马氏体相变动力学的深入描述

合集下载

第四章 马氏体相变

第四章 马氏体相变

第四章 马氏体相变随着科学技术的发展和人们对材料性能的要求越来越高,材料相变的研究也成为了一个热门的领域。

其中,固态相变是最为基础和广泛的相变形式之一。

在这其中,马氏体相变是一个相对特殊和有意义的相变过程。

一、马氏体相变的定义和分类马氏体相变,是指在含碳钢中,当钢经过一定的热处理过程后,在室温下形成一种具有变形性能的组织结构。

其核心原理是在高温下形成一种奥氏体,然后通过快速冷却过程,在室温下形成一种具有弹性、变形及塑性的马氏体组织结构。

根据马氏体相变的不同起始组织结构,其可以分为两种类型:一类是由完全奥氏体组成的马氏体相变,另一类是由贝氏体(以及在贝氏体上产生马氏体)组成的马氏体相变。

1.完全奥氏体马氏体相变当钢经过高温处理后,在其细小的晶粒中,完全转化为奥氏体组织。

通过钢的快速冷却 (通常在水、油、盐水等介质中进行),奥氏体中的部分碳原子被固溶,在马氏体的组织中重新排列,最终形成一种具有高强度和塑性的马氏体组织结构。

这种马氏体相变过程,称为完全奥氏体马氏体相变。

2.贝氏体马氏体相变贝氏体正常情况下是由冷却慢、回火温度低的钢中形成的。

它是由一种由铁与铁素体间化合物构成的细小晶粒组成的组织,这种组织强度比较低,韧性高,且具有较高的弹性变形和形变能力。

当这种钢经过高温处理后,由于组织发生了相变,大量贝氏体消失,而代替它的则是奥氏体组织。

这样在快速冷却的过程中,就会在奥氏体中形成一定数量的针状马氏体组织结构。

二、马氏体相变的影响因素马氏体相变的过程涉及到多个变量和影响因素,其中最重要的一些因素包括:1.冷却速度作为一种固态相变过程,马氏体相变的核心就是快速冷却过程。

通常来说,冷却速度越快,产生的马氏体组织也就越细小,强度也就越高。

2.合金元素含量合金元素在钢制造中有着重要的作用。

它们可以调节钢的合金成分和钢的性能,使钢的性能得到提升。

其中,加入Cr、Ni、Mn等元素可以有效地提高马氏体相变的开始和结束温度,这有利于得到良好的马氏体组织结构。

马氏体相变热力学

马氏体相变热力学

2、影响马氏体相变点的因素

T0 以及 Ms、Mf不同
合金或者同一合金在不同条件下,这些特征温度是不同的,相变的某些性 质也就不同,研究影响这些特征温度的因素对合金的应用具有重要意义。 实验表明, 这些特征温度随其他因素的变化趋势是相同的,只是
变化大小不同。 (1)化学成分 Ms 及 Mf 点主要取决于合金的化学成分,其中以间隙型溶质原子
3、马氏体相变的形核 尽管马氏体相变速度极快,但实验发现它仍然是形核与长大的过程。且马 氏体转变是非均匀形核,马氏体形核是在母相中的晶界、亚晶界、位错等 地方形成。 例如,Zener 阐述了在 fcc 结构中原子密排面上的全位错分解为两个不全 位错, 不全位错之间的层错区在适当的条件下将转变为 bcc 结构,从而解 释了 fcc→bcc 的马氏体转变。 全位错分解为不全位错是能量降低的自发过程, 分解后的不全位错由于位 错弹性应力场的相互排斥而分开; 因此在一定条件下扩展位错有一个平衡 距离,只有层错能较低的扩展位错才有足够的宽度用于马氏体形核。这种 形核模型在有些合金中已被观察到,故有一定的实验依据。
如 C、N 等的影响最为显著。 随着钢中含碳量的增加,由于马氏体相变的切变阻力增加,相变
温度下降。其中,Ms 点呈现比较均匀的连续下降,而 Mf 点在含碳量小于 0.5%时下降得较为显著,超过 0.5%以后下降趋于平缓,此时 Mf 点已经下 降到 0℃以下,导致钢的淬火组织中存在较多的残余奥氏体。 钢中常加入的合金元素除了 Co 和 Al 外,以及 Si 影响不大,其
马氏体相变热力学
1、相变驱动力 马氏体相变符合一级相变的一般规律,遵循相变的热力学条件,其中研究 最多的是 fcc→bcc 或 bct(体心正方)的转变,如钢中马氏体相变。 马氏体相变驱动力是马氏体与奥氏体之间的化学自由能差, ,温度越低,过冷度越大,则相变驱动力越大。 两相的自由能相等的温度定义为两相的平衡温度 T0。如果马氏体相变时 没有相变阻力,则 Ms=T0。 但是,马氏体相变过程中会产生很大的阻力(也称为非化学自由能) ,这 些阻力主要包括界面能、 应变能、克服切变阻力所需要的能量以及马氏体 中形成的位错或孪晶的能量等。 界面能是指马氏体与奥氏体间的相界面能、 马氏体变体间的界面能及 孪晶界面能。 应变能除了弹性应变能外, 相变时因为马氏体周围的奥氏体的屈服强 度较低,在奥氏体中会产生少量的塑性变形,从而引起塑性应变能。马氏 体与奥氏体间的比体积应变能和共格应变能构成了弹性应变能。 马氏体相变时,当合金冷却到 T0 温度并不发生马氏体相变,只有过冷到 低于 Ms 点以下时,相变才能发生。 故 Ms 点的物理意义是奥氏体与马氏体的自由能差达到相变所需 要的最小驱动力时的温度。 大。 因此,在 Ms 点处的相变驱动力可近似表达为: 当 T0 一定时,Ms 点越低,相变阻力越大,相变需要的驱动力也越

第四章 马氏体相变

第四章 马氏体相变

7
Yuxi Chen Hunan Univ.
特征2:马氏体转变的无扩散性
马氏体转变时,晶体点阵的改组只依赖原子微 量的协作迁移,而不依赖于原子的扩散。这一 特征称为马氏体转变的无扩散性。
1)只有晶体结构的变化,没有成分的变化。 2)无扩散并不是说转变时原子不发生移动。
注意间隙原子碳的扩散,区别于置换原子的扩 散。
逆转变开始的温度称为As,结束的温度称为Af 。
M→A的逆转变也是在一定温度范围内(As-Af)进行。 形状记忆合金的热弹性马氏体就是利用了这个特点。
马氏体转变最主要的和最基本的只有两个:切变共格 性和无扩散性。其他的特点可由这两个特点派生出来。
16
Yuxi Chen Hunan Univ.
第二节 马氏体的晶体结构
2、一般钢中马氏体的晶体结构
马氏体转变时只有点阵的改组而无成分的 变化,转变所得的马氏体与其母相奥氏体 的成分一致。
碳原子位于面心立方奥氏体的八面体间隙, 马氏体相变后,碳原子依然位于体心立方 的马氏体八面体间隙,但体心立方马氏体 的八面体是扁八面体,两个轴中有一个轴 是短轴。
终了。
为使转变继续进行,必须继续降低温度,所以马氏体
转变是在不断降温的条件下才能进行。
当温度降到某一温度之下时,马氏体转变已不能进行,
该温度称为马氏体转变终了点,Mf 。
14
Yuxi Chen Hunan Univ.
马氏体转变量是温度的函数,与等温时间无关。
马氏体的降温转变称为马氏体转变的非恒温性。
由于多数钢的 Mf 在室温以下,因此钢快冷到室 温时仍有部分未转变奥氏体存在,称为残余奥 氏体,记为Ar。
有残余奥氏体存在的现象,称为马氏体转变不 完全性。要使残余奥氏体继续转变为马氏体, 可采用冷处理。

马氏体相变的基本特征

马氏体相变的基本特征

马氏体相变的基本特征一、马氏体相变的概念及基本过程马氏体相变是指在一定条件下,由奥氏体向马氏体的转变。

奥氏体是指碳钢中的一种组织结构,具有良好的塑性和韧性,但强度和硬度较低;而马氏体则是碳钢中另一种组织结构,具有较高的强度和硬度,但韧性较差。

因此,在特定情况下将奥氏体转变为马氏体可以提高材料的强度和硬度。

马氏体相变的基本过程包括两个阶段:淬火和回火。

淬火是指将钢件加热至适宜温度后迅速冷却至室温,使其形成完全马氏体组织;回火是指将淬火后的钢件加热至适宜温度后进行恒温保持一段时间,然后缓慢冷却至室温,使其形成具有良好韧性和适当硬度的马氏体-贝氏体组织。

二、影响马氏体相变的因素1. 淬火介质淬火介质的选择对马氏体相变的影响非常大。

常用的淬火介质包括水、油和空气等。

水冷却速度最快,可以使钢件形成完全马氏体组织,但易产生变形和裂纹;油冷却速度较慢,可以降低变形和裂纹的风险,但易产生不完全马氏体组织;空气冷却速度最慢,可以避免变形和裂纹,但难以形成马氏体组织。

2. 淬火温度淬火温度是指将钢件加热至何种温度后进行淬火。

淬火温度越高,钢件中残留奥氏体的含量越高,从而影响马氏体相变的程度。

一般来说,淬火温度越低,马氏体相变越充分。

3. 回火温度回火温度是指将淬火后的钢件加热至何种温度进行回火处理。

回火温度对马氏体-贝氏体组织的形成有重要影响。

过高或过低的回火温度都会导致组织不均匀或性能下降。

4. 淬火时间淬火时间是指将钢件放入淬火介质中的时间。

淬火时间越长,相变程度越充分,但也容易产生变形和裂纹。

三、马氏体相变的应用马氏体相变广泛应用于制造高强度、高硬度的零部件。

例如汽车发动机凸轮轴、齿轮、摇臂等零部件,以及航空航天领域中的发动机叶片、转子等部件均采用了马氏体相变技术。

此外,马氏体相变还可以用于制造刀具、弹簧等产品。

总之,马氏体相变是一种重要的金属加工技术,在提高材料强度和硬度方面具有重要作用。

了解其基本特征和影响因素有助于更好地掌握该技术,并在实践中取得更好的效果。

马氏体相变

马氏体相变

马氏体相变机理研究进展摘要:马氏体应用在钢的强化,现今多数的结构钢件还是以淬火得到马氏体、再进行回火,产生马氏体的目的为强化,可应用在工程实用中,对马氏体的研究变得越来越受关注。

关键字:马氏体;相变;形核;1 引言:马氏体最初是在钢中发现的:将钢加热到一定温度后经迅速冷却,得到的能使钢变硬、增强的一种淬火组织。

是碳在ɑ-Fe中过饱和固溶体,为体心正方结构。

1895年法国人奥斯蒙为纪念德国冶金学家马滕斯,把这种组织命名为马氏体。

20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。

目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。

2.相变特征和机制马氏体相变具有热效应和体积效应,相变过程是形核和长大的过程。

但核心如何形成,又如何长大,目前尚无完整的模型。

马氏体长大速率一般较大,有的甚至高达10cm·s。

人们推想母相中的晶体缺陷(如位错)的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚不能窥其全貌。

其特征可概括如下:马氏体相变是无扩散相变之一,新相(马氏体)承袭了母相的化学成分和原子序态。

马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的,且原子位移导致点阵应变,这种切变位移不但使母相点阵结构改变,而且有形状变化。

由于马氏体相变时原子规则发生位移,使新相和母相之间始终保持一定的位向关系。

在铁基合金中由体心立方马氏体时具有著名的K-S关系(111)r//(011)M、[101]r//[111]M。

必须有足够的奥氏体过冷度才能产生点阵切变,形成马氏体。

转变开始温度定义为Ms,碳和置换合金元素增加奥氏体的切变抗力,降低Ms。

马氏体相变动力学km方程

马氏体相变动力学km方程

马氏体相变动力学km方程1. 引言相变是物质在一定条件下从一种状态转变为另一种状态的过程。

马氏体相变是一种重要的相变现象,常见于金属合金中。

马氏体相变动力学km方程是用来描述马氏体相变过程中组织演化的数学模型。

本文将介绍马氏体相变的基本概念、马氏体相变动力学理论以及km方程的推导和应用。

2. 马氏体相变基本概念马氏体是指具有特殊结构和性质的固态材料,在低温条件下能够发生固-固相变。

马氏体相变通常伴随着晶格结构和形态的改变,具有显著的形状记忆效应和超弹性等特性。

这些特性使得马氏体在材料科学、机械工程等领域具有广泛应用价值。

3. 马氏体相变动力学理论3.1 相界理论根据热力学原理,物质在不同温度和压力下会处于不同的平衡态,而相变则是不同平衡态之间的转变过程。

相界理论是描述相变的基本理论之一,它通过构建相图来描述材料在不同温度和组成条件下的平衡态。

3.2 马氏体相变动力学马氏体相变动力学研究的是马氏体相变过程中组织演化的动力学行为。

马氏体相变通常包括两个阶段:核化和长大。

核化是指马氏体晶胞在母相中形成新晶胞的过程,而长大则是指这些新晶胞逐渐增大并扩展到整个母相中。

3.3 km方程km方程是描述马氏体相变动力学的数学模型,其中k表示核化速率,m表示长大速率。

该方程可以用来预测材料在不同温度、时间和应力条件下的马氏体相变行为。

4. km方程推导和应用4.1 km方程推导km方程的推导涉及到复杂的数学和物理计算,这里将简要介绍其主要思路。

首先,根据热力学原理和统计物理理论,可以建立起核化速率k与温度、应力等因素的关系。

然后,通过实验和观察,可以确定长大速率m与时间、晶体结构等因素的关系。

最终,结合这两个速率,得到km方程。

4.2 km方程应用km方程可以应用于材料设计、工艺优化等领域。

通过对km方程的求解和分析,可以预测材料在不同条件下的相变行为,从而指导实际生产中的工艺参数选择和性能优化。

5. 结论马氏体相变动力学km方程是描述马氏体相变过程中组织演化的重要数学模型。

材料加工学-马氏体相变

材料加工学-马氏体相变

图7 各相自由能与温度的关系
二、马氏体相变热力学
☞ 影响钢中Ms点的主要因素
化学成分的影响
图8 含碳量对Ms和Mf的影响
图9 合金元素对铁合金Ms点的影响

形变与应力的影响 马氏体相变时产生体积膨胀,多向压缩应力阻止马氏体的 形成,降低Ms点。 拉应力或单向压应力有利于马氏体形成,使Ms点升高。
三、马氏体相变动力学
相变动力学通常是讨论相变速率问题,取决于新 相的形核率和长大速率。马氏体的形核率和长大 速率通常可分为三种类型。

降温瞬时形核,瞬时长大(降温马氏体相变)
• 当奥氏体被过冷到Ms点以下时,在该温度下能够形成马氏 体的晶核形成速度极快。 • 必须不断降温,马氏体晶核才能不断地快速形成。 • 马氏体晶核形成后马氏体的长大速度极快,长大到一定程 度以后就不再长大。
图17 碳含量对马氏体性 能的影响
原始奥氏体晶粒越细小,马氏体板群越细小,则马氏体强度 越高。
五、马氏体的机械性能
☞ 马氏体的韧塑性


位错马氏体具有良好的韧塑性。
孪晶马氏体脆性较大,韧塑性差。
马氏体的硬度主要取决于马氏体中碳含量,而 韧性和塑性主要取决于其亚结构。板条状马氏 体强度高,有一定的韧塑性,片状马氏体硬而 脆。
二、马氏体相变热力学
☞ 影响钢中Ms点的主要因素
奥氏体化条件的影响 加热温度升高 保温时间延长 淬火冷却速度的影响
有利于碳和 合金元素进 一步溶入奥 氏体中,使 Ms点降低。
引起奥氏体 晶粒长大, 马氏体形成 时切变阻力 减小,使Ms 点升高。
图10 淬火速度对Fe-0.5%C-2.05%Ni 钢Ms点的影响
概括以上三种相变特点可以看出,主要差别仅在 于形核及形核率不同,而形核后的长大速度均极 大,且均与相变温度关系不大。

【固态相变原理】第七章 马氏体相变

【固态相变原理】第七章 马氏体相变

马氏体相变的阻力
主要是新相形成时的界面能Sσ及应变能Vε。此外, (1)需要克服切变阻力而使母相点阵发生改组的能量; (2) 在马氏体晶体中造成大量位错或孪晶等晶体缺陷,导致能量升高; (3)在周围奥氏体中还将产生塑性变形,也需要消耗能量。
因此,Ms点的物理意义是: 奥氏体和马氏体两相自由能差达到相变所需最小驱动力值时的温度。
显然,若To点一定,Ms点越低,则相变所需的驱动力就越大。反之, Ms点高时,相变所需的驱动力则减小。所以,马氏体相变驱动力 △Gγ→α′与(To—Ms)成比例,即
式中,△S为γ→α′相变时的熵变。 As点的定义与Ms点类似,为马氏体和奥氏体两相自由能差达到逆相 变所需最小驱动力值时的温度,并且逆相变驱动力△Gα′→γ的大小与 (As—To)成比例。
3)奥氏体化条件的影响
加热温度升高和保温时间延长,有利于碳和合金元素进 一步溶入奥氏体中,而使Ms点下降,但同时又会引起奥氏 体晶粒的长大,并使其晶体缺陷减少,马氏体形成时的切变 阻力减小,从而使Ms点升高。
奥氏体成分一定时,晶粒细化则奥氏体强度提高,马氏体 相变切变阻力增大,Ms点下降。
4)淬火冷却速度的影响
凡剧烈降低T0温度及强化奥氏体的元素(如C)均剧烈地降低Ms点。 Mn、Cr、Ni等既降低T0温度又稍增加奥氏体强度,所以也降低Ms点。
A1、Co、Si、Mo、W、V、Ti等均提高T0温度,但也程度不同地增 加奥氏体强度。所以,若前者作用较大时,则使Ms点升高,如A1、Co; 若后者作用较大时,则使Ms点降低,如Mo、W、V、Ti;当两者作用 大致相当时,则对Ms点影响不大,如Si。
1.2.1马氏体相变热力学条件 马氏体相变驱动力是马氏体(α′)与奥氏体(γ)的化学自由能差Gγ→α′= Gα′-Gγ。

第5章 马氏体相变讲解

第5章 马氏体相变讲解
第5章 马氏体相变
? 主要内容:马氏体相变的主要特征; 马氏体的组织结构及其力学性能; 马氏体相变的热力学、动力学;
? 重点内容:影பைடு நூலகம் Ms点的因素、马氏体相变动力学、 马氏体的组织结构、力学性能
前言
? 马氏体( M, M artensite )相变特点: 相变过程中,晶体点阵的重组是通过基体原子的集 体有规律 近程 迁移—— 切变, 由一种晶体结构 转 变为另一种晶体结构,而 没有 原子长距离的迁移, 且新相与母相保持 共格关系。
? 形成条件:淬火。
? 淬火:将钢加热到 Ac3 或Ac1以上,保温后以大于 临界 冷却速度 的速度冷却,以获得马氏体或下贝氏体的热 处理工艺。
? 马氏体转变的临界冷却速度:抑制所有非马氏体转变 的最小冷却速度。
? 马氏体的力学性能:高硬度、高强度。
?C<0.3% 时为板条状马氏体; ?C在0.3%~1.0% 时为板条状马氏体和片状马氏体的 混合组织。
? 钢中M相变:钢经奥氏体化后 快速冷却,抑制其扩 散型分解,在较低温度下发生的 无扩散型相变。
? 在纯金属( Zr,Li,Co ),合金( Fe-Ni,Ni-Ti,Cu-Zn ),陶瓷 (ZrO 2)中也有M转变。
? 钢中马氏体: C原子在? -Fe中形成的过饱和固溶体。
? 马氏体定义:凡相变的基本特性属于马氏体型的转变 产物都称为马氏体。
金属及合金的高温相均可发生 M相变。
三、有一定的位向关系和惯习面
? 马氏体相变时,新相和母相界面始终保持着切变 共格,相变后两相之间的 位向关系仍然保持;
? K—S关系: 1.4%C 钢中马氏体和奥氏体之间的 位向关系, {111}?//{110}? ' , 〈110〉?//〈111〉? '

热处理原理之马氏体转变

热处理原理之马氏体转变
热力学第二定律
马氏体转变过程中,存在熵变,熵变与热力学第二定律有关。
马氏体转变的相变驱动力与热力学关系
温度
温度是影响马氏体转变的重要因素之一 ,温度的升高或降低会影响马氏体的形 成和转变。
VS
应力
应力也是影响马氏体转变的因素之一,应 力可以促进或抑制马氏体的形成和转变。
马氏体转变过程中的热效应与热力学关系
马氏体转变的种类与形态
板条状马氏体
01
02
03
定义
板条状马氏体是一种具有 板条状结构的马氏体,通 常在低合金钢和不锈钢中 形成。
形态
板条状马氏体由许多平行 排列的板条组成,每个板 条内部具有单一的马氏体 相。
特点
板条状马氏体具有较高的 强度和硬度,同时具有良 好的韧性。
片状马氏体
定义
片状马氏体是一种具有片 状结构的马氏体,通常在 高速钢和高温合金中形成 。
这种转变主要在钢、钛、锆等金属及 其合金中发生,常温下不发生马氏体 转变。
马氏体转变的特点
01
马氏体转变具有明显的滞后效应,转变速度与温度 和时间有关。
02
转变过程中伴随着体积的收缩或膨胀,并伴随着能 量的吸收或释放。
03
马氏体转变过程中晶体结构发生改变,但化学成分 基本保持不变。
马氏体转变的应用
06
相关文献与进一步阅读建议
主要参考文献列表
01
张玉庭. (2004). 热处理工艺学. 科学出版社.
02
王晓军, 王心悦. (2018). 材料热处理技术原理与应用. 机械 工业出版社.
03
周志敏, 纪松. (2019). 热处理实用技术与应用实例. 化学工 业出版社.
相关书籍推荐

马氏体转变动力学

马氏体转变动力学

马氏体转变动力学马氏体转变也是形核和长大过程,铁合金中马氏体形成动力学是多种多样的,大体上可以分为四种类型。

(一)马氏体的降温形成(变温瞬时形核、瞬时长大)是碳钢和低合金钢中最常见的一种马氏体转变。

其动力学特点为:马氏体转变必须在连续不断的降温过程中才能进行,瞬时形核,瞬时长大,形核后以极大的速度长大到极限尺寸,相变时马氏体量的增加是由于降温过程中新的马氏体的形成,而不是已有马氏体的长大,等温停留转变立即停止。

按马氏体相变的热力学,钢及铁合金中马氏体相变的热滞很大,相变驱动力很大,同时,马氏体长大过程中,其共格界面上存在弹性应力,使界面移动的势垒降低,而且原子只需作不超过一个原子间距的近程迁移,因此,长大激活能很小。

所以马氏体长大速度极快,以致于可以认为相变速度仅取决于形核率,而与长大速度无关。

马氏体片一般在10-4~10-7秒内即长大到极限尺寸。

降温形成马氏体的量,主要取决于冷却所达到的温度,即M S以下的深冷程度,等温保持时转变一般不再进行,这一特点意味着,成核似乎是在不需要热激活的情况下发生的,所以也称其为非热学性转变。

奥氏体的化学成分虽然对M S有具有很大的影响,但其对马氏体转变动力学的影响,几乎完全是通过M S点起作用,在M S以下的转变过程不随成分发生显著变化。

冷却速度对M S点以下的转变过程有明显的影响。

只要是在马氏体转变之前,无论是缓慢冷却或冷却中断,都会引起马氏体转变发生迟滞,导致马氏体转变温度下降和马氏体转变量的减少。

这种现象称为奥氏体稳定化。

影响M S点和马氏体转变动力学过程的一切因素都会影响到转变结束后残留奥氏体数量的多少。

例如:化学成分对M S点有显著影响,结果导致室温下残余奥氏体量的巨大差异,如下表所示。

每增加1%合金元素时残余奥氏体量的变化元素 C Mn Cr Ni Mo W Si Co Al50 20 11 10 9 8 6 -3 -4Aˊ量变化(%)可以看出,碳含量对残余奥氏体量的影响十分显著,般认为淬火钢C%>0.4%后就应考虑残余奥氏体对性能的影响。

论文:马氏体相变

论文:马氏体相变

马氏体相变姓名:蔡安琪班级:材料物理1303 学号:1309050308【引言】人们最早在钢中发现了马氏体转变,后来陆续在有色金属、陶瓷、半导体材料中也发现了马氏体相变,所以关于马氏体相变和马氏体的认识也经历了一系列历史性的变迁。

然而,直至目前还是有许多问题很不清楚,有待于进一步研究。

【摘要】淬火硬化是钢的最重要的工艺过程之一。

如果钢从奥氏体区以足够快的速度淬火,就没有充分的时间产生扩散控制的共析分解过程,钢就变成了马氏体,或在某种情况下是马氏体并有少量的残余奥氏体。

马氏体是物理冶金中的一个术语,用于描述任何无扩散型转变的产物。

对于钢中的马氏体,其冷却速率使大多数固溶在fcc的γ—Fe中的碳原子能保留在α—Fe相固溶体内。

这样,钢中的马氏体只是碳在α—Fe中的过饱和固溶体。

这种转变是一个复杂的过程,甚至到今天对这一转变的机制也没有很好地理解,至少在钢中是如此。

本文主要讲述马氏体相变的一些特征,马氏体相变热力学。

【关键词】无扩散型转变马氏晶体学核心【正文】一、马氏体相变的主要特征1.1切片共格和表面浮突现象马氏体相变时在预先磨光的试样表面上可出现倾动,形成表面浮突,这表明马氏体相变是通过奥氏体均匀切边进行的。

奥氏体已转变为马氏体的部分发生了宏观切变而使点阵发生改组,且一边凹陷,一边凸起,带动界面附近未转变的奥氏体也随之发生转变,如图一。

由此可见,马氏体的形成是以切变方式进行的,同时马氏体和奥氏体之间界面上的原子是共有的,整个界面是互相牵制的。

这种界面称为切变共格界面。

图一1.2无扩散性从马氏体相变的宏观均匀切变现象可以设想,在马氏体相变过程中原子是集体运动的,原来相邻的原子相变后仍然相邻,他们之间的相对位移不超过一个原子间距,即马氏体相变是在原子基本上不发生扩散的情况下发生的。

1.3在一定温度范围内完成相变必须将奥氏体快速冷却至某一温度以下才能发生马氏体相变,这一温度称为马氏体相变开始点,以M s表示。

马氏体相变动力学主要类型及其特点

马氏体相变动力学主要类型及其特点

细晶粒合金的爆发转变量较小。
马氏体的爆发转变,常因受爆发热的影响而伴有马氏 体的等温形成。
8
概括以上三种相变的特点可以看出, 主要差别仅在于形核及形核率不同,而
形核后的长大速度均极大,且均与相变
温度关系不大。
9
4.表面马氏体相变
将试样在稍高于其合金Ms点的温度等温保持,
往往在试样表面会形成马氏体。若将马氏体磨去,
11
f =1-6.956×10-15[455-(MS-tq)]5.32 f =1-exp[-1.10×10-2△T]
可见,tq越低,马氏体转变体积分数f越大。当tq与MS差值达 455时,转变马氏体的体积分数可达1。
2. 等温马氏体转变
出 现 于 Fe-26%Ni19%Mn,Fe-26%Ni-3%Cr, 高C高Mn钢中,为等温转变。 过冷奥氏体向马氏体 转变可以用类似C曲线T— τ等温图来描述。 特点:等温形核、瞬 时长大。有孕育期,C曲 线,但等温转变不完全。 右图为Fe-23.2%Ni 3.62%Mn合金中马氏体等 温转变的曲线。可用时
间—温度—转变量(TTT) 曲线来表示
(1) 等温形成马氏体核;形核有孕育期,形核率 随过冷度增加先增后减。 (2) 长大速度极快,到一定尺寸后即停止。大小 与上一类马氏体相同。 (3) 转变速度随时间增加,先增后减。 (4) 等温马氏体转变不能彻底转变,只是部分转 变。 (5) 变温转变中也有少量等温转变--通过等温形 成新核; 原有的变温马氏体等温过程中也会长大。
图为爆发式转变时的马氏体转变量与温度的关系
爆发转变停止后,为使马氏体相变得以继续进行,必 须继续降低温度。而后继转变曲线的斜率随爆发转变量 增大而减小。
7
由于爆发转变时马氏体晶核是由转变开始时形成的第 一片马氏体触发形成的,故称为自触发形核。马氏体片的 长大速度极快,且与温度无关。 晶界是爆发转变传递的障碍,因此在同样Mb温度下,

马氏体转变原理讲解

马氏体转变原理讲解

高碳轴承钢马氏体的等温形成1.4%C,1.4%Cr, 浮凸,直接淬至100℃等温10小时 800×
下图是三种不变平面应变,图中的C)既有膨胀 又有切变,钢中马氏体转变即属于这一种。
显然,界面上的原子排列规律既同于马氏体,也同 于奥氏体,这种界面称为共格界面。但不变平面可以是 相界面,也可以不是相界面。
五、马氏体转变的可逆性:
在某些合金中A冷却时A→M,而重新加热时马氏 体又能M→A,这种特点称为马氏体转变的可逆性。
逆转变开始的温度称为As,结束的温度称为Af 。 M进→行A。的逆转变也是在一定的温度范围内(As-Af) 形状记忆合金的热弹性马氏体就是利用了这个特
点。
二、 马氏体转变的晶体学
钢中常见的惯习面有三种,即 C%<0.6%为 (111)γ 0.6-1.4%为(225)γ C%>1.4%为(259)γ
随马氏体的形成温度降低惯习面指数增大。
(2)位向关系
马氏体转变的晶体学特征是马氏体与母相之间存 在着一定的位向关系。在钢中已观察到到的有K—S关 系、西山关系和G—T关系。 (1)K—S关系
二、马氏体转变的切变共格性和表面浮凸现 象
(1) 马氏体转变时在预先磨光的表面上产 生有规则的表面浮凸 ;
(2) 马氏体形成有惯习面,马氏体转变时 马氏体与奥氏体之间保持共格关系 ;
表面浮凸:预先磨光表面的试样,在马氏体相变后 表面产生突起,这种现象称之为表面浮凸现象。
马氏体转变时产生表面浮凸示意图
1、位向关系
相变时,整体相互移动一段距离,相邻原子的相对位置无变化。 作小于一个原子间距位置的位移,因此奥氏体与马氏体保持一定的严 格的晶体学位向关系。主要有:K-S关系、西山(N)关系、G-T关系、

马氏体的动态相变特征

马氏体的动态相变特征

马氏体的动态相变特征
马氏体是一种具有特殊相变特征的材料,其动态相变过程引人注目。

当马氏体处于高温相(奥氏体)时,它的晶格结构呈现出一种规则的立方晶系。

然而,当温度降低到马氏体的临界温度以下时,它会经历一个非常快速而引人注目的相变过程。

这种相变过程可以被描述为一种自发的、可逆的结构改变。

在这个过程中,马氏体从高温相转变为低温相(马氏体相),并伴随着晶格结构的不可逆性改变。

这种相变是由于奥氏体相中的晶格结构发生了微观位错的重排,形成了一种新的晶格结构。

马氏体的相变过程具有快速性和可逆性的特点,这使得马氏体在材料工程领域具有广泛的应用价值。

例如,马氏体的相变过程可以用于制备形状记忆合金材料。

在这种材料中,马氏体相的形状可以通过改变温度来控制,从而实现材料的自动变形。

马氏体的相变过程还可以用于制备超弹性材料。

在这种材料中,马氏体相的结构改变可以吸收外界应力,并在应力消失后恢复原状,从而实现材料的超弹性行为。

马氏体的动态相变特征不仅在材料工程领域有着重要的应用,还在生物医学领域具有潜在的应用价值。

例如,马氏体相变可以用于制备可控释放药物的微型输送器件。

通过改变马氏体相的结构,可以控制药物的释放速率和释放量,从而实现精确的药物输送。

马氏体的动态相变特征具有广泛的应用价值,并在材料工程和生物医学领域得到了广泛的研究和应用。

通过进一步深入研究马氏体的相变机制和调控方法,我们可以进一步发掘其潜在的应用价值,并为材料科学和生物医学领域的发展做出贡献。

4.2马氏体相变的分类及动力学

4.2马氏体相变的分类及动力学
4.2 马氏体相变的分类 及动力学
1.按相变驱动力分类 2.按马氏体相变动力学特征 分类
1.按相变驱动力分类
1).相变驱动力大的马氏体相变。相变驱动力较大,
达几百卡/克原子. 2).相变驱动力小的马氏体相变。这种相变的驱动力
很小,只有几卡/克原子到几十卡/克原子。如面心 立方的母相转变为六方相马氏体以及热弹性马氏体。
马氏体和母相的自由焓 与温度的关系示意图
马氏体相变动力学分为:
①变温相变动力学,碳素钢、合金钢的马氏体 相变一般属于此类;
②等温相变动力学,在Fe-Ni-Mn等特殊合金中 出现;
③爆发型转变动力学,在Fe-Ni合金中出现; 此外,还有如在铬轴承钢和高速钢中出现的变 温转变兼有等温相变的动力学。
本节主要讲热弹性马氏体。
热弹性马氏体形成特点是:
冷却到略低于T0温度开始形成马氏体,加 热时又立刻进行逆转变,相变热滞很小。 如图4-8示出了相变热滞的比较。可见, Fe-Ni合金马氏体相变的热滞大。冷却时, 冷到Ms= -30℃,发生马氏体相变;加热 时,温度升到As =390℃,马氏体逆转变 为奥氏体。而Au-Cd马氏体相变的热滞小 得多。
表 面 马 氏 体 的 惯 习 面 不 是 225 而
是 112 。位向关系是西山关系,形貌
为条片状。
18CrNiWA钢的表面马氏体的変温转变(a)冷却到 375℃,~1%马氏体;(b)冷却到345℃,8%马 氏体;(c)冷却到330℃,50%马氏体;
表面马氏体在奥氏体晶界处形核
表面马氏体转变也是形核和核长大的过 程。形核地点是在奥氏体晶界处。
2).等温马氏体相变
某些Fe-Ni-Mn,Fe-Ni-Cr合金或某些高合金钢,在 一定条件下恒温保持,经过一段孕育期也会产生马 氏体,并随着时间的延长,马氏体量增加。此称为 马氏体的等温形成

钛合金中的马氏体相变

钛合金中的马氏体相变

THANK YOU!
马氏体最初是在钢(中、 高碳钢)中发现的:将钢加热 到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能 使钢变硬、增强的一种淬火组织。 最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪 90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片 状(plate)或者板条状(lath),片状马氏体在金相观察中(二维) 通常表现为针状(needle-shaped),这也是为什么在一些地方 通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中 为细长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏 体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火后, 马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方 结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高 的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆 性也比较高。
• 二、其他金属中的马氏体相变 • 20世纪以来,对钢中 马氏体相变的特 征累积了较多的知识,又相继发现在某些 纯金属和合金中也具有马氏体相变,如: Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、 Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、CuAl、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广 泛地把基本特征属马氏体相变型的相变产 物统称为马氏体。
ห้องสมุดไป่ตู้
从右图图可知:当β 稳定元素的浓度达到 临界值C0与C1时,合金
的Ms点和Mf点分别达到 室温。
图2 Ms和Mf的关系
3.3
钛合金相变马氏体的特点
钛合金的马氏体相变属无扩散型相变,在相变 过程中不发生原子扩散, 只发生晶格重构。它具有 马氏体相变的所有特点。 动力学特点:转变无孕育期; 瞬间形核长大, 转变速度极快, 每个马氏体瞬间长到最终尺寸; 恒 温转变量极少, 主要在不断冷却中增加体积分数。 切变特点: 马氏体转变是晶体切变过程, 在切 变过程中完成晶格重构。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们还应注意,在近熔化区的相变硬化区中片状石墨周围的马氏体量不均匀分布,近片状石墨区的马氏体较多,而离石墨片较远区的马氏体较少(图6)。

马氏体的这种不均匀分布将说明:近片状石墨
片区合金的含C 量较低,而离石墨片较远区合金的含C 量较高,这种不均匀分布与激光快速加热和激冷情况有关,同时一般激冷速度绝对值大于快速加热速度绝对值,这也已有学者对之作出解释。

图6 石墨周围的马氏体不均匀分布
Fig 6 Heterogeneous distribution of martensite around graphite
在加热过程中,C 原子从石墨中扩散出来,汽缸套材料是以珠光体P 为基体的,其含C 量为C 共析。

近石墨片区含C 量为过共析。

在激光停止加热后激冷过程中,过共析部分的C 向石墨进行上坡扩散,并析出在石墨片上。

同时因为激冷速度大于加热速度,只有靠近G 片的小区域内含C 量会发生降低。

当该区温度降至Ms 点时发生M 转变,因为其含C 量低,故Ms 点相应较高,所以M 针会多些。

而离开G 片较远的部位,因含C 量较高,Ms 较低,M 量就较少。

4 结论
4.1合金铸铁缸套材料激光熔融热处理后的组织可分为熔化区、半熔化区、相变硬化区和热影响区。

4.2熔化区的组织为树枝状先共晶奥氏体Ap 和变态莱氏体共晶L ′d 。

4.3半熔化区组织由等轴状奥氏体,少量残留石墨片和离异莱氏体共晶组成。

4.4相变硬化区可细分为(M +Ar +F +Fe 3C +G )、(M +Ar +Fe 3C +G )和(M +Ar +G )三个亚区。

致谢:本课题得到国防科工委国防预研项目的资助,谨此致谢。

参考文献
[1]浜崎正信 实用し-ぜ加工[M ]う⁄ 出版株式会社.[2]胡赓祥、蔡珣主编 材料科学基础[M ]上海交大出版社.2000,372.
[3]朱祖昌,俞少罗,大 基明,《热处理》[J ]日本热处理技术协会,34,(6).1994,321.[4]徐祖耀 马氏体相变与马氏体[M ]科学出版社.1999,898.[5]沈阳铸研所等编 球墨铸铁[M ]机械工业出版社.
动 态
马氏体相变动力学的深入描述
Deepgoing Description of Kinetics of Martensitic T ransformation
在论述变温马氏体相变动力学时,人们相当习惯的会提出K oistinen 和Marburger 公式来,其公式如下:
X m =1-exp[
α(Ms -Tq )](1)实际上,这公式并不完全符合相当多的实验事实。

G.Murry 在《Traitment Thermique 》上载文提出深入描述马氏体相变的动力学公式为:
Mx m =Ms -[K (650-Ms )]
(2)式中Mx m 为马氏体分数为Xm 时对应的温度;K 为马氏体分数Xm 的函数,即K =f (Xm ),经研究,
K =1.67×10-2・Xm 0.55+3.18×10-18・Xm 8.7
(3)系数K 反映了马氏体发生过程中随马氏体量Xm 的增加,转变速度由小逐渐增至最大,以后又将减小的规律。

(关于马氏体相变动力学方面的进一步论述,按编辑部计划于下期刊登)・编辑部・
—43—《热处理》 2003年第18卷第3期。

相关文档
最新文档