组合数学卢开澄课后习题答案

合集下载

组合数学-卢开澄-习题答案

组合数学-卢开澄-习题答案

第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 48→49~50, 49→50 ) 2.(a) 5!8! (b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)! (c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 因首数字可分别为偶数或奇数,知结果为 2⨯5⨯P(8,2)+3⨯4⨯P(8,2).6. (n+1)!-17. 用数学归纳法易证。

8. 两数的公共部分为240530, 故全部公因数均形如2m 5n ,个数为41⨯31. 9. 设有素数因子分解 n=p 1n 11p 2 n 22…p k n k k , 则n 2的除数个数为( 2n 1+1) (2n 2+1) …(2n k +1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(1010-=-=+=+=∑∑n nk k k n nnk kk nx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk k n n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

组合数学习题答案卢开澄

组合数学习题答案卢开澄

1.1 题从{1,2,……50}中找两个数{a ,b},使其满足(1)|a-b|=5;(2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下: 6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

卢开澄组合数学--第三章习题解答

卢开澄组合数学--第三章习题解答

9. 题目 由推导过程知 解:
ln( G ( x )) 1 1 2
2
x 1 x 1 3
2
(1
1 2
2

2
1 3
2
)

x 1 x

6
2
ln( G ( x ))
6
ln( G ( x )) ln pn n ln ln pn x 1 x x 1 x
an an 1 1 C ,
2 n
a1 2, a0 1
n n 设 an A0 A1n A2 A3 2 3
解得
A0 A 1 A2 A3
1 1 1 1
n n an 1 n 2 3
(1 x x x x x )
2 3 4 5
其中 x 项系数为所求
8
11. 题目 解: 用归纳法可证明: 1)当k=1时命题成立 2)设当k=N时命题成立 即N可唯一表示成不同且不相邻的F 数之和。 则当k=N+1时,明显可以分成N的序列 再加上1( F2),但这可能会不能满足 “不同且不相邻”的条件。 下面予以讨论
n 1

[(4 2 2 1) ( 4
n n
n 1
22
n 1
1)]
2 )
n
6. 题目 解:
参见第四题解答前半部分。
7. 题目 解:题设中序列的母函数为:
G ( x ) C ( n, n) C ( n 1, n) x C ( n k , n) x
13. 题目 解: 设符合条件的n位二进制数的个数为hn 这些数中一共有a n个0 当n位二进制数最高位为1时,符合条件 的n位二进制数的个数为 hn 1

组合数学第四版卢开澄标准答案-第三章解析

组合数学第四版卢开澄标准答案-第三章解析

【第 4 页 共 42 页】
|A 1∩A2|=(40+1)(30+1)=1271
于是 |A 1∪A 2|=|A 1|+|A 2|- |A1 ∪A 2|=1681+1891 - 1271=2301 因此,能至少除尽 1040 和 2030 之一的正整数的数目是 2301 。
3.17.n 是 除尽 1060, 2050, 3040 中至少一个数的除数,求 n 的数目。
[ 解 ].定义: P1(x):3| x
A 1 ={ x|x N P1( x)}
P2(x):5|x
A 2={ x|x N P2 (x)}
P3(x):7|x
A 3={ x|x N P3 (x)}
|A1| = 1000/3 =333
|A1∩A2|= 1000/(3 ×5) =66
|A1∩A3|= 1000/(3 7×) =47
= 9001-( 70+12)+1 = 8920
3.19 {1000 ,1001,……, 3000} ,求其中是 4 的倍数但不是 100 的倍数的数的
数目。 【解】: 令 N1={1000, 1001,……, 3000} ,则 |N1|=2001
【第 2 页 共 42 页】
=|C|-( |A ∩C+| |B ∩C-||(A∩C)∩(B∩C)|)
=|C|-|A ∩C-||B ∩C+| |(A∩C)∩( B∩C)| =|C|-|A ∩C-||B ∩C+| |(A∩B∩C)| (结合律,交换律,幂等律 )
3.14. N={1,2, … ,1000} ,求其中不被 5 和 7 除尽,但被 3 除尽的数的数目。
=
10 4 -( 100+21) +4 =9883

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)版 第四章答案4.1,若群G 的元素a 均可表示为某一个元素x 的幂,即a=x m,则称这个群为循环群,若群的元素交换律成立。

即a ,b ∈G 满足,a ·b=b ·a证明:令a= x m ,b= x n ,则a ·b= x m ·x n = x n ·x m=b ·a ,因此是阿贝尔群4.2若x 是群G 的一个元素,存在一最小的正整数m ,使x m=e ,则称m 为x 的阶,试证: C={e,x,x 2,…x m-1}是G 的一个子群。

证明:一个群G 的不空集合H 作成G 的一个子群的充分必要条件是:1,a b H ab H a H a H-∈⇒∈∈⇒∈,a b 是H 的任意元素。

由题意知C 中的任意两个元素如,a b C ∈则ab C ∈;a C ∈则1a C -∈。

所以21{,,,,}m C e x x x -= 是G 的一个子群。

4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n 。

证明; 因为G 中每有元素都能生成一个与元素等阶的子群,子群的阶当然不能超过群G 的阶;所以则G 的所有元素的阶都不超过n 。

4.4若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂: a 1 ,a 2 。

a n 的元素a 的数目。

证明: 若一个群G 的每一个元都是G 的某一固定元a 的乘方,我们就把G 叫做循环群;我们也说,G 是由元a 所生成的,并且用符号()G a =来表示。

所以就有一个这样的a ,即就有一个母元素。

4.5 试证循环群G 的子集也是循环群根据子群的定义,循环群G 的子群应满足循环群G 所满足的所有运算。

所以其子群页应该是循环群。

4.6若H 是G 的子群,x 和y 是G 的元素,试证xH ∩yH 或为空,或为xH=yHx,y ∉G若 xH ⋂yH ≠Φ可知:存在g ∈xH,g ∈yH 由g ∈xH,知存在h 1∈H,有g=xh 1;由g ∈yH,知存在h 2∈H,有g=yh 2; 从而有 xh1=yh2 ⇒x=y(h 2h 11-)------------式1任取z ∈xH,则存在h ∈H,有z=xh-------------------式2将-式1代入-式2: z=y(h 2h 11-)h=y(h 2h 11-h)--------- -式3H 是子群,有h 1,h 2,h ∈H 可推知,h 2h 11-h ∈H从而 y(h 2h 11-h) ∈yH.再由式3知 z ∈yH,这样我们就可推知xH ⊆yH 同理可推得 yH ⊆xH综上知道 yH=xH4.7若H 是G 的子群,H =k ,试证:xH =k ,其中x ∈GH =k设 H={n h h h h 32,1,} 同时对于i,j ∈{k ,3,2,1} 当i ≠j 时,有ah i≠ah j(否则,若有ah i =ah j ,由消去律得h i =h j ,矛盾) 表明{}n h h h h 32,1, 为n 个不同元而aH 恰有这些元组成, 故 aH =k, ∴aH =H4.8有限群G 的阶为n ,H 是G 的子群,则H 的阶必除尽G 的阶。

组合数学第四版卢开澄标准答案-第四章.docx

组合数学第四版卢开澄标准答案-第四章.docx

习题四4.1.若郡G的元素。

均可表示为某一元素X的幕,即« = r,则称这个群为循环郡。

若群的元索交换律成立,W a ,b wG满足ab = b-a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。

[证]•设循环群(G,・)的生成元是兀owG o于是,对任何元素a,bwG, 3m, nwN,使得*席, b= xo,从而a b = x()n• X Q=xo/z,+W(指数衛=xo?,+W(数的加法交换律)=鼎・霸”(指数律)=ba故•运算满足交换律;即(G,・)是交换群。

4.2.若x是群G的一个元素,存在一个最小的正整数加,使x m=e f则称加为x的阶,试证: C={e^c,x2, ...y N 1}是G的一个子群。

[证].⑴非空性CH0:因为BeeG;(2)包含性CUG:因为x G G,根据群G的封闭性,可知G,故CgG;(3)封闭性X/d , b G C=>a • b eC: P ci, b G C,3k> IwN (0< k<m, 0< Is),使o =』,b =』, 从而a •b = x k• x1 = x{k+l) nK)d m eC (因为0 S (k+l) mod m < m);(4)有逆元X/a G C=> a 'wC: V a G C,3k E N(0< k<m)f使a = x k ,从而a -i =丄”-k w c (|对为0 5 n?乂 < tn)。

综合⑴⑵⑶⑷,可知(C,・)是9, •)的一个子群。

4.3.若G是阶为n的有限群,则G的所有元素的阶都不超过no[证].对任一元素xwG,设其阶为加,并令C={e^^c2,则|tl习题4.2.HT知(C,"是匸,•)的一个子群,故具有包含性CyG。

因此有m = \C\<\G\ = n所以群G的所有元索的阶都不超过77。

4.4.若G是阶为n的循环群,求群G的母元素的数目,即G的元素可以表示成a的幕:的元素a的数th[证]•设(G,・)是循环群,。

卢开澄《组合数学》习题答案第二章

卢开澄《组合数学》习题答案第二章

2.1 求序列{0,1,8,27,…3n …}的母函数。

解:()()++++++=++++++=nn n x n x x x x G x a x a x a x a a x G 3323322102780()046414321313=+-+--==-----n n n n n n n a a a a a n a n a左右同乘再连加:464:0464:0464:0464:4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x母函数:()()42162036-+-=x x x x G2.2 已知序列()()3433{,,……()33,,n +……},求母函数。

解:1(1)nx -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1)x - 2.3 已知母函数G (X )= 25431783x x x--+,求序列{ n a }解:G (X )=)61)(91(783x x x +-+=)61()91(x Bx A ++-从而有: ⎩⎨⎧-==⇒⎩⎨⎧=-=+4778963B A B A B AG (X )=)61(4)91(7x x +-+-G (X )=7)999x (13322 ++++x x -4))6((-6)(-6)x (13322 +-+++x xn a =7*n )6(*49n -- 2.4.已知母函数239156xx x---,求对应的序列{}n a 。

解:母函数为239()156x G x x x -=--39(17)(18)xx x -=+- A BG(x)17x 18xA(18x)B(17x)39x=++--++=-令 A B 38A +7B =9+=⎧⎨--⎩解得:A=2 B=1所以 ii i 0i 021G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑n n n a 2*(7)8=-+2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。

组合数学+卢开澄版++答案第四章

组合数学+卢开澄版++答案第四章

4.1证明所有的循环群是ABEL 群 证明:n n ,,**×x ,x ?**m n m n a b G G a b b a x x a b b a ++∈==∴=m m m 循环群也是群,所以群的定义不用再证,只需证明对于任意是循环群,有成立,因为循环群中的元素可写成a=x 形式所以等式左边x 等式右边x =,,即所有的循环群都是ABEL 群。

4.2若x 是群G 的一个元素,存在一最小的正整数m ,使x m =e ,则称m 为x的阶,试证:C={e,x,x 2, …,x m-1} 证:x 是G 的元素,G 满足封闭性所以,xk 是G 中的元素 C ∈G再证C 是群:1、x i , x j ∈C , x i ·x j = x i+j 若i+j<=m-1,则x i+j ∈C若i+j>m,那么x i+j =x m+k =x m ·x k =x k ∈C 所以C 满足封闭性。

2、存在单位元e.3、显然满足结合性。

4、存在逆元, 设x a ·x b =e=x m x b =x m-ax a ∈C, (x a )-1= x b =x m-a4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n.证明:设G 是阶为n 的有限群,a 是G 中的任意元素,a 的阶素为k , 则此题要证n k ≤首先考察下列n+1个元素aa a a a n 1432,....,,,+由群的运算的封闭性可知,这n+1个元素都属于G ,,而G 中仅有n 个元素,所以由鸽巢原理可知,这n+1个元素中至少有两个元素是相同的,不妨设为aaji i+=(n j ≤≤1)aa a jii*=由群的性质3可知,a j是单位元,即a j=e ,又由元素的阶数的定义可知,当a 为k 阶元素时a k=e ,且k 是满足上诉等式的最小正整数,由此可证n j k ≤≤4.4 若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂:a,a2……..an解:设n=p 1a1…….p k ak ,共n 个素数的乘积,所以群G 中每个元素都以用这k 个素数来表示,而这些素数,根据欧拉定理,一共有 Φ(n)=n(1-1/p 1)………(1-1/p k )所以群G 中母元素的数目为n(1-1/p 1)………(1-1/p k )个. 4.5证明循环群的子群也是循环群证明:设H 是G=<a>的子群,若H=<e>,显然H 是循环群,否则取H 中最小的正方幂元m a ,下面证明m a 是H 的生成元,易见m a ⊆H ,只要证明H 中的任何元素都可以表成m a 的整数次方,由除法可知存在q 和r,使得l=qm+r,其中0≤r ≤m-1,因此有r a =qm l a -,因为m a 是H 中最小的正方幂元,必有r=0,这就证明出l a =mq a }{m a ∈证明完毕。

组合数学习题答案卢开澄

组合数学习题答案卢开澄

1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下: 6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

卢开澄组合数学--组合数学第二章习题解答精品文档35页

卢开澄组合数学--组合数学第二章习题解答精品文档35页
(b)求序列an与bn的母函数。
(c)用Fibonacci数来表示 a n 与 b n 。
解:...
28. 设 F 1 F 2 1 ,F 1 F n 1 F n 2
(a)证明
F n F k F n k 1 F k 1 F n k , n k 1 (b)证明 Fn Fm 的充要条件是 n m 。
解:...
9.利用 11221231262 ,
改善 §4(2) 的 p n估计式。
解:...
10. 8台计算机分给3个单位,第1单位 的分配量不超过3台,第2单位的分配量 不超过4台,第3个单位不超过5台,问 共有几种分配方案?
解:...
11. 证明正整数n都可以唯一地表示成不 同的且不相邻的Fibonacci数之和。即
(c)证明
FmFn Fmn2 Fmn6 Fmn10
FFmmnn21
当n是奇数, 当n是偶数。
mn2.
(d)证明(F m ,F n ) F (m ,n ),(m ,n )为m,n
的最大公约数。
解:...
29. 从1到n的自然数中选取k个不同且不
相邻的数,设此选取的方案为 f(n,k)。 (a)求 f(n,k)的递推关系。
解:...
22. 求矩阵 3 1100 . 0 2
解:...
23. 求
n
n
Sn k(k1), Sn k(k2),
k0
k0
n
Sn k(k1)(k2).
k0
解:...
24. 在一个平面上画一个圆,然后一条 一条地画n条与圆相交的直线。当r是大 于1的奇数时,第r条直线只与前r-1条直 线之一在圆内相交。当r是偶数时,第r 条直线与前r-1条直线在圆内部相交。如 果无3条直线在圆内共点,这n条直线把 圆分割成多少个不重叠的部分?

组合数学第四版卢开澄标准答案-第三章解析

组合数学第四版卢开澄标准答案-第三章解析

【第 5 页 共 42 页】
【解】:( a)定义: P1(x):x= n2 ( n∈ N) A1= {x|x ∈ N1∩P1(x) }
P2
(x):x= n3 ( n∈ N) A1= {x|x ∈ N2∩P2(x) }
A1={12 , 22 ,……, (10 2) 2 } N 1
故|A1|= 10 2 =100
|N|=120
p0 =|N|=120 p1=|A 1|+|A 2|+|A 3 |+|A4 |=60+40+24+17=141 p2=|A 1∩A2|+|A 1∩A3|+|A 1 ∩A4 |+|A 2∩A3|+|A 2∩A4|+|A 3∩A4|=20+12+8+8+5+3=56 p3=|A 1∩A2∩A3|+|A 1∩A2∩A4|+|A 1∩A3∩A4 |+|A2∩A3∩A4|=4+2+1+1=8 p4=|A 1∩A2∩A3∩A4|=0 ① 当 m=0 时, q0=p0- p1+p2- p3+p4=120- 141+56 - 8+0=27
【第 1 页 共 42 页】
=32- |A1∩A2∩A3|
从而有 |A1∩A2∩A3|=32-| A1 ∩A2 ∩ A3 |
由已知 0≤| A1 ∩A2 ∩ A3 |≤8,可得
24≤|A1∩A2∩A3| ≤ 32 故此,通过 3 门学科考试的学生数在 24 到 32 之间。
3.13.试证: (a)| A ∩ B|=|B|-|A ∩ B| (b)| A ∩B ∩ C|=|C-||A ∩ C-|B ∩ C+||(A∩ B∩C)|

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学版卢开澄标准答案

组合数学版卢开澄标准答案

习题四4.1.若群G的元素a均可表示为某一元素x的幂,即a= x m,则称这个群为循环群。

若群的元素交换律成立,即a , b∈G满足a⋅b = b⋅a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。

[证].设循环群(G, ⋅)的生成元是x0∈G。

于是,对任何元素a , b∈G,∃m,n∈N,使得a= x0m , b= x0n ,从而a⋅b = x0m⋅x0n= x0m +n (指数律)= x0n +m (数的加法交换律)= x0n⋅x0m(指数律)= b⋅a故⋅运算满足交换律;即(G, ⋅)是交换群。

4.2.若x是群G的一个元素,存在一个最小的正整数m,使x m=e,则称m为x的阶,试证:C={e,x,x2, ⋯,x m-1}是G的一个子群。

[证].(1)非空性C ≠∅:因为∃e∈G;(2)包含性C⊆G:因为x∈G,根据群G的封闭性,可知x2, ⋯,x m-1,(x m=)e∈G,故C⊆G;(3)封闭性∀a , b∈C⇒ a ⋅b∈C:∀ a , b∈C,∃k,l∈N (0≤k<m,0≤l<m),使a = x k, b = x l,从而a ⋅b = x k⋅ x l = x(k+l) mod m∈C(因为0 ≤ (k+l) mod m < m) ;(4)有逆元∀a ∈C⇒ a -1∈C:∀ a ∈C,∃k∈N (0≤k<m),使a = x k, 从而a -1= x m-k∈C(因为0 ≤m-k < m) 。

综合(1) (2) (3) (4),可知(C, ⋅)是(G, ⋅)的一个子群。

4.3.若G是阶为n的有限群,则G的所有元素的阶都不超过n。

[证].对任一元素x∈G,设其阶为m,并令C={e,x,x2, ⋯,x m-1},则由习题4.2.可知(C, ⋅)是(G, ⋅)的一个子群,故具有包含性C⊆G。

因此有m = |C| ≤ | G | = n所以群G的所有元素的阶都不超过n。

卢开澄组合数学--组合数学第二章习题解答

卢开澄组合数学--组合数学第二章习题解答

解:...
课件
15
1 AB : AD (1 5) 作 C1B1 使得 2 AB1C1D 是一正方形。试证矩形 B1C1CD 和 ABCD 相似。试证继续这过程可得
一和原矩形相似的矩形序列。 解:...
16. 设一矩形 ABCD ,其中
A D
课件
B1
B
C
16
C1
17. 平面上有两两相交,无三线共点的n 条直线,试求这n条直线把平面分成多少 个域? 解:...
解:...
课件
13
14. 在Hanoi塔问题中,在柱A上从上到 下套着n个圆盘,其编号依次从1到n。现 要将奇数编号与偶数编号的圆盘分别转 移到柱B和柱C上。转移规则仍然是每次 移动一个,始终保持上面的比下面的小。 一共要移动多少次? 解:...
课件
14
15. 一书框中有m格,每格各放n册同类 的书,不同格放的书类型不同。现取出 整理后重新放回,但不打乱相同类。试 问无一本放在原来位置的方案数应多少?
课件
20
21. 求 1 2 3 n 的和。
4 4 4 4
解:...
课件
21
22. 求矩阵 3
1 . 0 2
100
解:...
课件
22
23. 求
Sn Sn
解:...
k 0 n
k (k 1),
nSn ຫໍສະໝຸດ k 0 k (k 2),
n
k 0
解:...
课件 24
25. 用 an 记具有整数边长周长为n的三 角形的个数。 (a)证明
当n是偶数, an 3 , n2 an n (1) 2 ,当n是奇数 an 3 4 (b)求序列 an 的普通形母函数。

组合数学+卢开澄版++答案第三章

组合数学+卢开澄版++答案第三章

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28甲参加的会议数为 28+5=333.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。

解:设 A 3:被3整除的数的集合A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||=||-||=-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.×3.4试给出下列等式的组合意义0j j 0(1)=(1), 1n-m -j+1(2)(1)1 j 1(3)...(1) 1 12m l l n ml n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭---⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑∑证明:(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)()(kn m n mk m n --=--。

设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.1212|...|(...)12 =( (1))1 2 =(1) m m ml n A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫=- ⎪⎝⎭---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛- ⎪⎝⎭ 0ml =⎫ ⎪⎝⎭∑ (2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k12k 121|...|(...)1k 11211 =(...(1)) 1 2 k kk l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫=- ⎪⎝⎭+--+--+--+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭kj j 0k k-j+1 =(1)j l l =-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭∑(3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i个的方案数。

组合数学参考答案解析[卢开澄第四版]_修改版

组合数学参考答案解析[卢开澄第四版]_修改版

1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下:6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

组合数学第四版答案

组合数学第四版答案

组合数学第四版答案【篇一:组合数学参考答案(卢开澄第四版)60页】>1.1 题从{1,2,……50}中找两个数{a,b},使其满足(1)|a-b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题 m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnn?n?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合数学卢开澄课后习题答案
组合数学是一门研究离散结构和组合对象的数学学科,它广泛应用于计算机科学、统计学、密码学等领域。

卢开澄是中国著名的组合数学家,他的教材《组合数学》是该领域的经典之作。

在学习组合数学的过程中,课后习题是巩固知识、提高能力的重要途径。

下面我将为大家提供一些卢开澄课后习题的答案。

第一章:集合与命题逻辑
1.1 集合及其运算
习题1:设集合A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}。

习题2:证明若A∩B=A∩C,且A∪B=A∪C,则B=C。

答案:首先,由A∩B=A∩C可得B⊆C,同理可得C⊆B,因此B=C。

然后,由A∪B=A∪C可得B⊆C,同理可得C⊆B,因此B=C。

综上所述,B=C。

1.2 命题逻辑
习题1:将下列命题用命题变元表示:
(1)如果今天下雨,那么我就带伞。

(2)要么他很聪明,要么他很勤奋。

答案:(1)命题变元P表示今天下雨,命题变元Q表示我带伞,命题可表示为P→Q。

(2)命题变元P表示他很聪明,命题变元Q表示他很勤奋,命题可表示为
P∨Q。

习题2:判断下列命题是否为永真式、矛盾式或可满足式:
(1)(P∨Q)→(P∧Q)
(2)(P→Q)∧(Q→P)
答案:(1)该命题为可满足式,因为当P为真,Q为假时,命题为真。

(2)该命题为永真式,因为无论P和Q取何值,命题都为真。

第二章:排列与组合
2.1 排列
习题1:从10个人中选取3个人,按照顺序排成一队,有多少种不同的结果?答案:根据排列的计算公式,共有10×9×8=720种不同的结果。

习题2:从10个人中选取3个人,不考虑顺序,有多少种不同的结果?
答案:根据组合的计算公式,共有C(10,3)=120种不同的结果。

2.2 组合
习题1:证明组合恒等式C(n,k)=C(n,n-k)。

答案:根据组合的计算公式可得C(n,k)=C(n,n-k),因此组合恒等式成立。

习题2:证明组合恒等式C(n,0)+C(n,1)+...+C(n,n)=2^n。

答案:根据二项式定理可得(1+1)^n=2^n,展开后可得
C(n,0)+C(n,1)+...+C(n,n)=2^n,因此组合恒等式成立。

通过以上习题的解答,我们可以巩固和加深对组合数学的理解。

组合数学在实际应用中有着重要的作用,例如在密码学中,组合数学的知识可以用于设计安全的密码算法;在计算机科学中,组合数学的知识可以用于解决图论、优化等问题。

希望大家在学习组合数学的过程中能够坚持做习题,提高自己的解题能力和应用能力。

相关文档
最新文档