导学案(37)52分式与分式方程
人教版八年级上数学第十五章分式分式方程导学案
人教版八年级上数学第十五章分式分式方程导学案一. 学习目标1、掌握分式方程的定义2、会解可化为一元一次方程的分式方程3、会解已知方程有增根时方程中有待定字母的值4、列分式方程解有关应用题二、重难点重点:掌握解分式方程的方法难点:分式方程的增根及其应用三、知识链接前面讲过的一元一次方程的解法,以及怎样在应用题中找等量关系四、学法指导注意分式方程向整式方程的转化五、学习过程(A级)(一)、基础知识梳理(1)分母中含有______的方程叫做分式方程。
(2)在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的____(3)解分式方程的思想:把分式方程转化为_______.(4)解分式方程的一般步骤①把方程两边都乘以_________,化成整式方程。
②解这个______方程。
③检验:把整式方程的根代入________,若使最简公分母的值为_____,则这个根是原方程的______,必须舍去,若_________不等于零,则它是________. (5)整式方程和__________叫做有理方程。
(二)注意事项2、由增根求参数值的解答思路:(1)将原方程化为整式方程(两边同时乘以最简公分母)(2)确定增根(题目已知或使分母为零的未知数的值)(3)将增根代入变形后的整式方程,求出参数的值。
(理由:增根是由分式方程化成的整式方程的根)3、列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂些,解题时应抓住“找等量关系,恰当设未知数,确定主要等量关系,用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解。
另外,还要注意从多角度思考,分析,解决问题,注意检验。
(三)典例解答(B 级)1、解方程:22321011x x x x x --+=--(B 级)2、解分式方程x x +27—23x x -=1+1722--x x点拨:找好最简公分母,注意对几个分母进行分解后,来找.(C 级)3、若关于x 的分式方程0111=----x x x m 有增根,则m 的取值是? 点拨:把分式方程进行转化,然后找到有可能的增根,代入。
八年级数学 分式方程导学案(二)
八年级数学分式方程导学案(二)(二)总体说明本节是分式的第4小节,这是第二课时,本课时主要研究分式方程的解法,只要求会解可化为一元一次方程的分式方程(方程中的分式不超过两个)、解分式方程的关键是把分式方程转化为整式方程,在引导学生探索分式方程的解法时,要注意体现这种转化的思想、一、学生知识状况分析学生的技能基础:在上一节课的基础上,学生基本了解分式方程的概念,熟悉等式的性质并能利用等式的性质解一元一次方程中,了解一般一元一次方程的解法,去分母,去括号,移项,合并同类项,化系数为1,并理解每一步的根据是什么,从而能通过观察类比的方法,探索分式方程的解法并能理解解题步骤的根据、学生活动经验基础:本节课主要采用观察、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程转化为一元一次方程的基础上,再次体会数学转化思想、二、教学任务分析在上一节课中,学生通过对实际问题的分析,已经感受到分式方程是刻画现实世界的有效模型,本节课安排《分式方程》第二课时,旨在学会解分式方程,能从中体会数学转化思想的深刻含义,为此,本课时的教学目标是:知识与技能:(1)体会分式方程到整式方程的转化思想、(2)掌握分式方程的解法、数学能力:(1)培养学生的数学转化思想、(2)培养学生的观察、类比、探索的能力、情感与态度:鼓励学生独立思考,认真观察,大胆猜想,积极动手,提高分析问题与解决问题能力、—反馈练习、预习教案:旧知回顾1、等式性质有哪些?2、解下列一元一次方程(1)(2)第二环节:教材助读活动内容:解下列分式方程:第三环节:探究点一活动内容:解下列分式方程第四环节:探究点二活动内容:解分式方程时,小明的解为,他的答案正确吗?第五环节:当堂检测活动内容:解下列分程(1)(2)第六环节:我的知识网络在今天的学习活动中,你学会了哪些知识?掌握了哪些数学方法?注意事项:学生在解方程过程中易犯的错误:1、解方程时忘记检验;2、去分母时忘记加括号;3、去分母时漏乘不含分母的项、第七环节:反馈练习活动内容:1、方程的解为()A、1B、 -1C、D、 02、方程的解为___________、3、解方程4、若关于的方程有增根,则的值为_______、课后练习:请完成课后作业解下列方程1、2、。
八年级数学上册 15.3《分式方程》导学案3(新版)新人教版
八年级数学上册 15.3《分式方程》导学案3(新版)新人教版(一)教学知识点1、解分式方程的一般步骤,解分式方程验根的必要性、2、用分式方程的数学模型反映现实情境中的实际问题,用分式方程来解决现实情境中的问题、(二)能力训练要求1、通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤、2、使学生进一步了解数学思想中的"转化"思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径、3、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力、学习重点1、解分式方程的一般步骤,熟练掌握分式方程的解决、2、明确解分式方程验根的必要性、3、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型、学习难点1、明确分式方程验根的必要性、2、寻求实际问题中的等量关系,寻求不同的解决问题的方法、学习过程:一、知识梳理、分式方程:分母里含有未知数的方程叫分式方程。
注:分母中是否含有未知数是分式方程与整式方程的根本区别,分母中含未知数就是分式方程,否则就为整式方程。
2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,约去分母,化为整式方程。
(2)列整式方程,求得整式方程的根。
(3)验根:把求得的整式方程的根代入A,使最简公分母等于0的根是增根,否则是原方程的根。
(4)确定原分式方程解的情况,即有解或无解。
3、增根的概念:在分式方程去分母转化为整式方程的过程中,可能会增加使原分式方程中分式的分母为零的根,这个根叫原方程的增根,因此列分式方程一定要验根。
注:增根不是解题错误造成的。
4、列方程解应用题步骤:审、设、列、解、验、答。
二、基础知识练习解下列分式方程1、2、5、要使的值相等,则x=__________。
6、若关于x的分式方程无解,则m的值为__________。
7、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程-------------8、A、B两地相距50千米,甲骑自行车,乙骑摩托车,都从A地到B地,甲先出发1小时30分,乙的速度是甲的2、5倍,结果乙先到1小时,求甲、乙两人的速度。
最新-分式与分式方程导学案(新北师大) 精品
分式与分式方程导学案(新北师大)篇一:2019新北师大版541分式方程导学案课题:541分式方程(一)---生活中的分式方程班级姓名座号第组第号组内评价并签名:课型新课主备人袁文平审核人初二数学组上课时间教师评价●学习目标:1、通过对实际问题的分析,感受分式方程是刻画现实世界的有效模型,归纳分式方程的概念。
2、在活动中培养乐于探究合作学习的习惯,培养努力寻找解决问题的进取心,体会数学的应用价值。
●学习重点:根据实际问题中的数量关系列出分式方程,归纳出分式方程的定义●学习难点:根据实际问题中的数量关系列出分式方程●学法指导:1课前:预习教材126-127页,按照星类要求完成活动一内容,组长进行批改!2课堂:订正自主预习部分,利用5分钟时间完成活动二内容,并小组讨论!3课后:导学案中所有的题目,徒弟向师父进行过关,将导学案中的错题抄到第4页,再做一遍,自行批改!消化所有内容!【活动一】课前高效自主预习建立方程模型,解决生活中的问题问题1(★):北京到福州的高铁铁路线总长度约2019,普通快车铁路线总长度是2330,乘坐高铁56次列车比乘坐普通快车46次列出少用25,已知56次列车的速度是46次列车的3倍,求56次与46次列车的速度。
(注:56是高铁56次列车的简称,46是普通快速46次列车的简称)(1)找出问题中关于时间和速度的两个等量关系(2)设46次列车的速度是,则56次列车的速度为_______根据46次列车行驶的时间比56次列车的时间多25个小时,列出方程(不需求解):(3)设56次列车从福州到北京的时间是小时,则46次列车所以时间为________,根据56次列车的速度是46次列车的3倍,列出方程(不需求解):问题二(★):有两快面积相同的小麦实验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000㎏和15000㎏,已知第一块的小麦实验田每公顷的产量比第二块少3000㎏,如何设未知数列方程?问:(1)如果设第一块小麦实验田的每公顷的产量为㎏,那么第二块实验田每公顷的产量为_______㎏(2)第一块试验田有__________公顷?第二块试验田有__________公顷?(3)你能发现这个问题中的等量关系吗?(4)、你能根据面积相等列出方程吗(不需求解)?恭喜您!您顺利完成了本节课的预习任务,有时间就来挑战能力提升吧!【活动二】课堂高效合作探究(先花8分钟时间完成下列各题,再利用5分钟进行小组互动,形成共识,突破本节课重点!)问题4(★):为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为4800元,第二次捐款总额5000元,第二次捐款人比第一次多20人,而且两次人均捐款额正好相等,如果设第一次捐款的人数为人,那么你能列出分式方程吗?问题5(★)根据规划设计,某市工程队准备在开发区修建一条长1120米得盲道。
新人教版八年级数学上册《分式方程》导学案
《分式方程》导学案学习目标:1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.学习重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想学习难点:检验分式方程解的原因学习过程:一、自主学习:1.概念:分式方程:分母中含有 的方程叫分式方程。
2.练习:判断下列各式哪个是分式方程.(1)5x y += (2)2253x y z +-= (3)1x (4)05y x =+ 3. 看课本例题回答问题:轮船顺流航行的速度为 千米/时;逆流航行的速度为 千米/时,顺流航行 100千米所用的时间为 小时,逆流航行 60 千米所用的时间为 小时。
由两次航行所用时间相等,可列方程100602020v v =+- 二、合作探究1、观察课本生解题过程,思考:方程100602020v v=+-和()()100206020v v -=+中 V 的取值范围相同吗?所以对上题中的解 v=5 必须检验。
检验:将 v=5 代入原方程中,左边= 4,右边=4 ,左边 =右边,因此 v=5 是原方程的解。
注意:分式方程必须检验2、解方程:2110525x x =--小结:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此检验时常将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解,是原分式方程的增根三、学以致用1、解方程:(1)1223x x =+ (2)21133x x x x =+++(3)22411x x =-- (4)22510x x x x -=+-(5)572x x =- (6)11322xx x -=---四、能力提升:1、若关于 x 的分式方程1011m xx x --=--有增根, 则m 的取值是?点拨:把分式方程进行转化,然后找到有可能的增根,代入。
八年级数学下第五章分式与分式方程导学案
第五章分式与分式方程一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B 表示两个整式) (2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB=,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
(3)要会把互为相反数的因式进行变形,如:(x--y)2=(y--2)2二、分式的乘除法【巩固训练】1、(2013四川成都)要使分式51x-有意义,则x的取值范围是( )(A)x≠1 (B)x>1 (C)x<1 (D)x≠-12、(2013深圳)分式242xx-+的值为0,则x的取值是A.2x=-B.2x=±C.2x=D.0x=3、(2013湖南郴州)函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣3 4.(2013湖南娄底,7,3分)式子有意义的x的取值范围是()A.x≥﹣且x≠1B.x≠1 C.5.(2013贵州省黔西南州,2,4分)分式的值为零,则x 的值为( )A . ﹣1B . 0C . ±1D . 1 6.(2013广西钦州)当x= 时,分式无意义.7、(2013江苏南京)使式子1+1 x -1有意义的x 的取值范围是 。
8、(2013黑龙江省哈尔滨市)在函数3xy x =+中,自变量x 的取值范围是 .9、 (2013江苏扬州)已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 10、(2013湖南益阳)化简:111x x x ---= . 11、(2013山东临沂,6,3分)化简212(1)211a a a a +÷+-+-的结果是( ) A .11a -B .11a +C .211a -D .211a +12、 (2013湖南益阳)化简:111x x x ---= . 13、(2013湖南郴州)化简的结果为( )A . ﹣1B . 1C .D .14、(2013湖北省咸宁市)化简+的结果为 x .15、(2013·泰安)化简分式的结果是( )A .2B .C .D .-2考点:分式的混合运算.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.16(2011年四川乐山).若m 为正实数,且13m m -=,221m m-则= 17(2013重庆市(A ))分式方程2102x x-=-的根是( ) A .x =1B .x =-1C .x =2D .x =-218、(2013湖南益阳)分式方程xx 325=-的解是( ) A .x =3B .x =3-C .x =34D .x =34-19、(2013白银)分式方程的解是( )A . x =﹣2B . x =1C . x =2D . x =320、(2013江苏扬州)已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 【答案】2<n 且 1.5n ≠. 21.(2013山东临沂)分式方程21311x x x+=--的解是_________________.22. (2013广东省)从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.23、(2013湖北孝感,19,6分)先化简,再求值:,其中,.考点: 分式的化简求值;二次根式的化简求值.24.(2013江苏苏州,21,5分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x 3-2.25.(2013贵州安顺,20,10分)先化简,再求值:12a)111(2++÷+-a a a ,其中a=3-1.6.(2013山东德州,18,6分)先化简,再求值:244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a=2-1.26、.(2013湖南永州,19,6分)先化简,再求值:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭, 2.x =其中 【思路分析】先化简,再求值。
八年级数学下册5分式与分式方程导学案北师大版
第 五 章 分式与分式方程(二)学习目标:1.在回顾与思考中建立分式的知识框架图,复习分式的重点内容及方法,通过梳理知识内容,总结相关的数学思想方法.2. 使学生进一步熟悉分式的意义及分式的运算进一步掌握解分式方程的知识,提高学生用规范的数学语言表达论证过程的能力,使学生了解转化的思想方法;提高学生解决实际问题的能力,发展学生的符号感,提高分析问题和解决问题的能力.(三)重点、难点:重点:重点是分式方程解法的基本步骤与解分式方程应用题难点:本章知识的综合应用对学生来讲点平行(四)教学过程(一)分式1.分式的概念整式A 除以整式B ,可以表示成A B 的形式.如果除式B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母. 2.分式的有无意义:分式A B 中,若分式A B 有意义,则B ≠0;若分式A B无意义,则B =0. 3. 分式的值为0若分式A B =0,则A =0,B ≠0. 4.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:A A M B B M ⋅=⋅;A A M B B M ÷=÷(M 是整式,M ≠0).5.分式的约分:分式的约分的关键是确定分子、分母的公因式,约分后的结果必须是最简分式或整式.(二)分式的乘除法法则1. 分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. 用式子表示为:b d bd a c ac⨯=. 2. 分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. 用式子表示为:b d bc bc a c ad ad ÷=⨯=. (三)分式的加减法1. 同分母分式加减法的法则:同分母的分式相加减,分母不变,把分子相加减.2. 通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.为了计算方便,异分母的分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的共同分母.3. 异分母分式加减法的法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式加减法的法则进行计算.(四)分式方程1.分式方程:分母中含有未知数的方程叫做分式方程.2.解分式方程:解分式方程的一般步骤:⑴去分母,在方程两边都乘以最简公分母,把分式方程转化为整式方程;⑵解这个整式方程;⑶验根,因为解分式方程可能产生增根,所以解分式必须验根.3.列分式方程解生活中的实际问题.一般步骤:⑴审,⑵设,⑶列,⑷解,⑸验,⑹答.二、例题精讲例1.填空:⑴当x =______ 时,分式xx -+11有意义;⑵当x =_____ 时,分式)3)(1(92---x x x 的值为0.例2.计算:⑴xy xz yz xy 1693422•;⑵先化简,后求值:xx x x x -÷+--24)22(,其中x=–1.例3. 解下列分式方程:⑴14145=-+--x x x ;⑵1613122-=--+x x x .例4. 在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.【检测环节】 1.在有理式x 2,πy x -2,y x -25,43-x ,b a 2132-,y x 76-,x y x 2中,分式有( ) A.1个 B.2个 C.3个 D.4个2. 要使分式11+x 有意义,则x 应满足的条件是( )A.1≠x B. 1-≠x C. 0≠x D.x >1 3.分式122-+x x x 的值为0,则x 的值为( ) A . 1 B . 0 C .﹣1 D . 0或﹣1 4.如果把yz y 322-中的x 和y 都扩大5倍,那么分式的值( )倍A 扩大5 B 不变 C 扩大10 D 扩大4 5. 化简:b a b a bab a b a +-÷++-2222222 6. 解方程:21212339x x x -=+--(五)教学反思(一)章节题目:第六章 平行四边形 6.1 平行四边形的性质 第 1 课时(二)学习目标:1.掌握并理解平行四边形的概念和平行四边形对边、对角相等的性质.2.通过观察、猜测、证明、归纳,能运用数学语言进行讨论与质疑,发展学生合理的推理意识,培养学生主动探究的习惯.3.通过平行四边形性质的探究应用过程,培养学生独立思考的能力,在数学学习活动中获得成功的体验.(四)重点、难点:重点:平行四边形的定义以及平行四边形的性质.难点:平行四边形性质的探究.(四)教学过程【导入环节】(约2分钟)同学们利用你手中的两个含30°的三角板,你能拼出哪些形状的四边形?【目标出示】(约1分钟)1.理解平行四边形的定义2.理解平行四边形的中心对称性【自学环节1】探究一、平行四边形的定义1.自学指导: 1.你能总结出平行四边形的定义吗?2.什么是平行四边形的对角线?3.平行四边形是中心对称图形吗?它的对称中心是什么?2.自主学习学生看书自学课本第135页的内容,按上面的要求进行自学,老师要注意学生的学习动向,对于分散精力的要及时给予暗示,对于疑难问题及时进行提示,关注学生所存在的问题,以便在导学中有的放矢。
八年级数学上册 15.3 分式方程 第1课时 分式方程及其解法导学案 (新版)新人教版
第1课时 分式方程及其解法1.理解分式方程的意义.2.了解分式方程的基本思路和解法.3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法.自学指导:阅读教材P149-151,完成下列问题.1.填空:(1)分母中不含有未知数的方程叫做整式方程(2)分母中含有未知数的方程叫做分式方程.2.判断下列说法是否正确: ①232x +=5是分式方程;②4x -43=3x 4+是分式方程; ③x x 2=1是分式方程;④1x 1+=1-y 1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.自学反馈1.下列方程中,哪些是分式方程?哪些是整式方程? ①22-x =3x ;②x 4+y 3=7; ③2-x 1=x 3;④x1)-x(x =-1; ⑤πx -3=2x ;⑥2x+51-x =10; ⑦x-x 1=2;⑧x 12x ++3x=1. 解:①⑤⑥是整式方程,因为分母中没有未知数.②③④⑦⑧是分式方程,因为分母中含有未知数.判断整式方程和分式方程的方法就是看分母中是否含有未知数.2.解分式方程的一般步骤是:(1)去分母;(2)解整式方程;(3)验根;(4)小结.活动1 小组讨论例1 解方程:3-x 2=x3. 解:方程两边乘x(x-3),得2x=3(x-3).解得x=9.检验:当x=9时,x(x-3)≠0.所以,原分式方程的解为x=9.例2 解方程:1-x x -1=2)1)(x -(x 3+. 解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:当x=1时,(x-1)(x+2)=0.所以x=1不是原方程的解.所以,原方程无解.活动2 跟踪训练1.解方程: (1)2x 1=3x 2+; (2)1x x+=33x 2x++1; (3)1-x 2=1-x 42; (4)x x 52+-x -x 12=0.解:(1)方程两边乘2x(x+3),得x+3=4x.去分母:x+3=4x.化简得:3x=3.解得x=1. 检验:将x=1代入2x(x+3)≠0.所以x=1是方程的解.(2)方程两边乘3(x+1),得3x=2x+3x+3.解得x=23-.检验:将x=23-代入(3x+3)≠0.所以x=23-是方程的解.(3)方程两边乘x 2-1,得2(x+1)=4.解得x=1.检验:将x=1代入x 2-1=0,所以x=1不是方程的解.所以,原方程无解.(4)方程两边乘x(x+1)(x-1),得5(x-1)-(x+1)=0.解得x=23.检验:将x=23代入x(x+1)(x-1)≠0.所以x=23是原方程的解.方程中分母是多项式,要先分解因式再找公分母.2.解分式方程:(1)1-x x =2-2x 3-2; (2)2-x 3-x +1=x -23; (3)1-2x 2x =1-2x 2+.解:(1)方程两边乘2x-2,得2x=3-2(2x-2).解得x=67.检验:当x=67时,2x-2≠0.所以x=67是原方程的解.(2)方程两边乘x-2,得x-3+x-2=-3.解得x=1.检验:当x=1时,x-2≠0.所以,x=1是原方程的解.(3)方程两边乘(2x-1)(x+2),得2x(x+2)=(2x-1)(x+2)-2(2x-1).解得x=0.检验:当x=0时,(2x-1)(x+2)≠0.所以,x=0是原方程的解.课堂小结解分式方程的思路是:教学至此,敬请使用学案当堂训练部分.。
人教版八年级数学上册《分式》导学案:分式方程(第三课时)
人教版八年级数学上册《分式》导学案分式方程(第三课时)【学习目标】1.经历将实际问题中的等量关系用分式方程表示的过程;2.会列出分式方程解决简单的应用题,并掌握列分式方程解应用题的一般步骤;3.发展分析问题和解决实际问题的能力,体会数学的应用价值.【知识梳理】1.列分式方程解应用题的关键是找出题目中的 .2.分式方程解应用题的一般步骤:(1)审:审清题意,找 . (2)设:设未知数.(3)列:根据,列分式方程. (4)解:解分式方程.(5)检:检验所求的解是否为分式方程的解,并检验分式方程的解是否符合 .(6)答:写出答案.【典型例题】知识点一列分式方程解决实际问题1.某单位将沿街的一部分房租出租,每间房屋的租金相同.已知每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)填表:设第一年每间房屋的租金为x元.(3)你能利用方程求出这两年每间房屋的租金各是多少吗?2.某农场开挖一条长960米的渠道,开工后工作效率比计划提高50%,结果提前4天完成任务.原计划每天挖多少米?【巩固训练】1.某市在道路改造过程中,需要铺设一条长为m 千米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了n %,结果提前了8天完成任务,设原计划每天铺设管道x 千米,根据题意,下列方程正确的是( ) A.8%m m x n x-= B.8(1%)m m x n x -=+ C.8(1%)m m n x x -=+ D.8(1%)m m n x x -=- 2.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种 31 ,结果提前 4天完成任务,原计划每天种多少棵树?3.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2023年底,全市已有公租自行车25000辆,租赁点600个,预计到2025年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2023年底平均每个租赁点的公租自行车数量的1.2倍.预计到2025年底,全市将有租赁点多少个?4.为应对新冠疫情,某药店到厂家选购A 、B 两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.7元,若用7200元购进A 品牌数量是用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2元,B 品牌口罩每个售价为3元,药店老板决定一次性购进A 、B 两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个?5.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?。
人教版八年级上数学第十五章分式方程导学案
人教版八年级上数学第十五章分式分式方程 导学案班级__________姓名_________1.【课标考纲解读】应用分式方程解决生活中的实际问题。
2.【状元培养方案】思维的敏捷、多角度、立体化。
3.【学习目标】1.理解分式方程的概念,会解可化为一元一次方程的分式方程.2. 了解分式方程产生增根的原因,掌握解分式方程验根的方法. 4.【重难点】教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.教学难点:检验分式方程解的原因 5.【教学方法】自主合作,交流展示 6.】 一、 26~28页二、 独立完成下列预习作业:1.前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。
(2)一元一次方程是 方程。
(3)一元一次方程解法 步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
如解方程:2.概念:分式方程:分母中含有 的方程叫分式方程。
3.练习:判断下列各式哪个是分式方程. (1)x +y =5 (2)x+25=2y −z 3π(3)1x 4 y x+5=0 5 x −1+y =5 (6)1x+1≥x+434. 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,填空163242=--+x x轮船顺流航行的速度为千米/时,逆流航行的速度为千米/时,顺流航行100千米所用的时间为小时,逆流航行60千米所用的时间为小时。
由两次航行所用时间相等,可列方程10060=20v20v-+解:两边同乘以最简公分母()()20v v+20-,得()()100v=6020v20-+2000v=1200+60v-100160v=800v=5检验:将v=5代入原方程中,左边= 4,右边=4,左边=右边,因此v=5是原方程的解。
分式与分式方程导学案(全章修改)
第五章 分式与分式方程5.1 从分数到分式一.明确目标,预习交流 【学习目标】1. 了解分式的概念,会判断一个代数式是否是分式;2. 能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义;3. 能分析出一个简单分式有、无意义的条件;4. 会根据已知条件求分式的值。
【重、难点】分式有、无意义的条件。
【预习作业】:1. 什么是整式? 。
2. 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;x y x 2- ;3a ;5 .整式: 。
3. 自主探究:完成p 2的“思考”,通过探究发现,a s 、sV、v +20100、v -2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。
4. 归纳:分式的意义: 。
上面所看到的a 1 、x y x 2-、a s 、sV 、v +20100、v -2060都是 。
5. 我们小学里学过的分数有意义的条件是 。
那么分式有意义的条件是 。
二.合作探究,生成总结1. 探究分式有意义的条件(1) 分式BA的分母中含有 ,由于 不能为0,所以分式的分母不能为 ,即当B 0时,分式B A才有意义。
(2) 当x 时,分式2+x x有意义。
(3) 当x 时,分式1-x x有意义。
(4) 当x 、y 满足关系 时,分式yx yx +-有意义。
归纳:分式有意义的条件为: 2. 探究分式值等于0的条件(1) 若分式2+x x的值为0,则x= 。
(2) 若分式BA的值为0,则 且 。
归纳:分式的值为0的条件是 3. 探究分式无意义的条件 (1) 当x 时,分式2+x x无意义。
(2) 使分式1-x x无意义,则x 的取值是 。
A.0 B.1 C.-1 D. 1±(3) 对于分式B A,当 时分式有意义,当 时分式BA 无意义。
三、合作探究,小组展示1. 下列各式①x 2 ② yx +5 ③ a -21 ④123-x ,是分式的有( ) A.①② B.③④ C . ①③ D.①②③④2. 当x 取什么值或范围时,下列分式有意义?①18-x ② 912-x ③12+x y 3. 当a 时,分式242+-a a 的值为0.4. 使分式1-x x无意义,x 的取值是 5. 在下列各式中,哪些是整式?哪些是分式?(1)5x-7 ;(2)3x 2-1 ;(3)123+-a b ;(4)7)(p n m +;(5)—5 ;(6)1222-+-x y xy x ;(7)72;(8)cb +54。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2页 共3页
课题:5.2分式的乘除法
主编:江雪梅 审核:初二备课组 班级____ __ 姓名________小组______ 家长签名________
【学习目标】 1、分式的乘除运算法则 2、会进行简单的分式的乘除法运算
一、【课前预习】阅读课本P114 – P115,完成下列填空:
1. 把下列各式分解因式:
(1) 6a 2-2a (2)x 2-4
2.当x_________时,分式152--x x 有意义; 当x_________时,分式1
52--x x 的值为0、 3.分式乘除法的法则 :两个分式相乘,把分子相乘的积作为积的______,把分母相乘的积作为积的______, 两个分式相除,把除式的分子的分母颠倒_______后再与被除式________.
4.化简:(1)b
a a
b 22
2015 (2)222)(y x y x --
二、【探究新知】
活动(一):分式的乘除运算法则:
观察下列运算
活动(二):例1 计算
活动(三) 练习一: 计算: 22
3286)1(a y y a ⋅a a a a 2122)2(2+⋅
-+
第2页 共3页 (1)
c b a a bc 222• (2) b
b a a b -+•-2239
活动(四):例2 计算
活动(五):练习一: 计算: (1) a a a a 1)(2
-÷- (2) )4(2442222y x y x y xy x -÷++-
活动(六):课堂小测
计算:(1) 25415a b b a
• (2) 324(2)a b a b x ÷-
(3)
2)(b a b b a a -•- (4) )(12a a a a -÷-
三、【小结】 你的收获是: 。
四、【作业】
1、预习: (1)看书:课文P117-118 (2)
导学案38 批阅:_______ 小组长:_________ x y xy 2263)1(÷4
1441)
2(222--÷+--a a a a a。