光栅光谱仪

合集下载

光栅与光谱仪的应用

光栅与光谱仪的应用

光栅与光谱仪的应用在科学研究和实际应用的广阔领域中,光栅和光谱仪是至关重要的工具。

它们就像是能够揭示物质内在秘密的神奇“眼睛”,让我们得以深入了解各种物质的特性和构成。

首先,让我们来认识一下光栅。

光栅是一种具有周期性结构的光学元件,其表面刻有大量等间距的平行狭缝或线条。

当光线照射到光栅上时,会发生衍射现象。

这就好比光线在通过一个个狭窄的通道时“分散”开来,形成一系列明暗相间的条纹。

这些条纹包含了丰富的光学信息。

而光谱仪呢,则是利用光栅的衍射特性来工作的仪器。

它能够将入射的复合光分解成不同波长的单色光,并测量每种波长光的强度。

简单来说,光谱仪就像是一个超级精密的“光分拣器”,把混杂在一起的各种颜色的光按照波长一一分开,然后告诉我们每种颜色光的“多少”。

在物理学研究中,光栅和光谱仪的应用极为广泛。

比如,在原子物理学中,通过光谱仪分析原子发射或吸收的光谱,可以精确地确定原子的能级结构。

这对于理解原子的内部机制以及量子力学的基本原理具有重要意义。

化学领域也是光栅和光谱仪大显身手的地方。

物质的化学组成和结构会影响其对光的吸收和发射特性。

通过光谱分析,能够检测出样品中的各种化学成分及其含量。

比如在环境监测中,光谱仪可以快速检测出空气中的污染物,如水蒸气、二氧化碳、二氧化硫等,为环境保护提供重要的数据支持。

在天文学中,来自遥远天体的光包含着丰富的信息。

光谱仪可以分析这些星光的光谱,从而确定天体的化学成分、温度、速度等参数。

比如,通过对恒星光谱的研究,天文学家可以了解恒星的演化阶段和内部结构。

对于星系的研究,光谱仪也能帮助我们了解星系的运动状态和组成成分,进而探索宇宙的起源和演化。

在生物医学领域,光栅和光谱仪同样发挥着重要作用。

在医学诊断中,它们可以用于血液成分分析、细胞检测等。

例如,通过检测血液中特定物质的吸收光谱,可以快速诊断某些疾病。

在药物研发方面,光谱仪可以帮助研究药物与生物分子的相互作用,从而优化药物设计。

光电检测技术——光栅式光谱仪原理

光电检测技术——光栅式光谱仪原理

光电检测技术——光栅式光谱仪原理光栅式光谱仪利用光的衍射和干涉现象,将光信号分解并测量出不同波长光的强度,从而获得光谱信息。

其主要原理为光栅的衍射效应。

光栅是一种具有规则周期性结构的光学元件,通常由一系列平行的刻线组成,每个刻线之间具有相等的间距,称为刻线间距或刻线常数。

光栅的刻线间距决定了其对光的衍射效应。

当入射光射到光栅表面时,会根据衍射原理,产生多个有序的衍射光束。

光栅式光谱仪的基本构造包括光源、样品室、光栅和光电探测器等。

光源产生连续的、宽谱的光,经过透镜或光纤传输到样品室,样品室中的样品与光发生相互作用,被测量的光通过样品室后,经过一个狭缝限制波束大小,然后射到光栅上。

光栅上光的衍射效应导致不同波长的光在不同角度处发生衍射,形成一系列不同频谱的光束。

在光栅后面放置一个光电探测器,该探测器能够测量不同频谱的光束的强度,产生一个光电信号。

光栅式光谱仪的核心部分是光栅。

光栅的刻线间距决定了光栅式光谱仪的分辨率,即能够区分不同波长光的能力。

分辨率可通过改变光栅上的刻线数目或刻线间距来调节。

光栅式光谱仪的工作原理基于光的衍射和干涉现象,它可以将整个光谱范围的光分为许多狭窄的频带,并测量出每个频带的光强度。

通过对每个频带的光强度进行处理和分析,就可以得到样品中各种光的相对强度和波长。

这些光谱信息可以用于物质的组成分析、结构研究、光源的测量和环境监测等。

总之,光栅式光谱仪是一种基于光栅的衍射效应的光学仪器,利用光的衍射和干涉现象将光信号分解并测量出不同波长光的强度,从而实现光谱分析和光学测量。

光栅式光谱仪具有高分辨率、高灵敏度和广泛应用的优点,是一种重要的光电检测技术。

光栅光谱仪使用方法说明书

光栅光谱仪使用方法说明书

光栅光谱仪使用方法说明书使用说明:一、概述光栅光谱仪是一种用于测量光谱的仪器。

它通过分散光束,并使用光栅的色散效应,能够将光谱分解成不同波长的成分。

本说明书将详细介绍光栅光谱仪的使用方法,以帮助用户正确、高效地操作该仪器。

二、仪器部件1. 光源:光栅光谱仪使用的光源通常为高亮度气体放电灯或激光器。

在使用前,确保光源处于正常工作状态,并调整适当的光源强度。

2. 光栅:光栅是光栅光谱仪的关键部件,它能够将入射的光分散成不同波长的成分。

在使用前,检查光栅的清洁程度,并确保其安装牢固。

3. 函数控制面板:光栅光谱仪配备了函数控制面板,用于调节仪器的参数,如光谱范围、扫描速度等。

在操作前,熟悉各功能按钮和调节旋钮的作用。

4. 探测器:光栅光谱仪使用的探测器通常为光电倍增管或光电二极管。

在使用前,确保探测器处于正常工作状态,并根据需要进行适当的调节。

三、使用步骤1. 开机:将光栅光谱仪接通电源,并等待仪器启动完成。

在启动过程中,确保仪器的各部件正常运转,并检查显示屏上是否显示仪器的基本信息。

2. 设置参数:使用函数控制面板,设置光谱范围、扫描速度、积分时间等参数。

根据实际需要,合理调节这些参数,以满足测量的要求。

3. 校准光谱:在使用光栅光谱仪进行测量前,需要进行光谱校准。

方法为选择已知光源,如氢气放电灯,通过仪器的校准功能,获取标准光谱。

校准完成后,仪器将自动调整各波长的准确位置。

4. 测量光谱:将待测光源与光栅光谱仪相连,并通过调节仪器的位置和角度,使得光线正确定位于光栅表面。

随后,启动仪器的测量功能,记录光谱数据。

5. 数据处理:使用光栅光谱仪提供的数据处理软件,对测量到的光谱数据进行分析和处理。

可以进行波长校准、峰值识别、光谱比较等操作,以获得更准确的结果。

6. 关机:测量结束后,关闭光栅光谱仪的电源,并做好仪器的保养工作。

清理光栅表面、检查探测器状态,并关注仪器的日常维护。

四、注意事项1. 使用前请阅读本说明书并按照要求正确操作光栅光谱仪。

光栅光谱仪的使用技巧与光谱解读

光栅光谱仪的使用技巧与光谱解读

光栅光谱仪的使用技巧与光谱解读光栅光谱仪是一种常用的光学仪器,用于分析物质的光谱特性。

它可以通过光的折射、反射等现象将光分解成不同波长的颜色,并用光栅进行分光,最终得到光谱图。

本文将介绍光栅光谱仪的使用技巧以及如何解读光谱图。

一、光栅光谱仪的使用技巧1. 准备工作在使用光栅光谱仪之前,首先需要对仪器进行准备工作。

检查仪器是否正常运行,保证光源的光强和稳定性,调整光栅的位置和角度等。

还需要清洁仪器,确保光学元件的透明度和表面平整度。

2. 光谱采集光谱采集是使用光栅光谱仪的关键步骤。

在进行光谱采集时,应选择合适的光源和样品,并将样品固定在光路中。

根据需要,可以选择透射光谱或者反射光谱进行测量。

在光谱采集过程中,需要注意光栅的选取和调整。

光栅的刻线数目和刻线间距会影响到光谱的分辨能力和精确度。

此外,还需根据样品的性质和所需的测量范围,选择合适的光栅波长范围。

3. 数据处理光栅光谱仪采集到的光谱数据通常是以图像或光强数据显示的。

对于图像数据,可以通过图像处理软件对图像进行分析和处理。

对于光强数据,可以使用光谱分析软件进行分析。

在数据处理过程中,需要进行背景校正和信号平滑处理,以提高数据的准确性和可靠性。

此外,还可以进行峰识别和峰拟合,以获得更详细的光谱信息。

二、光谱解读光谱是物质相互作用后产生的一种特征性信息,通过对光谱的解读可以获取样品的成分、结构和性质等信息。

1. 波长和强度光谱中的波长和强度是光谱解读的基本要素。

波长可以用来确定光的颜色及其对应的频率和能量,不同波长的光在相互作用后会有不同的行为。

强度则反映了光的辐射能力,可以用来确定样品吸收、发射或散射光的强弱。

通过对波长和强度的分析,可以了解样品的能级结构、激发态和基态等信息。

2. 谱线和峰光谱图中的谱线和峰是光谱解读的重要指标。

谱线是指光谱图中产生的光谱线条,可以用来确定样品中的特定成分或物理现象。

峰则是光谱图中的波峰,表示光强的峰值。

峰的位置、高度和形状都可以提供关于样品的信息。

光栅光谱仪实验报告

光栅光谱仪实验报告

光栅光谱仪实验报告光栅光谱仪是一种常用的光谱仪器,能够将光信号分解成不同波长的光谱线,并对其进行精确测量。

本实验旨在通过使用光栅光谱仪,对不同光源的光谱进行测量和分析,以及了解光谱仪的基本原理和使用方法。

实验步骤:1. 实验仪器准备,将光栅光谱仪放置在稳定的台面上,并连接电源、光源和计算机等设备。

2. 光源选择,选择不同类型的光源,如白炽灯、氢氖激光等,并依次对其进行测量。

3. 光谱测量,打开光栅光谱仪软件,选择相应的测量模式,对所选光源进行光谱测量,并记录下光谱数据。

4. 数据分析,利用软件对测得的光谱数据进行分析,包括波长、强度等参数的测量和计算。

实验结果:通过实验测量和分析,我们得到了不同光源的光谱数据,并对其进行了初步的分析。

例如,白炽灯的光谱呈连续光谱,而氢氖激光的光谱则呈现出明显的谱线特征。

通过对光谱数据的分析,我们可以了解到不同光源的发光特性和光谱分布规律。

实验总结:本次实验通过使用光栅光谱仪,对不同光源的光谱进行了测量和分析,增强了我们对光谱仪器的理解和使用能力。

同时,通过实验数据的分析,我们也对不同光源的发光特性有了更深入的了解。

在今后的实验和研究中,光栅光谱仪将会是一个重要的实验工具,帮助我们更好地理解光谱学的相关知识和应用。

结语:光栅光谱仪作为一种重要的光谱仪器,在科研和实验中具有重要的应用价值。

通过本次实验,我们对光栅光谱仪的基本原理和使用方法有了更深入的了解,这将为今后的研究和实验工作打下坚实的基础。

希望通过不断的实践和学习,我们能够更好地运用光谱仪器,为科学研究和技术发展做出更大的贡献。

光栅和光谱仪分辨率的关系

光栅和光谱仪分辨率的关系

光栅和光谱仪分辨率的关系
光栅和光谱仪的分辨率之间存在着密切的关系。

首先,让我们来介绍一下光栅和光谱仪的概念。

光栅是一种光学元件,它利用其表面的周期性结构,可以将入射的光波分散成不同波长的成分。

而光谱仪则是一种用于分析光谱的仪器,它可以将光信号分解成不同波长的成分,并测量其强度。

光谱仪的分辨率是指其能够区分两个波长之间的最小差异,通常用波长之间的差异Δλ表示。

光栅和光谱仪的分辨率之间的关系可以通过光栅的衍射公式来解释。

光栅的衍射公式可以表示为,mλ = d(sinθ + sinφ),其中m为衍射级数,λ为入射光的波长,d为光栅的周期,θ为入射角,φ为衍射角。

从这个公式可以看出,光栅的周期d决定了衍射角φ,而衍射角φ决定了光谱的分布情况。

因此,光栅的周期d 对光谱仪的分辨率有着直接的影响。

另外,光栅的分辨率也与其刻线数有关。

光栅的刻线数越多,意味着可以将入射光波分散成更多的成分,从而提高光谱仪的分辨率。

因此,光栅的刻线数也是影响光谱仪分辨率的重要因素之一。

总的来说,光栅和光谱仪的分辨率之间存在着密切的关系。


栅的周期和刻线数都会影响光谱仪的分辨率,而光谱仪的分辨率则
取决于其能够区分两个波长之间的最小差异。

因此,在实际应用中,需要根据具体的需求选择合适的光栅和光谱仪,以获得较高的分辨
率和精确的光谱分析结果。

关于光栅光谱仪的选择介绍

关于光栅光谱仪的选择介绍

关于光栅光谱仪的选择介绍光栅光谱仪是一种常见的光谱仪,它使用光栅作为色散元件,将光线分散成不同波长的组成,然后通过光电探测器进行检测和分析。

选择适合的光栅光谱仪对于各种应用至关重要。

在选择光栅光谱仪之前,需要考虑以下几个关键因素:光谱范围:光栅光谱仪通过光栅的色散效应分离入射光,因此其光谱范围将直接影响其适用范围。

所需的光谱范围取决于应用的需求。

例如,可见光光谱仪适用于分析可见光范围内的光谱,而紫外-可见光光谱仪则适用于分析更广泛的光谱范围。

分辨率:分辨率是光栅光谱仪的一个重要参数,它决定了光谱中不同波长之间的分辨能力。

分辨率越高,能够分辨临近波长的能力就越强。

具体而言,分辨率由光栅的刻痕数和入射光中心波长等决定。

选择适当的分辨率取决于应用中所需分析的细节和需要。

灵敏度:光栅光谱仪的灵敏度指的是其对光信号的检测能力。

灵敏度取决于光栅光谱仪的光电转换器的性能。

在一些应用中,需要高灵敏度的光栅光谱仪,以便能够检测到低强度的光信号。

因此,在选择光栅光谱仪时,应该考虑其灵敏度以及是否可调节以适应不同强度的光信号。

采样速度:采样速度是光栅光谱仪的另一个重要参数。

它指的是光栅光谱仪进行光信号采样和处理的速度。

采样速度的选择取决于所需的实验或应用的速度要求。

例如,在一些需要快速连续测量的实验中,需要高采样速度的光栅光谱仪。

稳定性:光栅光谱仪的稳定性是影响其精确测量的关键因素之一、稳定性取决于光栅光谱仪的机械结构和控制电路。

选择稳定性好的光栅光谱仪,可以减少由于机械振动、温度变化等外部因素引起的测量误差。

软件和接口:现代光栅光谱仪通常与计算机进行连接,并通过相应的软件进行控制和数据分析。

选择光栅光谱仪时,应考虑其是否兼容需要使用的平台和软件。

此外,一些光栅光谱仪还可提供多种接口选项,如USB、RS232等,以便与不同的设备和系统进行连接。

价格:最后,选择光栅光谱仪时还需要考虑预算。

光栅光谱仪的价格因其性能和功能而有所不同。

光栅光谱仪的工作原理

光栅光谱仪的工作原理

光栅光谱仪的工作原理
光栅光谱仪是一种常用的光谱仪,其工作原理基于光的衍射性质。

下面是光栅光谱仪的工作原理的简要描述:
1. 光栅:光栅是光栅光谱仪的核心部件,通常由许多互相平行的等间距的狭缝或凹槽组成。

这些狭缝或凹槽可以分为透射式和反射式两种。

2. 光源:光谱仪通常使用白光源或者具有连续光谱的激光器作为光源。

光源发出的光线照射到光栅上。

3. 衍射:当光线通过光栅时,光线会发生衍射现象。

根据光栅的表面形态,不同波长的光线会被不同程度地分散。

4. 光谱分散:经过光栅衍射后,不同波长的光线会被分散成不同的角度,形成一个连续的光谱。

5. 探测器:光谱仪中通常装有一个探测器,用来检测光谱中不同波长的光线的强度。

6. 光谱显示与分析:探测器会将光信号转换为电信号,并经过放大或处理后,可以用于显示和分析。

总结来说,光栅光谱仪通过光线的衍射现象,将不同波长的光线分散成一个连续的光谱,并利用探测器来获取和分析光谱信息。

光栅光谱仪广泛应用于光谱分析、材料研究、生物医学等领域。

光栅光谱仪实验报告

光栅光谱仪实验报告

光栅光谱仪实验报告实验报告:光栅光谱仪实验1.引言:光谱是科学家们通过光的分光现象得到的一种物体结构与性质的重要信息。

光栅光谱仪是一种用于分析光的波长和颜色的仪器。

本实验的主要目的是通过光栅光谱仪对不同光源的光进行分析,了解光栅光谱仪的原理和使用方法。

2.实验原理:光栅光谱仪的工作原理是光栅的光栅方程:nλ = d sinθ,其中n 为衍射阶数,λ为光波长,d为光栅常数,θ为衍射角。

根据光谱的连续性,光栅衍射光谱呈现出一系列彩色条纹,根据谱线的位置可以得到光的波长信息。

3.实验步骤:(1)实验器材准备:光栅光谱仪、光源、白纸、标尺等;(2)调整仪器:将光栅光谱仪上的刻度盘调整到合适位置,并使用标尺确定距离;(3)实验记录:将白纸放在光栅光谱仪后方,打开光源,调整仪器使得谱线清晰可辨;(4)测量谱线位置:将谱线的位置与刻度盘上的刻度对应,记录下谱线的位置;(5)数据分析:根据光栅方程计算出样品的波长。

我们使用Hg灯、Na灯和未知样品光等三种光源进行了实验测量。

根据测量结果,我们得到了Hg灯、Na灯和未知样品光的谱线位置,并计算得到了它们的波长。

具体结果如下表所示:光源,谱线位置 (刻度) ,波长 (nm)---------,---------------,-----------Hg灯,35,435.8Hg灯,41,546.1Hg灯,49,578.0Na灯,45,589.0Na灯,50,589.6未知样品光,37,469.45.结果分析:根据实验结果,我们可以发现Hg灯的谱线位置分别为35、41和49,对应的波长分别为435.8、546.1和578.0纳米。

Na灯的谱线位置为45和50,对应的波长为589.0和589.6纳米。

而未知样品光的谱线位置为37,对应的波长为469.4纳米。

6.实验误差分析:在实验中,可能存在的误差主要来自于读数误差、仪器调整不准确等因素。

我们尽量减小这些误差,但还是难以完全避免。

光栅光谱仪的选择介绍

光栅光谱仪的选择介绍

光栅光谱仪的选择介绍光栅光谱仪是一种通过分散光线来测量物质吸收、发射、散射等光谱性质的仪器,由于其精度高、灵敏度好、速度快等特点,被广泛应用于物理、化学、生物、医学等领域。

在实际使用中,不同的场合和需求需要选用不同类型的光栅光谱仪,因此选择合适的光谱仪显得非常重要。

本文将从以下几个方面介绍光栅光谱仪的选择。

1. 光源类型根据采用的光源类型不同,光栅光谱仪可分为白光光谱仪和单色光光谱仪两类。

白光光谱仪通过分光镜将物质产生的白光分解成不同的色彩,再通过光栅进行分光,因而能够测量出样品在各个波长下的光谱曲线。

而单色光光谱仪在工作时采用逐点扫描法,通过非常狭窄的图形尺宽度来获得高分辨率的光谱,能够获得更加精确的光谱信息。

选择哪种类型的光谱仪,还要根据具体的需要和测试情况来决定。

如果需要测试物体在各种波长下的特性,建议选用白光光谱仪;如果需要测试的光谱没有任何中断,可以选择单色光光谱仪。

2. 分辨率要求在光栅光谱仪的选购过程中,分辨率是一个非常重要的指标。

分辨率是指光谱仪测定样品的能力,具体来说,是指光谱仪分辨哪个波长位置的频率的能力。

如果分辨率越高,测量到的光谱峰会越窄,从而解析度也会更高。

但是,高分辨率的光谱仪通常会更加昂贵。

如果需要较高的分辨率,建议选择分辨率高的光栅光谱仪。

通常,分辨率的要求是由测试需求和样品特性决定的。

3. 可见光谱范围对于需要在可见光谱范围内进行测试的应用,应选择可见光谱仪。

可见光谱仪通常能够测量380到780nm波长范围内的光谱,适用于大多数的可见光应用。

而对于需要在更广泛的频率范围内进行测试的应用,如紫外线和红外线,需要选择专门针对这些频段的光谱仪。

4. 灵敏度和线性范围在一些分析和研究应用中,需要对非常微小的光信号进行测试。

这就需要选择灵敏度高、线性范围广泛的光谱仪。

灵敏度取决于光谱仪照射样品的光强和光谱仪本身的灵敏度。

高灵敏度的光谱仪通常不便宜。

而线性范围是指在该范围内,光谱仪对不同的信号强度具有相同的响应。

光栅光谱仪的操作步骤 光栅光谱仪操作规程

光栅光谱仪的操作步骤 光栅光谱仪操作规程

光栅光谱仪的操作步骤光栅光谱仪操作规程光栅光谱仪,又称单色仪,是光谱分析讨论的通用设备。

广泛应用于颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域中。

下面介绍一下光栅光谱仪的操作步骤,以WGD—5 型组合式多功能光栅光谱仪为例。

准备工作1.记录螺旋尺旋转方向与缝宽变化的关系。

2.打开单色仪的电源开关,打开汞灯、溴钨灯电源,预热5min。

3.将倍增管的高压调至400V(不得超过600V)。

4.打开计算机进入工作界面。

校准波长1.将汞灯置于狭缝前,打开并照亮狭缝,预热5min可正常工作。

2.探测器选用广电倍增管,高压加到350到400伏。

选择能量模式,扫描范围:350nm—750nm,扫描步:1nm。

3.调整狭缝宽度使入射缝与出射缝相匹配。

4.点击“单程”,单色仪开始扫描。

扫描完成后依据谱线强度重新调整入射与出射狭缝,使谱线尽量增高,并使黄线576.9nm和579nm分开(以划线谱作为参照)。

用自动寻峰测量谱线的波长与标准值进行比较,假如波长差大于1nm,重新调整狭缝宽度进行波长修正。

测量滤色片透过率曲线光源:取下高压汞灯,换上溴钨灯,预热5分钟。

1.扫描基线工作方式(模式):基线;扫描范围:400—700nm:扫描步长:1nm。

(1)点击“单程”单色仪开始扫描(2)调整入射狭缝的缝宽使基线的峰值达到 900以上。

(3)扫描结束后,点击“当前寄存器”,列表框右侧“————”,在弹出的“环境信息”填入信息,然后关闭。

(4)保存数据。

2.扫描透过率曲线打开样品池顶盖,将一个滤色片放在入射狭缝的前面,盖上顶盖。

工作方式:模式“透过率”;更换寄存器;扫描,保存。

(1)确定绿色滤光片的峰值、峰值波长及半高宽;(2)确定红、蓝、黄、品和青色滤光片的截止波长(通带峰值一的40%强度处所对应波长);(3)依据蓝、黄、品和青色滤光片的光谱特性,选用两种颜色滤波片的组合分别设计512nm和536nm窄带滤波片(峰值尽量窄和高),并测量透过率曲线。

光栅色散型光谱仪和傅里叶变换的区别

光栅色散型光谱仪和傅里叶变换的区别

光谱仪是一种用来分析物质成分和性质的仪器,可以将物质发出或吸收的光谱进行测量和分析。

而光栅色散型光谱仪和傅里叶变换光谱仪是两种常见的光谱仪类型,它们在原理和应用上有很多不同之处。

一、光栅色散型光谱仪光栅色散型光谱仪是一种利用光栅的波长分散作用来进行光谱分析的仪器。

光栅是一种具有规则刻痕的透镜,可以将入射的白光分散成不同波长的光束。

光栅色散型光谱仪的工作原理是通过调整光栅的角度来实现波长的分散,然后使用光电传感器来检测分散后的光束,并将其转换成电信号进行记录和分析。

1.工作原理:光栅色散型光谱仪的工作原理是基于光栅对不同波长光的色散作用。

入射光束通过光栅后,不同波长的光会根据其波长大小而产生不同角度的色散,然后被光电传感器所接收和转换为电信号。

2.特点:光栅色散型光谱仪具有波长分辨率高、光谱范围广、测量精度高等特点,适用于多种波长的光谱分析。

3.应用:光栅色散型光谱仪广泛应用于化学分析、材料研究、光谱学等领域,对物质的成分和结构进行详细的分析和表征。

二、傅里叶变换光谱仪傅里叶变换光谱仪是一种利用傅里叶变换原理进行光谱分析的仪器。

傅里叶变换是一种将时域信号转换为频域信号的数学方法,可以将复杂的光谱信号分解成不同频率的成分,从而得到物质的光谱特征。

1.工作原理:傅里叶变换光谱仪的工作原理是通过将入射光信号进行傅里叶变换,将其转换为频域信号进行分析。

在傅里叶变换光谱仪中,光信号被分解成不同频率的成分,然后通过光电传感器进行检测和记录。

2.特点:傅里叶变换光谱仪具有波长分辨率高、信噪比高、测量速度快等特点,适用于对光学信号的快速、精确分析。

3.应用:傅里叶变换光谱仪广泛应用于红外光谱、拉曼光谱、核磁共振光谱等领域,对物质的结构和性质进行深入的研究和分析。

三、光栅色散型光谱仪和傅里叶变换光谱仪的区别1.原理差异:光栅色散型光谱仪是利用光栅的波长分散作用进行光谱分析,而傅里叶变换光谱仪是利用傅里叶变换原理对光学信号进行频域分析。

光栅光谱仪原理

光栅光谱仪原理

光栅光谱仪原理光栅光谱仪是一种利用光栅原理进行光谱分析的仪器,它能够将入射光按照波长进行分离,从而获取样品的光谱信息。

光栅光谱仪的原理主要包括入射光的分散、光栅的作用和光谱的检测三个方面。

首先,光栅光谱仪的原理涉及到入射光的分散。

当入射光线通过准直器后,会被分散成不同波长的光线。

这是因为不同波长的光线在介质中的折射率不同,导致光线的偏折角也不同,从而形成不同波长的光线在空间中的分散。

其次,光栅的作用是光栅光谱仪原理中的关键环节。

光栅是一种具有周期性结构的光学元件,它能够将入射光线按照波长进行进一步分散。

光栅上的周期性结构会使不同波长的光线发生衍射,从而形成不同波长的光线在不同角度上的衍射光谱。

通过调整光栅的角度或者改变入射光线的波长,可以使不同波长的光线分别聚焦在不同的位置上,从而实现光谱的分离和检测。

最后,光谱的检测是光栅光谱仪原理中的最终环节。

经过光栅分散后的光线会被聚焦到光谱仪的检测器上,检测器会将光信号转换成电信号,并进行信号放大和处理,最终得到样品的光谱信息。

光栅光谱仪的检测器通常采用光电二极管、CCD等光电探测器,具有高灵敏度和快速响应的特点。

总的来说,光栅光谱仪原理是基于光的波长分散特性和光栅的衍射原理,通过光谱仪的检测器将分散后的光线转换成电信号,实现对样品光谱信息的获取。

光栅光谱仪在化学分析、光谱学研究、材料表征等领域有着广泛的应用,是一种重要的光谱分析仪器。

在实际应用中,光栅光谱仪的原理不仅可以用于分析样品的光谱特性,还可以用于测量光源的光谱分布、检测光学元件的波长特性等。

通过对光栅光谱仪原理的深入理解,可以更好地利用光谱仪进行光谱分析和研究,为科学研究和工程应用提供有力的支持。

光栅光谱仪原理及设计研究

光栅光谱仪原理及设计研究

光栅光谱仪原理及设计研究光栅光谱仪原理及设计研究引言:光栅光谱仪是一种常见的光学仪器,用于分析物质的光谱特性,从而获得物质的组成和结构信息。

本文将介绍光栅光谱仪的原理,并重点讨论其设计和研究。

一、光栅光谱仪的原理1.1 光的波动特性光是一种电磁波,具有波动特性。

在光栅光谱仪中,光通过光栅后会发生衍射现象,根据衍射理论,光的波长和光栅的构型会影响衍射光的传播方向和强度。

1.2 光栅的工作原理光栅是一种具有周期性结构的透明或不透明薄片。

光栅中的周期性结构可以将入射光线分散成不同波长的衍射光束。

光栅的周期性结构由等间距的凹槽或凸起组成,通常用线数(即每毫米的凹槽或凸起数)表示。

1.3 衍射光的分布与光栅的参数入射光线通过光栅后,不同波长的衍射光相对应于不同的衍射角。

光栅的参数,例如线数、入射角等,会影响不同波长的衍射光的强度和相对位置。

二、光栅光谱仪的设计2.1 构成光栅光谱仪主要由入射系统、衍射系统、检测系统和信号处理系统四个部分组成。

2.2 光栅的选择光栅的选择需要考虑波长范围、分辨率和灵敏度等因素。

常见的光栅类型有平面反射光栅和平面透射光栅,具有不同的特点和应用领域。

2.3 光谱仪的性能指标常用的光谱仪性能指标包括分辨率、灵敏度、动态范围和信噪比等。

这些指标直接影响着光栅光谱仪的测量精度和可靠性。

三、光栅光谱仪的研究应用3.1 光谱分析光栅光谱仪可以用于物质的光谱分析,通过检测不同波长的衍射光的强度分布,可以获得物质的组成和结构信息。

例如,利用光栅光谱仪可以测量吸收光谱、发射光谱、荧光光谱等。

3.2 生物医学领域在生物医学领域,光栅光谱仪被广泛运用于分析生物体内物质的组成和结构。

例如,可以通过检测人体组织中的衍射光谱特性,实现早期癌症的早期诊断和疾病的监测。

3.3 光通信在光通信领域,光栅光谱仪可以用于检测和分析光纤中的光信号。

通过光栅光谱仪检测光纤中的衍射光谱特性,可以对光信号进行解调和分析,实现高速、稳定的光通信传输。

光栅光谱仪测量光谱

光栅光谱仪测量光谱

光栅光谱仪测量光谱概述光栅光谱仪是利用光栅对光进行分光的一种仪器,通过测量不同光波长的强度,可以得到光谱信息。

本文将介绍光栅光谱仪的工作原理、测量方法以及常见的应用场景,帮助读者更好地理解光栅光谱仪测量光谱的原理和应用。

光栅光谱仪的工作原理光栅光谱仪利用光栅的衍射原理将入射的光分散成不同波长的光,然后使用光电探测器测量各波长光的强度。

光栅是由一系列平行刻痕组成,每个刻痕之间的间距称为刻痕间距,通常用单位长度内的刻痕数表示。

当入射光通过光栅时,不同波长的光会以不同的角度发生衍射,达到分散光谱的目的。

根据光栅衍射原理,入射光束经过光栅后,各波长的光会在不同的衍射角度上形成不同的衍射条纹。

通过测量这些衍射条纹的位置和强度,可以得到光的分散信息,从而获得光谱数据。

光栅光谱仪的测量方法镜像式光栅光谱仪镜像式光栅光谱仪是光栅光谱仪中最常见的一种。

它包括入口狭缝、光栅、凹面镜、出口狭缝和光电探测器等组件。

测量光谱的过程如下:1.入射光通过入口狭缝进入光栅光谱仪。

2.入射光经过凹面镜反射后,通过光栅。

3.光栅将入射光分散成不同波长的光,并根据衍射原理发生不同角度的衍射。

4.经过光栅的光再次经过凹面镜聚焦,通过出口狭缝进入光电探测器。

5.光电探测器测量各波长光的强度,并输出对应的电信号。

通过调节光栅的角度,可以改变光栅对光的分散效果,从而获得不同波长范围内的光谱。

波长色散式光栅光谱仪波长色散式光栅光谱仪是光栅光谱仪的一种变种。

它通过不同衍射级次的光栅衍射来实现波长的分散,能够同时测量多个波长范围内的光谱。

波长色散式光栅光谱仪利用多个光栅级次的衍射来实现波长的分散。

每个级次的衍射都会使光以不同角度分散,使得光栅光谱仪可以同时测量多个波长范围内的光谱。

通常,波长色散式光栅光谱仪具有更广泛的波长覆盖范围和更高的分辨率。

光栅光谱仪的应用场景光栅光谱仪广泛应用于光学研究、光谱分析和光谱测量等领域。

以下是一些常见的应用场景:1.材料分析:光栅光谱仪可以用于分析材料的光谱特性,例如荧光光谱、吸收光谱等,帮助研究人员了解材料的结构和性质。

如何使用光栅光谱仪测量光波长

如何使用光栅光谱仪测量光波长

如何使用光栅光谱仪测量光波长光谱是研究物质内部结构和性质的重要手段之一。

而测量光谱的波长则是光谱分析的关键步骤之一。

光栅光谱仪是一种常用的测量光波长的设备,本文将介绍如何使用光栅光谱仪进行光波长的测量。

一、光栅原理光栅光谱仪利用光栅的衍射原理测量光波长。

光栅是由等距离的平行光线组成的一条道,道与道之间的间距称为光栅常数。

当光波照射到光栅上时,会发生衍射现象,光波将根据入射角和光栅常数的关系衍射成不同的角度。

测量光栅上不同衍射角度对应的光波长就可以得到光谱。

二、实验准备在进行光波长测量之前,我们需要准备一台光栅光谱仪和一束需要测量波长的光源。

通常情况下,我们会选择使用氢气放电管或氩气离子激光器作为光源,这些光源具有明确的波长和较高的光强。

三、调整仪器在测量之前,我们需要先调整光栅光谱仪的设置。

首先,将光栅光谱仪放置在一个稳定的光学台上,并使其与光源保持一定的距离。

然后,根据需要选择合适的狭缝宽度和入射角度。

狭缝宽度决定了接收到的光强度,过宽或过窄都会影响测量的准确性;而入射角度则影响光波的衍射方向和角度。

四、测量光谱调整好仪器后,我们可以开始进行光波长的测量了。

首先,打开光栅光谱仪的电源,并让其预热一段时间。

接下来,将光源对准光栅光谱仪的入射口,并根据光源的强度调整仪器的增益和曝光时间,使得接收到的光信号处于合适的范围内。

然后,通过调节光栅的倾角和位置,使得光谱在光栅上形成清晰的衍射图案。

可以通过观察不同波长的光线在不同位置的衍射角度,来测量波长。

在实际操作中,常常需要使用一个标准样品来校准光栅光谱仪,以确保测量结果的准确性。

五、数据处理测量完成后,我们需要对测得的光谱数据进行处理。

一般情况下,光栅光谱仪会提供一个软件界面,可以将测得的光强和角度数据转化为波长数据。

如果使用的仪器没有提供相应的软件,我们可以使用一些数据处理软件,如Excel或Python进行数据处理。

通过插值和拟合等方法,可以得到较为准确的光谱波长数据。

光栅光谱仪的原理及其应用

光栅光谱仪的原理及其应用

光栅光谱仪的原理及其应用1. 引言光谱仪是一种可以测量物质的光谱特性的仪器。

光栅光谱仪是光谱仪的一种常见类型,其原理基于光的波长和方向对于光栅的衍射效应。

本文将介绍光栅光谱仪的工作原理、结构组成以及其在科学研究和工程应用中的重要性。

2. 光栅光谱仪的工作原理光栅光谱仪的工作原理基于光的衍射效应。

光栅是一种有规律的光学元件,它可以将入射光按照波长进行分散。

当入射光通过光栅时,不同波长的光会发生不同程度的衍射,形成一个光谱。

光栅光谱仪可以通过测量光的衍射角度和强度来获取物质的光谱信息。

3. 光栅光谱仪的结构组成光栅光谱仪由以下几个主要组成部分构成:3.1 入射系统入射系统用于导入待测物质的光线。

它通常包括入口窗口、光纤、准直透镜等元件,可以使入射光线尽可能地纯净和平行。

3.2 光栅光栅是光栅光谱仪的核心部件,它是由众多平行间隔的狭缝或线条组成的光学元件。

光栅的间隔大小和形状决定着能够通过的光谱范围和分辨率。

3.3 衍射系统衍射系统一般由物镜、投影镜等组成,它们将衍射的光线聚焦到光敏元件上。

衍射系统的设计和优化可以提高光栅光谱仪的分辨率和灵敏度。

3.4 光敏元件光敏元件用于接收经衍射系统聚焦后的光线,并将其转换为电信号。

常用的光敏元件包括光电二极管、光电倍增管和CCD等。

3.5 信号处理系统信号处理系统用于对光敏元件输出的电信号进行处理和转换。

它可以包括放大器、滤波器、模数转换器等,以便测量和分析光谱数据。

4. 光栅光谱仪的应用光栅光谱仪在科学研究和工程应用中具有重要的作用。

以下是光栅光谱仪的一些主要应用:4.1 光谱分析光栅光谱仪可以对物质的光谱进行精确测量和分析。

通过测量不同波长的光线衍射角度和强度,可以获得物质的光谱特性,从而了解其组成和结构。

4.2 光谱计量光栅光谱仪可以作为光谱计量的工具使用。

通过标定光栅光谱仪的衍射效应和信号输出,可以实现波长和强度的准确测量,为其他实验和测试提供准确的基准。

光栅光谱仪的使用技巧与实验操作指南

光栅光谱仪的使用技巧与实验操作指南

光栅光谱仪的使用技巧与实验操作指南引言:光谱分析技术在科学研究和实际应用中起着重要作用。

而光栅光谱仪作为一种常用的光谱仪器,具有高分辨率、宽波长范围等优势。

本文将介绍光栅光谱仪的使用技巧和实验操作指南,帮助读者更好地掌握这一仪器的使用。

一、仪器介绍光栅光谱仪是一种基于光栅原理的光谱仪器,它能够将光信号分解成不同波长的成分。

光栅光谱仪主要由入射口、光栅、检测器等组成。

其中,光栅是光谱仪的核心部件,通过光栅的光栅常数和刻槽数目,可以决定光栅光谱仪的分辨率和波长范围。

二、准备工作在进行实验前,需要做一些准备工作。

首先,确保光栅光谱仪的仪器状态良好,没有损坏或杂质。

其次,检查仪器的连接线是否牢固,仪器的电源是否正常。

最后,需要根据实验需求选择合适的光源和样品。

三、调整仪器在开始实验之前,需要先调整光栅光谱仪的参数。

1. 调整焦距:通过调节仪器上的焦点调节器,使得光源能够聚焦在光栅上,保证信号清晰稳定。

2. 调整光栅角度:通过调节光栅仪器上的角度调节器,使得入射光束与光栅平行进入光栅,以获得最佳的光谱效果。

3. 调整入射光口:根据实验需求,调整入射光口的大小和位置,以保证光源能够尽量均匀地照射到样品上。

四、实验操作在调整仪器参数之后,可以开始进行实验操作了。

以下是一些常见的实验操作指南。

1. 测量光源的光谱:将光源放置在仪器的入射口前,调整仪器的参数,如曝光时间、增益等,以获取光源的光谱信息。

可以通过观察光谱的形状和峰值,分析光源的波长范围和强度分布。

2. 测量样品的光谱:将样品放置在入射口前,调整仪器的参数,通过观察样品的光谱,可以分析样品中各组分的波长和浓度分布情况。

此外,在测量样品光谱前,可以使用参比物进行校正,以提高测量的准确性。

3. 光谱数据的分析:在得到光谱数据后,可以使用专业的光谱数据处理软件对数据进行分析。

例如,可以进行光谱峰位和峰高的测量,通过峰位和峰高的变化,可以判断样品中各组分的存在和浓度变化情况。

光栅光谱仪原理

光栅光谱仪原理

光栅光谱仪原理
光栅光谱仪是一种常用的光谱仪,其原理基于光的干涉和衍射现象。

光栅光谱仪由一个光栅和一个探测器组成。

光栅是由许多平行刻线组成的透明光栅板,刻线的间距非常细致。

当平行光线通过光栅时,会被光栅的刻线分散成不同波长的光。

探测器则用于检测经过光栅分散后的光,并得到光的强度信息。

光栅光谱仪的原理是基于以下两个方面:
1. 干涉:当平行光线通过光栅时,会发生干涉现象。

光栅通过刻线将光线分成了一系列波前,这些波前之间会发生相位差,从而产生干涉。

2. 衍射:当光栅上的刻线非常细致时,光通过光栅后会发生衍射现象。

根据衍射原理,光栅上的每个刻线都会成为一个点光源,产生一系列衍射波。

这些衍射波会相互干涉,形成一系列明暗相间的条纹,称为干涉条纹或光谱。

光栅光谱仪的工作流程如下:
1. 光线通过准直系统,使光线平行并集中在光栅上。

2. 光线通过光栅后,会被光栅的刻线分散成不同波长的光,形成衍射波。

3. 探测器接收到这些衍射波,并转换成电信号。

4. 电信号经过处理后,可以得到光的强度随波长的变化关系,即光谱。

光栅光谱仪的优点是分辨率高,可同时解析多个波长,适用于光谱分析和波长测量。

因此,在物理、化学、材料科学等领域都有广泛的应用。

光栅光谱仪实验报告

光栅光谱仪实验报告

光栅光谱仪实验报告一、实验目的:通过光栅光谱仪的使用,掌握光栅光谱仪的结构、原理和使用方法。

通过测量不同光源的光谱,了解不同光源的特性。

二、实验装置和原理:1.实验装置:光栅光谱仪、白炽灯、氢灯、氖灯、光栅光谱仪支架、光栅支架、读数电眼、准直物镜。

2.实验原理:光栅光谱仪利用光栅的作用原理,将光分成不同波长的光线,使其以不同的角度被分散出来,进而形成连续的光谱。

光栅光谱仪主要由光源、光栅、准直物镜和读出及测量系统组成。

光栅经过准直物镜聚焦后,通过光栅的平行光线会由于不同波长的光受到不同程度的散射,从而形成连续的光谱。

读出系统将光谱上的不同波长的光线与波长的对应关系转化为电信号,通过电眼读取,进而测量。

三、实验步骤与数据处理:1.将光栅光谱仪放置在稳定的工作台上,调整仪器水平。

2.打开电源,将待测光源的前方放置一个铅块,用于调整焦距。

3.调整准直物镜的位置,使光线能够准直射入光栅光谱仪。

4.打开光栅光谱仪的读数电源,调整光栅支架上的读数电眼位置,使其能够正常读取光谱。

5.用白炽灯、氢灯、氖灯等光源进行实验测量。

6.调整读数电眼的读数位置,记录不同波长的光线对应的读数值。

7.根据读数电眼的读数和仪器提供的波长-读数变换函数,得到不同波长对应的光线。

8.绘制光谱图,并对光谱图进行分析和解释。

四、实验结果与分析:实验测量得到的光谱图如下所示:(这里应当给出具体的测量数据和光谱图,可以通过软件绘图工具或手工绘图)从光谱图中可以看出,在可见光范围内,不同波长的光线在光栅的作用下经过分散,形成了连续的光谱。

通过读数电眼的读出,我们可以根据波长-读数变换函数得到不同波长对应的光线。

根据实验测量的数据,可以得到不同光源的光谱特性,比如氢灯和氖灯在可见光范围内的谱线等。

五、实验总结:通过本次实验,我们掌握了光栅光谱仪的结构、原理和使用方法,并进行了不同光源的光谱测量。

光谱是光的波长和频率的一种表现形式,通过光谱测量可以了解光源的组成和特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 e me E n mv 2 2 2 2 40 r 8 0 h n
2
4
n 1
n2
称为氢原子的基态 称为氢原子的激发态
根据玻尔假设,当电子从高能级向低能级跃迁时会发射 光子,而相反的过程就会吸收光子。光子的波数为
4 E E me 1 1 ~ n m 2 3 ( 2 2) 8 0 h c m n hc c

回 上一页 下一页
发光二极管光谱

回 上一页 下一模型并进一步假设:
1. 电子在原子中沿特殊轨道运动时电子处于稳定状态, 虽然电子绕核作加速运动,但不会随意吸收和发射辐射, 故将这些态称为定态。 2.当一个电子以某种方式从一个定态向另一个定态跃迁 时,原子就会吸收或发射光子。光子的频率为:
由原子光谱的研究推得原子能量存在量子化现象。 1914年,富兰克(J.Franck)和赫兹(G.Hertz)在电子 碰撞原子的实验中证实了这一点。
氢(氘)原子光谱的观察
早在原子理论建立以前人们就积累了有关原子光谱 的大量实验数据,发现氢原子光谱可用一个普遍的公式 表示,即
1 1 ~ v R 2 2 n m
En Em h
3,为了简单起见,电子运动的轨道选择为一些圆形轨道, ( h / 2 ) 的整 但电子在这些轨道运动时的角动量是 数倍,即角动量是量子化的:
h L mvr n n 2
根据玻尔假设,结合经典电学和力学,很容易求得 氢原子中电子能级的大小。电子在轨道上运动时,核对 它的静电吸引力提供向心力。对于圆周运动,则有
光栅光谱仪
S1: 影 响 仪 器 的 分 辩 率 S2: 影 响 谱 线 的 强 度
透明材料的透射率的测定
[实验原理]: 了解光栅光谱仪的原理及使用方法, 测定透明材料透过光谱的带宽。 [实验目的]: 用反射衍射光栅分离入射狭缝的形成像——光谱线,通过调节,选定有限的 光谱范围,通过仪器的测定从而得到透明材料的透过率和透过光谱的带宽。 仪器装置简图如下:
I
I ~
降为一半时,所对应的波长差 1 2
为带宽,透射率为
0
处1 I
I
之比值。
2
[数据纪录及处理]: 入射狭缝: S1=0.002mm 出射狭缝: S2=0.010mm

回 上一页 下一页

回 上一页 下一页

回 上一页 下一页
从上图中得到透明材料的中心波长为 584 .6nm ,带宽为 591 .8 578 .2 13 .6nm ,透光 率为 T 782 / 2317 0.3375 33 .75 %

回 上一页 下一页
[实验步骤]: 0.2nm 。 1) 在白光下,作出光强与波长的关系: 530 ~ 615 nm ,步长 0.2 nm 2) 放入滤色片后,作出光强与波长的关系: 530 ~ 615 nm ,步长

3) 在相同波长下,计算I 1 I ,并将这些数据中,选出最大值作为1,其他数据与之比较, 2 作出 关系。 0 4) 在 I ~ 中,光强最大值所对应的是中心S,波长 。 5) 在
M R M m
R∞为将核的质量视为无穷大(即假定核固定不动)时
的里德伯常数,这样便把里德伯常数和许多基本物理常 数联系起来了。因此上式和实验结果符合程度就成为检 验玻尔理论正确性的重要依据之一。
[同位素位移] 由于同一元素的不同同位素具有不同的核质量和电 荷分布,而引起原子光谱波长的微小差别称为“同位素 位移”。 氢原子核是一个质子,其质量为M,氘核比氢核多 一个中子,其质量近似为2M。由上式可知氢原子与氘原 子的里德伯常数分别为
v2 e2 m r 40 r 2
e2 r 40 mv 2
根据玻尔角动量量子化假设
n r mv
故有:
n e2 mv 4 0 mv 2
v
2
e2 40 n
2

c
n
40 n 2 r a0 n 2 me
式中 为精细结构常数,a 0 为玻尔半径。 电子的能量为动能与势能之和,当它在第个轨道运动 时,能量为:
可得
1 1 1 1 1 1 1 1 H D R R 2 2 n 2 R R R R 2 2 n 2 D D H H M m 2M m m M 2 M 1 2M
(n m)
里伯德常数为:
R
me
2
4 3
8 0 h c
上式得到的值与实验得到的很接近,但还有一些偏离。 这是由于在推导过程中,假定电子是围绕固定不动的核 转动,这相当于假定核具有无限大的质量。因此必须因 核的运动而作一修正,式中电子的质量m 应由折合质量
Mm M m 来代替,这样将得到与实验相符的R值。
M RH R M m
2M R D R 2M m
对于巴耳末线系,氢和氘的谱线计算公式分别为
1 1 1 ~ vH RH 2 2 H n 2
1 1 1 ~ vD RD 2 2 D n 2
其中:m取1、2、3、4、5等正整数,每一个m值对应一 个光谱线系,如当m=2时便得到在可见光和近紫外区的 巴耳末线系;n取m+1、m+2、m+3、…等正整数,每一个 n值对应一条谱线;R称为里德伯常数.上式称为广义巴 耳末公式。
2 me R (40 ) h 3 c 1 m 1

2
2
M
得到
M m 2
调用里德伯常数测定 VB6.0
[实验内容] 1.用WGD-8光栅光谱仪测量氢原子发射谱。 2.找出巴尔末线系的谱线,验证波尔轨道理论。 3.*测氢-氘谱,通过波长差求出质子与电子的比值。 [实验步骤] 1.用汞灯546.07nm对光谱仪进行波长校正。 2.选择定点扫描,调好合适的氢光谱灯位置、光电倍增 管电压和增益系数倍数,保证信号足够大,并且不超 出显示范围,谱线能够充分分开。 3.根据巴尔末线系的范围,扫描出整个谱线系。 4.分段扫描找出巴尔末线系中的氢-氘谱线。 返 回
返 回 上一页 下一页
测定钠光灯中的双谱线波长
1200 1000 800 600 400 200 0 588.0
588.5
589.0
589.5
590.0
590.5
591.0
从上图中我们可以看出,在钠光灯的双光谱有两个峰值,其中一个处于 588.95nm 处,另外 一个则处于 589.55nm 左右。 从而我们可以看出该光谱的△ λ =0.6nm,峰值λ =588.95nm 以及 589.55nm。 2 L 587630 nm 0.5876mm 相干长度
相关文档
最新文档