07_非线性弹性本构关系_2012_709704628

07_非线性弹性本构关系_2012_709704628
07_非线性弹性本构关系_2012_709704628

沥青混合料非线性粘弹性本构关系研究

沥青混合料非线性粘弹性本构关系研究 作者:梁俊龙, 高江平, LIANG Jun-long, GAO Jiang-ping 作者单位:长安大学公路学院,西安陕西,710064 刊名: 广西大学学报(自然科学版) 英文刊名:Journal of Guangxi University(Natural Science Edition) 年,卷(期):2012,37(4) 参考文献(15条) 1.詹小丽;张肖宁;王端宜改性沥青非线性粘弹性本构关系研究及运用 2009(04) 2.刘亚敏;韩森;徐鸥明疲劳试验中沥青混合料的弯拉劲度模量[期刊论文]-广西大学学报(自然科学版) 2010(01) 3.郑健龙Burgers粘弹性模型在沥青混合料疲劳特性分析中的运用 1995(03) 4.詹小丽基于DMA方法对沥青粘弹性性能的研究 2007 5.李德超沥青混合料动态模量实验研究 2008(01) 6.郑健龙;田小革;应荣华沥青混合料热粘弹性本构模型的实验研究[期刊论文]-长沙理工大学学报(自然科学版) 2004(01) 7.郑健龙;吕松涛;田小革沥青混合料粘弹性参数及其应用[期刊论文]-郑州大学学报(工学版) 2004(04) 8.KEMPFLE S;SCH FER I;BEYER H Fractional calculus viafunctional calculus:theory and applications 2002(01) 9.MAINARDI F;RABERTO M;GORENFLO R Fractional calculus and continuous-time finance:the waiting-time distribution 2002(3-4) 10.刘林超;张卫服从分数代数Maxwell本构模型的粘弹性阻尼材料性能分析[期刊论文]-材料科学与工程学报 2004(06) 11.张卫民;张淳源;张平考虑老化的混凝土粘弹性分数导数模型[期刊论文]-应用力学学报 2004(01) 12.张淳源;张为民非线性粘弹性理论及其应用研究进展[期刊论文]-湘潭大学自然科学学报 2003(04) 13.孙海忠;张卫分数算子描述的粘弹性材料的本构关系研究[期刊论文]-材料科学与工程学报 2006(06) 14.张为民一种采用分数阶导数的新流变模型理论[期刊论文]-湘潭大学自然科学学报 2001(01) 15.陈艳;陈宏善;康永刚分数Maxwell模型运用于PTFE松弛模量的研究 2006(11) 本文链接:https://www.360docs.net/doc/1619053498.html,/Periodical_gxdxxb201204016.aspx

非线性粘弹流体的本构方程

第三章非线性粘弹流体的本构方程 1.本构方程概念 本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。 不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。 两种。 唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。 分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。为此首先提出能够描述大分子链运动的正确模型是问题关键。 根据研究对象不同, 象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。

目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。 同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。 从形式上分, 速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。 积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。积分又分为单重积分或多重积分。 判断一个本构方程的优劣主要考察: 1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。 2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。 3)有承前启后的功能。例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。 4)最后也是最重要的一条,即实验事实(实验数据)是判断一个本构方程优劣的出发点和归宿。实践是检验真理的唯一标准。 本章重点介绍用唯象论方法对一般非线性粘弹流体建立的本构方程。分子论方法在第四章介绍。 2.速率型本构方程 2.1经典的线性粘弹性模型——Maxwell模型 已知高分子本体的线性粘弹行为可以用一些力学模型,如Maxwell模

非线性本构关系

第二章材料本构关系 §2.1本构关系的概念 本构关系:应力与应变关系或内力与变形关系 结构的力学分析,必须满足三类基本方程: (1)力学平衡方程:结构的整体或局部、静力荷载或动力荷载作用下的分析、精确分析或近似分析都必须满足; (2)变形协调方程:根据结构的变形特点、边界条件和计算精度等,可精确地或近似地满足; (3)本构关系:是连接平衡方程和变形协调方程的纽带,具体表达形式有:材料的应力-应变关系,截面的弯矩-曲率关系,轴力-变形(伸长、缩短)关系,扭矩-转角关系,等等。 所有结构(不同材料、不同结构形式和体系)的力学平衡方程和变形协调方程原则上相同、数学形式相近,但本构关系差别很大。有弹性、弹塑性、与时间相关的粘弹性、粘塑性,与温度相关的热弹性、热塑性,考虑材料损伤的本构关系,考虑环境对材料耐久性影响的本构关系,等等。正确、合理的本构关系是可靠的分析结果的必要条件。 混凝土结构非线性分析的复杂性在于: 钢筋混凝土---复杂的本构关系: 有限元法---结构非线性分析的工具: 非线性全过程分析---解决目前结构分析与结构设计理论矛盾的途径: §2.2 一般材料本构关系分类

1. 线弹性 (a) 线性本构关系; (b) 非线性弹性本构关系 图2-1 线弹性与非线性弹性本构关系比较 在加载、卸载中,应力与应变呈线性关系:}]{[}{εσD = (图2-1a ) 适用于混凝土开裂前的应力-应变关系。 2. 非线性弹性 在加载、卸载中,应力与应变呈非线性弹性关系。即应力与应变有一一对应关系,卸载沿加载路径返回,没有残余变形(图2-1b )。 }{)]([}{εεσD = 或 }{)]([}{εσσD = 适用于单调加载情况结构力学性能的模拟分析。 3. 弹塑性 图2 – 2 弹塑性本构关系(a)典型弹塑性;(b)理想弹塑性;(c)线性强化;(d)刚塑性

弹性力学简明教程(第四版)_习题解答

【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。 x y 2 h 1h b g ρo () 2h b >> h x y l /2/2 h M N F S F 1 q q 图2-17 图2-18 【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。 【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l 0 -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件: () () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件: ()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F gh b M ρ==-=

由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()222 10000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=????? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有 /20/2/2 0/2/20 /2()()()h xy x S h h x x N h h x x h dx F dx F ydx M τσσ=-=-=-?=-??=-???=-???? ③在x=l 的小边界上,可应用位移边界条件0,0====l x l x v u 这两个位移边界条件也可改用三个积分的应力边界条件来代替。 首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力: 110,x N N N N F F F q l F q l F ''=+=?=-∑ 0,0y S S S S F F F ql F ql F ''=++=?=--∑ 2 211110,'02222 A S S q lh ql M M M F l ql q lh M M F l =+++-=?=---∑ 由于x=l 为正面,应力分量与面力分量同号,故 M ' N F 'S F '

弹性力学简明教程

《弹性力学简明教程》是教育部“十五”国家规划教材。是在第二版的基础上,保持原有的体系和特点,根据教学改革的需要和国家的有关新标准,进行了修订。全书按照由浅入深的原则,安排了平面问题的理论及解答、空间问题的理论及解答和薄板弯曲理论。并着重介绍了弹性力学的数值解法,即差分法、变分法和有限单元法。《弹性力学简明教程》作为弹性力学的入门教材,注重基本理论(基本概念、基本方程和基本解法)的阐述及其应用,以使学生在掌握基本理论的基础上能阅读和应用弹性力学文献,并能初步应用弹性力学的数值解法解决工程实际问题。 主要符号表 第一章绪论1-1 弹性力学的内容1-2 弹性力学中的几个基本概念1-3 弹性力学中的基本假定习题 第二章平面问题的基本理论2-1 平面应力问题与平面应变问题2-2 平衡微分方程2-3 平面问题中一点的应力状态2-4 几何方程刚体位移2-5 物理方程2-6 边界条件2-7 圣维南原理及其应用2-8 按位移求解平面问题2-9 按应力求解平面问题相容方程 2-10 常体力情况下的简化应力函数习题 第三章平面问题的直角坐标解答3-1 逆解法与半逆解法多项式解答 .3-2 矩形梁的纯弯曲3-3 位移分量的求出3-4 简支梁受均布荷载3-5 楔形体受重力和液体压力习题

第四章平面问题的极坐标解答4-1 极坐标中的平衡微分方程4-2 极坐标中的几何方程及物理方程4-3 极坐标中的应力函数与相容方程4-4 应力分量的坐标变换式4-5 轴对称应力和相应的位移4-6 圆环或圆筒受均布压力4-7 压力隧洞4-8 圆孔的孔口应力集中4-9 半平面体在边界上受集中力 4-10 半平面体在边界上受分布力习题 第五章用差分法和变分法解平面问题5-1 差分公式的推导 5-2 应力函数的差分解5-3 应力函数差分解的实例5-4 弹性体的形变势能和外力势能5-5 位移变分方程5-6 位移变分法5-7 位移变分法的例题习题.. 第六章用有限单元法解平面问题6-1 基本量及基本方程的矩阵表示6-2 有限单元法的概念6-3 单元的位移模式与解答的收敛性6-4 单元的应变列阵和应力列阵6-5 单元的结点力列阵与劲度矩阵6-6 荷载向结点移置单元的结点荷载列阵6-7 结构的整体分析结点平衡方程组6-8 解题的具体步骤单元的划分6-9 计算成果的整理6-10 计算实例6-11 应用变分原理导出有限单元法基本方程习题 第七章空间问题的基本理论7-1 平衡微分方程7-2 物体内任一点的应力状态7-3 主应力最大与最小的应力7-4 几何方程及物理方程7-5 轴对称问题的基本方程习题

弹性力学简明教程(第四版)习题解答

弹性力学简明教程(第四版) 习题解答 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形

一种适合橡胶类材料的非线性粘弹性本构模型 (1)

第!"卷第#期应用力学学报$%&’!"(%’# +,-’)**! )**!年!)月!"#$%&%’()*$+,(-+..,#%/0%!"+$#!& !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !文章编号:!***.#/0/()**!)*#.**01.*2 一种适合橡胶类材料的非线性粘弹性本构模型" 安群力危银涛杨挺青 (华中科技大学武汉#0**1#) 摘要 借助非线性流变模型建立大变形情况非线性粘弹材料的本构关系,考虑到大多数橡胶类材料具有的几乎不可压缩性,以及体积响应和剪切响应的流变性能不同,将 变形梯度乘法分解为等容部分和体积变形部分,给出了一种适合橡胶类材料的非线 性粘弹性本构模型,并模拟了粘滞效应。对于极快或极慢的过程,该模型退化为橡胶 弹性理论;在小变形情况下退化为经典的广义3456,&&粘弹性材料。模型与热力学 第二定律相容,适合于大规模数值分析。 关键词:橡胶;粘弹性;有限变形;本构关系 中图分类号:70#2;8900文献标识码:: !引言 在橡胶结构的设计与分析中因橡胶类材料力学性能的复杂性使得数值方法起着越来越重要的作用[!]。目前,应用数值方法时缺乏适于大规模计算用的本构关系,本构模型成为解决问题的关键[);!*]。构造粘弹材料的本构模型,一种方法是从连续介质力学本构理论的基本原理出发,经过简化而得到[!*;!)]。另外一种常用的方法是基于内变量理论,借助于连续介质热力学和流变模型来确定材料的本构模型[#;/,!0;!<]。在通常的内变量理论中,自由能的构造、内变量的选取及演化方程的确定有一定的困难。 本文利用非线性流变模型,认为总应力等于弹性应力与非弹性应力的和,通过平衡应变能函数表述其演化方程,绕过了通常内变量理论的困难,在参考位形内建立了以=>%&4.?>@-AA%BB 应力和C@,,D应变表示的大变形非线性粘弹性本构关系,给出了一种适合橡胶类材料的非线性粘弹性本构模型,物理意义简明。在一定条件下模型可以退化为相应的弹性或线粘弹性模型,讨论了材料的粘滞现象。 "基金项目:国家自然科学基金资助项目(!/<0)*0*)来稿日期:)***.*#.*0修回日期:)***.!!.!1 万方数据 第一作者简介:安群力,男,!/<"年生,博士,华中科技大学力学系;研究方向:粘弹塑性理论及其应用E

弹性力学简明教程(第四版)-习题解答

【2-9】【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件:() () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件:()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板 厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F gh b M ρ==-= 由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()22210000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=?? ??? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力

(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答

【3-1】为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2-15),而在小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题? 【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全得到满足,往往比较困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个积分的应力边界条件来代替精确的应力边界条件(公式2-15),就会影响大部分区域的应力分布,会使问题的解答精度不足。 【3-2】如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,固而可以不必校核。 【解答】区域内的每一微小单元均满足平衡条件,应力边界条件实质上是边界上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件。研究对象整体的外力是满足平衡条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。 【3-3】如果某一应力边界问题中有m 个主要边界和n 个小边界,试问在主要边界和小边界上各应满足什么类型的应力边界条件,各有几个条件? 【解答】在m 个主要边界上,每个边界应有2个精确的应力边界条件,公式(2-15),共2m 个;在n 个次要边界上,如果能满足精确应力边界条件,则有2n 个;如果不能满足公式(2-15)的精确应力边界条件,则可以用三个静力等效的积分边界条件来代替2个精确应力边界条件,共3n 个。 【3-4】试考察应力函数3 ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)? 【解答】⑴相容条件: 不论系数a 取何值,应力函数3 ay Φ=总能满足应力函数表示的相容方程,式(2-25). ⑵求应力分量 当体力不计时,将应力函数Φ代入公式(2-24),得 6,0,0x y xy yx ay σσττ==== ⑶考察边界条件 上下边界上应力分量均为零,故上下边界上无面力.

丁基橡胶粘弹性材料的非线性蠕变本构描述

第24卷 第3期应用力学学报Vo l.24 No.3 2007年9月CHINESE JOURNAL OF APPLIED MEC HANIC S S.2007 文章编号:1000-4939(2007)03-0386-05 丁基橡胶粘弹性材料的非线性蠕变本构描述* 高 庆 林 松 杨显杰 (西南交通大学 610031 成都) 摘要:对丁基橡胶ZN-17粘弹性材料进行了不同温度、不同应力水平下的蠕变实验,揭示了该材料的非线性蠕变特性。基于蠕变实验结果,对标准线性固体模型描述该材料蠕变行为的预言能力进行了评估,提出了新的非线性蠕变本构模型。通过与实验结果比较,表明新模型能较好地描述该材料的非线性蠕变特性。 关键词:ZN-17;粘弹性;蠕变;非线性变形行为;本构描述 中图分类号:O321 文献标识码: A 1 引 言 随着阻尼材料日益广泛的应用于各种工程实际,粘弹性材料作为阻尼材料已成为当今世界占有重要地位的一类新型材料,其时相关的力学行为(如蠕变、松弛、回复等)的实验研究也日益迫切[1-5]。蠕变是指在一定温度和恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象,是粘弹性材料静态粘弹性的基本表现[2-4]。目前在结构分析中常采用标准线性固体模型、Burgers模型以及广义M ax-w ell模型等线性机械模型描述该类材料的蠕变行为,但随着粘弹性材料应用范围的扩大和环境要求的提高,非线性行为的本构关系研究已成为急需解决的问题[4-7]。许多学者[8-14]对各类粘弹性材料进行了蠕变实验研究,揭示其非线性行为,并建立了非线性本构模型。本文对丁基橡胶ZN-17粘弹性材料进行了不同温度、不同应力水平下的蠕变实验研究,表明该材料的变形行为具有非线性粘弹性特征。针对蠕变实验的结果,首先对标准线性固体模型对该材料的蠕变行为的预言能力进行了评估。为了改进模型预言能力,本文提出的非线性蠕变本构模型,预言结果与实验结果比较表明:本文提出的模型能较好地反映该材料的蠕变变形特性。 2 蠕变实验及结果分析 2.1蠕变实验条件 蠕变实验采用ZN-17粘弹性阻尼材料,使用直径Υ=10mm,高h=15m m的圆柱形试样。实验仪器为M ET RAVIB VA4000粘弹谱仪(温度范围为-150℃~450℃),激励模式为压缩模式。实验控制和数据采集都由计算机来实现。蠕变实验工况见表1。 表1蠕变实验工况 温度T应力σ0(各应力下保持时间为500s) 25℃0.022M P a、0.039M Pa、0.05M Pa、0.056M Pa 60℃0.011M P a、0.018M Pa、0.026M Pa、0.033M P a 100℃0.018M P a、0.025M Pa、0.032M Pa 2.2 蠕变实验结果及分析 对于一般粘弹性材料,其蠕变曲线分为两个阶段。第一阶段是瞬态变形与非稳定蠕变变形阶段,即一旦施加应力,试样立即产生瞬时应变,之后产生非稳定蠕变,有较大的蠕变速率dεc/d t,但随时间增加而逐渐减小;第二阶段为稳态蠕变阶段,蠕变应变随 *来稿日期:2005-12-29 修回日期:2006-10-31 第一作者简介:高庆,女,1939年生,西南交通大学,教授;研究方向———疲劳及材料本构关系。E-mail:gaoqing388@https://www.360docs.net/doc/1619053498.html,

弹性力学简明教程_第四章_课后作业题答案

第四章 平面问题的极坐标解答 【4-8】 实心圆盘在r ρ=的周界上受有均布压力q 的作用,试导出其解答。 【解答】实心圆盘是轴对称的,可引用轴对称应力解答,教材中的式(4-11),即 2 2(12ln )2(32ln )20A B C A B C ρ?ρ? σρρσρρτ? =+++? ???=-+++?? ?? =?? (a) 首先,在圆盘的周界(r ρ=)上,有边界条件()=r q ρρσ=-,由此得 -q 2 (12ln )2A B C ρσρρ = +++= (b) 其次,在圆盘的圆心,当0ρ→时,式(a )中ρσ,?σ的第一、第二项均趋于无限大,这是不可能的。按照有限值条件(即,除了应力集中点以外,弹性体上的应力应为有限值。),当=0ρ时,必须有0A B ==。 把上述条件代入式(b )中,得 /2C q =-。 所以,得应力的解答为 -q 0ρ?ρ?σστ===。 【4-9】 半平面体表面受有均布水平力q ,试用应力函数 2(sin 2)ΦρB φC φ=+求解应力分量(图4-15)。 【解答】(1)相容条件: 将应力函数Φ代入相容方程40?Φ=,显然满足。 (2)由Φ求应力分量表达式 =-2sin 222sin 222cos 2B C B C B C ρ?ρ?σ?? σ??τ??+?? =+??=--??

(3)考察边界条件:注意本题有两个?面,即2 π ?=± ,分别为?±面。在?±面 上,应力符号以正面正向、负面负向为正。因此,有 2()0,??πσ=±= 得0C =; -q 2 (),ρ??πτ=±= 得2 q B =-。 将各系数代入应力分量表达式,得 sin 2sin 2cos 2q q q ρ?ρ?σ?σ?τ? ?=?? =-??=?? 【4-14】 设有内半径为r 而外半径为R 的圆筒受内压力q ,试求内半径和外半径的改 变量,并求圆筒厚度的改变量。 【解答】本题为轴对称问题,只有径向位移而无环向位移。当圆筒只受内压力q 的情况下,取应力分量表达式,教材中式(4-11),注意到B =0。 内外的应力边界条件要求 r r ()0,()0;(), ()0 R R q ρ?ρρ?ρρρρρττσσ=======-= 由表达式可见,前两个关于ρ?τ的条件是满足的,而后两个条件要求 r 2 22,20A C q A C R ?+=-??? ?+=??。 由上式解得 22 2 ,C () 2() 22 22 qr R qr A R -r R -r =-=。 (a) 把A ,B ,C 值代入轴对称应力状态下对应的位移分离,教材中式(4-12)。 ()()222211cos sin ,(R r )qr R u I K E ρμρμ??ρ?? =-++++??-? ? (b) sin cos 0u H I K ?ρ??=-+=。 (c) 式(c )中的ρ,?取任何值等式都成立,所以各自由项的系数为零

弹性力学简明教程 课后习题答案

《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取 它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是: 主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到 (4)由求应力。 (5)主要边界x=0,b上的条件为 次要边界y=0上,可应用圣维南原理,三个积分边界条件为 读者也可以按或的假设进行计算。 3-6 本题已给出了应力函数,应首先校核相容方程是否满足,然后再求应力,并考察边界条件。在各有两个应精确满足的边界条件,即 而在次要边界y=0 上,已满足,而的条件不可能精确满足(否则只有A=B=0, 使本题无解),可用积分条件代替: 3-7 见例题2。 3-8 同样,在的边界上,应考虑应用一般的应力边界条件(2-15)。

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程(第四版)课后习题解答 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程。

粘弹性模型

土体动本构模型的研究现状 土体实际动本构关系是极其复杂的,它在不同的荷载条件、土性条件及排水条件下表现出极不相同的动本构特性. 要建立一个能适用于各种不同条件的动本构模型的普遍形式是不切实际的,其切实的方法是对于不同的工程问题,应该根据土体的不同要求和具体条件,有选择地舍弃部分次要因素,保留所有主要因素,建立一个能反映实际情况的动本构模型. 目前,具体建立的动本构模型已达数十个,大致可分为两大类,即粘弹性模型和弹塑性模型.曲线模型,均属于等效线性模型[2 ] 。Masing 类模型以曲线Hardin Drnevich 或Ram2berg Osgood 曲线等为骨干,改用瞬时剪切模量代替前面的平均剪切模量。为使这类动本构模型更接近实测的动应力应变曲线,很多学者做了大量的工作,以使其能够描述不规则循环荷载作用下土的动本构关系[3 ] 。Iwan 用一系列具有不同屈服水平的理想弹塑性元件来描述土的动本构关系,它分串联型和并联型2 种构成方式。串联型和并联型的伊万模型所描述的动应力应变特性基本上一致,只是前者以应变为自变量,后者以应力为自变量[4 ] 。郑大同在伊万模型的基础上,提出了一个新物理模型,该模型的骨架曲线可为加工硬化状,也可为加工软化状,骨架曲线与滞回曲线的2 个分支既可相同,也可不同[5 ] 。一般的粘弹性模型不能计算永久变形(残余变 形) ,在主要为弹性变形的情况下比较合适。但实际上,土在往复荷载作用下还会因土粒相互滑移,形成新的排列而产生不可恢复的永久变形。为此,Mar2tin 等人根据等应变反复单剪试验结果,提出了循环荷载作用下永久体积应变的增量公式[6 ] 。后来,日本学者八木、大冈和石桥等分别由等应力动单剪试验及扭剪试验各自提出了计算永久体积应变增量的经验公式。国内的姜朴、徐亦敏、娄炎根据动三轴试验应变与破坏振次的关系式。沈珠江[7 ] 对等价粘 弹性模型进行了较全面的研究,认为一个完整的粘弹性模型应该包含4 个经验公式: (1) 平均剪切模量; (2) 阻尼比; (3) 永久体积应变增量和永久剪切应变增量; (4) 当饱和土体处于完全不排水或部分排水条件下,还需给出孔隙水压力增长和消散模型。粘弹性理论是目前应用中的主流,但存在多方面的不足,如不能考虑应变软化,不能考虑应力路径的影响,不能考虑土的各向异性以及大应变时误差大等,但它是试验结果的归纳,形式上直观简单,经过处理改进后,结合有限元程序,就可以计算出循环荷载作用下土工构造物的孔隙水压力和永久变形的 平均发展过程。 211 粘弹性理论 人们早在生产实践中认识到土体的应力—应变关系是非线性的,但实际工程中常用线性理论对这种非线性关系进行简化。自Seed 提出用等价线性方法近似考虑土的非线性以来,粘弹性理论已有了较大的发展。在土体的动力反应分析中,常用的粘弹性理论有等效线性模型和曼辛型非线性模型2 大类。前者把土体视为粘弹性材料,不寻求滞回曲线(即描述卸载与再加载时应力应变规律的曲线) 的具体数学表达式,而是给出等效弹性模量和等效阻尼比随剪应变幅值和有效应力状态变化的表达式,即以G 和λ作为它的动力特性指标引入实际计算;后者则根据不同的加载条件、卸载和再加载条件直接给出动应力应变的表达式。在给出初始加载条件下的动应力应变关系式(骨干曲线方程) 后,再利用曼辛二倍法得出卸荷和再加荷条件下的动应力应变关系,以构成滞回曲线方程[1 ] 。Hardin Drnevich 模型、Ramberg Osgood 模型、双线性模型及一些组合 基于阻尼的地震循环荷载作用下黏土非线性模型 尚守平刘方成王海东 ( 湖南大学, 湖南长沙410082) 摘要: 提出一种基于阻尼比的黏土动应力应变模型, 通过在滞回曲线中显示地引入代表阻尼比大小的形状系数,使得理论滞回曲线真实地反应土体的滞回阻尼性能。首先推导在等幅对称

弹性力学简明教程

高等学校教科书:《弹性力学》简明课程(第4版)由第3版(《普通高等教育第十个五年计划》国家计划教科书)根据《力学基础》课程的教学指导分委员会制定。2006年至2010年,是教育部大学力学教学指导委员会。《弹性力学教学的基本要求》和近十年的教学实践经验。本书的前三版被国内工程院校广泛使用。高校教材:简明的弹性课程(第4版)按照从简单到深层的原则,安排了平面问题的理论和解决方案,空间问题的理论和解决方案以及薄板弯曲理论。主要介绍了弹性的主要近似方法,即差分法,变化法和有限元法。高校教材:弹性力学简明课程(第四版),作为弹性力学入门教材,着重于基本理论(基本概念,基本方程式和基本解)的阐述,并重点介绍了思想,方法和方法。解决弹性力学问题的步骤,以便学生在掌握基础理论的基础上阅读和应用弹性力学文献。弹性力学的近似解可用于解决实际工程问题。 目录 主要符号表 第一章导论

1-1弹性含量 1-2弹性中的一些基本概念 1-3弹性的基本假设 练习第二章平面问题的基本理论 2-1平面应力问题和平面应变问题 2-2平衡微分方程 2-3平面问题中点的应力状态 刚体位移2-4个几何方程式 2-5物理方程 2-6边界条件 2-7圣维南原理及其应用 2-8通过位移解决平面问题 2-9根据应力求解平面问题的相容方程

2-10定力作用下的简化应力函数 练习第3章解决平面问题的直角坐标3-1逆和半逆多项式解 3-2矩形梁的纯弯曲 3-3位移分量的计算 3-4均布荷载下的简支梁 3-5楔会受到重力和液压的作用 第4章平面问题的极坐标解 4-1极坐标系中的平衡微分方程 4-2极坐标中的几何和物理方程 4-3极坐标中的应力函数和相容性方程4-4应力分量的坐标转换公式 4-5轴对称应力及相应的位移

弹性力学本构关系

本构关系 1. 各向同性线性弹性本构方程及其中的物理常数G 、λ、K 与E 、μ的关系式; 2. 球量和偏量的本构方程。 对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 一般情况下,材料的应力与应变呈某一函数关系,可表示为: 当式中的自变量:εx 、εy 、εz 、γyz 、γzx 、γxy 为小量时,可对其按Taylor 级数展开,并略去二阶以上小量,如第一式,有 上式中(f 1)0表达了函数f 1在应变分量为零时的值,根据应力应变的一般关系式可知,它代表了初始应力。 而,,0 1 ???? ????x f ε表示函数f 1 对应变分量的一阶偏导数,在小变形条件下,它们均为常数,这样可得一线性方程组: 上述关系式是胡克(Hooke )定律在复杂应力条件下的推广,因此又称作广义胡克定律。 广义胡克定律中的系数C mn (m ,n=1,2,…,6)称为弹性常数,一共有36个,但可以证明,只有21个常数独立。 如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,C mn 是坐标x ,y ,z 的函数。 但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。 这一条件反映在广义胡克定理上,就是C mn 为弹性常数。 对于完全的各向异性弹性体,本构关系有21个弹性常数,

对于具有一个弹性对称面的各向异性材料,本构各向具有13个弹性常数。 对于正交各向异性材料,弹性常数有9个。 正交各向异性材料的本构方程中,正应力仅与正应变有关,切应力仅与对应的切应变有关,因此拉压与剪切之间,以及不同平面内的剪切之间将不存在耦合作用。 1.极端各向异性体的弹性常数为21个。 2.具有一个对称面的各向异性材料 正交各向异性体:物体内的任一点存在三个弹性对称平面,在每一个对称平两侧对称方向上各自具有相同的弹性性质,这种物体称为正交各向异性体。正交各向异性体的弹性常数为9个。 3.横观各向同性体 若物体内的任一点在平行于某一平面的所各方向都具有相同的弹性性质,而垂直于该面的弹性性质不同,这种正交异性体称为横观各向同性体。如:层状岩层、复合板材等。横观各向同性体的弹性常数为5个。

弹性力学基本概念和考点..

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于 xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行 于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

相关文档
最新文档