没有反射损失,太阳光透过率高达87% Ⅲ.纳米孔状材料,内部存在大量微小孔洞,孔隙率在80%~99.8%。 布满了无限多的孔壁,而这些孔壁都是辐射的反射面和折射面,极大 地阻滞了辐射的热量散失。
太阳能利用:因此气凝胶特别适合于用作太阳能集热器及其它集热装 置的保温隔热材料,当太阳光透过气凝胶进入集热器内部,内部系统 将太阳光的光能转化为热能,气凝胶又能有效阻止热量流失。
• 热传导:由于近于无穷多纳米孔的存在,热流在固体
中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构 成了近于“无穷长路径”效应,使得固体热传导的能力下 降到接近最低极限
9
气凝胶在太空任务的应用
美“火星探路者”探测器 (保护机器人电子仪器设备)
“火星漫步者”,抵挡入夜-100℃超低温
俄罗斯“和平号”空间
气凝胶可以作为飞机上使用的隔热消音材料 。据报道,航天飞机及宇宙飞船在重返大气 层时要经历数千摄氏度的白炽高温,保护其 安全重回地球的绝热材料正是SiO2气凝胶。 美国NASA在“火星流浪者”的设计中,使用 了SiO2气凝胶作为保温层,用来抵挡火星夜晚 的超低温。
20
工业设备及管道的保温
锅炉、炼解炉、 干燥机和窑的 保温
28
安装示意图
29
气凝胶复合材料
应用在暖气管道上的效果图
30
一层6mm厚的气凝胶复合材料 可使热水管的温度从86度降到30度
31
包裹在汽车的发动机上
应用在高速列车上
包裹在储油罐上
铺在地板上
32
33
房屋隔热效果对比
34
冷藏集装箱、保温集装箱
气凝胶——超级绝热保温材料
气凝胶——超级绝热保温材料气凝胶——改变世界的神奇材料二氧化硅气凝胶又被称作“蓝烟”、“固体烟”,是目前已知的最轻的固体材料,也是3迄今为保温性能最好的材料。
因其具有纳米多孔结构(1~100nm)、低密度(1,500kg/m)、低介电常数(1.1~2.5)、低导热系数(0.003~0.025 w/m•k)、高孔隙率(80,,99 8,)、高比表2面积(200~1000m/g)等特点,在力学、声学、热学、光学等诸方面显示出独特性质,在航天、军事、通讯、医用、建材、电子、冶金等众多领域有着广泛而巨大的应用前景,被称为“改变世界的神奇材料”。
气凝胶的特性及应用特性应用在所有固体材料中热导率最低,建筑节能材料,热学轻质,保温隔热材料,透明,浇铸用模具等。
超低密度材料密度 ICF以及X光激光靶 3(最低可达3kg/m)高比表面积,催化剂,吸附剂,缓释剂、离子交孔隙率多组分。
换剂、传感器等低折射率, Cherenkov探测器,光学透明,光波导,多组分, 低折射率光学材料及其它器件声学低声速声耦合器件低介电常数,微电子行业中的介电材料,电学高介电强度,电极,超级电容器高比表面积。
弹性,高能吸收剂,机械轻质。
高速粒子捕获剂气凝胶的发展世界上第一个气凝胶产品是1931年制备出的。
当时,美国加州太平洋大学(College of the Pacific)的Steven.S. Kistler提出要证明一种具有相同尺寸的连续网络结构的固体“凝胶”,其形状与湿凝胶一致。
证明这种设想的简单方法,是从湿凝胶中去除液体而不破坏固体形状。
如按照通常的技术路线,很难做到这一点。
如果只是简单地让湿凝胶干燥,凝胶将会收缩,常常使原来的形状破坏,破裂成小碎片。
也就是说,这种收缩经常是伴随着凝胶的严重破裂。
Kistler推测:凝胶的固体构成是多微孔的,液体蒸发时的液一气界面存在较大的表面张力,该表面张力使孔道坍塌。
此后,Kistler发现了气凝胶制备的关键技术(Kistler,1932)。
气凝胶的15个吉尼斯记录
气凝胶的15个吉尼斯记录(原创版)目录1.气凝胶的概述2.气凝胶的吉尼斯记录种类3.气凝胶的特点4.气凝胶的应用领域5.气凝胶的未来发展前景正文气凝胶是一种新型的高科技材料,它具有低密度、高孔隙度、低热导率等优异性能,因此被广泛应用于各个领域。
气凝胶由于其独特的性质,已经创造了 15 个吉尼斯世界纪录,下面我们将详细介绍这些记录。
1.气凝胶的概述气凝胶是一种由纳米级颗粒组成的多孔材料,它具有良好的绝热性能、低热导率和低密度。
气凝胶的主要成分是硅、氧、碳等元素,它具有很高的孔隙度,可以达到 90% 以上。
2.气凝胶的吉尼斯记录种类气凝胶目前保持着 15 个吉尼斯世界纪录,包括以下记录:(1) 最轻的固体材料:气凝胶的密度非常低,最低可以达到 0.16mg/cm3,因此被认为是世界上最轻的固体材料。
(2) 最高的孔隙度:气凝胶的孔隙度可以达到 90% 以上,因此具有非常好的绝热性能。
(3) 最低的热导率:气凝胶的热导率非常低,可以低至 0.013 W/m·K,因此被广泛应用于绝热材料。
(4) 最长的使用寿命:气凝胶具有非常长的使用寿命,可以长达 20 年以上。
(5) 最高的吸附能力:气凝胶具有非常高的吸附能力,可以吸附大量的气体和液体。
3.气凝胶的特点气凝胶具有以下特点:(1) 低密度:气凝胶的密度非常低,可以低至 0.16 mg/cm3。
(2) 高孔隙度:气凝胶的孔隙度可以达到 90% 以上。
(3) 低热导率:气凝胶的热导率非常低,可以低至 0.013 W/m·K。
(4) 耐高温:气凝胶可以耐受高温,最高可以达到 1200℃。
(5) 耐腐蚀:气凝胶具有很好的耐腐蚀性能,可以抵抗各种化学物质的侵蚀。
4.气凝胶的应用领域气凝胶由于其优异的性能,被广泛应用于各个领域,包括:(1) 绝热材料:气凝胶具有非常好的绝热性能,因此被广泛应用于建筑、家电等领域。
(2) 吸附材料:气凝胶具有非常高的吸附能力,因此被广泛应用于吸附气体和液体。
气凝胶简述
五氧化二钽-二氧化钛复合气凝胶(Ta2O5/TiO2)
纤维素-二氧化硅复合气凝胶
气凝胶相关检测标准
国家标准化管理委员会2017年10月14日发布公告, 气凝胶国家标准:《GB/T 34336-2017 纳米孔气凝胶复 合绝热制品》正式发布。该标准于2018年9月1日实施。 据悉这是中国第一个气凝胶材料方面的国家标准。
气凝胶的发展历史
• 早在1931年,美国加州太平洋大学的Steven S.Kistler就通过超临界干燥方法成功制备出二 氧化硅气凝胶。但因其制造成本高昂、易碎性,一直被局限在实验室中。
• 20世纪70年代,法国Teichner研究组开创了高品质气凝胶的快速制备方法,之后欧洲诸国如 瑞典、德国掀起了气凝胶研发的高潮。
08 建筑保温 10 环境净化 12 冷藏冷冻
纳米气凝胶毡
1
已经商品化的 气凝胶产品
纳米气凝胶板
2
气凝胶布、纸和异形件
气凝胶颗粒
气凝胶粉末
气凝胶涂料
3 4 5 6
气凝胶商业化进程的影响因素
制备工艺复杂
制备成本偏高
生产周期长
易燃、易爆
复合气凝胶举例
复合气凝胶材料的制备方法通常有两种:一种是在 凝胶过程前加入掺杂材料;另一种是先制备气凝胶颗粒 或者粉末,再加入掺杂材料和黏结剂,经模压或注塑成 型制成二次成型的复合体。一般所采用的掺杂材料有玻 璃纤维、莫来石纤维、岩棉、硅酸铝纤维、高岭土、蒙 脱土等。选用的掺杂材料的种类因气凝胶复合材料的应 用目的不同而不同。
• 1999年,美国宇航局的喷气推进实验室为“星尘”号太空探测器配备了尘埃收集装置,内部 填充气凝胶,用以捕获彗星尾部中高速的宇宙尘埃样品。
气凝胶的详细介绍课件
实验案例分析
案例一
采用正硅酸乙酯为硅源,乙醇为溶剂,氨水为催化剂,采用 溶胶凝胶法制备气凝胶。通过改变氨水的浓度,研究催化剂 对气凝胶性能的影响。
案例二
以甲基三甲氧基硅烷为硅源,采用乳化法制备气凝胶。通过 改变乳化剂的种类和浓度,研究乳化剂对气凝胶性能的影响 。
实验注意事项与安全措施
01
02
03
03
气凝胶的生产工艺及设备
气凝胶的生产工艺
气凝胶的生产工艺流程
01
从原料开始,经过一系列的化学反应和物理处理,最终得到气
凝胶产品。
气凝胶生产工艺的分类
02
根据生产工艺的不同,气凝胶可以分为化学气凝胶、物理气凝
胶和复合气凝胶等。
气凝胶生产工艺的特点
03
这些生产工艺具有不同的特点,如生产效率、产品性能等,根
气凝胶市场发展趋势
随着科技的不断进步和应用的深入拓 展,气凝胶市场将迎来更加广阔的发 展空间,预计未来几年将持续保持快 速增长态势。
气凝胶的技术发展趋势
气凝胶制备技术
目前,气凝胶的制备技术已经比较成熟,但制备效率、成本、环保性等方面仍 需进一步改进。未来,研究者将致力于开发更加高效、环保、低成本的制备技 术,以进一步推动气凝胶的应用。
气凝胶生产过程中的问题及解决方案
原料问题
气凝胶生产过程中,原料的纯度、稳定性等因素会影响产 品质量。解决方案:对原料进行严格筛选和检测,确保原 料的质量和稳定性。
反应控制问题
化学反应过程中,温度、压力、浓度等参数的控制会影响 产品质量。解决方案:采用先进的控制系统和检测设备, 对反应过程进行精确控制。
气凝胶的表面覆盖了大量的极性基团,使其具有很高的化学活性和吸附性能,可以 用于催化剂、吸附剂、隔热材料等领域。
气凝胶产品介绍
气凝胶的特性
孔隙率很高,可高达99.8% ;
纳米级别孔洞和三维纳米骨架颗粒;
高比表面积;
极低密度;
气凝胶独特的结构决定了其具有极低的热导率,常温下可以低至0.013W/(m.K);强度低,脆性大,由于其比表面积和孔隙率很大,密度很低,导致其强度很低。
性能参数
密度 12.5-18
比表面积 1400-1630
孔隙率 95-98%
孔径 7-14nm
孔容 3.5ml/g
导热系数 <0.018
产品性能:
1、超乎寻常的保温隔热性能
2、优异的吸附性能
3、高度多孔结构
4、高度疏水性能
5、透光度好
6、极低的密度
7、优良的隔音效果
8、良好的阻燃效果
9、绿色环保,无毒,无腐蚀,不含任何对人体有害的物质。
二氧化硅气凝胶综述
二氧化硅气凝胶简介气凝胶(aerogels)通常是指以纳米量级超微颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料。
气凝胶是一种固体,但是99%都是由气体构成,外观看起来像云一样。
气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。
最常见的气凝胶为二氧化硅气凝胶。
SiO2气凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,其孔隙率高达80-99.8%,孔洞的典型尺寸为1-100 nm,比表面积为200-1000 m2/g,而密度可低达3 kg/m3,室温导热系数可低达0.012 W/(m•k)。
正是由于这些特点使气凝胶材料在热学、声学、光学、微电子、粒子探测方面有很广阔的应用潜力。
一、气凝胶发展历史早在1931年,Steven.S.Kistler就开始研究气凝胶。
他最初采用的方法是用硅酸钠水溶液进行酸性浓缩,用超临界水再溶解二氧化硅,用乙醇交换孔隙中的水后,利用超临界流体干燥技术制成了最初的真正意义上的气凝胶。
这种材料的特点是透明、低密度、高孔隙率。
但受当时科研手段的限制,这种材料的研制并没有引起科学界的重视。
上世纪七十年代,在法国政府的支持下,Stanislaus Teichner在寻找一种用于存储氧和火箭燃料的多孔材料的过程中,找到一种新的合成方法,即把溶胶- 凝胶化学方法用于二氧化硅气凝胶的制备中。
这种方法推动了气凝胶科学的发展。
此后,气凝胶科学和技术得到了快速发展。
1983年Arlon Hunt 在Berkeley 实验室发现可用更安全、更廉价的二氧化硅气凝胶制作方法。
与此同时,微结构材料研究小组发现可用具有更低临界温度和临界压力的二氧化碳超临界流体取代乙醇作为超临界干燥的流体,使得超临界干燥技术得以向实用化阶段迈进。
八十年代后期,Larry Hrubesh 领导的研究者在Lawrence Livermore National Laboratory (LLNL) 制备了世界上最轻的二氧化硅气凝胶,密度是0.003 g/cm 3,仅有空气的3倍。
气凝胶的详细介绍
最早的气凝胶最早由美国科学工作者Kistler在1931年制得。制备 方法是对硅酸钠水溶液进行酸处理浓缩,然后用超临界水再溶解 二氧化硅,当排除水后,二氧化硅沉淀下来。为了出去凝胶中的 盐类,用水洗涤二氧化硅凝胶,然后用乙醇交换水。随后用乙醇 变成超临界流体,并慢慢释放乙醇行最初意义的气凝胶。
超临界水:是指当气压和温度达到一定值时,因高温而膨胀的水的密度 和因高压而被压缩的水蒸气的密度正好相同时的水。此时,水的液体和 气体便没有区别,完全交融在一起,成为一种新的呈现高压高温状态的 液体。
有机气凝胶的制备
有机气凝胶是由 pekal在 1989年首先提出的他利用间苯二 酚和甲醛之 间的缩合反应首次制备了RF有机气凝胶。反应物混合溶液在 Na2O3的 催化作用下凝胶化, 经超临界干燥后得到气凝胶。制备RF气凝胶最重 要的参数是催化剂浓度和溶液的PH值,样品的密度,比表面积以及颗粒 和孔尺寸等性能都会受到这两个因素的影响.
SiO2气凝胶作为一种纳米孔超级绝 热材料,除具有极低的热导率之外 还具有超轻质以及高热稳定性的特 性,它在工业、民用、建筑、航天 及军事等领域具有非常广泛的应用。
传统工业领域:如石化行业、化 工行业、冶金行业等等,管道、 炉窑及其它热工设备普遍存在, 用气凝胶隔热材料替代传统的保 温材料,节能效果明显。
近年来, 随着对碳纳米、 石墨烯等碳材料的研究越来越深入, 碳 气凝胶也逐渐成为有机气凝胶领域新的热点,并凭借其优良的导电性 和良好的力学性能有力地拓展了气凝胶的应用。
碳气凝胶的制备方法主要有两种, 一种方法是将碳源凝胶经过 水热处理使其碳化, 然后由冷冻干燥得到气凝胶。Fellingger 等以葡萄糖作为碳源、硼酸盐作为复合结构诱导剂制备了葡萄糖 凝胶,经水热碳化、冷冻干燥得到气凝胶, 其微观形貌与传统 的SiO2气凝胶类似。另一种方法,采用石墨烯、碳纳米管等能够 稳定分散在溶液中的碳材料,在一定条件下使其自组装成三维凝 胶, 然后冷冻干燥, 也可以得到碳气凝胶 。
气凝胶材料
气凝胶材料
气凝胶材料,是一种由固体颗粒和气体填充剂组成的多孔材料。
其具有低密度、低热导率、优异的保温性能等特点,在建筑、航空航天、能源等领域得到广泛应用。
首先,气凝胶材料具有低密度的特点。
其密度通常在0.1-
0.9g/cm³之间,仅为普通固体材料的5%左右。
这使得气凝胶
材料非常轻盈,适用于需要降低重量的应用场景。
例如,在航空航天领域,使用气凝胶材料可以减轻飞行器的重量,提高其燃料效率。
其次,气凝胶材料具有优异的保温性能。
由于气凝胶材料中充满了微小的孔隙空间,这些孔隙可以阻止热传导。
因此,气凝胶材料具有低热导率的特点,通常为0.01-0.03W/(m·K),是传
统绝热材料的几倍甚至几十倍。
这使得气凝胶材料成为一种非常理想的保温材料,可以有效降低建筑物的能耗,并提高室内的舒适度。
此外,气凝胶材料还具有优异的吸声性能。
由于其多孔结构和较高比表面积,气凝胶材料能够吸收和消散来自空气中的声波能量,降低噪音的传播。
因此,在建筑领域,可以使用气凝胶材料作为吸音板,改善室内的声环境。
此外,气凝胶材料还具有良好的化学稳定性和耐候性。
它能够抵御酸碱腐蚀、氧化等恶劣环境的侵蚀,具有长久的使用寿命。
另外,它还具有防火、隔热、抗震等特点,使其在建筑防火、通风管道等方面有较广泛的应用。
总结起来,气凝胶材料具有低密度、低热导率、优异的保温性能、吸声性能、化学稳定性和耐候性等特点,在建筑、航空航天、能源等领域有广泛的应用前景。
作为一种新型的材料,气凝胶材料的研究和开发将进一步推动科技的进步和社会的可持续发展。
气凝胶项目介绍
气凝胶的市场个例
民用冰箱 在美国每年有 3 亿 平方英尺的绝热材料用于冰箱 消耗 20% 民有电量 主要绝热材料为 polyureane foam (R=0.63~0.97), 有害环境(产生 温室効应, 破坏臭氧层, 然烧产生有毒物质) 使用气凝胶(R=1.76)可以提高绝热效果,节约能源,保护环境。
什么是气凝胶?
Samuel Stephens Kistler 1931年发明 最轻的固体:0.03 kg/m3 孔径率最高的纳米孔材料: 90%~99.8% 拥有最大比表面积: 200-1000 m2/g 热导率最低的固体材料:TC=12 mW/mK 隔热,透明, 憎水,防震, 隔音 化学性能稳定: 等同于玻璃 (SiO2)
16
输油管道的截面比较
17
液化气的生产,储存,运输及分销示意图
18
石油的生产,运输及分销所需隔热材料的比较
19
气凝胶隔热材料在石化企业的应用
20
气凝胶复合材料应用在石油冶炼,储存和管道输送上
安装示意图
1
2
3
4
5
6
22
气凝胶复合材料应用在暖气管道上的效果图 1
23
一层6mm厚的气凝胶复合材料可使热水管的 温度从86度降到30度
35
国外研究现状
目前国际上关于气凝胶材料的研究工作 主要集中在德国的维尔茨堡大学、BASF 公司、美国的劳伦兹·利物莫尔国家实验 室、桑迪亚国家实验室,法国的蒙彼利 埃材料研究中心,日本高能物理国家实 验室,美国阿斯潘公司,美国宇航局等。
36
国内研究现状
国内同 济大学侧重于气凝胶基础研究, 所制备的气凝胶隔热材料力学强度较小, 成形性较差,只有少量的实际应用。北 京科技大学利用硅酸钙石二次粒子与气 凝胶复合制备 隔热复合材料,仍处于实 验室阶段,无工程应用。纳诺高科为代 表的国内从事气凝胶隔热材料研究、生 产的企业起步较晚,技术力量薄弱,并 且无应用实例。
气凝胶简介
气凝胶简介气凝胶(Aerogel)是一种三维网络结构的纳米先进材料。
当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为气凝胶。
气凝胶具有低密度、低导热性、高孔隙率、耐高温、不燃等优越性能,在航空航天、建筑、石油化工、军工、热能工程、交通运输和家用电器等领域有非常广阔的应用前景。
简介气凝胶是一种固体物质形态,世界上密度最小的固体之一。
密度为3千克每立方米。
一般常见的气凝胶为硅气凝胶,最早由美国科学工作者Kistler在1931年因与其友打赌制得。
气凝胶的种类很多,有硅系,碳系,硫系,金属氧化物系,金属系等等。
aerogel是个组合词,此处aero是形容词,表示飞行的,gel显然是凝胶。
字面意思是可以飞行的凝胶。
任何物质的gel只要可以经干燥后除去内部溶剂后,又可基本保持其形状不变,且产物高孔隙率、低密度,则皆可以称之为气凝胶。
因为密度极低,目前最轻的气凝胶仅有0.16毫克每立方厘米,比空气密度略低,所以也被叫做“冻结的烟”或“蓝烟”。
由于里面的颗粒非常小(纳米量级),所以可见光经过它时散射较小(瑞利散射),就像阳光经过空气一样。
因此,它也和天空一样看着发蓝,如果对着光看则有点发红。
由于气凝胶中一般80%以上是空气,所以有非常好的隔热效果,一寸厚的气凝胶相当20至30块普通玻璃的隔热功能。
即使把气凝胶放在玫瑰与火焰之间,玫瑰也会丝毫无损。
制备方法气凝胶最初是由S.Kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为气凝胶。
在上世纪90年代中后期,随着常压干燥技术的出现和发展,科学界普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。
气凝胶的制备通常由溶胶凝胶过程和超临界干燥处理构成。
气凝胶简介
气凝胶的简介摘要气凝胶是由胶体粒子或高聚物分子相互聚结构成纳米多孔网络结构, 并在孔隙中充满气态分散介质的一种高分散固态材料。
近年来气凝胶研究得到了很大的发展, 本文对气凝胶的制备方法、结构与特性、应用前景等方面的研究进展作一简要的评述。
关键词气凝胶制备结构特性应用前景正文气凝胶是由胶体粒子或高聚物分子相互聚结构成纳米多孔网络结构, 并在孔隙中充满气态分散介质的一种高分散固态材料。
早在三十年代初斯坦福大学Kistler[1]就已经通过水解水玻璃的方法制得了SiO2气凝胶,但由于这种方法的制备工艺复杂和产品纯化困难而未得到发展。
直到八十年代以后随着溶胶-凝胶法研究的深入和超临界干燥技术的逐步完善, 使构成气凝胶的固体微粒更趋于细化, 微孔分布更趋于均匀, 从而使材料的密度更低,孔隙率更高。
目前的气凝胶主要是指一种以纳米量级超细微粒所聚集成的固态材料, 其孔隙率可达80~99.8%,孔洞尺寸一般在1~100nm之间,而密度变化范围可达3~600kg·m- 3。
气凝胶结构的特异性和诱人的应用前景, 引起化学家、物理学家、材料学家等的高度重视, 在美国气凝胶研究被列为九十年代十大热门科学技术之一。
本文将对气凝胶的制备方法、结构与特性、应用前景等方面的研究工作进行总结并作适当的评述。
1 制备方法气凝胶的制备通常由两个过程构成, 即溶胶-凝胶过程和超临界干燥。
迄今为止已经研制出的气凝胶有数十种, 它们分为单组分气凝胶如SiO2、Al2O3、V2O5、TiO2等, 多组分气凝胶如Al2O3/SiO2、TiO2/SiO2、Fe/SiO2、Pt/TiO2、(C60/C70)-SiO2、CaO/MgO/SiO2等, 有机气凝胶如RF、MF等和碳气凝胶。
1.1 溶胶-凝胶过程气凝胶的多孔网络结构首先由溶胶-凝胶过程形成, 即以金属有机化合物为母体, 在一定条件下通过水解-缩聚反应形成具有空间网络结构的醇凝胶。
气凝胶产品介绍
航空航天领域应用
航空航天领域应用
派宇航员登陆火星预定于2018年进行气凝胶正用来为人类首次登陆火星时所穿的太空服研制一种保温隔热衬里Aspen Aerogel公司的一位资深科学家马克·克拉耶夫斯基认为,一层18毫米的气凝胶将足以保护宇航员抵御零下130度的低温。他说:“它是我们所见过的最棒的绝热材料。”
光学领域
纯净的SiO2气凝胶是透明无色的,它的折射率(1.006~1.06)非常接近于空气的折射率,这意味着SiO2气凝胶对入射光几乎没有反射损失,能有效地透过太阳光。 SiO2气凝胶可以被用来制作绝热降噪玻璃。利用不同密度的SiO2气凝胶膜对不同波长的光制备光耦合材料,可以得到高级的光增透膜。 SiO2气凝胶的折射率和密度满足n-1≈2.1×10-4r/(kg/m3),当通过控制制备条件获得不同密度的SiO2气凝胶时,它的折射率可在1.008-1.4 范围内变化,因此SiO2气凝胶可作为切仑科夫探测器中的介质材料,用来探测高能粒子的质量和能量。
日常生活应用
声学领域
由于硅气凝胶的低声速特性,它还是一种理想的声学延迟或高温隔音材料。该材料的声阻抗可变范围较大(103~107 kg/m2·s),是一种较理想的超声探测器的声阻耦合材料水声反声材料是指声波由水中入射到材料层上能无损耗地全部反射出去的材料。在潜艇上构成声纳设备声学系统的材料中,水声反声材料是非常重要的,它可以使声纳单方向工作,消除非探测方向来的假目标信号的干扰,同时隔离装备体自身噪声,提高声纳的信噪比和增益。特性阻抗与水的特性阻抗严重失配的材料可用作水声反声材料。常压下空气的密度和声速都远远小于水的密度和声速,空气的特性阻抗将比水小得多,与水阻抗失配严重,因此含有大量空气的材料可作为常压水中的反声材料。气凝胶高孔隙率且超轻质的特点使其成为最佳的水声反声材料,既具有良好的水声反声效果,又不增加潜艇的重量。
《气凝胶的应用》课件
随着气凝胶市场的不断扩大,竞争也将日益激烈。企业需要加大研发和 创新投入,提高产品质量和技术水平,以在竞争中占据优势。
03
合作与产业链建设
气凝胶的研发和应用需要跨学科、跨领域的合作,形成完整的产业链。
通过与科研机构、上下游企业合作,共同推动气凝胶产业的健康发展。
谢谢
THANKS
其他领域
总结词
除了以上领域外,气凝胶在环保、传感器、光学器件等领域也有应用。
详细描述
气凝胶的多孔结构和良好的吸附性能使其在环保领域中可用于气体和有机溶剂的吸附净化;在传感器 领域中可用于气体传感器、压力传感器和温度传感器的制造;在光学器件领域中可用于制造透镜、反 射镜和光波导等光学元件。
03 气凝胶的应用案例
航空航天
总结词
气凝胶轻质、高强的特性使其成为航空航天领域的理想材料 。
详细描述
气凝胶具有极低的密度和很高的比强度,可以大幅度减轻航 天器的重量,提高有效载荷。此外,气凝胶还具有良好的耐 高温、抗氧化和抗冲击性能,可以用于制造火箭发动机的喷 嘴、航天器的热防护系统和结构件等。
吸附剂和催化剂载体
总结词
运行过程中受到温度变化的影响。
吸附剂和催化剂载体应用案例
总结词
气凝胶具有较大的比表面积和孔容,可 以作为吸附剂和催化剂载体。
VS
详细描述
气凝胶具有较大的比表面积和孔容,可以 吸附大量的气体和液体,因此在环保领域 可以用于气体和液体的吸附分离。此外, 气凝胶还可以作为催化剂载体,提高催化 剂的分散性和稳定性,从而提高催化反应 的效率和选择性。
电池和电容器应用案例
总结词
气凝胶具有优异的电学性能和稳定性,可以 用于电池和电容器的制造。
气凝胶的详细介绍解读
以航空航天应用为背景, 美国国家航空航天局的研究人员 Meador长期致力 于聚酰亚胺凝胶的制备和表征 。他们制备的气凝胶不仅具有良好的耐热性, 还具有耐弯折 、 耐压缩 的特点。凭借聚酰亚胺良好的介电性能, 这种气 凝胶还可以用作轻质接线天线的基板材料。
制 备 聚 酰 亚 胺 气 凝 胶 的 的 化 学 反 应 路 线
航空航天:与传统隔热材料相比,SiO2气凝胶隔热材料可以用更轻的 质量、更小的体积达到更好的隔热效果,这一特点在航空、航天应用 领域具有极大的优势。气凝胶可以作为飞机上使用的隔热消音材料。 据报道,航天飞机及宇宙飞船在重返大气层时要经历数千摄氏度的白 炽高温,保护其安全重回地球的绝热材料正是SiO2气凝胶。美国 NASA在“火星流浪者”的设计中,使用了SiO2气凝胶作为航天飞机 的保温层,用来抵挡火星夜晚的超低温。
气凝胶
汇报人:郭冬冬
目录: 气凝胶的历史 气凝胶的结构与制备 气凝胶特性与应用
气凝胶的历史
1931年Kistle:用硅酸钠为硅源,盐酸为催化剂,制备了水凝胶, 然后通过溶剂置换和乙醇超临界干燥,首次制备了SiO2气凝胶。 在此后的几年时间里,Kistler详尽地表征了SiO2气凝胶的特性, 并制备了许多有研究价值的其它气凝胶材料,包括:AI2O3、WO3 等气凝胶材料。
有机气凝胶的制备
有机气凝胶是由 pekal在 1989年首先提出的他利用间苯二 酚和甲醛之 间的缩合反应首次制备了RF有机气凝胶。反应物混合溶液在 Na2O3的 催化作用下凝胶化, 经超临界干燥后得到气凝胶。制备RF气凝胶最重 要的参数是催化剂浓度和溶液的PH值,样品的密度,比表面积以及颗粒 和孔尺寸等性能都会受到这两个因素的影响.
军事领域:SiO2气凝胶可作为飞机机舱的隔热层材料。可以作为 核潜艇、蒸汽动力导弹驱逐舰的核反应堆、蒸发器、锅炉以及复 杂的高温蒸汽管路系统的高效隔热材料,可以增强隔热效果,降 低舱内温度,同时有效降低隔热材料的用量,增大舱内的使用空间, 有效改善各种工作环境。