高中数学人教A版必修四课时训练1.4 三角函数的图象与性质 1.4.2(一) Word版含答案
高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人
1.4.2 正弦函数、余弦函数的性质(一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性.思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝ ⎛⎭⎪⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π. 知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质?答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R . 函数f (x )=sin z 的最小正周期是2π,即变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧ sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期.(1)y =sin ⎝ ⎛⎭⎪⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π. (2)T =π2. 类型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , ∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧ 1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }. ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点:关键点一:看函数的定义域是否关于原点对称;关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性.(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1.解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧ 1-2cos x ≥0,2cos x -1≥0,得cos x =12. ∴f (x )=0,x =2k π±π3,k ∈Z . ∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. ∴f ⎝ ⎛⎭⎪⎫5π3=32. 反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝ ⎛⎭⎪⎫π3=1,求f ⎝ ⎛⎭⎪⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝ ⎛⎭⎪⎫-5π6=f ⎝ ⎛⎭⎪⎫-5π6+π2=f ⎝ ⎛⎭⎪⎫-π3=-f ⎝ ⎛⎭⎪⎫π3=-1.类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值. 解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1, ∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0.同理,可得每连续六项的和均为0.∴f (1)+f (2)+f (3)+…+f (2 020)=f (2 017)+f (2 018)+f (2 019)+f (2 020)=cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)= .解析 ∵f (x )=sin π3x 的周期T =2ππ3=6, ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=335⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B.πC.2πD.4π 答案 D2.下列函数中最小正周期为π的偶函数是( )A.y =sin x 2B.y =cos x2 C.y =cos xD.y =cos 2x 答案 D3.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析 ∵sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为 . 答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足 f (x )=⎩⎪⎨⎪⎧ cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎪⎫-15π4= . 答案 22 解析 f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-15π4+3π2×3 =f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( ) A.y =sin x 2B.y =sin 2xC.y =cos x 4D.y =cos(-4x ) 答案 D解析 T =2π|-4|=π2. 2.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A.0B.1C.-1D.±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( )A.y =cos|2x |B.y =|sin x |C.y =sin ⎝ ⎛⎭⎪⎫π2+2x D.y =cos ⎝ ⎛⎭⎪⎫3π2-2x 答案 D 解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13答案 D解析 ∵T =2πk 4≤2,即k ≥4π, ∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( ) A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数答案 D解析 由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |, 所以函数的定义域为{x |x ≠2k π+π2,k ∈Z }, 由于定义域不关于原点对称,所以该函数是非奇非偶函数.7.函数f (x )=3sin(23x +15π2)是( ) A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数 答案 A二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为 . 答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数, 则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z . ∵0<α<π2,∴α=π4. 9.函数f (x )=2sin ⎝⎛⎭⎪⎫5π2+2x +1的图象关于 对称.(填“原点”或“y 轴”) 答案 y 轴解析 f (x )=2sin ⎝ ⎛⎭⎪⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数.∵偶函数的图象关于y 轴对称,∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是 .(填序号)答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数.当φ=π2时,f (x )=cos x 是偶函数. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin x e sin x -e-sin x . 解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ),∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R .又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x)e sin (-x )-e-sin (-x ) =e -sin x +e sin x e -sin x -esin x =-f (x ),∴y =f (x )是奇函数. 12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ), ∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为 .答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π. ∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎪⎨⎪⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。
人教A版高中数学必修四练习:1.4三角函数的图象与性质1.4.3+Word版含解析
第一章 1.4 1.4.3A 级 基础巩固一、选择题1.当x ∈(-π2,π2)时,函数y =tan|x |的图象导学号 14434391( B )A .关于原点对称B .关于y 轴对称C .关于x 轴对称D .没有对称轴2.函数f (x )=tan2xtan x 的定义域为导学号 14434392( A )A .{x |x ∈R 且x ≠k π4,k ∈Z }B .{x |x ∈R 且x ≠k π+π2,k ∈Z }C .{x |x ∈R 且x ≠k π+π4,k ∈Z }D .{x |x ∈R 且x ≠k π-π4,k ∈Z }[解析] ⎩⎪⎨⎪⎧x ≠k πx ≠k π+π22x ≠k π+π2(k ∈Z )得⎩⎨⎧x ≠k π2,x ≠k π2+π4,∴x ≠2k 4π且x ≠2k +14π,x ≠k π4,k ∈Z ,故选A .3.已知函数y =tan(2x +φ)的图象过点(π12,0),则φ可以是导学号 14434393( A )A .-π6B .π6C .-π12D .π12[解析] ∵函数的象过点(π12,0),∴tan(π6+φ)=0,∴π6+φ=k π,k ∈Z ,∴φ=k π-π6,k∈Z ,令k =0,则φ=-π6,故选A .4.函数f (x )=tan(π4-x )的单调递减区间为导学号 14434394( B )A .(k π-3π4,k π+π4),k ∈ZB .(k π-π4,k π+3π4),k ∈ZC .(k π-π2,k π+π2),k ∈ZD .(k π,(k +1)π),k ∈Z[解析] 由f (x )=-tan(x -π4),可令k π-π2<x -π4<k π+π2,解得k π-π4<x <k π+34π,k ∈Z .5.函数f (x )=tan ax (a >0)的图象的相邻两支截直线y =π3所得线段长为2,则a 的值为导学号 14434395( A )A .π2B .12C .πD .1[解析] 由题意可得T =2,所以πa =2,a =π2.6.函数f (x )=tan(ωx -π4)与函数g (x )=tan(π4-2x )的最小正周期相同,则ω=导学号 14434396( A )A .±1B .1C .±2D .2[解析]π|ω|=2π|-2|,ω=±1. 二、填空题7.函数y =3tan(2x +π3)的对称中心的坐标为 (k π4-π6,0)(k ∈Z ) .导学号 14434397[解析] 令2x +π3=k π2(k ∈Z ),得x =k π4-π6(k ∈Z ),∴对称中心的坐标为(k π4-π6,0)(k ∈Z ).8.求函数y =tan(-12x +π4)的单调区间是 (2k π-π2,2k π+32π)(k ∈Z ) .导学号 14434398[解析] y =tan(-12x +π4)=-tan(12x -π4),由k π-π2<12x -π4<k π+π2(k ∈Z ),得2k π-π2<x <2k π+32π,k ∈Z ,∴函数y =tan(-12x +π4)的单调递减区间是(2k π-π2,2k π+32π),k ∈Z .三、解答题9.已知-π3≤x ≤π4,f (x )=tan 2x +2tan x +2,求f (x )的最值及相应的x 值.导学号 14434399[解析] ∵-π3≤x ≤π4,∴-3≤tan x ≤1,f (x )=tan 2x +2tan x +2=(tan x +1)2+1, 当tan x =-1,即x =-π4时,y min =1;当tan x =1,即x =π4时,y max =5.10.画出函数y =|tan x |+tan x 的图象,并根据图象求出函数的主要性质.导学号 14434400[解析] 由y =|tan x |+tan x 知y =⎩⎨⎧0,x ∈(k π-π2,k π],2tan x ,x ∈(k π,k π+π2)(k ∈Z ).其图象如图所示.函数的主要性质为:①定义域:{x |x ∈R ,x ≠π2+k π,k ∈Z };②值域:[0,+∞); ③周期性:T =π; ④奇偶性:非奇非偶函数;⑤单调性:单调增区间为[k π,k π+π2),k ∈Z .B 级 素养提升一、选择题1.函数f (x )=tan x2-cos x 的奇偶性是导学号 14434401( A )A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[解析] f (x )的定义域为{x |x ≠k π+π2,k ∈Z },又f (-x )=tan (-x )2-cos (-x )=-tan x2-cos x =-f (x ),所以f (x )为奇函数.2.若a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则导学号 14434402( D )A .a <b <cB .b <c <aC .c <b <aD .a <c <b[解析] ∵0<sin25°<sin65°=cos25°<1=tan45°<tan70°, ∴log 12sin25°>log 12cos25°>log 12tan70°.即a <c <b .3.若函数y =tan ωx 在(-π2,π2)内是减函数,则导学号 14434403( B )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1[解析] 若ω使函数在(-π2,π2)上是减函数,则ω<0,而|ω|>1时,图象将缩小周期,故-1≤ω<0.4.函数y =|tan(x +π4)|的单调增区间为导学号 14434404( D )A .(k π-π2,k π+π2)(k ∈Z )B .(k π-3π4,k π+π4)(k ∈Z )C .(k π,k π+π2)(k ∈Z )D .[k π-π4+k π+π4)(k ∈Z )[解析] 令t =x +π4,则y =|tan t |的单调增区间为[k π,k π+π2)(k ∈Z ).由k π≤x +π4<k π+π2,得k π-π4≤x <k π+π4(k ∈Z ).二、填空题5.给出下列命题:导学号 14434405 (1)函数y =tan|x |不是周期函数; (2)函数y =tan x 在定义域内是增函数; (3)函数y =⎪⎪⎪⎪tan (2x +π3)的周期是π2; (4)y =sin ⎝⎛⎭⎫5π2+x 是偶函数.其中正确命题的序号是__(1)(3)(4)__.[解析] y =tan|x |是偶函数,由图象知不是周期函数,因此(1)正确;y =tan x 在每一个区间⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z )内都是增函数但在定义域上不是增函数,∴(2)错;y =⎪⎪⎪⎪tan (2x +π3)的周期是π2.∴(3)对;y =sin ⎝⎛⎭⎫52π+x =cos x 是偶函数,∴(4)对.因此,正确的命题的序号是(1)(3)(4).6.若tan ⎝⎛⎭⎫2x -π6≤1,则x 的取值范围是 ⎝⎛⎦⎤-π6+k π2,5π24+k π2(k ∈Z ) .导学号 14434406[解析] 令z =2x -π6,在⎝⎛⎭⎫-π2,π2上满足tan z ≤1的z 的值是-π2<z ≤π4,在整个定义域上有-π2+k π<z ≤π4+k π,解不等式-π2+k π<2x -π6≤π4+k π,得-π6+k π2<x ≤5π24+k π2,k ∈Z .三、解答题7.若x ∈[-π3,π4],求函数y =1cos 2x +2tan x +1的最值及相应的x 的值.导学号 14434407[解析] y =1cos 2x +2tan x +1=cos 2x +sin 2x cos 2x +2tan x +1=tan 2x +2tan x +2=(tan x +1)2+1. ∵x ∈[-π3,π4],∴tan x ∈[-3,1].∴当tan x =-1时,即x =-π4时,y 取最小值1;当tan x =1时,即x =π4时,y 取最大值5.8.已知函数f (x )=3tan(12x -π3).导学号 14434408(1)求f (x )的定义域、值域;(2)讨论f (x )的周期性,奇偶性和单调性. [解析] (1)由12x -π3≠π2+k π,k ∈Z ,解得x ≠5π3+2k π,k ∈Z .∴定义域为{x |x ≠5π3+2k π,k ∈Z },值域为R . (2)f (x )为周期函数,周期T =π12=2π.f (x )为非奇非偶函数.由-π2+k π<12x -π3<π2+k π,k ∈Z ,解得-π3+2k π<x <5π3+2k π,k ∈Z .∴函数的单调递增区间为(-π3+2k π,5π3+2k π)(k ∈Z ).C 级 能力拔高函数y =tan x +sin x -|tan x -sin x |在区间(π2,3π2)内的图象大致是导学号 14434409( D )[解析] ∵π2<x ≤π时,sin x ≥0,tan x ≤0,∴y =tan x +sin x -(sin x -tan x )=2tan x ,π<x <3π2时,sin x <0,tan x >0,∴y =tan x +sin x -(tan x -sin x )=2sin x ,故选D .。
高中数学第一章三角函数1.4三角函数的图象与性质1.4.2正弦函数、余弦函数的性质(第1课时)习题课
(2)若函数
f(x)是以π2
为周期的偶函数,且
π f( 3
)=1,求
f(-167π
)
的值. 【思路分析】 将-176π利用周期性转化为π3 ,进而求值.
π 【解析】 ∵f(x)的周期为 2 ,且为偶函数,
【解析】 (1)∵x∈R,f(x)=sin(34x+3π2 )=-cos34x,∴f(- x)=-cos3(-4 x)=-cos34x=f(x).
∴函数 f(x)=sin(34x+3π2 )为偶函数. (2)f(x)=(1-c1o+s2sxi)nx+sinx=sin12+x+sinsixnx=sinx,但函数应满 足 1+sinx≠0,
思考题 3 判断下列函数的奇偶性:
(1)f(x)=sinx-x tanx; (2)f(x)=lg(1-sinx)-lg(1+sinx); (3)f(x)=1c-oss2inxx; (4)f(x)= 1-cosx+ cosx-1. 【答案】 (1)偶函数 (2)奇函数 (3)非奇非偶函数 (4)既是 奇函数又是偶函数
(1)①要判断奇偶性的函数是三角函数型的复合函数. ②sin(34x+3π 2 )=-cos34x.
(2)①所判断的函数是以公式形式给出的; ②f(x)的定义域可求,即 sinx+1≠0. 解答本题中的(1)可先利用诱导公式化简 f(x),再利用 f(-x) 与 f(x)的关系加以判断. 解答本题中的(2)可先分析 f(x)的定义域,然后再利用定义加 以分析.
∴函数的定义域为{x|x∈R,且 x≠2kπ+32π,k∈Z}. ∵函数的定义域不关于原点对称, ∴该函数既不是奇函数也不是偶函数. 探究 3 (2)中易忽视 f(x)的定义域而进行非等价变形,得 f(x) =sinx(1+1+sinsxinx)=sinx,从而导致结果错误. 判断函数的奇偶性,首先要看定义域是否关于原点对称,再 看 f(-x)与 f(x)的关系.
高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.1 Word版含答案.docx
§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( ) A .-sin x B .sin x C .-cos x D .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2D.⎝⎛⎭⎫5π4,7π45.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π6.方程sin x =lg x 的解的个数是( )7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象. (1)y =|sin x |,x ∈R ; (2)y =sin|x |,x ∈R .能力提升13.求函数f (x )=lgsin x +16-x 2的定义域.14.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-212.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π). 14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin xx ∈(π,2π].图象如图,若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据上图可得k的取值范围是(1,3).。
高一数学人教A版必修4课件:1.4.2 正弦函数、余弦函数的性质(一)
23.∴f53π=
3 2.
明目标、知重点
反思与感悟 解决此类问题关键是综合运用函数的周 期性和奇偶性,把自变量x的值转化到可求值区间内.
明目标、知重点
跟踪训练 2 已知函数 f(x)对于任意 x∈R 满足条件 f(x+3)=f1x,
且 f(1)=12,则 f(2 014)等于( B )
1 A.2 解析
明目标、知重点
填要点·记疑点
1.函数的周期性 (1)对于函数f(x),如果存在一个 非零常数T ,使得当x取定 义域内的每一个值时,都有 f(x+T)=f(x),那么函数f(x)就 叫做周期函数.非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数, 那么这个最小正数就叫做f(x)的 最小正周期 .
明目标、知重点
由于 x 至少要增加|2ωπ|个单位,f(x)的函数值才会重复出现,因此,|2ωπ| 是函数 f(x)=Asin(ωx+φ)的最小正周期.
同理,函数 f(x)=Acos(ωx+φ)也是周期函数,最小正周期也是|2ωπ|.
明目标、知重点
探究点四 正弦、余弦函数的奇偶性 导引 正弦曲线
∴f(-x)=lg[1-sin(-x)]-lg[1+sin(-x)]
=lg(1+sin x)-lg(1-sin x)=-f(x). ∴f(x)为奇函数.
明目标、知重点
1+sin x-cos2x
(3)f(x)=
.
1+sin x
解 ∵1+sin x≠0,∴sin x≠-1,
∴x∈R 且 x≠2kπ-π2,k∈Z.
明目标、知重点
探究点三 函数y=Asin(ωx+φ)(或y=A·cos(ωx+φ))(A>0,ω≠0)的周期
高中数学课时训练(人教版必修四)第一章 1.4 1.4.1 正弦函数、余弦函数的图象
数学·必修4(人教A 版)1.4 三角函数的图象与性质1.4.1 正弦函数、余弦函数的图象基础提升1.在同一坐标系中,函数y =sin x ,x ∈与y =sin x ,x ∈的图象( ) A .重合 B .形状相同,位置不同 C .关于y 轴对称 D .形状不同,位置不同 答案:B2.在同一坐标系中,函数y =-cos x 的图象与余弦函数y =cos x 的图象( ) A .只关于x 轴对称 B .关于原点对称C .关于原点、x 轴对称D .关于原点、坐标轴对称 答案:D3.在同一平面直角坐标系中,函数y =cos ⎝ ⎛⎭⎪⎫x 2+3π2,x ∈的图象和直线y =12的交点个数是( )A .0个B .1个C .2个D .4个答案:C0,2π的简图是()4.函数y=sin(-x),x∈[]解析:∵y=sin(-x)=-sin x,x∈.答案:B5.画出下列函数的图象.(1)y=sin |x|,x∈;(2)y=|sin x|,x∈.分析:将函数式中的绝对值符号去掉,进行等价变形,然后作图.解析:(1)y =sin|x |=⎩⎪⎨⎪⎧-sin x ,-2π≤x ≤0,sin x ,0<x ≤2π.(2)y =|sin x |=⎩⎪⎨⎪⎧sin x ,-2π≤x ≤-π或0≤x ≤π,-sin x ,-π<x <0或π<x ≤2π.所以y =sin|x |及y =|sin x |的图象如下图所示.巩固提高6.方程sin x =lg x 的根的个数为________. 答案:37.如果函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,那么这个封闭图形的面积为( )A .4B .8C .2πD .4π解析:由图可知,图形S 1与S 2,S 3与S 4都是两个对称图形,有S 1=S 2,S 3=S 4,因此函数y =2cos x 的图象与直线y =2所围成的图形面积可以等积地转化为求矩形OABC 的面积.∵|OA |=2,|OC |=2π,∴S 矩形=2×2π=4π. 答案:D8.函数y =cos x |tan x |⎝ ⎛⎭⎪⎫0≤x <3π2且x ≠π2的图象是下图中的( )答案:C9.对于函数f (x )=⎩⎨⎧sin x ,sin x ≥cos x ,cos x ,sin x <cos x ,下列命题正确的是( )A .该函数的值域是B .当且仅当x =2k π+π2(k ∈Z)时,函数取得最大值1C .当且仅当x =2k π-π2(k ∈Z)时,函数取得最小值-1D .当且仅当2k π+π<x <2k π+3π2(k ∈Z)时,f (x )<0解析:画出此函数的图象,由图象容易看出:该函数的值域是⎣⎢⎡⎦⎥⎤-22,1;当且仅当x =2k π+π2或x =2k π,k ∈Z 时,函数取得最大值1;当且仅当x =2k π-π4或x =2k π+3π4,k ∈Z 时,函数取得最小值-22;当且仅当2k π+π<x <2k π+3π2,k ∈Z时,f (x )<0知A 、B 、C 不正确,故选D.答案:D10.作出下列函数的简图: (1)y =2+cos x ,x ∈; (2)y =-2sin x ,x ∈.解析:(1)按五个关键点列表:描点,并将它们用光滑的曲线连结起来,图象如图所示:(2)按五个关键点列表:描点,并将它们用光滑的曲线连结起来,图象如图所示:。
人教版高中数学必修四1.4三角函数的图象与性质1.4.2二含答案
1.4.2 正弦函数、余弦函数的性质(二) 课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.正弦函数、余弦函数的性质: 函数 y =sin xy =cos x 图象定义域______ ______ 值域______ ______ 奇偶性______ ______ 周期性最小正周期:______ 最小正周期:______ 单调性在__________________________________ 上单调递增;在__________________________________________________上单调递减 在__________________________________________上单调递增;在______________________________上单调递减 最值 在________________________时,y max =1;在________________________________________时,y min =-1在______________时,y max =1;在__________________________时,y min =-1 一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若α,β都是第一象限的角,且α<β,那么( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 题 号 1 2 3 4 5 6 答 案二、填空题7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________. 9.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______. 三、解答题11.求下列函数的单调增区间.(1)y =1-sin x 2; (2)y =log 12(cos 2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>π B .α+β<πC .α-β≥-32πD .α-β≤-32π 14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32C .2D .31.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.1.4.2 正弦函数、余弦函数的性质(二)答案知识梳理 R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z ) 作业设计1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54; 当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin 168°=sin (180°-12°)=sin 12°,cos 10°=sin (90°-10°)=sin 80°由三角函数线得sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.]7.⎣⎡⎦⎤π2,π8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3. ∴0≤sin(2x +π3)≤1,∴y ∈[0,2] 9.b <c <a解析 ∵1<π2<2<3<π, sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z , 得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x 2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)由题意得cos 2x >0且y =cos 2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z . ∴k π<x <k π+π4,k ∈Z . ∴y =log 12(cos 2x )的增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π, ∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1,f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1,f (x )min =2a +b =-5. 由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增,∴sin α>sin β⇔sin α>sin(π-β)⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。
新人教A版高中数学必修四1.4 三角函数的图像与性质课时同步习题(含答案解析)
1.4 三角函数的图像与性质一、选择题:1.满足tanα≥cotα的角的一个取值区间是( )A.(0, π4 )B. [0,π4 ]C. [π4 ,π2 ]D. [π4 ,π2] 2.函数的定义域是( )A.{x|x≠π4 , x ∈R}B. {x|x≠3π4,x ∈R} C . {x|x≠kπ +π4 ,x ∈R} D. {x|x≠kπ +3π4,x ∈R} 3.下列函数中周期为的奇函数是( )A.y=cos(2x+3π2 )B.y=tan x 2C.y=sin(2x+π2 )D.y= - |cotx π2| 4.若sinα>tanα>cotα(-π2 <x<π2),则α的取值范围是( ) A.(- π2 ,π4 ) B. (-π4 ,0) C.(0, π4 ) D.( π4 ,π2) 二、填空题5.比较大小:tan222°_________tan223°.6.函数y=tan(2x+π4)的单调递增区间是__________. 7.函数 y=sinx 与 y=tanx 的图象在区间[0,2π]上交点的个数是________.8.函数 y=f(x) 的图象右移π4,横坐标缩小到原来的一半,得到y=tan2x 的图象, 则y=f(x)解析式是_______________.9.函数y=lg tanx+1tanx-1的奇偶性是__________. 10.函数的y=|tan(2x-π3)|周期是___________. 三、解答题11.作函数y =cot x sin x 的图象.12.作出函数y =|tan x |的图象,并根据图象求其单调区间13. 求函数y =)6πtan(1tan +-x x 的定义域. 14. 求下列函数的值域:(1)y =2cos 2x +2cos x -1;(2)y =1cos 21cos 2-+x x . 15.求函数y =3tan (6π-4x )的周期和单调区间. 参考答案一、选择题:1.C2.D3.C4.B二 、填空题:5.< 6.( 12 kπ+3π8 , 12 kπ+π8) (k ∈Z) 7. 5 8. y=tan(x+π4 ) 9. 奇函数 10. π4三、解答题11.分析:首先将函数的解析式变形,化为最简形式,然后作函数的图象.解:当sin x ≠0,即x ≠k π(k ∈Z )时,有y =cot x sin x =cos x ,即y =cos x (x ≠k π,k ∈Z ).其图象如下图.y12.解:由于y =|tan x |=⎪⎪⎩⎪⎪⎨⎧-∈-+∈)π2ππ(πtan )2πππ[tan k k x k k x x ,,,,,(k ∈Z ), 所以其图象如图所示,单调增区间为[k π,k π+2π](k ∈Z );单调减区间为(k π-2π,k π)(k ∈Z ). y 13.解:根据自变量x 满足的条件列出不等式组,解之即可.由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+≠-≠+<≤+⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧+≠≠++<≤+⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧+≠+≠+≥,,,3ππ6ππ2ππ4ππ3ππ6π2ππ4ππ2ππ6π0)6πtan(1tan k x k x k x k kx x k x k x k k x x x 所以定义域为[k π+4π,k π+3π)∪(k π+3π,k π+2π)(k ∈Z ). 14.解:(1)y =2(cos x +21)2-23. 将其看作关于cos x 的二次函数,注意到-1≤cos x ≤1,∴当cos x =-21时,y min =-23; 当cos x =1时,y max =3.∴y ∈[-23,3]. 本题结合了二次函数求最值这一知识,但应注意cos x 的取值范围.(2)由原式得cos x =)1(21-+y y . ∵-1≤cos x ≤1,∴-1≤)1(21-+y y ≤1. ∴y ≥3或y ≤31. ∴值域为{y |y ≥3或y ≤31}. 15.解:y =3tan (6π-4x )=-3tan (4x -6π), ∴T =41ππ=ω=4π. 由k π-2π<4x -6π<k π+2π(k ∈Z )得 4k π-3π4<x <4k π+3π8(k ∈Z ). ∵3tan (4x -6π)在(4k π-3π4,4k π+3π8)(k ∈Z )内单调递增, ∴y =-3tan (4x -6π)在(4k π-3π4,4k π+3π8)(k ∈Z )内单调递减. 故原函数的周期为4π,递减区间为(4k π-3π4,4k π+3π8)(k ∈Z ).。
2021-2022年高中数学 1.4.4三角函数的性质与图象习题课学案 新人教A版必修4
2021年高中数学 1.4.4三角函数的性质与图象习题课学案 新人教A版必修41.掌握三角函数的图象,能熟练地画出简单的函数图象.2.结合图象,掌握三角函数的性质并能熟练地运用.基础梳理 自测自评1.函数y =4sin(2x +π)的最小正周期是(B )A.π2B .πC .2πD .4π 解析:∵y =4sin(2x +π)=-4sin 2x ,∴最小正周期为T =π.故选B. 2.已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R).下面结论错误的是(D ) A .f (x )的最小正周期为2π B .f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .f (x )的图象关于直线x =0对称D .f (x )是奇函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x ,∴A ,B ,C 均正确.故选D.3.tan 1,sin 2,tan 3的大小顺序是tan_1>sin_2>tan_3.解析:∵-π4<π4<1<π2, ∴tan 1>tan π4=1. 而sin 2<1,∴tan 1>sin 2>0.又3∈⎝ ⎛⎭⎪⎫π2,π,∴tan 3<0. ∴tan 1>sin 2>tan 3.4.求函数y =a cos x +b (a <0)的最大值与最小值及相应的x 值.解析:∵a <0,-1≤cos x ≤1,∴当cos x =1,即x =2k π(k ∈Z)时,y min =a +b ;当cos x =-1,即x =2k π+π(k ∈Z)时,y max =-a +b .基础提升1.函数f (x )=sin ⎝⎛⎭⎪⎫ 2x +5π2是(B ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数解析:∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +5π2=sin ⎝⎛⎭⎪⎫2x +π2=cos 2x ,∴f (x )是偶函数.故选B. 2.下列函数在⎣⎢⎡⎦⎥⎤π2,π上是增函数的是(D ) A .y =sin x B .y =cos xC .y =sin 2xD .y =cos 2x解析:函数y =sin x 和y =cos x 在⎣⎢⎡⎦⎥⎤π2,π上是减函数,函数y =sin 2x 在⎣⎢⎡⎦⎥⎤π2,π上不是单调函数,函数y =cos 2x 在⎣⎢⎡⎦⎥⎤π2,π上是增函数.故选D. 3.函数y =1tan 2 x -2tan x +2的值域是________. 解析:∵tan 2 x -2tan x +2=(tan x -1)2+1≥1,∴0<y ≤1.即函数的值域为(0,1].答案:(0,1]4.函数y =sin x 与y =tan x 的图象在⎝ ⎛⎭⎪⎫-π2,π2上的交点的个数为(B ) A .0 B .1 C .2 D .3解析:由sin x =tan x ,得sin x -sin x cos x =0,即sin x ⎝ ⎛⎭⎪⎫1-1cos x =0.由此可知在⎝ ⎛⎭⎪⎫-π2,π2上只有一解x =0,故两函数图象在⎝ ⎛⎭⎪⎫-π2,π2上只有一个交点,故选B.巩固提高5.tan ⎝ ⎛⎭⎪⎫-13π7与tan ⎝ ⎛⎭⎪⎫-15π8的大小关系是________________________________________________________________________.解析:tan ⎝ ⎛⎭⎪⎫-13π7=tan ⎝ ⎛⎭⎪⎫2π-13π7=tan π7. tan ⎝ ⎛⎭⎪⎫-15π8=tan ⎝ ⎛⎭⎪⎫ 2π-15π8=tan π8. ∵0<π8<π7<π2,∴tan π8<tan π7, 即tan ⎝ ⎛⎭⎪⎫-13π7>tan ⎝⎛⎭⎪⎫-15π8. 答案:tan ⎝ ⎛⎭⎪⎫-13π7>tan ⎝⎛⎭⎪⎫-15π8 6.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π6的最小正周期为T ,T ∈(1,3),则正整数ω的最大值为________.解析:∵T =2πω,T ∈(1,3),∴1<2πω<3,即2π3<ω<2π. ∴正整数ω的最大值为6.答案:67.若tan x >tan π5且x 在第三象限,则x 的取值范围是________________. 解析:tan x >tan π5=tan 6π5且x 在第三象限,∴2k π+6π5<x <2k π+3π2(k ∈Z). 即x 的取值范围是⎝⎛⎭⎪⎫2k π+6π5,2k π+3π2(k ∈Z). 答案:⎝⎛⎭⎪⎫2k π+6π5,2k π+3π2(k ∈Z) 8.求函数y =3+2sin ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎣⎢⎡⎦⎥⎤-π6,π2的最大值与最小值,并求出取最值时x 的值.解析:∵x ∈⎣⎢⎡⎦⎥⎤-π6,π2. ∴0≤2x +π3≤4π3. ∴当2x +π3=4π3,即x =π2时,y min =3-3; 当2x +π3=π2,即x =π12时,y max =5.9.方程sin x =1-a 2在x ∈⎣⎢⎡⎦⎥⎤π3,π上有两个实数根,求a 的取值范围. 解析:在同一坐标系中作出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π和y =1-a 2的图象如图所示.由图象可知,当32≤1-a 2<1,即-1<a ≤1-3时,两图象有两个交点,即方程sin x =1-a 2在x ∈⎣⎢⎡⎦⎥⎤π3,π上有两个实根. 10.求函数y =tan ⎝⎛⎭⎪⎫2x -π3的定义域,周期和单调区间. 解析:函数的自变量x 应满足:2x -π3≠k π+π2,k ∈Z ,即x ≠k π2+5π12(k ∈Z). 所以函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π2+5π12,k ∈Z . 由于f (x )=tan ⎝⎛⎭⎪⎫2x -π3= tan ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π2-π3=f ⎝ ⎛⎭⎪⎫x +π2. 因此函数y =tan ⎝⎛⎭⎪⎫2x -π3的周期为π2. 由y =tan x ,x ∈⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z)是增函数,所以-π2+k π<2x -π3<π2+k π,k ∈Z. 即-π12+k π2<x <5π12+k π2,k ∈Z.因此,函数的单调递增区间为⎝ ⎛⎭⎪⎫-π12+k π2,5π12+k π2,(k ∈Z).。
(优秀经典)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象课件新人教A版必修4
3.正弦曲线、余弦曲线 (1)定义:正弦函数y=sinx,x∈R和余弦函数y=cosx,x∈R的图象分别叫 做_正__弦_____曲线和余__弦______曲线. (2)图象:如图所示.
[解析] (1)列表
x
0
π 2
π
3 2π
2π
sinx
0
1
0
-1
0
sinx-1
-1
0
-1
-2
-1
描点,连线,如图
(2)列表:
x
0
π 2
π
3 2π
2π
cosx
1
0
-1
0
1
2+cosx
3
2
1
2
3
描点连线,如图
『规律总结』 用“五点法”画函数 y=Asinx+b(A≠0)或 y=Acosx+b(A≠0)
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y= cosx关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
(2)首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分 对称到x轴的上方.如图(2)所示.
『规律总结』 函数的图象变换除了平移变换外,还有对称变换.如本 例.一般地,函数f(x)的图象与f(-x)的图象关于y轴对称;-f(x)的图象与f(x)的 图象关于x轴对称;-f(-x)的图象与f(x)的图象关于原点对称;f(|x|)的图象关于 y轴对称.
高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.3 Word版含答案
1.4.3 正切函数的性质与图象课时目标 1.了解正切函数图象的画法,理解掌握正切函数的性质.2.能利用正切函数的图象及性质解决有关问题.函数y =tan x一、选择题1.函数y =3tan(2x +π4)的定义域是( )A .{x |x ≠k π+π2,k ∈Z }B .{x |x ≠k 2π-3π8,k ∈Z }C .{x |x ≠k 2π+π8,k ∈Z }D .{x |x ≠k2π,k ∈Z }2.函数f (x )=tan(x +π4)的单调递增区间为( )A .(k π-π2,k π+π2),k ∈ZB .(k π,(k +1)π),k ∈ZC .(k π-3π4,k π+π4),k ∈ZD .(k π-π4,k π+3π4),k ∈Z3.函数y =tan ⎝⎛⎭⎫12x -π3在一个周期内的图象是( )4.下列函数中,在⎝⎛⎭⎫0,π2上单调递增,且以π为周期的偶函数是( ) A .y =tan|x | B .y =|tan x |C .y =|sin 2x |D .y =cos 2x 5.下列各式中正确的是( ) A .tan 735°>tan 800° B .tan 1>-tan 2C .tan 5π7<tan 4π7D .tan 9π8<tan π76.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝⎛⎭⎫π4的值是( ) A .0 B .1 C .-1 D.π47.函数y =tan x -1的定义域是____________.8.函数y =3tan(ωx +π6)的最小正周期是π2,则ω=____.9.已知a =tan 1,b =tan 2,c =tan 3,则a ,b ,c 按从小到大的排列是________________.10.函数y =3tan ⎝⎛⎭⎫x +π3的对称中心的坐标是_________________________________.三、解答题11.判断函数f (x )=lg tan x +1tan x -1的奇偶性.12.求函数y =tan ⎝⎛⎭⎫x 2-π3的定义域、周期、单调区间和对称中心.能力提升13.函数y =tan x +sin x -|tan x -sin x |在区间⎝⎛⎭⎫π2,3π2内的图象是( )14.已知函数y =tan ωx 在(-π2,π2)内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-11.4.3 正切函数的性质与图象答案知识梳理{x |x ∈R ,且x ≠k π+π2,k ∈Z } R π 奇函数 ⎝⎛⎭⎫k π-π2,k π+π2 (k ∈Z ) 作业设计1.C 2.C 3.A 4.B 5.D6.A [由题意,T =πω=π4,∴ω=4.∴f (x )=tan 4x ,f ⎝⎛⎭⎫π4=tan π=0.]7.[k π+π4,k π+π2),k ∈Z .8.±2解析 T =π|ω|=π2,∴ω=±2.9.b <c <a解析 ∵tan 2=tan(2-π),tan 3=tan(3-π),又∵π2<2<π,∴-π2<2-π<0,∵π2<3<π,∴-π2<3-π<0, 显然-π2<2-π<3-π<1<π2,且y =tan x 在⎝⎛⎭⎫-π2,π2内是增函数, ∴tan(2-π)<tan(3-π)<tan 1, 即tan 2<tan 3<tan 1. ∴b <c <a .10.⎝⎛⎭⎫k π2-π3,0 (k ∈Z )解析 由x +π3=k π2 (k ∈Z ),得x =k π2-π3(k ∈Z ).∴对称中心坐标为⎝⎛⎭⎫k π2-π3,0 (k ∈Z ).11.解 由tan x +1tan x -1>0,得tan x >1或tan x <-1.∴函数定义域为⎝⎛⎭⎫k π-π2,k π-π4∪⎝⎛⎭⎫k π+π4,k π+π2(k ∈Z )关于原点对称.f (-x )+f (x )=lg tan (-x )+1tan (-x )-1+lg tan x +1tan x -1=lg ⎝ ⎛⎭⎪⎫-tan x +1-tan x -1·tan x +1tan x -1=lg 1=0.∴f (-x )=-f (x ), ∴f (x )是奇函数.12.解 ①由x 2-π3≠k π+π2,k ∈Z ,得x ≠2k π+53π,k ∈Z .∴函数的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠2k π+53π,k ∈Z .②T =π12=2π,∴函数的周期为2π.③由k π-π2<x 2-π3<k π+π2,k ∈Z ,解得2k π-π3<x <2k π+53π,k ∈Z .∴函数的单调增区间为⎝⎛⎭⎫2k π-π3,2k π+5π3,k ∈Z . ④由x 2-π3=k π2,k ∈Z ,得x =k π+23π,k ∈Z .∴函数的对称中心是⎝⎛⎭⎫k π+23π,0,k ∈Z . 13.D [当π2<x <π,tan x <sin x ,y =2tan x <0;当x =π时,y =0;当π<x <32π时,tan x >sin x ,y =2sin x .故选D.]14.B [∵y =tan ωx 在(-π2,π2)内是减函数,∴ω<0且T =π|ω|≥π.∴|ω|≤1,即-1≤ω<0.]。
高中数学人教A版必修4第一章1.4三角函数的图像与性质习题课课件
题型一:单调区间问题
换元法
题型一:单调区间问题
C
数形结合
题型二:闭区间的最值及值域问题
换元法
题型二:闭区间的最值及值域问题
换元法
题型二:闭区间的最值及值域问题
题型二:闭区间的最值及值域问题
题型三:奇偶性、对称性问题
A
题型三:奇偶性、对称性问题
C
题型三:奇偶数的图像与性质习题课
图像
定义域 值域 最值
单调性 奇偶性 周期 对称性
y
1
2
0
2
-1
3 2
5
2 2
x
奇函数
y 1
0
2
3 2
2 5 x
2
-1
偶函数
正切函数的性质:
1.定义域: 2.值域: 3.单调性: 4.奇偶性:奇函数 5.周期性: 6.对称性: 7.渐近线:
1.理解并掌握三角函数的图象与性质 2.将问题转化成熟悉的函数模型 3.熟练使用数形结合、换元等数学方法。
高中数学人教版必修4三角函数的图像与性质(学案)有答案
1.4三角函数的图象与性质1.4.1 正弦函数、余弦函数的图象学习目标1、会用“五点法”和“几何法”画正弦函数、余弦函数的图,体会“几何法”作正弦函数图象的过程,提高动手能力;2、通过函数图象的应用,体会数形结合在解题中的应用;3、三角函数图象和图象的应用;自主梳理1. 正弦函数(或余弦函数)的概念任意给定一个实数x ,有唯一确定的值x sin (或x cos )与之对应,由这个对应法则所确定的函数x y sin =(或x y cos =)叫做正弦函数(或余弦函数),其定义域为 。
2. 正弦曲线或余弦曲线正弦函数的图象和余弦函数的图象分别叫做 和 。
3. 用五点法作正弦函数和余弦函数的简图(描点法):(1)正弦函数[]π2,0,sin ∈=x x y 的图象中,五个关键点是: , , , 。
(2)余弦函数[]π2,0,cos ∈=x x y 的图象中,五个关键点是: , , , 。
预习检测1、函数)3sin(π+=x y 的定义域为____________________;值域为____________________;2、函数)3cos(2π-=x y 的定义域为__________________;值域为____________________;互动课堂 问题探究1:【例】 作出函数x y cos 31-1=在]2,2[ππ-上的图像; 【变式】)23sin(π+=x y ;问题探究2:【例】已知]23,2[ππ-∈x ,解不等式23sin -≥x ; 【变式】已知R x ∈,解不等式23sin -≥x ;问题探究3:【例】求下列函数的值域: (1)x x y sin |sin |+= (2)]6,6[),32sin(2πππ-∈+=x x y(3)1cos 2cos --=x x y【变式】求函数],3[,1sin 4sin 32ππ∈+-=x x x y 的值域;问题探究4: 【例】(1)讨论方程x x sin lg =解的个数;(2)若函数]2,0[|,sin |2sin )(π∈+=x x x x f 与直线k y =有且仅有两个不同的交点,求k 的取值范围;【变式】当k 为何值时,方程k x x =+|sin |2sin 有一解、三解、四解?课堂练习1、在同一坐标系内的函数x y sin =与x y cos =的图象的交点坐标是 ( ) A . Z k k ∈),0,(π B Z k k ∈+),1,22(ππC Z k k k∈-+),)1(,2(ππ D Z k k k∈-+),2)1(,4(ππ2、下面有四个判断:① 作正、余弦函数的图象时,单位圆的半径长与x 轴上的单位长可以不一致; ② []π2,0,sin ∈=x x y 的图象关于)0,(πP 成中心对称; ③ []π2,0,cos ∈=x x y 的图象关于直线π=x 成轴对称; ④ 正、余弦函数的图象不超过两直线1,1-==y y 所夹的范围。
人教A版数学必修四《1.4三角函数的图像与性质》一课一练1.docx
高中数学学习材料马鸣风萧萧*整理制作1.4 三角函数的图像与性质一、选择题1.若cos x =0,则角x 等于( ) A .k π(k ∈Z )B .2π+k π(k ∈Z ) C . 2π+2k π(k ∈Z )D .-2π+2k π(k ∈Z )2.使cos x =mm-+11有意义的m 的值为( ) A .m ≥0B .m ≤0C .-1<m <1D .m <-1或m >13.函数y =3cos (52x -6π)的最小正周期是( ) A .5π2B .2π5 C .2π D .5π4.函数y =x xcos 2cos 2-+(x ∈R )的最大值是( )A .35B .25 C .3 D .55.函数y =2sin 2x +2cos x -3的最大值是( ) A .-1B .21 C .-21 D .-56.函数y =tan a x的最小正周期是( ) A .a πB .|a |πC .aπ D .||a π7.函数y =tan (4π-x )的定义域是( ) A .{x |x ≠4π,x ∈R }B .{x |x ≠-4π,x ∈R } C .{x |x ≠k π+4π,k ∈Z ,x ∈R }D .{x |x ≠k π+4π3,k ∈Z ,x ∈R } 8.函数y =tan x (-4π≤x ≤4π且x ≠0)的值域是( ) A .[-1,1]B .[-1,0)∪(0,1]C .(-∞,1]D .[-1,+∞)9.下列函数中,同时满足①在(0,2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( )A .y =tan xB .y =cos xC .y =tan 2x D .y =|sin x |10.函数y =2tan (3x -4π)的一个对称中心是( ) A .(3π,0)B .(6π,0) C .(-4π,0) D .(-2π,0)二、解答题11.比较下列各数大小: (1)tan2与tan9; (2)tan1与cot4.12.已知α、β∈(2π,π),且tan α<cot β,求证:α+β<2π3.13.求函数y =tan 2x +tan x +1(x ∈R 且x ≠2π+k π,k ∈Z )的值域.14.求函数y =-2tan (3x +3π)的定义域、值域,并指出它的周期、奇偶性和单调性.15求函数y =1cos 3cos 22-+-x x +lg (36-x 2)的定义域.参考答案一、选择题1.B 2. B 3.D 4. C 5. C 6.B 7. D 8.B 9.A 10. C 二、解答题11.分析:同名函数比较大小时,应化为同一单调区间上两个角的函数值后,应用函数的单调性解决;而对于不同名函数,则应先化为同名函数再按上面方法求解.解:(1)tan9=tan (-2π+9), 因为2π<2<-2π+9<π, 而y =tan x 在(2π,π)内是增函数, 所以tan2<tan (-2π+9), 即tan2<tan9. (2)cot4=tan (2π-4)=tan (2π3-4), 0<2π3-4<1<2π, 而y =tan x 在(0,2π)内是增函数, 所以tan (2π3-4)<tan1, 即cot4<tan1.点评:比较两个三角函数值的大小,应先将函数名称统一,再利用诱导公式将角转化到同一个单调区间内,通过函数的单调性处理.12.证明:∵tan α<cot β, ∴tan α<tan (2π3-β).又∵2π<α<π,2π<2π3-β<π, ∴α与2π3-β落在同一单调区间. ∴α<2π3-β,即α+β<2π3. 13.解:设t =tan x ,由正切函数的值域可得t ∈R , 则y =t 2+t +1=(t +21)2+43≥43.∴原函数的值域是[43,+∞). 点评:由于正切函数的值域为R ,所以才能在R 上求二次函数的值域. 14.解:由3x +3π≠k π+2π,得x ≠18π3π+k (k ∈Z ), ∴所求的函数定义域为{x |x ≠18π3π+k (k ∈Z )},值域为R ,周期为3π, 它既不是奇函数,也不是偶函数. k π-2π≤3x +3π≤k π+2π(k ∈Z ), ∴18π53π-k ≤x ≤18π3π+k (k ∈Z ). 在区间[18π53π-k ,18π3π+k ](k ∈Z )上是单调减函数. 15.解:欲求函数定义域,则由⎪⎩⎪⎨⎧>-≥-+-,,03601cos 3cos 222x x x 即⎩⎨⎧<<-≤--,,660)1)(cos 1cos 2(x x x也即⎪⎩⎪⎨⎧<<-≤≤,,661cos 21x x解得⎪⎩⎪⎨⎧<<-∈+≤≤+-.66)(π23ππ23πx k k x k ,Z 取k =-1、0、1,可分别得到 x ∈(-6,-3π5)或x ∈[-3π,3π]或x ∈[3π5,6), 即所求的定义域为(-6,-3π5)∪[-3π,3π]∪[3π5,6)。
人教A版高中数学必修4课后习题 第一章 1.4.2 第1课时 正弦函数、余弦函数的性质(一)
第一章三角函数1.4 三角函数的图象与性质 1.4.2 正弦函数、余弦函数的性质 第1课时 正弦函数、余弦函数的性质(一)课后篇巩固探究1.函数f(x)=-2sin (πx +π3)的最小正周期为( )A.6B.2πC.πD.2T=2ππ=2.2.下列函数中是奇函数的为( ) A.y=sin (x +π3) B .y=sin (x -π2)C.y=3x-sin xD.y=x 2+sin x选项中,令f(x)=3x-sinx,则f(-x)=3·(-x)-sin(-x)=-3x+sinx=-f(x),故函数是奇函数.3.已知函数f(x)=sin 2x,则下列关于f(x)的叙述正确的是( ) A.f(x)是奇函数B.f(x)是偶函数C.f(x)的最小正周期为2πD.f(x)的最小值不是-1是奇函数;f(x)的最小正周期为T=2π2=π;f(x)的最大值是1,最小值是-1.故选A.4.函数y=xcos x-sin x 的部分图象大致为( )解析函数y=f(x)=xcosx-sinx 满足f(-x)=-f(x),即该函数为奇函数,图象关于原点对称,故排除B;当x=π时,y=f(π)=πcosπ-sinπ=-π<0,故排除A.当x ∈0,π2时,tanx>x,所以sinxcosx>x.即xcosx-sinx<0,排除D,故选C.5.设f(x)是定义域为R 且最小正周期为2π的函数,且有f(x)={sinx ,0≤x ≤π,cosx ,-π<x <0,则f (-13π4)=( )A.√22B.-√22C.0D.1f(x)是定义域为R 且最小正周期为2π的函数,所以f (-13π4)=f (-4π+3π4)=f (3π4).又因为0≤3π4≤π,所以f (-13π4)=f (3π4)=sin 3π4=√22.6.函数y=cos (k 4x +π3)(k>0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13T=2πk4=8πk≤2,∴k≥4π.又k ∈N +,∴正整数k 的最小值为13.7.已知函数f(x)是周期为2的奇函数,当0<x<1时,f(x)=lg x,设a=f (65),b=f (32),c=f (52),则( )A.a<b<cB.b<a<cC.c<b<aD.c<a<b(65)=f (65-2)=f (-45)=-f (45),b=f (32)=f (32-2)=f (-12)=-f (12), c=f (52)=f (52-2)=f (12). ∵当0<x<1时,f(x)=lgx, ∴c<0,0<a<b.8.函数y=4sin(2x+π)的图象关于对称.-4sin2x,易证函数为奇函数,所以其图象关于原点对称.9.函数y=cos(1-x)π2的最小正周期是.y=cos(-π2x+π2),所以T=2ππ2=2π×2π=4.10.已知函数f(x)=sinωx+π6(ω>0),若函数f(x)的一个零点到最值点距离的最小值为π3,则ω的值为.解析相邻的最值点与零点之间的区间长度为T4,也是函数f(x)的一个零点到最值点距离的最小值,从而T4=π3,所以T=4π3,ω=2πT=32.11.已知函数f(x)是定义在R上的偶函数,若对任意的x≥0,都有f(x+2)=-1f(x),且当x∈[0,2π)时,f(x)=log2(x+1),试求f(-2 017)+f(2 019)的值.x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期. ∴f()=f(3)=log 24=2. 又f(-)=f()=f(1)=log 22=1, ∴f(-)+f()=1+2=3.12.已知函数y=12sin x+12|sin x|.(1)画出这个函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. (1)y=12sinx+12|sinx|={sinx ,x ∈[2kπ,2kπ+π](k ∈Z ),0,x ∈[2kπ-π,2kπ)(k ∈Z ).函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,故函数的最小正周期是2π.13.定义在R 上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x ∈[0,π2]时,f(x)=sin x.(1)求当x ∈[-π,0]时,f(x)的解析式; (2)画出函数f(x)在[-π,π]上的简图;(3)求当f(x)≥12时x 的取值范围.∵f(x)是偶函数,∴f(-x)=f(x).∵当x ∈[0,π2]时,f(x)=sinx,∴当x ∈[-π2,0]时,f(x)=f(-x)=sin(-x)=-sinx.又当x ∈[-π,-π2]时,x+π∈[0,π2],f(x)的周期为π,∴f(x)=f(π+x)=sin(π+x)=-sinx. ∴当x ∈[-π,0]时,f(x)=-sinx. (2)如图.(3)∵在[0,π]内,当f(x)=12时,x=π6或5π6,∴在[0,π]内,f(x)≥12时,x ∈[π6,5π6].又f(x)的周期为π,∴当f(x)≥12时,x ∈[kπ+π6,kπ+5π6],k ∈Z.。
高中数学人教A版必修四课时训练:1.4 三角函数的图象与性质 1.4.2(一)
1.4.2 正弦函数、余弦函数的性质(一) 课时目标 1.了解周期函数、周期、最小正周期的定义.2.会求f (x )=A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握y =sin x ,y =cos x 的周期性及奇偶性.1.函数的周期性(1)对于函数f (x ),如果存在一个______________,使得当x 取定义域内的____________时,都有____________,那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__________________.2.正弦函数、余弦函数的周期性由sin(x +2k π)=________,cos(x +2k π)=________知y =sin x 与y =cos x 都是______函数,____________________都是它们的周期,且它们的最小正周期都是________.3.正弦函数、余弦函数的奇偶性(1)正弦函数y =sin x 与余弦函数y =cos x 的定义域都是______,定义域关于________对称.(2)由sin(-x )=________知正弦函数y =sin x 是R 上的______函数,它的图象关于______对称.(3)由cos(-x )=________知余弦函数y =cos x 是R 上的______函数,它的图象关于______对称.一、选择题1.函数f (x )=3sin(x 2-π4),x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π 2.函数f (x )=sin(ωx +π6)的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .203.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.下列函数中,不是周期函数的是( )A .y =|cos x |B .y =cos|x |C .y =|sin x |D .y =sin|x |5.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( ) A .-12 B.12 C .-32 D.326.函数y =cos(sin x )的最小正周期是( )A.π2B .πC .2πD .4π 题 号 1 2 3 4 5 6答 案7.函数f (x )=sin(2πx +π4)的最小正周期是________. 8.函数y =sin ⎝⎛⎭⎫ωx +π4的最小正周期是2π3,则ω=______. 9.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是______________.10.关于x 的函数f (x )=sin(x +φ)有以下命题:①对任意的φ,f (x )都是非奇非偶函数;②不存在φ,使f (x )既是奇函数,又是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中的假命题的序号是________.三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x );(2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin xe sin x -e-sin x .12.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52π,3π]时f (x )的解析式.能力提升13.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,则ω的最小值是________.14.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T .如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性应遵从“定义域优先”原则,即先求定义域,看它是否关于原点对称.1.4.2 正弦函数、余弦函数的性质(一)答案知识梳理1.(1)非零常数T 每一个值 f (x +T )=f (x ) (2)最小正周期2.sin x cos x 周期 2k π (k ∈Z 且k ≠0) 2π3.(1)R 原点 (2)-sin x 奇 原点 (3)cos x 偶 y 轴作业设计1.D 2.B3.B [∵sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )的最小正周期为π的偶函数.]4.D [画出y =sin|x |的图象,易知.]5.D [f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3=-sin ⎝⎛⎭⎫-π3=sin π3=32.] 6.B [cos[sin(x +π)]=cos(-sin x )=cos(sin x ).∴T =π.]7.18.±3解析 2π|ω|=2π3,∴|ω|=3,∴ω=±3. 9.f (x )=sin|x |解析 当x <0时,-x >0,f (-x )=sin(-x )=-sin x ,∵f (-x )=f (x ),∴x <0时,f (x )=-sin x .∴f (x )=sin|x |,x ∈R .10.①④解析 易知②③成立,令φ=π2,f (x )=cos x 是偶函数,①④都不成立. 11.解 (1)x ∈R ,f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x )=-sin 2x ·(-cos x )=sin 2x cos x . ∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x =-f (x ).∴y =f (x )是奇函数.(2)对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0.∴f (x )=1+sin x +1-sin x 定义域为R .∵f (-x )=1+sin (-x )+1-sin (-x )=1+sin x +1-sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x )e sin (-x )-e -sin (-x )=e -sin x +e sin xe -sin x -esin x =-f (x ), ∴该函数是奇函数.12.解 x ∈[52π,3π]时,3π-x ∈[0,π2], ∵x ∈[0,π2]时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈[52π,3π]. 13.1992π 解析 要使y 在闭区间[0,1]上至少出现50个最小值,则y 在[0,1]上至少含49 34个周期, 即⎩⎨⎧(49 34)T ≤1T =2πω,解得ω≥1992π. 14.解 ∵sin x +1+sin 2x ≥sin x +1≥0,若两处等号同时取到,则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0.∵f (-x )=ln(-sin x +1+sin 2x )=ln(1+sin 2x -sin x )=ln(1+sin 2x +sin x )-1=-ln(sin x +1+sin 2 x )=-f (x ),∴f (x )为奇函数.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
人教A版数学必修四1.4 三角函数的图象和性质.docx
1.4 三角函数的图象和性质一、填空题1.函数y =12sin2x 的最小正周期T =________.解析由周期公式得T =2πω=2π2=π.答案 π2.函数y =sin 2x +sin x -1的值域为________.解析 y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出, 当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎢⎡⎦⎥⎤-54,1. 答案 ⎣⎢⎡⎦⎥⎤-54,13.若函数y =f (x )的图象和y =sin ⎝ ⎛⎭⎪⎫x +π4的图象关于点M ⎝ ⎛⎭⎪⎫π4,0对称,则f (x )的表达式是________.解析 设f (x )上任一点(a ,b ),则(a ,b )关于点M ⎝ ⎛⎭⎪⎫π4,0的对称点为⎝ ⎛⎭⎪⎫π2-a ,-b 且点⎝⎛⎭⎪⎫π2-a ,-b 在y =sin ⎝ ⎛⎭⎪⎫x +π4上, 所以-b =sin ⎝⎛⎭⎪⎫π2-a +π4⇒b =sin ⎝ ⎛⎭⎪⎫a -3π4 =-cos ⎝ ⎛⎭⎪⎫a -π4,∴y =-cos⎝ ⎛⎭⎪⎫x -π4. 答案 f (x )=-cos⎝ ⎛⎭⎪⎫x -π4 4.y =sin⎝ ⎛⎭⎪⎫x -π4的图象的对称中心是________. 解析 ∵y =sin x 的对称中心为(k π,0)(k ∈Z ), ∴令x -π4=k π(k ∈Z ),x =k π+π4(k ∈Z ),对称中心为⎝ ⎛⎭⎪⎫k π+π4,0.答案 ⎝ ⎛⎭⎪⎫k π+π4,0,k ∈Z5.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 由于f (x )=sin ωx 图象过原点,由已知条件画图象可知,π3为该函数的四分之一周期,所以2πω=4π3,ω=32. 答案326.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为________.解析 由已知得:f ⎝⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫2π-π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.答案327.已知a ∈R ,函数f(x)=sinx -|a|,x ∈R 为奇函数,则a =________. 解析 f(x)是奇函数,且x =0有意义,故f(0)=0,得a =0. 答案 08.函数y =-cos ()23x π-的单调递增区间是 .解析 函数y =cos ()23x π-递减时原函数递增,∴有2k π223x k π≤-≤π+πk ,∈Z ,∴4k π243x k π+≤≤π83k π+,∈Z .∴ y =-cos ()23x π-的单调递增区间是[4k π243k π+,π8]3π+k ,∈Z . 答案 [4k π243k π+,π8]3k π+,∈Z 9.若将函数y =sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,得到一个奇函数的图象,则ω的最小值为________.解析 由f ⎝⎛⎭⎪⎫x -π6=sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π6+π4= sin ⎝⎛⎭⎪⎫ωx +π4-ωπ6是奇函数,得ω的最小正值为32. 答案 3210.函数f (x )=cos ⎝ ⎛⎭⎪⎫x 3+φ(0<φ<2π),在区间(-π,π)上单调递增,则实数φ的取值范围为________.解析 由2k π-π≤x 3+φ≤2k π(k ∈Z )及已知条件,得π≤x3+φ≤2π, 即3(π-φ)≤x ≤3(2π-φ). 所以⎩⎨⎧3π-φ≤-π,32π-φ≥π.解得4π3≤φ≤5π3.答案 ⎣⎢⎡⎦⎥⎤4π3,5π3 11.已知函数f (x )=2sin(ωx +φ)(ω>0).若f ⎝ ⎛⎭⎪⎫π3=0,f ⎝ ⎛⎭⎪⎫π2=2,则实数ω的最小值为________.解析由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π3=0,f ⎝ ⎛⎭⎪⎫π2=2.得f (x )的最小正周期T ≤4×⎝ ⎛⎭⎪⎫π2-π3=2π3,即2πω≤2π3(ω>0),所以ω≥3. 从而ωmin =3. 答案 312.定义运算⎪⎪⎪⎪a 1a 3 a 2a 4=a 1a 4-a 2a 3,将函数f (x )=⎪⎪⎪⎪⎪⎪31 -sin x cos x 向左平移m 个单位(m >0),所得图象对应的函数为偶函数,则m 的最小值是________. 解析 f (x )=3cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π3,于是由f (x +m )=2sin⎝ ⎛⎭⎪⎫x +m +π3是偶函数,得m+π3=k π+π2,k ∈Z ,又m >0,所以m 的最小值为π6. 答案π613.设函数y =sin x (0≤x ≤π)的图象为曲线C ,动点A (x ,y )在曲线C 上,过A 且平行于x 轴的直线交曲线C 于点B (A 、B 可以重合),设线段AB 的长为f (x ), 则函数f (x )在[0,π2]上单调________,在⎣⎢⎡⎦⎥⎤π2,π上单调________.解析 设A (x ,y 0),则B 点坐标为(π-x ,y 0), 故f (x )=AB =|π-2x |⎝ ⎛⎭⎪⎫0≤x ≤π2,作出函数f (x )的图象如图,易得答案. 答案 递减 递增 二、解答题14. 已知函数f (x )=tan (2)4x π+. (1)求f (x )的定义域与最小正周期;(2)设(0)4πα∈,,若()22f α=cos 2α,求α的大小.解析 (1)由242x k ππ+≠+πk ,∈Z ,得82k x ππ≠+,k ∈Z ,所以f (x )的定义域为{x ∈R |82k x ππ≠+,k ∈Z }.f (x )的最小正周期为2π.(2)由()22f α=cos 2α,得tan ()4πα+=2cos 2αsin()42(cos()4παπα+,=+cos 2α-sin 2)α, 整理得sin cos 2(cos sin αααα+=-cos α+sin )(αcos α-sin )α.因为(0)4πα∈,,所以sin α+cos 0α≠.因此(cos α-sin 21)2α=,即sin 122α=.由(0)4πα∈,,得2(0)2πα∈,.所以26πα=,即12πα=.15.已知f (x )=sin x +sin ⎝ ⎛⎭⎪⎫π2-x .(1)若α∈[0,π],且sin 2α=13,求f (α)的值;(2)若x ∈[0,π],求f (x )的单调递增区间. 解析 (1)由题设知f (α)=sin α+cos α. ∵sin 2α=13=2sin α·cos α>0,α∈[0,π],∴α∈⎝⎛⎭⎪⎫0,π2,sin α+cos α>0.由(sin α+cos α)2=1+2sin α·cos α=43,得sin α+cos α=233,∴f (α)=233. (2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,又0≤x ≤π,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π4.16.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4-a ,其中a 是常数,且x =π2是函数的一个零点.(1)求函数的最小正周期;(2)当x ∈[0,π]时,求函数f (x )的值域. 解析 (1)由f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4-a ,得T =2π.(2)因为x =π2是函数y =f (x )的一个零点,所以f ⎝ ⎛⎭⎪⎫π2=0,即a =1. 因为x ∈[0,π],所以x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫x -π4∈⎣⎢⎡⎦⎥⎤-22,1,所以f (x )值域为[-2, 2-1].17.已知函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π.且f ⎝ ⎛⎭⎪⎫π4= 2. (1)求ω,φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=-65(0<α<π),求cos 2α的值.解析 (1)由函数的周期为π,可知2πω=π,所以ω=2.又由f ⎝ ⎛⎭⎪⎫π4=2,得2sin ⎝⎛⎭⎪⎫π2+φ=2, 所以cos φ=22. 又φ∈(0,π),所以φ=π4. (2)由f ⎝ ⎛⎭⎪⎫α2=-65,得sin ⎝ ⎛⎭⎪⎫α+π4=-35.因为α∈(0,π),所以α+π4∈⎝ ⎛⎭⎪⎫π4,5π4.又sin ⎝ ⎛⎭⎪⎫α+π4=-35<0,所以α+π4∈⎝ ⎛⎭⎪⎫π,5π4,所以cos ⎝ ⎛⎭⎪⎫α+π4=-45.所以cos 2α=sin ⎝⎛⎭⎪⎫π2+2α=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝⎛⎭⎪⎫α+π4=2425. 18.已知函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)是偶函数,在[0,π]上单调减,且图象关于点⎝ ⎛⎭⎪⎫π2,0对称,求ω与φ的值.解析 因为f (x )=2sin(ωx +φ)是偶函数,且0<φ<π,所以φ=π2. 所以f (x )=2sin ⎝⎛⎭⎪⎫ωx +π2=2cos ωx .因为f (x )=2cos ωx 的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,所以f ⎝ ⎛⎭⎪⎫π2=2cos πω2=0,πω2=k π+π2(k ∈Z ),即ω=2k +1,k ∈Z .又因为f(x)=2cos ωx在[0,π]上单调减,所以πω≥π;所以0<ω≤1,因此ω=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦函数、余弦函数的性质(一)
课时目
标.了解周期函数、周期、最小正周期的定义.会求()=(ω+φ)及=(ω+φ)的周期.掌握=,=的周期性及奇偶性.
.函数的周期性
()对于函数(),如果存在一个,使得当取定义域内的时,都有,那么函数()就叫做周期函数,非零常数叫做这个函数的周期.
()如果在周期函数()的所有周期中存在一个最小的正数,那么这个最小正数就叫做()的.
.正弦函数、余弦函数的周期性
由(+π)=,(+π)=知=与=都是函数,都是它们的周期,且它们的最小正周期都是.
.正弦函数、余弦函数的奇偶性
()正弦函数=与余弦函数=的定义域都是,定义域关于对称.
()由(-)=知正弦函数=是上的函数,它的图象关于对称.
()由(-)=知余弦函数=是上的函数,它的图象关于对称.
一、选择题
.函数()=(-),∈的最小正周期为()
.π.π.π
.函数()=(ω+)的最小正周期为,其中ω>,则ω等于()
....
.设函数()=,∈,则()是()
.最小正周期为π的奇函数
.最小正周期为π的偶函数
.最小正周期为的奇函数
.最小正周期为的偶函数
.下列函数中,不是周期函数的是()
.=.=
.=.=
.定义在上的函数()既是奇函数又是周期函数,若()的最小正周期为π,且当∈时,()=,则的值为()
.-.-
.函数=()的最小正周期是()
.π.π.π
题号
答案
二、填空题
.函数()=(π+)的最小正周期是.
.函数=的最小正周期是,则ω=.
.若()是上的偶函数,当≥时,()=,则()的解析式是.
.关于的函数()=(+φ)有以下命题:
①对任意的φ,()都是非奇非偶函数;
②不存在φ,使()既是奇函数,又是偶函数;
③存在φ,使()是奇函数;
④对任意的φ,()都不是偶函数.
其中的假命题的序号是.
三、解答题
.判断下列函数的奇偶性.
()()=(π+);
()()=+;
()()=.。