2019中考数学真题分类汇编 圆的基本性质 含解析
2019年全国各地中考数学试题分类汇编(第一期) 专题30 圆的有关性质(含解析)
90°,然后根据圆周角定理确定∠ASB 的度数.
【解答】解:设圆心为 O,连接 OA.OB,如图,
∵弦 AB 的长度等于圆半径的 倍, 即 AB= OA, ∴OA2+OB2=AB2, ∴△OAB 为等腰直角三角形,∠AOB=90°,
∴∠ASB= ∠AOB=45°.
故选:C.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都 等于这条弧所对的圆心角的一半.
第 7 页 共 65 页
D.70°
故选:B. 【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
12. (2019•甘肃武威•3 分)如图,点 A,B,S 在圆上,若弦 AB 的长度等于圆半径的 倍, 则∠ASB 的度数是( )
A.22.5°
B.30°
C.45°
D.60°
【分析】设圆心为 0,连接 OA.OB,如图,先证明△OAB 为等腰直角三角形得到∠AOB=
A. 6dm
B. 5dm
【答案】 B
【考点】垂径定理的应用
【解析】解:连结 OD,OA,如图,设半径为 r,
C. 4dm
D. 3dm
∵AB=8,CD⊥AB, ∴AD=4,点 O、D.C 三点共线, ∵CD=2, ∴OD=r-2, 在 Rt△ADO 中, ∵AO2=AD2+OD2 , , 即 r2=42+(r-2)2 , 解得:r=5, 故答案为:B. 【分析】连结 OD,OA,设半径为 r,根据垂径定理得 AD=4,OD=r-2,在 Rt△ADO 中,由 勾股定理建立方程,解之即可求得答案.
第 2 页 共 65 页
A. B. C. D.
【答案】C 【解析】
解:∵四边形 ABCD 是菱形,∠D=80°, ∴∠ACB= ∠DCB= (180°-∠D)=50°, ∵四边形 AECD 是圆内接四边形, ∴∠AEB=∠D=80°, ∴∠EAC=∠AEB-∠ACE=30°, 故选:C. 根据菱形的性质得到∠ACB= ∠DCB= (180°-∠D)=50°,根据圆内接四边形的 性质得到∠AEB=∠D=80°,由三角形的外角的性质即可得到结论. 本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形 的性质是解题的关键.
【2019中考数学真题+分类汇编】专题11圆(第01期)(解析版)【2019数学中考真题分类汇编系列】
专题11 圆1.(2019•福建)如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB 等于A.55°B.70°C.110°D.125°【答案】B【解析】连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°-90°-90°-110°=70°.故选B.2.(2019•重庆)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为A.60°B.50°C.40°D.30°【答案】B【解析】∵AC是⊙O的切线,∴AB⊥AC,且∠C=40°,∴∠ABC=50°,故选B.3.(2019•长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是A.2πB.4πC.12πD.24π【答案】C【解析】S=2120π6360⨯⨯=12π,故选C.4.(2019•甘肃)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=A.54°B.64°C.27°D.37°【答案】C【解析】∵∠AOC=126°,∴∠BOC=180°-∠AOC=54°,∵∠CDB=12∠BOC=27°.故选C.5.(2019•成都)如图,正五边形ABCDE内接于⊙O,P为DE上的一点(点P不与点D重合),则∠CPD 的度数为A.30°B.36°C.60°D.72°【答案】B【解析】如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD=3605=72°,∴∠CPD=12∠COD=36°,故选B.6.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为A .2BC .32D【答案】D【解析】∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD AB , ∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB ∶CB ,∴下面圆锥的侧面积.故选D . 7.(2019•黄冈)如图,一条公路的转弯处是一段圆弧(AB ),点O 是这段弧所在圆的圆心,AB =40 m ,点C 是AB 的中点,且CD =10 m ,则这段弯路所在圆的半径为A .25 mB .24 mC .30 mD .60 m【答案】A【解析】∵OC ⊥AB ,∴AD =DB =20 m ,在Rt △AOD 中,OA 2=OD 2+AD 2,设半径为r 得:r 2=(r -10)2+202,解得r =25 m ,∴这段弯路的半径为25 m ,故选A .8.(2019•山西)如图,在Rt △ABC 中,∠ABC =90°,AB BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为A .42π- B .42π+C .πD .π2【答案】A【解析】∵在Rt △ABC 中,∠ABC =90°,AB ,BC =2,∴tan A =3BC AB ==,∴∠A =30°,∴∠DOB =60°,∵OD =12AB DE =32,3222π-=-,故选A.9.(2019•黄冈)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为__________.【答案】4π【解析】扇形的弧长=120π6180⨯=4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,故答案为:4π.10.(2019•安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为__________.【解析】如图,连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=12CE=2,∵CD⊥AB,∠CBA=45°,∴CD.11.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12 cm,底面圆半径为3 cm,则这个冰淇淋外壳的侧面积等于__________cm2(结果精确到个位).【答案】113【解析】这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm2).故答案为:113.12.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是__________.(结果保留π)【答案】π-1【解析】如图,延长DC,CB交⊙O于M,N,则图中阴影部分的面积=14×(S圆O-S正方形ABCD)=14×(4π-4)=π-1,故答案为:π-1.13.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥O A.若OA=则阴影部分的面积为__________.π【解析】如图,作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥O A.OA=∴∠AOD=90°,∠BOC=90°,OA=OB,∴∠OAB=∠OBA=30°,∴OD =OA ·tan30°=3=2,AD =4,AB =2AF =2×2=6,OF ,∴BD =2,∴阴影部分的面积是:S △AOD +S 扇形OBC -S △BDO π+=,π.14.(2019•重庆)如图,四边形ABCD 是矩形,AB =4,AD =A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是__________.【答案】8 【解析】如图,连接AE ,∵∠ADE =90°,AE =AB =4,AD =sin ∠AED =AD AE ==,∴∠AED =45°,∴∠EAD =45°,∠EAB =45°,∴AD =DE =∴阴影部分的面积是:2245π445π4(4(360360⨯⨯⨯⨯⨯+=8,故答案为:8.15.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为__________寸.【答案】26【解析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.16.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=tan∠BAD的值.【解析】(1)∵AB=AC,∴AB AC,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°-∠BAC)=90°-∠BAC,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH445 =,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.17.(2019•河南)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E 是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FH BF =sin ∠ABD =sin45°=2,∴2FD BF =BF FD , ∵AB =4,∴BD =4cos45°,即BF +FD +1)FD ,∴FD=4-,故答案为:4-. ②连接OH ,EH ,∵点H 是AE 的中点, ∴OH ⊥AE , ∵∠AEB =90°, ∴BE ⊥AE , ∴BE ∥OH ,∵四边形OBEH 为菱形,∴BE =OH =OB =12AB , ∴sin ∠EAB =BE AB =12, ∴∠EAB =30°. 故答案为:30°.18.(2019•滨州)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D作DF ⊥AC ,垂足为点F .(1)求证:直线DF 是⊙O 的切线;(2)求证:BC2=4CF·AC;(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.【解析】(1)如图所示,连接OD,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线.(2)连接AD,则AD⊥BC,则AB=AC,则DB=DC=12 BC,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠DFC=∠ADC=90°,∴△CFD∽△CDA,∴CD2=CF·AC,即BC2=4CF·AC.(3)连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=12AE·OE·sin∠OEA=12×2×OE×cos∠OEA×OE sin∠OEA=S阴影部分=S扇形OAE-S△OAE=120360︒︒×π×42-16π3-精品文档11。
(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档
2019年全国中考数学真题分类汇编:圆内有关性质、选择题1(2019年山东省滨州市)如图,AB为O O的直径,C, D为O O上两点,若/ BCD = 40°,A . 60°【考点】圆周角定理、【解答】解:连接AD , B . 50°C. 40°D. 20°直角三角形的性质T AB为O O的直径,ADB = 90 ° .BCD = 40°,A=Z BCD = 40°ABD = 90 ° - 40°=50°.故选:B.2. (2019年山东省德州市)若/ ABC=40°,则/ ADCA. 130 如图,点O为线段的度数是()B. 140 BC的中点, 到点O的距离相等, C. 150【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD ,作出圆O,如图所示, •四边形ABCD为圆O的内接四边形,•••/ ABC+ / ADC=180 °•/ / ABC=40 °•••/ ADC=140 :故选:B.D.1603. (2019年山东省荷泽市)如图,AB是O O的直径, C,D是O O上的两点,且BC平分/ ABD, AD分别与BC,论不一定成立的是()A . OC// BDB . AD 丄OC C.A CEFBED D . AF = FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:I AB是O O的直径,BC平分/ ABD ,•••/ ADB = 90。
,/ OBC = Z DBC ,••• AD 丄BD,•/ OB= OC,•••/ OCB=Z OBC,•••/ DBC = Z OCB,•OC // BD,选项A成立;•AD丄OC,选项B成立;•AF = FD,选项D成立;•••△CEF和厶BED中,没有相等的边,•△ CEF与厶BED不全等,选项C不成立;故选:C.4. (2019年四川省资阳市)如图,直径为2cm的圆在直线I上滚动一周,则圆所扫过的图A. 5 nB. 6 nC. 20 nD. 24 n【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积= n+2 nX 2 = 5 n,故选:A.5. (2019年广西贵港市)如图,AD是O O的直径,AB=CD,若ZAOB=40°,则圆周角ZBPC 的度数是()A. 40B. 50C. 60D. 70【考点】圆周角定理【解答】解::•二二:,/ AOB=40 ,•••/ COD= / AOB=40 ,•••/ AOB+ / BOC+ / COD=18° ,•••/ BOC=100 ,•••/ BPC=三/ BOC=50 ,故选:B.6. (2019年湖北省十堰市)如图,四边形ABCD内接于O O , AE丄CB交CB的延长线于点E,若BA 平分/ DBE , AD = 5, CE = v!3,贝U AE =()A . 3B . 3V2 C. 4v3 D . 2v3【考点】圆内接四边形的性质、勾股定理【解答】解:连接AC,如图,•/ BA 平分/ DBE ,•••/ 1 = 7 2,•••/ 1 = 7 CDA, 7 2=7 3,•••7 3=7 CDA,•AC= AD = 5,••• AE丄CB,•7 AEC= 90°•AE= V AC? - CE2 = V52 -(打3)2= 2V3.【考点】垂径定理的应用【解答】解:连结OD, OA ,如图,设半径为r ,• AD=4,点O 、D 、C 三点共线,7. (2019年陕西省)如图, AB 是O O 的直径,EF 、EB 是O O 的弦,且 AB交于点C ,连接OF .若/ AOF = 40°,则/ F 的度数是()A . 20°B . 35°C . 40°D . 55°【考点】圆内有关性质【解答】连接FB ,得到FOB = 140 ° ;•••/ FEB = 70°•/ EF = EB• / EFB = Z EBF -FO = BO ,• / OFB = Z OBF , • / EFO = Z EBO ,/ F = 35°8. (2019年浙江省衢州市)一块圆形宣传标志牌如图所示,点A , B, C 在O O 上,CD 垂直平分AB 于点D ,现测得AB=8dm , DC=2dm ,则圆形标志牌的半径为()A. 6dmB. 5dmC. 4dmD. 3dm故选:D . D•/ CD=2, /. OD=r-2,在 Rt A ADO 中, ••• AO 2=AD 2+OD 2 ,, 即 r 2=42+ (r-2) 2 , 解得:r=5, 故答案为:B.9. (2019年甘肃省天水市) 如图,四边形 ABCD 是菱形,O O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE •若/ D = 80°,则/ EAC 的度数为( )【考点】菱形的性质,三角形的内角和,圆内接四边形的性质 【解答】解:•••四边形 ABCD 是菱形,/ D = 80°,•••/ ACB = - / DCB = - (180 ° -Z D )= 50 ° ,2 2•••四边形AECD 是圆内接四边形, • Z AEB =Z D = 80°, • Z EAC =Z AEB -Z ACE = 30°,故选:C .10. (2019年甘肃省)如图,AB 是O O 的直径,点 C 、D 是圆上两点,且Z AOC = 126 则Z CDB =()B • 25°C . 30D . 35B . 64C . 27°D . 37A • 20°【考点】圆周角定理【解答】解:TZ AOC = 126° ,• Z BOC= 180°-Z AOC= 54•••/ CDB = _Z BOC= 27° 故选:C.P,下列结论错11. (2019年湖北省襄阳市)如图,AD是O O的直径,BC是弦,四边形OBCD是平行四A . AP= 2OPB . CD = 2OP C. OB 丄ACD . AC 平分OB 【考点】圆内有关性质【解答】解:••• AD为直径,•••/ ACD = 90°,•••四边形OBCD为平行四边形,•CD // OB, CD = OB ,在Rt△ACD 中,sinA =型=丄,AD 2:丄 A= 30°在Rt△AOP中,AP= :';OP,所以A选项的结论错误;•/ OP// CD , CD 丄AC,•OP丄AC,所以C选项的结论正确;•AP= CP,•OP为△ACD的中位线,•CD = 2OP,所以B选项的结论正确;•OB= 2OP,•AC平分OB,所以D选项的结论正确.故选:A.12. (2019年湖北省宜昌市)如图,点A, B, C均在O O上,当/ OBC = 40°时,/ A的度数是()【考点】圆周角定理【解答】解:设圆心为 O ,连接OA 、OB ,如图, •••弦AB 的长度等于圆半径的卜迁倍, 即 AB = . _:OA , • OA 2+OB 2= AB 2,• △ OAB 为等腰直角三角形,/ AOB = 90 ° , •••/ ASB =丄/ AOB = 45°.2CA . 50°B . 55°【考点】圆周角定理【解答】解:••• OB = OC , C . 60D . 65•••/ OCB=Z OBC= 40•••/ BOC = 180°— 40°— 40°= 100°,•••/ A =二/ BOC = 50°. 2 故选:A . 13. (2019年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的 :倍,则/ ASB 的度数是 A . 22.5 B . 30°C . 45D . 6014. (2019年内蒙古包头市)如图,在Rt△ABC中,/ ACB = 90° AC= BC = 2匝,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()C BA . n—1B . 4 — nC ED . 2【考点】圆周角定理【解答】解:连接CD ,•/ BC是半圆的直径,••• CD 丄AB,•••在Rt A ABC 中,/ ACB = 90° AC = BC= 2血,•△ ACB是等腰直角三角形,•CD = BD,••阴影部分的面积= 丄X丄㊁*2=2,2 2故选:D.C S15. (2019年内蒙古赤峰市)如图,AB是O O的弦,OC丄AB交O O于点C,点D是O O上一点,/ ADC = 30°,则/ BOC的度数为()DA. 30° B . 40°C. 50°D. 60【考点】圆内有关性质【解答】解:如图,•••/ ADC = 30° ,•••/ AOC= 2/ADC = 60°.•/ AB是O O的弦,OC丄AB交O O于点C,•••/ AOC=Z BOC= 60°.故选:D.16. (2019年西藏)如图,在O O中,半径OC垂直弦AB于D,点E在O O上,/ E = 22.5A . 1B ..】C. 2 D. 2 . ■:【考点】勾股定理、垂径定理、圆周角定理【解答】解:•••半径OC丄弦AB于点D ,•••/ E=二/ BOC = 22.5° ,2•••/ BOD = 45°,• △ ODB是等腰直角三角形,•/ AB= 2,DB = OD= 1 ,则半径OB等于:+ ]2 =血.故选:B.17. (2019年海南省)如图,直线11// 12,点A在直线11上,以点A为圆心,适当长度为半径画弧,分别交直线11、12于B、C两点,连结AC、BC .若/ ABC = 70°,则/ 1的大小为2. ( 2019年湖北省随州市) 则/ C 的度数为 .【考点】圆周角定理A . 20°B . 35°C . 40° 【考点】圆内有关性质 【解答】解::•点A 为圆心,适当长度为半径画弧,分别交直线D . 70°11、12 于 B 、C ,••• AC = AB , •••/ CBA =Z BCA = 70°,TH // 12,•••/ CBA+ / BCA+ / 1 =180•••/ 1 = 180° - 70°- 70°= 40故选:C .、填空题1. (2019年山东省德州市)如图, CD 为O O 的直径,弦 AB 丄CD ,垂足为E , ???????? CE=1, AB =6,则弦AF 的长度为 ________ .【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA 、OB , OB 交AF 于G ,如图,•/ AB 丄 CD ,1• AE=BE= 2AB=3 ,设O O 的半径为r ,则OE=r-1 , OA=r , 在 Rt △OAE 中,32+ (r-1) 2=r 2,解得 r=5,T ' ■-=—,• OB 丄 AF , AG=FG , 在 Rt △ OAG 中,AG 2+OG 2=52,①在 Rt △ ABG 中,AG 2+ (5-OG ) 2=62,②解由①② 组成的方程组得到 AG=24,5• AF=2AG=警.故答案为48.5 5【解答】解:T OA=OB ,点C在优弧??上?,若/ OBA=50°,如图,点A, B, C在O O 上,C•••/ OAB= / OBA=50 ,•••/ AOB=180 -50 °-50 °80° ,•••/ C= ' / AOB=40 . 2故答案为40°3. (2019年黑龙江省伊春市) 如图,在O O 中,半径 OA 垂直于弦BC ,点D 在圆上且/•••/ AOB = 2 / ADC ,•••/ ADC = 30°,•••/ AOB = 60 ° ,故答案为60°.4. (2019年江苏省泰州市)如图, O O 的半径为5,点P 在O O 上,点A 在O O 内,且AP =3,过点A 作AP 的垂线交于O O 点B 、C •设PB=x,PC=y,则y 与x 的函数表达式为 __________ .【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接PO 并延长交O O 于点N ,连接BN•/ PN 是直径,•/ PBN=90 .•/ AP 丄 BC,•••/ PAC =90 ,•••/ PBN= / PAC,又•••/ PNB= / PCA ,•••△ PBN PAC ,【考点】圆周角定理【解答】解:I OA 丄BC ,• PB PN "PA = PC ,.x_103 y30 …y= .x故答案为:30 y= . x三、解答题1. (2019年上海市)已知:如图,AB、AC是O O的两条弦,且AB= AC, D是AO延长线上一点,联结BD并延长交O O于点E,联结CD并延长交O O于点F .(1)求证:BD = CD ;(2)如果AB2= AO2AD,求证:四边形ABDC是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC, OB , OD ,T AB、AC是O O的两条弦,且AB= AC,.A在BC的垂直平分线上,OB= OA= OD ,.O在BC的垂直平分线上,.AO垂直平分BC,.BD = CD ;(2)如图2,连接OB,•••/ BAO =Z DAB , •••△ ABO s^ ADB ,•••/ OBA =Z ADB ,•/ OA = OB ,•••/ OBA =Z OAB ,•••/ OAB =Z BDA ,• AB = BD ,•/ AB = AC , BD = CD ,AB = AC = BD = CD ,•四边形ABDC 是菱形.2. (2019年江苏省苏州市)如图, AE 为e O 的直径,D 是弧BC 的中点BC 与AD , OD 分别 交于点E , F.(1) 求证:DO// AC ;(2) 求证:DE DA DC 2;1(3 )若 tan CAD ,求 sin CDA 的值.2【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:T D 为弧BC 的中点,OD 为e O 的半径• OD 丄 BC???? ????=—, ???? ????B又••• AB 为e O 的直径• ACB 90• AC // OD(2)证明:T D 为弧BC 的中点••• C D ?DDCB DACDCE s DAC DEDC2DA DC DCD A 即DE (3)解:T DCE s DAC , tan CAD• CD …DA 设 CD=2a,贝U DE DC CE 1AC 2,DA 4aAEC s DEF.CE 如 3EF DE所以BC 8CE3又 AC 2CE• AB 10 CE 3即卩 sin CDA sin CBA CA AB3. (2019年河南省)如图,在35△ABC 中,BA = BC,Z ABC = 90 °以AB 为直径的半圆 O 交AC 于点D ,点E 是’上不与点 B , D 重合的任意一点,连接 AE 交BD 于点F ,连接BE 并延 长交AC 于点G .(1)求证:(2)填空:①若AB = 4,且点E 是」的中点,贝U DF 的长为②取匚上的中点H ,当/ EAB 的度数为 _____ 时,四边形OBEH 为菱形.【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图1,v BA = BC,/ ABC = 90°•••/ BAC= 45°•/ AB是O O的直径,•••/ ADB = / AEB = 90°•••/ DAF + / BGD = / DBG+ / BGD = 90°•••/ DAF = / DBG•// ABD+ / BAC = 90°•••/ ABD = / BAC = 45°•AD = BD•△ ADF◎△ BDG (ASA);(2)①如图2,过F作FH丄AB于H ,••点E是亍〕的中点,•••/ BAE =/ DAE•/ FD 丄AD, FH 丄AB•FH = FD•,即BF =^:7FD=sin/ ABD = sin45BF 2•/ AB= 4,•BD = 4cos45°= 2打;:|,即卩BF + FD = 2 :':, ( . ':+ 1) FD = 2 :■:•FD = = 4 - 2 :■:V2+1故答案为■ - . ■:.②连接OE, EH,•点H是一止的中点,• OH 丄AE,•••/ AEB = 90°••• BE 丄AE••• BE// OH•••四边形OBEH为菱形,•••/ EAB = 30°.故答案为:30°4. (2019年浙江省温州市)如图,在厶ABC中,/ BAC = 90 °过A, C, E三点的O O交AB于另一点F,作直径AD ,连结CD , CF .(1)求证:四边形DCFG是平行四边形.【解答】(1)证明:连接AE, ,求O O的直径长.平行四边形的判定和性质、勾股定理、圆周角定理•••/ BAC= 90 ° ,• CF是O O的直径, •/ AC=EC, ,点E在BC连结DE 并延长交AB于点G,•/ AD是O O的直径,•••/ AED = 90 ° ,即GD丄AE,•CF // DG ,•/ AD是O O的直径,•••/ ACD = 90°,•••/ ACD+ / BAC = 180° ,•AB// CD ,•四边形DCFG是平行四边形;(2)解:由CD = -AB ,8设CD = 3x, AB = 8x,•CD = FG = 3x,•••/ AOF = Z COD ,•AF = CD = 3x,•BG = 8x - 3x - 3x= 2x,•/ GE// CF,•丄+「I•/ BE= 4,•AC= CE= 6,•BC= 6+4= 10,•AB= {1 0^-6 N = 8 = 8x,•x= 1,在Rt△ ACF 中,AF = 10, AC= 6,•CF =时+醪=3妬,即O O的直径长为3 一;5. (2019年湖北省宜昌市) 已知:在矩形 ABCD 中,E , F 分别是边AB , AD 上的点,过 点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆 O .FN ,当 AE = AD 时,FN = 4, HN = 3,求 tan / AEF 的值.•••/ EAF = 90°, O 为 EF 中点,EF ,•••点A 在O O 上,当 L l= L 时,/ AEF = 45• tan / AEF = tan45°= 1,(1) 填空:点A(填“在”或“不在” )O O 上;当U .=计时,tan /AEF 的值是; (3) (4) 如图 如图 如图 在厶EFH 当厶EFH 的顶点 点M 在线段FH FE = FH 时,求证:AD = AE+DH ; F 是边AD 的中点时,求证: EH = AE+DH ; 的延长线上,若 FM = FE ,连接EM 交DC 于点N ,连接 D ]H 【考点】圆的有关性质、 全等三角形的判定和性质、 相似三角形的判定和性质、三角函 C圍1 3图1故答案为:在,1;(2 )T EF 丄FH ,•••/ EFH = 90 ° ,在矩形ABCD 中,/ A=Z D = 90°,•••/ AEF + Z AFE = 90°,/ AFE+ / DFH = 90°,•••/ AEF = Z DFH ,又FE=FH,•△ AEF◎△ DFH (AAS),•AF = DH , AE = DF ,•AD = AF+DF = AE+DH ;(3)延长EF交HD的延长线于点G,G••• F分别是边AD上的中点,•AF = DF ,•••/ A=Z FDG = 90°,/ AFE = Z DFG ,•△AEF◎△ DGF (ASA),•AE= DG , EF = FG ,•/ EF 丄FG,•EH = GH ,•GH = DH + DG = DH+AE ,•EH = AE+DH ;(4)过点M作MQ丄AD于点Q.设 AF = x , AE = a ,•/ FM = FEEF 丄 FH ,•••△ EFM 为等腰直角三角形,•••/ FEM = Z FMN = 45°,•/ FM = FE ,/ A =Z MQF = 90°,/ AEF = Z MFQ ,• △ AEF ◎△ QFM (ASA ),• AE = EQ = a , AF = QM ,•/ AE = AD ,• AF = DQ = QM = x ,•••DC // QM ,•ID.k _,•/ DC // AB // QM ,•Z •RD •空•/ FE = FM ,•二./ FEM = Z FMN = 45° ,• △ FEN 〜△ HMN ,•竺6. (2019年内蒙古包头市)如图,在O O 中,B 是O O 上的一点,/ ABC = 120 °,弦AC =D O严——1* / Ax/f2 二弦BM平分/ ABC交AC于点D,连接MA, MC .(1 )求0 O半径的长;(2)求证:AB+BC = BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O作OH丄AC于点H,如图1 , •••/ ABC= 120°,•••/ AMC = 180°-/ ABC = 60°•••/ AOC= 2/AMC = 120°AOH = —/AOC = 60°• OA =•••AH = - AC= .gin60 '故O O的半径为2.(2)证明:在BM上截取BE = BC,连接CE,如图2,2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)•••/ MBC = 60°BE = BC,•••△EBC是等边三角形,CE= CB= BE ,Z BCE= 60°,•••/ BCD+ / DCE = 60°•••// ACM = 60°•/ ECM + Z DCE = 60°•/ ECM = Z BCD ,•••/ ABC= 120° BM 平分/ ABC,•/ ABM = Z CBM = 60°•/ CAM = Z CBM = 60° / ACM = Z ABM = 60°,•△ ACM是等边三角形,•AC= CM,•△ACB^A MCE,•AB= ME ,•/ ME+EB = BM ,•AB+BC= BM .。
2019中考数学分类汇编汇总 知识点33 圆的基本性质(第二期) 解析版
一、选择题1. (2019广西省贵港市,题号9,分值3分)如图,AD是O的直径,AB CD=,若40AOB∠=︒,则圆周角BPC∠的度数是()A.40︒B.50︒C.60︒D.70︒【答案】D.【解析】解:AB CD=,40AOB∠=︒,40COD AOB∴∠=∠=︒,180AOB BOC COD∠+∠+∠=︒,140BOC∴∠=︒,1702BPC BOC∴∠=∠=︒,故选:D.【知识点】圆周角定理;圆心角、弧、弦的关系2.(2019湖北十堰,8,3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE,则AE=()A.3 B.3C.4D.2【答案】D【解析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE2.故选:D.【知识点】勾股定理;垂径定理;圆内接四边形的性质3. (2019内蒙古包头市,8题,3分)如图4,在Rt△ABC中,∠ACB=900,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π-1B.4-πC.D.2【答案】D.【解题过程】解:连接CD,∵∠ACB=900,AC=BC,∴∠ABC=∠A=450,AB==4.∵BC为直径,∴∠BDC=900,即CD⊥AB,又∵AC=BC,∴AD=BD.∴∠DCB=∠DBC=450,∴CD=BD,∴CD=BD=AD=AB=2.∵CD=BD,∴S弓形CD=S弓形BD,∴S阴影=S△ACD=AD·CD=×2×2=2.故选D.【知识点】圆的性质,勾股定理,三角形的面积.4. (2019内蒙古包头市,6题,3分)下列说法正确的是()A.立方根等于它本身的数一定是1和0B.顺次连接菱形四边中点得到的四边形是矩形C.在函数y =kx +b (k ≠0)中,y 的值随着x 值的增大而增大D.如果两个圆周角相等,那么它们所对的弧长一定相等 【答案】B. 【解析】解:对于A ,立方根等于它本身的数是0和±1,该选项错误;对于B ,顺次连接任意四边形各边中点得到平行四边形,而菱形对角线互相垂直,故顺次连接菱形各边中点可以得到矩形,该选项正确;对于C ,函数y =kx +b (k ≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,该选项错误;对于D ,两个圆周角相等,它们所对弧长相等的前提是在同圆或等圆中,没有这个前提是错误的. 故选B.【知识点】立方根,中点四边形,一次函数的图象及其性质,圆周角的性质.5. (2019北京市,5题,2分) 已知锐角∠AOB ,如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 A .∠COM=∠COD B .若OM=MN ,则∠AOB=20°C .MN ∥CDD .MN=3CD【答案】D【解析】由作图知,CM CD DN == ,OM=OC=OD=ON ; A .在⊙中,由CM CD =得∠COM=∠COD ;故选项A 正确.B .由OM=MN ,结合OM=ON 知△OMN 为等边三角形;得∠MON=60°.又由CM CD DN ==得∠COM=∠COD=∠DON ;∴∠AOB=20°.故选项B 正确. C .由题意知OC=OD ,∴1802CODOCD ︒-∠∠=.设OC 与OD 与MN 分别交于R ,S.易得△MOR ≌△NOS (ASA )∴OR=OS ∴1802CODORS ︒-∠∠=∴OCD ORS ∠=∠ ∴MN ∥CD. 故选项C 正确.D .由CM CD DN ==得CM=CD=DN=3CD ;而由两点之间线段最短得CM+CD+DN>MN ,即MN<3CD ;∴MN=3CD 是错误的;故选D.【知识点】全等三角形的性质和判定、圆的有关性质、等边三角形的性质和判定.B6.(2019年广西柳州市,6,3分)如图,A 、B 、C 、D 是圆上的点,则图中与∠A 相等的角是( )A .∠B B .∠C C .∠DEBD .∠D 【答案】D【解析】:∵∠A 与∠D 都是弧BC 所对的圆周角,∴∠D=∠A .故选:D . 【知识点】圆周角定理7. (2019贵州省安顺市,8,3分)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上的一点,则tan ∠OBC =( ) A .31B .22C .322 D .42【答案】D【思路分析】作直径CD ,根据勾股定理求出OD ,根据余弦函数的定义求出cos ∠CDO ,根据圆周角定理得到∠OBC =∠CDO ,等量代换即可. 【解题过程】 解:作直径CD ,在Rt △OCD 中,CD =6,OC =2, 则OD =42,B第8题答图第8题图cos ∠CDO =OCOD =322,由圆周角定理得,∠OBC =∠CDO , 则cos ∠OBC =322, 故选:D .【知识点】圆周角定理、锐角三角函数的定义,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8. (2019吉林省,5,2分)如图,在⊙O 中,弧AB 所对的圆周角∠ACB=50°,若P 为弧AB 上一点,∠AOP=55°,则∠POB 的度数为(A) 30° (B) 45° (C) 55° (D) 60° 【答案】B【解析】根据同弧所对的圆周角是圆心角的一半可知,∠AOB=2∠ACB=110°,因为∠AOP=55°,所以∠POB 的度数为45°,故选B【知识点】同弧所对的圆周角与圆心角的关系9.(2019·江苏镇江,15,3)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,弧DC =弧CB .若∠C =110°,则∠ABC 的度数等于( )A .55°B .60°C .65°D .70°【答案】A .【解析】本题考查了圆周角定理、圆内接四边形性质定理、弦弧关系定理、等腰三角形的性质,解题的关键是充分利用圆的性质及转化思想. 如答图,连接BD .第15题答图第15题图∵AB 是⊙O 的直径, ∴∠ADB =90°.∵四边形ABCD 是半圆的内接四边形, ∴∠C +∠A =180°. ∵∠C =110°, ∴∠A =70°. ∴∠DAB =20°. ∵弧DC =弧CB , ∴DC =CB .∴∠CBD =∠CDB =1(180110)2︒-︒=35°.∴∠ABC =∠ABD +∠CBD =20°+35°=55°. ∴本题选A .【知识点】圆周角定理;圆内接四边形性质定理;弦弧关系定理;等腰三角形的性质10. (2019广西梧州,11,3分)如图,O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6AB =,1AE =,则CD 的长是( )A .B .C .D .【答案】C【解析】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB 、OD ,如图所示: 则DF CF =,132AG BG AB ===, 2EG AG AE ∴=-=,在Rt BOG ∆中,2OG =, EG OG ∴=,EOG ∴∆是等腰直角三角形,45OEG ∴∠=︒,OE ==,75DEB ∠=︒, 30OEF ∴∠=︒, 12OF OE ∴==在Rt ODF ∆中,DF ==2CD DF ∴==;故选:C .【知识点】垂径定理;勾股定理;直角三角形的性质11. (2019江苏镇江,15,3分)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒【答案】A【解析】解:连接AC ,四边形ABCD 是半圆的内接四边形, 18070DAB C ∴∠=︒-∠=︒, DC CB =,1352CAB DAB ∴∠=∠=︒,AB 是直径,90ACB ∴∠=︒,9055ABC CAB ∴∠=︒-∠=︒,故选:A .【知识点】圆周角定理;圆心角、弧、弦的关系;圆内接四边形的性质12. (2019内蒙古赤峰,10,3分)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A.30°B.40°C.50°D.60°【答案】D【解析】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,∴.∴∠AOC=∠BOC=60°.故选:D.【知识点】垂径定理;圆心角、弧、弦的关系;圆周角定理二、填空题1. (2019广西北部湾,17,3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题:“今有圆材埋在壁中,不知大小。
2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)
2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年全国中考数学真题分类汇编:圆内有关性质(包含答案)(word版可编辑修改)的全部内容。
2019年全国中考数学真题分类汇编:圆内有关性质一、选择题1。
(2019年山东省滨州市)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD 的大小为( )A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2。
(2019年山东省德州市)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是( )A。
B。
C。
D.130∘140∘150∘160∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3. (2019年山东省菏泽市)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是( )A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C .4. (2019年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为( )A .5πB .6πC .20πD .24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A .5. (2019年广西贵港市)如图,AD 是⊙O 的直径,=,若∠AOB =40°,则圆周角∠BPC 的度⏜AB ⏜CD 数是( )A. B. C 。
2019年全国各地中考数学试题分类汇编(第二期) 专题30 圆的有关性质(含解析)
圆的有关性质一.选择题1. (2019•江苏无锡•3分)如图,P A是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°【分析】连接OA,如图,根据切线的性质得∠P AO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【解答】解:连接OA,如图,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2. (2019•浙江杭州•3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2 B.3 C.4 D.5【分析】连接OA、OB、OP,根据切线的性质得出OA⊥P A,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=P A=3.【解答】解:连接OA、OB、OP,∵P A,PB分别切圆O于A,B两点,∴OA⊥P A,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=P A=3,故选:B.【点评】本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.3.(2019•浙江湖州•4分)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是30°.【分析】直接根据圆周角定理求解.【解答】解:∵一条弧所对的圆周角的度数是15°,∴它所对的圆心角的度数为2×15°=30°.故答案为30°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二.填空题1. (2019•铜仁•4分)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°2.(2019•江苏宿迁•3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).3. (2 019·江苏盐城·3分)如图,点A、B、C、D、E在⊙O上,且弧AB为50°,则∠E+∠C=________【答案】155【解析】如图,因为弧AB为50°,则弧AB所对的圆周角为25°,∠E+∠C=180°-25°=155°.4. (2019•广西北部湾经济区•3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为______寸.【答案】26【解析】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5. (2019•广西贺州•10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF⊥OA,由圆周角定理好已知条件得出∠F=∠DBC,证出AF∥BC,得出OA⊥BC,求出∠BOA=90°﹣30°=60°,由圆周角定理即可得出结果;(2)由垂径定理得出BE=CE=BC=4,得出AB=AC,证明△AOB是等边三角形,得出AB=OB,由直角三角形的性质得出OE=OB,BE=OE=4,求出OE=,即可得出AC=AB=OB=2OE=.【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.6. (2019•广东省广州市•12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.7. (2019•贵州省安顺市•12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cosC=,求AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cosC==,∴AC=5,在Rt△CDH中,∵cosC==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.8. 如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.9. (2019•广东省广州市•3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与⊙O的位置关系是:P在⊙O外,∵过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.三.解答题1. (2019•江苏宿迁•10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB =∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,2. (2019•贵阳•10分)如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A 关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交AP的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.【分析】(1)由题意可知=,根据同弧所对的圆心角相等得到∠AOP=∠POC=∠AOC,再根据同弧所对的圆心角和圆周角的关系得出∠ABC=∠AOC,利用同位角相等两直线平行,可得出PO与BC平行;(2)由CD为圆O的切线,利用切线的性质得到OC垂直于CD,又AD垂直于CD,利用平面内垂直于同一条直线的两直线平行得到OC与AD平行,根据两直线平行内错角相等得到∠APO=∠COP,由∠AOP=∠COP,等量代换可得出∠APO=∠AOP,再由OA =OP,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP三内角相等,确定出三角形AOP为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB的一半,可得出PD为AB的四分之一,即AB=4PD=4.【解答】(1)证明:∵A关于OP的对称点C恰好落在⊙O上.∴=∴∠AOP=∠COP,∴∠AOP=∠AOC,又∵∠ABC=∠AOC,∴∠AOP=∠ABC,∴PO∥BC;(2)解:连接PC,∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,∵∠AOP=∠COP,∴∠APO=∠AOP,∴OA=AP,∵OA=OP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=PC,又∵PC=OP=AB,∴PD=AB,∴AB=4PD=4.【点评】此题考查了切线的性质,等边三角形的判定与性质,含30°直角三角形的性质,轴对称的性质,圆周角定理,以及平行线的判定与性质,熟练掌握性质及判定是解本题的关键.3. (2019•天津•10分)已经PA ,PB 分别与圆O 相切于点A ,B ,∠APB =80°,C 为圆O 上一点. (I )如图①,求∠ACB 得大小;(II )如图②,AE 为圆O 的直径,AE 与BC 相交于点D ,若AB =AD ,求∠EAC 的大小.【解析】(I )如图,连接OA ,OB∵PA ,PB 是圆O 的切线,∴OA ⊥PA ,OB ⊥PB即:∠OAP =∠OBP =90°∵∠APB =80°∴在四边形OAPB 中,∠AOB =360°-∠OAP -∠OBP -∠APB =100°∵在圆O 中,∠ACB =21∠AOB ∴∠ACB =50°(II )如图,连接CE∵AE 为圆O 的直径∴∠ACE =90°由(1)知,∠ACB =50°,∠BCE =∠ACE -∠ACB =40°∴∠BAE =∠BCE =40°∵在△ABD 中,AB =AD∴∠ADB =∠ABD =︒=∠︒70)-180(21BAE 又∠ADB 是△ADC 的一个外角,有∠EAC =∠ADB -∠ACB∴∠EAC =20°4.(2019•浙江杭州•12分)如图,已知锐角三角形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°,①求证:OD =OA .②当OA =1时,求△ABC 面积的最大值.(2)点E 在线段OA 上,OE =OD ,连接DE ,设∠ABC =m ∠OED ,∠ACB =n ∠OED (m ,n 是正数),若∠ABC <∠ACB ,求证:m ﹣n +2=0.【分析】(1)①连接OB 、OC ,则∠BOD =BOC =∠BAC =60°,即可求解;②BC 长度为定值,△ABC 面积的最大值,要求BC 边上的高最大,即可求解;(2)∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx =∠BOC =∠DOC ,而∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx ,即可求解.【解答】解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OBsin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.【点评】本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.5.(2019•四川自贡•8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.6.(2019•浙江湖州•10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)证明△ABC为等腰直角三角形,则⊙P的直径长=BC=AB,即可求解;(2)证明CM=ACsin45°=4×=2=圆的半径,即可求解;(3)分点M、N在两条直线交点的下方、点M、N在两条直线交点的上方两种情况,分别求解即可.【解答】解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=ACsin45°=4×=2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3﹣;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点P的坐标为(3﹣,6﹣3)或(3+,6+3).【点评】本题为圆的综合运用题,涉及到一次函数、圆的切线性质等知识点,其中(2),关键要确定圆的位置,分类求解,避免遗漏.7. (2019•广西贺州•10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF⊥OA,由圆周角定理好已知条件得出∠F=∠DBC,证出AF∥BC,得出OA⊥BC,求出∠BOA=90°﹣30°=60°,由圆周角定理即可得出结果;(2)由垂径定理得出BE=CE=BC=4,得出AB=AC,证明△AOB是等边三角形,得出AB=OB,由直角三角形的性质得出OE=OB,BE=OE=4,求出OE=,即可得出AC=AB=OB=2OE=.【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.8. (2019•广东省广州市•12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.9. (2019•贵州省安顺市•12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cosC=,求AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cosC==,∴AC=5,在Rt△CDH中,∵cosC==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.10. (2019•广西北部湾经济区)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【解析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.11. (2019•甘肃省庆阳市•10分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.【分析】(1)连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°﹣60°﹣30°=90°,于是得到AC是⊙D的切线;(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC=∠AED﹣∠C=30°,得到AE=CE=2,于是得到结论.【解答】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°﹣60°﹣30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.【点评】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.。
2019中考数学分类汇编汇总知识点33圆的基本性质(第一期)解析版
、选择题1. (20佃山东滨州,6, 3分)如图,AB为O O的直径,C, D为O O上两点,若/ BCD = 40°,则/ ABDA. 60°B. 50°C. 40°D. 20°【答案】B【解析】如图,连接AD , T AB为O O的直径,•••/ADB=90 . v/ A和/BCD都是弧BD所对的圆周角, •••/ A= / BCD=40 , •/ ABD=90 ° - 40° =50°.故选B.【知识点】圆周角定理及其推论2. (2019山东聊城,8,3分)如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果/ A = 70° ,那么/ DOE的度数为A.35 °B.38 °C.40°D.42 °第8题图【答案】C【解析】V/ A = 70°,•/ B+ / C= 110°,•/ BOE+ / COD = 220°,•/ DOE =/ BOE+ / COD —180° = 40° ,故选C.【知识点】三角形内角和定理,圆周角定理3. (20佃山东省潍坊市,11, 3分)如图,四边形ABCD内接于O O, AB为直径,AD=CD .过点D作3DE丄AB于点E.连接AC交DE于点F.若sin/ CAB=—, DF=5,则BC的长为()4• AB=16+4=20 . 在 Rt A ABC 中,A . 8B . 10C . 【答案】C 12D . 16【思路分析】 连接BD , 3先证明/ DAC = / ACD = / ABD= / ADE ,从而可得 AF=DF=5 ,根据 sin / CAB=< , 5求得EF 和AE 的长度,3 再利用射影定理求出 BE 的长度从而得到直径 AB ,根据sin / CAB=-求得BC 的长 5•/ AD=CD ,•••/ DAC = Z ACD .••• AB 为直径,•••/ ADB = Z ACB=90 °•••/ DAB + Z ABD =90° •/DE 丄 AB ,• Z DAB + Z ADE =90°• Z ADE = Z ABD . vZABD = Z ACD ,• Z DAC = Z ADE .• AF =DF=5.在 Rt A AEF 中,EF 3 sin Z CAB= AF 5 • EF=3, AE=4 .• DE =3+5=8 .由 DE 2=AE ?EB ,得 BE = DE 2AE度.BC 3sin / CAB=—AB 5••• BC=12.【知识点】圆周角,锐角三角比4. (2019四川省凉山市,7, 4)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦•其中,真命题的个数(▲)A. 1B. 2C. 3 D . 4【答案】A【解析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;两点之间线段最短;在同圆或等圆中,相等的圆心角所对的弧相等;平分弦(不是直径)的直径垂直于弦,所以只有①是对的,故选 A.【知识点】点到直线的距离概念;线段基本事实;在同圆或等圆中圆心角与弧的关系;垂径定理的推论5.(2019四川省眉山市,10,3分)如图,O O的直径AB垂直于弦CD .垂足是点E,/CAO=22.5OC=6,贝U CD的长为A. 6.2 B . 3 2 C . 6 D . 12【答案】A【思路分析】【解题过程】解:V/ A=22.5 °,•/ COE=45 °, TO O 的直径AB 垂直于弦CD ,OC=6 , CEO=90 •••/ COE=45 ° ,• CE=OE= -y OC = 3 2 , • CD=2CE= 6 2,故选:D.【知识点】三角形的外角的性质,垂径定理,锐角三角形函数6. (2019浙江省衢州市,8, 3分)一块圆形宣传标志牌如图所示,点 A , B , C在O O上,CD垂直平分AB于点D.现测得AB=8dm, DC=2dm,则圆形标志牌的半径为(A)A. 6dmB. 5dmC. 4dmD. 3dm【答案】B【解析】连接OD ,OB,则O,C,D三点在一条直线上,因为CD垂直平分AB ,AB=8dm,所以BD=4dm,OD = (r-2)dm,由勾股定理得42+(r-2)2=r2,r=5dm,故选B。
2019中考数学试题及答案分类汇编:圆
2019中考数学试题及答案分类汇编:圆、选择题1. (天津3分)已知O O i 与O 。
2的半径分别为3 cm 和4 cm ,若OQ 2=7 cm ,则O O 1与O O 2的位置关系是(A ) 相交 (B ) 相离 (C ) 内切 (D ) 外切 【答案】Db【考点】圆与圆位置关系的判定。
【分析】两圆半径之和 3+4=7,等于两圆圆心距 OQ 2= 7,根据圆与圆位置关系的判定可知两圆外切。
2.(内蒙古包头3分)已知两圆的直径分别是 2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两 圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半 径之差),内含(两圆圆心距离小于两圆半径之差)。
•••两圆的直径分别是 2厘米与4厘米,•••两圆的半径分别是 •••圆心距是1+2=3厘米,•这两个圆的位置关系是外切。
故选3, (内蒙古包头3分)已知AB 是OO 的直径,点P 是AB 延长线上的 动点,过P 作OO 的切线,切点为 C,Z APC 的平分线交AC 于点D, / CDP 等于A 、30°B 、60°C 、45°D 50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC•/ OC=O , , PD 平分/ APC •••/ CPD M DPA / CAP d ACO •/ PC 为OO 的切线,• OCLPG•••/ CPD # DPA f CAP +/ ACO=90,•/ DPA f CAP =45,即/ CDP=45。
故选 G1厘米与2厘米。
B 。
4. (内蒙古呼和浩特3分)如图所示,四边形ABCD中, DC/ ABBC=1, AB=AC=AD=2 贝U BD 的长为A. 14B. .15C. 3 2D. 2.3【答案】Bo【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。
2019年全国中考数学真题分类汇编:圆内有关性质 含答案)
2019年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019年山东省滨州市)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019年山东省德州市)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. B. C. D.【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3. (2019年山东省菏泽市)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.4. (2019年四川省资阳市)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.5. (2019年广西贵港市)如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC 的度数是()A. B. C. D.【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B.6. (2019年湖北省十堰市)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.2【考点】圆内接四边形的性质、勾股定理【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE==2.故选:D.7. (2019年陕西省)如图,AB是⊙O的直径,EF、EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8. (2019年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB.5dmC.4dmD.3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C三点共线,∵CD=2,∴OD=r-2,在Rt△ADO中,∵AO2=AD2+OD2, ,即r2=42+(r-2)2,解得:r=5,故答案为:B.9. (2019年甘肃省天水市)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD是菱形,∠D=80°,∴∠ACB=∠DCB=(180°﹣∠D)=50°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10. (2019年甘肃省)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11. (2019年湖北省襄阳市)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB【考点】圆内有关性质【解答】解:∵AD为直径,∴∠ACD=90°,∵四边形OBCD为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD中,sin A==,∴∠A=30°,在Rt△AOP中,AP=OP,所以A选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C选项的结论正确;∴AP=CP,∴OP为△ACD的中位线,∴CD=2OP,所以B选项的结论正确;∴OB=2OP,∴AC平分OB,所以D选项的结论正确.故选:A.12. (2019年湖北省宜昌市)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13. (2019年甘肃省武威市)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14. (2019年内蒙古包头市)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC是半圆的直径,∴CD⊥AB,∵在Rt△ABC中,∠ACB=90°,AC=BC=2,∴△ACB是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×22=2,故选:D.15. (2019年内蒙古赤峰市)如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16. (2019年西藏)如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2,则半径OB等于()A.1 B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB等于:=.故选:B.17. (2019年海南省)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1. (2019年山东省德州市)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为______.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.2. (2019年湖北省随州市)如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为______.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3. (2019年黑龙江省伊春市)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4. (2019年江苏省泰州市)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交于⊙O点B、C.设PB=x,PC=y,则y与x的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接PO并延长交⊙O于点N,连接BN,∵PN 是直径,∴∠P BN=90°.∵AP ⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC ,又∵∠PNB=∠PCA ,∴△PBN ∽△PAC , ∴PA PB =PCPN , ∴3x =y10 ∴y=x30. 故答案为:y=x 30. 三、解答题1.(2019年上海市)已知:如图,AB 、AC 是⊙O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E ,联结CD 并延长交⊙O 于点F .(1)求证:BD =CD ;(2)如果AB 2=AO •AD ,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC ,OB ,OD ,∵AB 、AC 是⊙O 的两条弦,且AB =AC ,∴A在BC的垂直平分线上,∵OB=OA=OD,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.2. (2019年江苏省苏州市)如图,AE为O的直径,D是弧BC的中点BC与AD,OD分别交于点E,F.(1)求证:DO AC∥;(2)求证:2DE DA DC⋅=;(3)若1tan2CAD∠=,求sin CDA∠的值.【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧BC 的中点,OD 为O 的半径∴OD BC ⊥又∵AB 为O 的直径∴90ACB ∠=︒∴AC OD ∥(2)证明:∵D 为弧BC 的中点∴CD BD =∴DCB DAC ∠=∠∴DCE DAC ∆∆∽∴DC DE DA DC= 即2DE DA DC ⋅= (3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠=∴12CD DE CE DA DC AC === 设CD =2a ,则DE =a ,4DA a =又∵AC OD ∥∴AEC DEF ∆∽ ∴3CE AE EF DE== 所以83BC CE = 又2AC CE =∴103AB CE = 即3sin sin 5CA CDA CBA AB ∠=∠== 3. (2019年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以AB 为直径的半圆O 交AC 于点D ,点E 是上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G . (1)求证:△ADF ≌△BDG ;(2)填空:A①若AB=4,且点E是的中点,则DF的长为;②取的中点H,当∠EAB的度数为时,四边形OBEH为菱形.【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=FD∵=sin∠ABD=sin45°=,∴,即BF=FD∵AB=4,∴BD=4cos45°=2,即BF+FD=2,(+1)FD=2∴FD==4﹣2故答案为.②连接OE,EH,∵点H是的中点,∴OH⊥AE,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4. (2019年浙江省温州市)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.5. (2019年湖北省宜昌市)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.6. (2019年内蒙古包头市)如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.。
2019年中考真题 圆的基本性质分类汇编(PDF版含解析)
所以 DAC ACO 60 , 所以 ACD 90 DAC 30 ,
所以 AC 2AD 2 3 ,
所以△AOC 是等边三角形,
所以 OA AC 2 3 , AOC 60 ,
所以 AC 的长为 60 2 3 2 3 .
2
2019 中考试题分类汇编
∴∠ PAB=∠ PBA=30°.
∵PF⊥AB ,
∴AF= BF= 3.
∴PE= OF= 2.
∵tan30 °= PF ,cos30°= AF ,
AF
AP
∴PF= 3 ,AP= 2 3 .
∴OE= 3 ,PC= 2 3 .
在 RT△PEC 中,CE=
PC 2 PE2 = 2 2 ,
所以△ADC∽△CED,
所以 BC CE 3 3 AC AD 3
在 Rt△ACB 中, sin BAC BC 3 , AC
所以 BAC 60 , 又因为 OA OC ,
所以△AOC 是等边三角形,
所以 ACO 60 , 因为直线 DE 与 O 相切于点 C, 所以 OC DE , 因为 A来自 DE , OC DE ,
D.42°
【答案】C 【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°= 40°,故选 C.
.(2019·潍坊)如图,四边形 ABCD 内接于⊙O,AB 为直径,AD=CD.过点 D 作 DE⊥AB 于点 E.连
3
接 AC 交 DE 于点 F.若 sin∠CAB= ,DF=5,则 BC 的长为()
.(2019·陇南)如图,点 A,B,S 在圆上,若弦 AB 的长度等于圆半径的 倍,则∠ASB 的度数是( )
(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档
2019 年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019 年ft东省滨州市)如图,AB 为⊙O 的直径,C,D 为⊙O 上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB 为⊙O 的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019 年ft东省德州市)如图,点O 为线段BC 的中点,点A,C,D 到点O 的距离相等,若∠ABC=40°,则∠ADC 的度数是()A. 130 ∘B. 140 ∘C. 150 ∘D. 160 ∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD 为圆O 的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019 年ft东省菏泽市)如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,且BC 平分∠ABD,AD 分别与BC,OC 相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB 是⊙O 的直径,BC 平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A 成立;∴AD⊥OC,选项B 成立;∴AF=FD,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C.4.(2019 年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.2 3 ⏜ ⏜5. (2019 年广西贵港市)如图,AD 是⊙O 的直径,AB =CD ,若∠AOB =40°,则圆周角∠BPC 的度数是()A. 40 ∘B. 50 ∘C. 60 ∘D. 70 ∘【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC= ∠BOC=50°, 故选:B .6. (2019 年湖北省十堰市) 如图,四边形 ABCD 内接于⊙O ,AE ⊥CB 交 CB 的延长线于点 E ,若 BA 平分∠DBE ,AD =5,CE = 13,则AE =( ) A .3B .3C .4D .2【考点】圆内接四边形的性质、勾股定理【解答】解:连接 AC ,如图,∵BA 平分∠DBE ,∴∠1=∠2,∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA ,∴AC =AD =5,∵AE ⊥CB ,3∴∠AEC=90°,= 52‒ ( 13)2=2 3.∴AE=故选:D.7.(2019 年陕西省)如图,AB 是⊙O 的直径,EF、EB 是⊙O 的弦,且EF=EB,EF 与AB 交于点C,连接OF.若∠AOF=40°,则∠F 的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8.(2019 年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C 在⊙O 上,CD 垂直平分AB 于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB. 5dmC. 4dmD. 3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C 三点共线,AC2 ‒C E2∵CD=2,∴OD=r-2,在Rt△ADO 中,∵AO2=AD2+OD2,,即r2=42+(r-2)2,解得:r=5,故答案为:B.9.(2019 年甘肃省天水市)如图,四边形ABCD 是菱形,⊙O 经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC 的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD 是菱形,∠D=80°,1 1∴∠ACB=2∠DCB=2(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10.(2019 年甘肃省)如图,AB 是⊙O 的直径,点C、D 是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11.(2019 年湖北省襄阳市)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB 【考点】圆内有关性质【解答】解:∵AD 为直径,∴∠ACD=90°,∵四边形OBCD 为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD 中,sin A==,∴∠A=30°,在Rt△AOP 中,AP=OP,所以A 选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C 选项的结论正确;∴AP=CP,∴OP 为△ACD 的中位线,∴CD=2OP,所以 B 选项的结论正确;∴OB=2OP,∴AC 平分OB,所以D 选项的结论正确.故选:A.12.(2019 年湖北省宜昌市)如图,点A,B,C 均在⊙O 上,当∠OBC=40°时,∠A 的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13.(2019 年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB 的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB 为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14.(2019 年内蒙古包头市)如图,在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,以BC为直径作半圆,交AB 于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC 是半圆的直径,∴CD⊥AB,∵在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,∴△ACB 是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×2 2 =2,故选:D.15.(2019 年内蒙古赤峰市)如图,AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,点D 是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16.(2019 年西藏)如图,在⊙O 中,半径OC 垂直弦AB 于D,点E 在⊙O 上,∠E=22.5°,AB=2,则半径OB 等于()A.1B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB 于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB 是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB 等于:=.故选:B.17.(2019 年海南省)如图,直线l1∥l2,点A 在直线l1 上,以点A 为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C 两点,连结AC、BC.若∠ABC=70°,则∠1 的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A 为圆心,适当长度为半径画弧,分别交直线l1、l2 于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1.(2019 年ft东省德州市)如图,CD 为⊙O 的直径,弦AB⊥CD,垂足为⏜⏜E,= ,CE=1,AB=6,则弦AF 的长度为.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB 交AF 于G,如图,∵AB⊥CD,1∴AE=BE=2AB=3,设⊙O 的半径为r,则OE=r-1,OA=r,在Rt△OAE 中,32+(r-1)2=r2,解得r=5,∵= ,∴OB⊥AF,AG=FG,在Rt△OAG 中,AG2+OG2=52,①在Rt△ABG 中,AG2+(5-OG)2=62,②24解由①②组成的方程组得到AG= 5 ,48 48∴AF=2AG= 5 .故答案为 5 .⏜2.(2019 年湖北省随州市)如图,点A,B,C 在⊙O 上,点C 在优弧AB上,若∠OBA=50°,则∠C 的度数为.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3.(2019 年黑龙江省伊春市)如图,在⊙O 中,半径OA 垂直于弦BC,点D 在圆上且∠ADC=30°,则∠AOB 的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4.(2019 年江苏省泰州市)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP=3,过点A 作AP 的垂线交于⊙O 点B、C.设PB=x,PC=y,则y 与x 的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接 PO 并延长交⊙O 于点N,连接 BN,∵PN 是直径,∴∠PBN=90°.∵AP⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC,又∵∠PNB=∠PCA,∴△PBN∽△PAC,PB PN∴ PA = PC ,x 10∴ 3 = y30∴y= x .30故答案为:y= x .三、解答题1.(2019 年上海市)已知:如图,AB、AC 是⊙O 的两条弦,且AB=AC,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E,联结CD 并延长交⊙O 于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC 是⊙O 的两条弦,且AB=AC,∴A 在BC 的垂直平分线上,∵OB=OA=OD,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC,C D E F O ∴BD =CD ;(2)如图 2,连接 OB ,∵AB 2=AO •AD ,=∴AOAB , ∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形 ABDC 是菱形.2. (2019 年江苏省苏州市)如图,AE 为 O 的直径,D 是弧 BC 的中点 BC 与 AD ,OD 分别交于点 E ,F .(1) 求证: DO ∥AC ;(2) 求证: DE ⋅ DA = DC 2 ;(3) 若 tan ∠CAD = 1,求sin ∠CDA 的值. 2A B【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧 BC 的中点,OD 为 O 的半径∴ OD ⊥BC又∵AB 为 O 的直径∴ ∠ACB = 90︒∴ AC ∥OD(2) 证明:∵D 为弧 BC 的中点∴ CD = B D ∴ ∠DCB = ∠DAC∴ ∆DCE ∽∆DAC∴ DC = DE DA DC即 DE ⋅ DA = DC 2(3) 解:∵ ∆DCE ∽∆DAC , tan ∠CAD = 12∴ CD = DE = CE = 1 DA DC AC 2设 CD = 2a ,则 DE = a , DA = 4a又∵ AC ∥OD∴ ∆AEC ∽DEF∴ CE = AE = 3 EF DE所以 BC = 8 CE3又 AC = 2CE∴ AB = 10 CE3即sin ∠CDA = sin ∠CBA = CA = 3AB 53. (2019 年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以 AB 为直径的半圆 O 交AC 于点 D ,点 E 是上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证:△ADF ≌△BDG ;(2) 填空: ①若 AB =4,且点 E 是的中点,则 DF 的长为 ; ②取的中点 H ,当∠EAB 的度数为 时,四边形 OBEH 为菱形.2【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图 1,∵BA =BC ,∠ABC =90°,∴∠BAC =45°∵AB 是⊙O 的直径,∴∠ADB =∠AEB =90°,∴∠DAF +∠BGD =∠DBG +∠BGD =90°∴∠DAF =∠DBG∵∠ABD +∠BAC =90°∴∠ABD =∠BAC =45°∴AD =BD∴△ADF ≌△BDG (ASA );(2)①如图 2,过 F 作 FH ⊥AB 于 H ,∵点 E 是的中点,∴∠BAE =∠DAE∵FD ⊥AD ,FH ⊥AB∴FH =FD∵=sin ∠ABD =sin45°= ,∴ ,即 BF = FD ∵AB =4,∴BD =4cos45°=2,即 BF +FD =2 ,( +1)FD =2 ∴FD ==4﹣ 故答案为 .②连接 OE ,EH ,∵点 H 是的中点, ∴OH ⊥AE ,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4.(2019 年浙江省温州市)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE,过A,C,E 三点的⊙O 交AB 于另一点F,作直径AD,连结DE 并延长交AB 于点G,连结CD,CF.(1)求证:四边形DCFG 是平行四边形.(2)当BE=4,CD=AB 时,求⊙O 的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF 是⊙O 的直径,∵AC=EC,∴CF⊥AE,∵AD 是⊙O 的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG 是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF 中,AF=10,AC=6,∴CF==3 ,即⊙O 的直径长为3 .5.(2019 年湖北省宜昌市)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作EF 的垂线交DC 于点H,以EF 为直径作半圆O.(1)填空:点A (填“在”或“不在”)⊙O 上;当=时,tan∠AEF 的值是;(2)如图1,在△EFH 中,当FE=FH 时,求证:AD=AE+DH;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH=AE+DH;(4)如图3,点M 在线段FH 的延长线上,若FM=FE,连接EM 交DC 于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF 的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O 为EF 中点,∴AO=EF,∴点A 在⊙O 上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD 中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF 交HD 的延长线于点G,∵F 分别是边AD 上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M 作MQ⊥AD 于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM 为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.AC=2 ,弦BM 平分∠ABC 交AC 于点D,连接MA,MC.(1)求⊙O 半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O 作OH⊥AC 于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O 的半径为2.(2)证明:在BM 上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC 是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM 平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM 是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2019年中考数学试题汇编:圆的概念及性质填空题(解析版)
1.(2019年四川省雅安市)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为69°.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【点评】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.2.(2019年湖南省娄底市)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=2.【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3.(2019年宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为3.【分析】连接OA,设半径为x,用x表示OC,根据勾股定理建立x的方程,便可求得结果.【解答】解:连接OA,设半径为x,∵将劣弧沿弦AB折叠交于OC的中点D,∴OC=,OC⊥AB,∴AC==,∵OA2﹣OC2=AC2,∴,解得,x=3.故答案为:3.【点评】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.4.(2019年贵州省铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为100°;【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°【点评】考查圆内接四边形的外角等于它的内对角.5.(2019年黑龙江省绥化市)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC =AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC =OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.6.(2019年黑龙江省鸡西市)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为60°.【分析】利用圆周角与圆心角的关系即可求解.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.7.(2019年湖北省随州市)如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为40°.【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后根据圆周角定理得到∠C的度数.【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°﹣50°=80°,∴∠C=∠AOB=40°.故答案为40°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(2019年江苏省常州市)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=30°.【分析】先利用邻补角计算出∠BOC,然后根据圆周角定理得到∠CDB的度数.【解答】解:∵∠BOC=180°﹣∠AOC=180°﹣120°=60°,∴∠CDB=∠BOC=30°.故答案为30.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(2019年山东省东营市)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.【分析】根据中位线定理得到MN的长最大时,AB最大,当AB最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及解直角三角形的综合运用,解题的关键是了解当什么时候MN的值最大,难度不大.10.(2019年四川省广元市)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是6+3.【分析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,解直角三角形即可得到结论.【解答】解:过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.【点评】本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.11.(2019年广西北海市)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.12.(2019年湖南省株洲市)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20度.【分析】由直角三角形的性质得出∠OCE=25°,由等腰三角形的性质得出∠ODC=∠OCE=25°,求出∠DOC=130°,得出∠BOD=∠DOC﹣∠COE=40°,再由圆周角定理即可得出答案.【解答】解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.【点评】本题考查了圆周角定理、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握圆周角定理是解题的关键.13.(2019年江苏省苏州市)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为5.【分析】连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.【解答】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.【点评】本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.14.(2019年浙江省湖州市)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是30°.【分析】直接根据圆周角定理求解.【解答】解:∵一条弧所对的圆周角的度数是15°,∴它所对的圆心角的度数为2×15°=30°.故答案为30°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.(2019年浙江省台州市)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为52°.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.【点评】此题主要考查了圆内接四边形的性质以及三角形的外角,正确得出∠AEC的度数是解题关键.16.(2019年四川省宜宾市)如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2,则⊙O的面积是16π.【分析】由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角形,又AC=2,从而求得半径,即可得到⊙O的面积.【解答】解:∵∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°,∴△ACB为等边三角形,∵AC=2,∴圆的半径为4,∴⊙O的面积是16π,故答案为:16π.【点评】本题考查了圆周角定理,解题的关键是能够求得圆的半径,难度不大.17.(2019年安徽省)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.18.(2019年江苏省盐城市)如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=155°.【分析】连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.【解答】解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.19.(2019年江苏省连云港市)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为6.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半和有一角是60°的等腰三角形是等边三角形求解.【解答】解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.【点评】本题综合运用圆周角定理以及等边三角形的判定和性质.20.(2019年浙江省嘉兴市)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据勾股定理求出OC,代入求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠COD=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时OC=,∴CD的最大值为=AB=1=,故答案为:.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.21.(2019年江苏省南京市)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是4<BC≤.【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.【点评】本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.22.(2019年四川省凉山州)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.23.(2019年山东省德州市)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为.【分析】连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O 的半径为r,则OE=r﹣1,OA=r,根据勾股定理得到32+(r﹣1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5﹣OG)2=62,然后解方程组求出AG,从而得到AF的长.【解答】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r﹣1,OA=r,在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5﹣OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.【点评】本题考查了圆周角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.。
中考数学复习圆的基本性质练习题含答案解析
第六单元圆第24课时圆的基本性质点对点·课时内考点巩固30分钟1. (2019柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A. ∠BB. ∠CC. ∠DEBD. ∠D第1题图2. (2019宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°第2题图3. (2019兰州)如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A. 110°B. 120°C. 135°D. 140°第3题图4. (2019甘肃省卷)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D. 60°第4题图5.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A. 15°B. 20°C. 25°D. 30°第5题图6.(2019西安高新一中模拟)如图,四边形ABCD内接于⊙O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°第6题图7. (2019陕西黑马卷)如图,在⊙O中,弦AB∥CD,连接BC,OA,OD.若∠BCD=25°,CD=OD,则∠AOD的度数是()A. 140°B. 120°C. 110°D. 100°第7题图8. (2019赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A. 30°B. 40°C. 50°D. 60°第8题图9. (2019贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵,若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D .70°第9题图10. 如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则BD 的长为( ) A. 3 B. 2 3 C. 4 3 D. 12第10题图11. 如图,AB 为⊙O 的直径,∠CAB =30°,CB =3,∠ACB 的平分线CD 交⊙O 于点D ,则弦AD 的长为( )A. 2 3B. 2 2C. 3 3D. 32第11题图12. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于点D ,连接BC 、BD 、BF 、CF .若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°第12题图13. (2019西工大附中模拟)如图,已知△ABC 内接于⊙O ,EF 为⊙O 的直径,且点F 是弧BC ︵的中点.若∠B =40°,∠C =60°,则∠AFE 的度数为( )A. 10°B. 20°C. 30°D. 40°第13题图14. (2019西安铁一中模拟)如图,在半径为3的⊙O 中,弦BC 、DE 所对的圆周角分别是∠A 、∠F ,且∠A +∠F =90°.若BC =4,则DE 的长为( )A. 13B. 4C. 5D. 25第14题图15.在圆内接四边形ABCD中,∠ACB=∠ACD=60°,对角线AC、BD交于点E.已知BC=32,CD =22,则线段CE的长为()第15题图A. 32 2B. 7 5C. 62 5D. 22 316. (2019株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=________度.第16题图17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.第17题图18.已知半径为5的⊙O中,弦AB=52,弦AC=5,则∠BAC的度数是________.点对线·板块内考点衔接10分钟1. (2019襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A. AP=2OPB. CD=2OPC. OB⊥ACD. AC平分OB第1题图2. (2019西工大附中模拟)如图,已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC =130°,则∠ABE的度数为()A. 25°B. 30°C. 35°D. 40°第2题图3.(2019天水)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D. 35°第3题图4.(2019柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________.5.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP、OA,则△AOP面积的最大值为________.第5题图点对面·跨板块考点迁移2分钟1. (2019安顺)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为()第1题图A. 13 B. 22 C.223 D.24参考答案第24课时 圆的基本性质点对点·课时内考点巩固1. D 【解析】在⊙O 中,∵∠A 与∠D 都是BC ︵所对的圆周角,∴∠A =∠D .2. A 【解析】∵OB =OC ,∴∠OCB =∠OBC =40°.∴在△OBC 中,∠BOC =180°-∠OCB -∠OBC =180°-40°-40°=100°.∴∠A =12∠BOC =12×100°=50°.3. D 【解析】∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-∠A =140°.4. C 【解析】如解图,设圆心为O ,半径为r ,则AB =2r .连接OA 、OB ,则r 2+r 2=(2r )2,∴△OAB 为等腰直角三角形,∠AOB =90°.∴∠ASB =12∠AOB =45°.第4题解图5. B 【解析】如解图,连接AC ,∵AB 为直径,∴∠ACB =90°,∴∠ACD =∠DCB -∠ACB =110°-90°=20°,∴∠AED =∠ACD =20°.第5题解图6. B 【解析】∵AD ∥BC ,∴∠B =180°-∠DAB =132°,∵四边形ABCD 内接于⊙O ,∴∠D =180°-∠B =48°,由圆周角定理得,∠AOC =2∠D =96°.7. C 【解析】如解图,连接OC ,∵AB ∥CD ,∴∠B =∠BCD =25°,∴∠AOC =50°,∵CD =OD ,OD =OC ,∴OC =OD =CD ,∴△COD 为等边三角形,∴∠COD =60°,∴∠AOD =∠AOC +∠COD =110°.第7题解图8. D 【解析】∵OC ⊥AB ,∴点C 是AB ︵的中点,即AC ︵=BC ︵.∴∠BOC =∠AOC =2∠ADC =60°. 9. B 【解析】∵AB ︵=CD ︵,∴∠COD =∠AOB =40°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°.10. C 【解析】∵∠BAC =120°,AB =AC ,∴∠BCA =12×(180°-120°)=30°.∴∠D =∠BCA =30°.∵BD为⊙O 的直径,∴∠BAD =90°.在Rt △BAD 中,BD =AD cos30°=632=4 3. 11. D 【解析】如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,∵∠CAB =30°,∴AB =2CB =6,∵CD 平分∠ACB ,∴∠BCD =45°,∵∠BAD =∠BCD =45°,∴△ABD 为等腰直角三角形,∴AD =22AB =22×6=3 2.第11题解图12. A 【解析】∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-40°)=70°.又∵EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠ABD =∠BAC =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.13. A 【解析】如解图,连接OC 、CF .∵∠B =40°,∠ACB =60°,∴∠BAC =80°,∠AFC =∠ABC =40°,∵点F 是弧BC ︵的中点,∴∠BAF =∠CAF =40°,∴∠COF =2∠CAF =80°,∵OF =OC ,∴∠OFC =12(180°-80°)=50°,∴∠AFE =∠OFC -∠AFC =10°.第13题解图14. D 【解析】如解图,连接DO 并延长,交⊙O 于点G ,连接EG 、FG ,则∠DFG =∠DEG =90°,又∵∠A +∠DFE =90°,∠GFE +∠DFE =90°,∴∠A =∠GFE .则GE =BC =4.∵⊙O 的半径为3,∴DG =6.在Rt △DEG 中,DE =DG 2-GE 2=62-42=2 5.第14题解图15. C 【解析】如解图,作BM ⊥AC 于点M ,DN ⊥AC 于点N ,则BM ∥DN ,∴△BME ∽△DNE ,∴MENE =BM DN ,∵∠ACB =∠ACD =60°,∴∠CBM =∠CDN =30°,∴CM =12BC =322,CN =12CD =2,∴BM =3CM =362,DN =3CN =6,∴MN =CM -CN =122,∴ME NE =32,∴EN =25MN =25,∴CE =CN +EN =2+25=625.第15题解图16. 20 【解析】∵AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,∴∠ADC =12∠AOC =45°.∵∠AEC=65°,且∠AEC 是△ADE 的一个外角,∴∠BAD =∠AEC -∠ADC =20°.17. 2 【解析】如解图,连接OA 、OC ,∵∠CBA =45°,∴∠AOC =90°.又∵OA =OC =2,∴AC =2 2.在Rt △ACD 中,∠CDA =90°,∠CAD =30°,∴CD =AC ·sin30°= 2.第17题解图18. 105°或15° 【解析】如解图,连接OC ,OA ,OB .∵OC =OA =AC =5,∴△OAC 是等边三角形,∴∠CAO =60°,∵OA =OB =5,AB =52,∴OA 2+OB 2=AB 2,∴△OAB 是等腰直角三角形,∠OAB =45°,点C 的位置有两种情况,如解图①时,∠BAC =∠CAO +∠OAB =60°+45°=105°;如解图②时,∠BAC =∠CAO -∠OAB =60°-45°=15°.综上所述,∠BAC 的度数是105°或15°.第18题解图点对线·板块内考点衔接1. A 【解析】如解图,连接OC .∵四边形OBCD 是平行四边形,OD =OB ,∴四边形OBCD 是菱形.∴OD =OC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∵CD ∥OB ,∴CD =2OP ,OB ⊥AC .故B 、C 选项正确.∵△CBP ≌△COP (HL),∴BP =OP .故D 选项正确.第1题解图2. B 【解析】如解图,连接OA ,OB ,OC ,OE ,∵AB =BC =CE ,∴AB ︵=BC ︵=CE ︵,∠1=∠2=∠3,在四边形BCDE 中,∵∠D =130°,∴∠CBE =50°,∠2=2∠CBE =100°,∴∠1=∠3=∠2=100°,∠AOE=360°-3×100°=60°,∴∠ABE =12∠AOE =30°.第2题解图3. C 【解析】∵∠AEB +∠AEC =∠D +∠AEC =180°,∠D =80°,∴∠AEB =∠D =80°.∵四边形ABCD是菱形,∴∠B =∠D =80°,AB =BC ,∴∠B =∠AEB .∴∠BAE =180°-2∠B =20°,∠BAC =∠ACB =12(180°-∠B )=50°.∴∠EAC =∠BAC -∠BAE =30°.4. 52 【解析】如解图,四边形ABCD 为正方形,BD 为⊙O 的直径,OA 为半径,则OA =OB =5,OA ⊥OB ,∴AB = OA 2+OB 2=52+52=5 2.第4题解图5. 174【解析】如解图,延长AO 至C 点,过点D 作DF ⊥AC 于点F ,延长FD 交⊙D 于点P ′,连接AP ′,OP ′,要使△AOP 面积最大,则只需AO 边上的高最大,此时P ′满足条件,即P ′F 为△AOP 的AO 边上最大的高.∵DF =AD ·CD AC =4×342+32=125,∴P ′F =DF +DP ′=125+1=175,AO =12AC =52,∴△AOP 的最大面积为12AO ·P ′F =12×52×175=174.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,连接AC 、AO ,得到等腰三角形AOC ,过A 点作AD ⊥OC ,垂足为点D ,∴∠CAD =12∠CAO =∠OBC ,∵点C 坐标为(0,2),∴CD =OD =1,∴在Rt △ACD 中,AD =AC 2-CD 2=32-12=22,∴tan ∠OBC =tan ∠CAD =CD AD =122=24.第1题解图。
2019全国中考数学真题分类汇编:与圆的有关计算及参考答案
一、选择题1.(2019·德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B.【解析】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选B.2.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.3、(2019·遂宁)如图,△ABC 内接于⊙O ,若∠A=45°,⊙O 的半径r=4,则阴影部分的面积为 ( )A.4π-8B. 2πC.4πD. 8π-8 【答案】A【解析】由题意可知∠BOC=2∠A=45°2⨯=90°,S 阴=S 扇-S △OBC ,S 扇=14S 圆=14π42=4π, S △OBC =2142⨯=8,所以阴影部分的面积为4π-8,故选A. 4.(2019·广元)如图,AB,AC 分别是 O 的直径和弦,OD ⊥AC 于点D,连接BD,BC,且AB =10,AC =8,则BD 的长为( )A.B.4C.D.4.8第6题图 【答案】C【解析】∵AB 是直径,∴∠C =90°,∴BC =6,又∵OD ⊥AC,∴OD ∥BC,∴△OAD ∽△BAC,∴CD =AD=12AC =4,∴BD =故选C.5.(2019·温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .32π B .2π C .3π D .6π 【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=180n rπ,得6π.故选D. 6.(2019·绍兴 )如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 ( )A.πB.π2C.π2D.π22【答案】A【解析】在△ABC 中,得∠A=180°-∠B -∠C=45°, 连接OB ,OC ,则∠BOC=2∠A=90°,设圆的半径为r ,由勾股定理,得22r r +=(22)2,解得r=2,所以弧BC 的长为902180π⨯=π.7.(2019·山西)如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π- 2πC.πD.2π第10题图 【答案】A【解题过程】在Rt △ABC 中,连接OD,∠ABC =90°,AB ==2,∴∠A =30°,∠DOB =60°,过点D 作DE ⊥AB 于点E,∵AB =∴AO =OD=∴DE =32,∴S 阴影=S △ABC -S △AOD -S扇形BOD=-2π2π-,故选A.8.(2019·长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是【 】A .2π B.4π C.12π D.24π 【答案】C【解析】根据扇形的面积公式,S=120×π×62360=12π,故本题选:C .9.(2019·武汉) 如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A .2B .2πC .23 D .25【答案】A【解题过程】由题得∠1=∠2=12∠C =45°,∠3=∠4,∠5=∠6 设∠3=∠4=m ,∠5=∠6=n ,得m +n =45°,∴∠AEB =∠C +m +n90°+45°=135°∴E 在以AD 为半径的⊙D 上(定角定圆)4t 2t t165432QP EDAOBC MN如图,C的路径为MN,E的路径为PQ设⊙O的半径为1,则⊙D,∴MNPQ=42136022360ttππ⨯⨯⨯10. (2019·泰安)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为A.12π B.π C.2π D.3π【答案】C【解析】连接OA,OB,过点O作OD⊥AB交AB于点E,由题可知OD=DE=12OE=12OA,在Rt△AOD中,sinA=ODOA=1 2,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,AB=180n rπ=2π,故选C.11. (2019·枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD与点E,则图中阴影部分的面积是(结果保留π)A.8-πB.16-2πC.8-2πD.8-1 2π【答案】C【解析】在边长为4的正方形ABCD 中,BD 是对角线,∴AD =AB =4,∠BAD =90°,∠ABE =45°,∴S △ABD =12AD AB⋅⋅=8,S 扇形ABE =2454360π⋅⋅=8-2π,故选C.12. (2019·巴中)如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的高,母线和底面半径构成直角三角形,其中r =6,h =8,所以母线为10,即为侧面扇形的半径,底面周长为12π,即为侧面扇形的弧长,所以圆锥的侧面积=12×10×12π=60π,故选D.13. (2019·凉山) 如图,在△AOC 中,OA =3cm ,OC =lcm ,将△AOC 绕点D 顺时针旋转90 °后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( ▲ )cm 2 A .2πB .2πC .178πD .198π【答案】B【解析】AC 边在旋转过程中所扫过的图形的面积=S △OCA +S 扇形OAB - S 扇形OCD - S △ODB ①,由旋转知:△OCA ≌△ODB ,∴S △OCA =S△ODB ,∴①式=S 扇形OAB - S 扇形OCD =3603902⨯π-3601902⨯π=2π,故选B .14.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A. B. C. D.【答案】C.【解析】由题意可知,⊙O是正方形ABCD的外接圆,过圆心O点作OE⊥BC于E,在Rt△OEC中,∠COE=45°,∴sin∠COE=,设CE=k,则OC=CE=k,∵OE⊥BC,∴CE=BE=k,即BC=2k.∴S正方形ABCD=BC2=4k2,⊙O的面积为πr2=π×(k)2=2πk2.∴正方形==≈.15.(2019·湖州)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2【答案】B.【解析】∵r=5,l=13,∴S锥侧=πrl=π×5×13=65π(cm2).故选B.16. (2019·金华)如图,物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()32【答案】D.【解析】∵∠A=90°,∠ABC=105°,∴∠ABD=45°,∠CBD =60°,∴△ABD是等腰直角三角形,△CBD是等边三角形.设AB长为R,则BDR.∵上面圆锥的侧面积为1,即1=12lR,∴l=2R·∴下面圆锥的侧面积为12lR=12·2R.故选D.17.(2019·宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则AB的长为A.3.5cmB.4cmC.4.5cmD.5cm【答案】BDCBA【解析】AE=124ABπ⋅⋅,右侧圆的周长为DEπ⋅,∵恰好能作为一个圆锥的底面和侧面,∴,124ABπ⋅⋅=DEπ⋅,AB=2DE,即AE=2ED,∵AE+ED=AD=6,∴AB=4,故选B.18. (2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的基本性质一、选择题 1.(2019·嘉兴)如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线PA 交OC 延长线于点P ,则PA 的长为( )A .2B .C .D .【答案】B【解析】连接OA ,因为∠ ABC=30°,所以∠AOC=60°,又因为PA 为切线,所以∠OAP=90°,因为OC=1,所以2.(2019·杭州)如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,若PA=3,则PB=( ) A .2 B.3 C.4 D.5【答案】B【解析】因为P A 和PB 与⊙O 相切,根据切线长定理,可知: P A =PB =3,故选B . 3.(2019·烟台)如图,AB 是O 的直径,直线DE 与O 相切于点C ,过点A ,B 分别作AD DE ⊥,BE DE ⊥,垂足为点D ,E ,连接AC ,BC.若AD =3CE =,则AC 的长为( ). A.3 B.3 C.2 D.3【答案】D【解题过程】连接OC ,因为AD DE ⊥,BE DE ⊥,所以90ADC CEB ∠=∠=︒ 所以90DAC ACD ∠+∠=︒ 因为AB 是O 的直径,ODEBA所以90ACB ∠=︒,所以90BCE ACD ∠+∠=︒, 所以BCE DAC ∠=∠, 在△ADC 与△CED ,因为90ADC CEB ∠=∠=︒,BCE DAC ∠=∠ 所以△ADC ∽△CED ,所以BC CE AC AD ===在Rt △ACB中,sin BCBAC AC∠== 所以60BAC ∠=︒, 又因为OA OC =,所以△AOC 是等边三角形, 所以60ACO ∠=︒, 因为直线DE 与O 相切于点C ,所以OC DE ⊥,因为AD DE ⊥,OC DE ⊥, 所以AD//OC ,所以60DAC ACO ∠=∠=︒,所以9030ACD DAC ∠=︒-∠=︒,所以2AC AD ==, 所以△AOC 是等边三角形,所以OA AC ==,60AOC ∠=︒,所以AC=.4.(2019·威海)如图,⊙P 与x 轴交与点A (—5,0),B (1,0),与y 轴的正半轴交于点C ,若∠ACB =60°,则点C 的纵坐标为A.B. C. D .2【答案】D【解题过程】连接PA 、PB 、PC ,过点P 分别作PF ⊥AB ,PE ⊥OC ,垂足为F,E. 由题意可知:四边形PFOE 为矩形, ∴PE =OF ,PF =OE . ∵∠ACB =60°, ∴∠APB =120°. ∵P A =PB , ∴∠P AB =∠PBA =30°. ∵PF⊥AB , ∴AF =BF =3.cos30°=AF AP,∴PF AP=∴OE PC=在RT△PEC中,CE==∴OC=CE+EO=+2.5.(2019·青岛)如圈,结段AB经过⊙O的圆心,AC BD分别与⊙O相切于点D.若AC= BD = 4,∠A=45°,则圆弧CD的长度为A.πB. 2πC. πD.4π【答案】B【解析】连接CO,DO,因为AC,BD分别与⊙O相切于C,D,所以∠ACO=∠DBO=90°,所以∠AOC=∠A=45°,所以CO=AC=4,因为AC=BD,CO=DO,所以△ACO≌△BDO,所以∠DOB=∠AOC=45°,所以∠DOC=180°-∠DOB-∠AOC=180°-45°-45°=90°,CD=904 180π⨯=2π,故选B.6.(2019·益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A. PA=PBB.∠BPD=∠APDC.AB⊥PDD.AB平分PD第9题图【答案】D【解析】∵PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,∴PA=PB,∠BPD=∠APD,故A、B正确;∵PA=PB,∠BPD=∠APD,∴PD⊥AB,PD平分AB,但AB不一定平分PD,故C正确,D错误. 7.(2019·黄冈)如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,点D是AB的中点,且CD=10m.则这段弯路所在圆的半径为()A.25mB.24mC.30mD.60m【答案】A【解析】连接OD,由垂径定理可知O,C,D在同一条直线上,OC⊥AB为r,则OC=OA=r,AD=20,OD=OA-CD=r-10,在Rt△ADO知:r2=202+(r-10)2,解得r=25.8.(2019·陇南)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°【答案】C【解析】作AB的垂直平分线,交圆与点C,D,设圆心为O,CD与AB交于点E,∵OA,∴AE=2,∴2sinOEAOEOA OA∠===,∴∠AOE=45°,∴∠AOB=90°,∴∠ASB=45°,故选:C.9.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.10. (2019·聊城)如图,BC 是半圆O 的直径,D,E 是BC 上两点,连接BD,CE 并延长交于点A,连接OD,OE,如果∠A =70°,那么∠DOE 的度数为 A.35° B.38°C.40°D.42°【答案】C 【解析】∵∠A =70°,∴∠B+∠C =110°,∴∠BOE+∠COD =220°,∴∠DOE =∠BOE+∠COD -180°=40°,故选C.11.(2019·潍坊)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD .过点D 作DE ⊥AB 于点E .连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则BC 的长为()A .8B .10C .12D .16 【答案】C【解析】连接BD .∵AD =CD ,∴∠DAC =∠ACD .∵AB 为直径,∴∠ADB =∠ACB =90°.∴∠DAB +∠ABD =90°. ∵DE ⊥AB ,∴∠DAB +∠ADE =90°.∴∠ADE =∠ABD . ∵∠ABD =∠ACD ,∴∠DAC =∠ADE .∴AF =DF =5. 在Rt △AEF 中,sin ∠CAB =35EF AF = ∴EF =3,AE =4.∴DE =3+5=8.由DE 2=AE ▪EB ,得228164DE BE AE ===. ∴AB =16+4=20.在Rt △ABC 中,sin ∠CAB =35BC AB = ∴BC =12.12. (2019·凉山)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数(▲)A.1 B.2 C.3 D.4【答案】A【解析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;两点之间线段最短;在同圆或等圆中,相等的圆心角所对的弧相等;平分弦(不是直径)的直径垂直于弦,所以只有①是对的,故选A.13.(2019·眉山)如图,⊙O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为A.B..6 D.12【答案】A【解析】∵∠A=22.5°,∴∠COE=45°,∵⊙O的直径AB垂直于弦CD,OC=6,OC=,∴CD=2CE=∴∠CEO=90°,∵∠COE=45°,∴CE=OE=2故选D.14.(2019·衢州)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8dm,DC=2dm,则圆形标志牌的半径为(A)A.6dmB.5dmC.4dmD.3dm【答案】B【解析】连接OD,OB,则O,C,D三点在一条直线上,因为CD垂直平分AB,AB=8dm,所以BD=4dm,OD=(r-2)dm,由勾股定理得42+(r-2)2=r2,r=5dm,故选B.15.(2019·泰安) 如图,△ABC是O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为A.32 °B.31°C.29°D.61°【答案】A【解析】连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°,∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.二、填空题16.(2019·嘉兴)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B.C.D.【答案】B【解析】连接OA,因为∠ ABC=30°,所以∠AOC=60°,又因为PA为切线,所以∠OAP=90°,因为OC=1,所以17.(2019·杭州)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,若PA=3,则PB=()A.2 B.3 C.4 D.5【答案】B【解析】因为P A和PB与⊙O相切,根据切线长定理,可知:P A=PB=3,故选B.18.(2019·烟台)如图,AB是O的直径,直线DE与O相切于点C,过点A,B分别作AD DE⊥,BE DE⊥,垂足为点D,E,连接AC,BC.若AD=3CE=,则AC的长为().ABCD【答案】D【解题过程】连接OC ,因为AD DE ⊥,BE DE ⊥,所以90ADC CEB ∠=∠=︒ 所以90DAC ACD ∠+∠=︒ 因为AB 是O 的直径,所以90ACB ∠=︒,所以90BCE ACD ∠+∠=︒, 所以BCE DAC ∠=∠, 在△ADC 与△CED ,因为90ADC CEB ∠=∠=︒,BCE DAC ∠=∠ 所以△ADC ∽△CED ,所以BC CE AC AD ===在Rt △ACB中,sin BCBAC AC∠== 所以60BAC ∠=︒, 又因为OA OC =,所以△AOC 是等边三角形, 所以60ACO ∠=︒, 因为直线DE 与O 相切于点C ,所以OC DE ⊥,因为AD DE ⊥,OC DE ⊥, 所以AD//OC ,所以60DAC ACO ∠=∠=︒,所以9030ACD DAC ∠=︒-∠=︒,所以2AC AD ==, 所以△AOC 是等边三角形,所以OA AC ==,60AOC ∠=︒,所以AC=.19.(2019·娄底)如图(9),C 、D 两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =_____________.ODEBA【答案】1.【解析】如图,图9-1,连结AD ,∵由AB 为⊙O 的直径, ∴∠ADB =90°,又∵在⊙O 中有∠ACD =30°, ∴∠B =∠ACD =30°,∴112122AD AB ==⨯=. 20.(2019·衡阳)已知圆的半径是6,则圆内接正三角形的边长是. 【答案】【解析】如图,作OD ⊥BC 于D ,∵OB =6,∠OBD =30,∴BD =12BC =∴BC =21.(2019·安徽)如图,△ABC 内接于⊙O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为 .【答案】2【解析】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.连接CO 并延长交⊙O 于E ,连接BE ,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.连接CO 并延长交⊙O 于E ,连接BE ,则∠E=∠A=30°,∠EBC=90°,∵⊙O 的半径为2,∴CE=4,∴BC=21CE=2,∵CD ⊥AB ,∠CBA=45°,∴CD=22BC=2,故答案为2.A22.(2019·株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.第16题【答案】20°【解析】如图,连接DO,因为CO⊥AB,所以∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC,∴∠ODC=∠C=25°,△DCO中,∠DOC=130°,∴∠DOB=40°,∴2∠BAD=∠DOB,∴∠BAD=20°。