中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案
直线与圆的方程试题及答案 中职学校
![直线与圆的方程试题及答案 中职学校](https://img.taocdn.com/s3/m/b3a06c8e59f5f61fb7360b4c2e3f5727a5e924c5.png)
直线与圆的方程试题及答案试题一给定直线的方程为 x + y = 2 和圆的方程为 x^2 + y^2 = 4,求直线与圆的交点坐标。
解答:首先,化简直线的方程可以得到 y = 2 - x。
将直线的方程 y = 2 - x 求根代入圆的方程中,即:x^2 + (2 - x)^2 = 4将上式展开求解,得到 x^2 - 4x + 4 + 4x - 4 = 0化简后得到 x^2 = 4通过求根公式,可以得到 x = 2 或 x = -2。
将 x 的值代入直线的方程 y = 2 - x 中,得到对应的 y 值。
当 x = 2 时,y = 2 - 2 = 0;当 x = -2 时,y = 2 - (-2) = 4。
因此,直线与圆的交点坐标为 (2, 0) 和 (-2, 4)。
试题二给定圆的方程为 (x - 3)^2 + (y + 4)^2 = 9 和直线的斜率为 -2,求直线与圆的交点坐标。
解答:首先,求出直线的方程为 y = -2x + c。
由圆的方程可知,圆心坐标为 (3, -4),半径为 3。
直线与圆相交时,直线上的点到圆心的距离等于半径。
将直线的方程 y = -2x + c 代入圆的方程 (x - 3)^2 + (y + 4)^2 = 9 中,得到:(x - 3)^2 + ((-2x + c) + 4)^2 = 9展开后,化简上式,得到:5x^2 + 10cx + c^2 - 36x + 48c - 72 = 0因为直线与圆相交,所以上式必有实数解。
根据二次方程的性质,上式的判别式必大于等于零。
即:(10c - 36)^2 - 4 * 5 * (c^2 + 48c - 72) >= 0通过求解不等式,可以得到c ∈ (-∞, 20)。
取 c = 10,将 c 的值代入直线的方程 y = -2x + c 中,得到直线的方程为 y = -2x + 10。
将直线的方程 y = -2x + 10 代入圆的方程 (x - 3)^2 + (y + 4)^2 = 9 中,求解 x 的值。
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案
![中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案](https://img.taocdn.com/s3/m/ffa219b58e9951e79a892791.png)
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35C . -1 D. 13.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ;18.平行于y 轴的直线的倾斜角为 ;19.倾斜角为60º的直线的斜率为 ;20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为:22.在y 轴上的截距为5,且斜率为4的直线方程为:23.将y-4=31(x —6)化为直线的一般式方程为:24.过点(-1,2)且平行于x 轴的直线方程为25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ;28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。
(完整word版)职高数学基础模块下册第八章直线与园练习题(word文档良心出品)
![(完整word版)职高数学基础模块下册第八章直线与园练习题(word文档良心出品)](https://img.taocdn.com/s3/m/7b7d866e964bcf84b9d57ba3.png)
第八章 直线和圆的方程1一、选择题1.已知点A(-12)到原点的距离为 ( )A.8B.-12C.12D.02.点A(12),B(-6)的中点的坐标是 ( )A.1B.-2C.3D.-43.不等式5<x 的解为( )A.X<5B. X>-5C. -5<X<5D.- X<-54.已知点A(2,0),B(-10,0),则=AB( )A.8B.-8C.12D.-12( )A.5B.-5C.2D.-27.点A(12,2),B(-6,-6)的中点坐标( )A.(-6,-2)B. (3,2)C. (3,-2)D. (6,2)8.点A (3,4)关于X 轴的对称点是( )A.(4,3)B. (3,-4)C.(-3,-4)D. (-3,4)9.点(-3,4)到原点的距离是( )A.5B.-5C.2D.-210.已知点A(4,-3),B(-2,5),则=AB ( ) A.5 B.10 C.13D.1511.已知△ABC 的顶点A(1,-2),B(-2,6),C(5,4),AC 边的中线长为 ( )A.5B.25C.10D.1212.X 轴所在的直线方程是 ( )A.X=0B. X=1C. Y=0D. Y=113.在直线012=+-y x 上的点是( )A.(1,1)B.(2,0)C.(-1,-1)D.(1,0)14.过(2,-2)且垂直于x 轴地直线方程是( )A.2=xB. 2-=xC. 2=yD. 2-=y 15.点到(-3,1)到x 轴的距离是 ( ) A.3 B.-3 C.1 D.-1 17.直线01=++y x 与直线01=--y x 的交点坐标是 ( )A.(1,0) B(-1,0) C. (0,1) D.(0,-1) 18. 直线1=x 的倾斜角的 ( ) A.00B.090 C.1800 D.450 19.如果直线的倾斜角是450,则它的斜率是 ( ) A.0 B.33C.3D.1 20.直线1=y 的斜率是 ( ) A.1 B.0 C.-1 D.不存在 21.直线的斜率是-1,则直线的倾斜角是 ( ) A.00 B 450 C 900 D 135023.下列说法正确的是 ( ) A.直线都有唯一的斜率 B 每一条直线都有唯一的倾斜角,也有唯一的斜率C 每一条直线都有唯一的倾斜角,但不一定有斜率D 倾斜角相同的直线一定是同一条直线24.直线斜率为-2,则倾斜角是( )A.锐角 B 钝角C 直角D 不确定25.直线12+-=x y 的斜率是( )A.-2 B 2 C 1 D -1 26.直线2-=x y 在y 轴上的截距是( ) A.1 B.-1 C.2 D.-2 27.直线2+=x y 的倾斜角是 ( )A.300B.450C.600D.135028.过点(0,-2)且斜率为-2的直线方程是 ( ) A.2+=x y B 22+-=x y C 2-=x y D 22--=x y 30.直线33-=x y 在y 轴上的截距是 ( ) A.1 B.-1 C.-3 D.3 31.过点A(2,-1)且倾斜角为450的直线的一般方程是 ( ) A.12+=-x y B 21-=+x y C 03=+-y x D 03=--y x 32.32.直线0132=+-y x 的斜率是 ( )A.32 B 23 C 32- D 23-33.过点(-2,6)且斜率为-4的直线的一般式方程是 ( )A.24--=x y B 024=--x y C 24+=x y D 024=++y x 36.若直11b k y x +=与直线22b k y x +=平行,则 A.21k k ≠B.2121b b k k ==且C.2121b b k k ≠=且D.2121b b k k ≠≠且37.直线012032=-+=+-y x y x 与直线的交点是 ( )A.(1,-1) B (2,-1) C.(-1,1) D.(-1,2)38.过点(2,4)且与直线03=+x 平行的直线方程是 ( ) A.2=x B.4=x C.2=y D.4=y40.若直线1l 的方程是0111=++C y B x A ,2l 的方程是0222=++C y B x A ,且2121B B A A ≠,则这两条直线的位置关系是( )A.相交 B 平行 C 重合 D 垂直41.直线02640132=-+=-+y x y x 与直线的位置关系是 ( )A 相交B 平行C 重合D 垂直 42.已知过点(-2,m )和(m ,4)的直线与直线012=-+y x 平行,则m 的值是 ( )A.0B.-8C.2D.1043.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是 ( )A.3x-y+8=0B.3x+y+4=0C.3x-y+6=0D.3x+y+2=044.直线012=+-y x 与直线012=++y ax 垂直,则a 的值是A.1B.-1C.4D.-445.过点(-1,2)且与直线0432=+-y x 垂直的直线方程是 ( )A.023=+y x B 0723=++y x C0532=+-y x D 0832=+-y x46.直线012=++y ax 与直线0)3(=+--a y x a 垂直,则a 的值是 ( )A.1B.2C.6D.1或247.点(0,1)到直线022=+-y x 的距离为 ( )A.55 B 554 C 33 D 515A.3 B 0.1 C 0.5 D 749 原点到直线052=-+y x 的距离为 ( )A.1B.3C.2D.5 50 已知点(3,m )到直线043=-+y x 的距离等于1,则m 等于 ( )A.3 B 3- C 33-D 3或33-56已知A (2,4),B (-4,0),则以AB 为直径的圆的方程是 ( )A. 13)2()1(22=-++y xB.13)2()1(22=+++y xC.13)2()1(22=-+-y xD.13)2()1(22=++-y x 57.圆心为(-2,2),半径为5的圆的标准方程为 ( )A.5)2()2(22=++-y xB.25)2()2(22=+++y xC.5)2()2(22=-++y xD.25)2()2(22=++-y x59.圆心为(3,4),且过点(4,6)的圆的方程是 ( ) A.3)4()3(22=++-y x B3)4()3(22=-+-y xC 5)4()3(22=-+-y x D5)4()3(22=-+-y x 60.圆04222=-++y x y x 的圆心坐标和半径分别是 ( ) A.(1,-2),5 B (1,-2),5 C 5),2,1(- D (-1,2),5 78.直线063=+-y x 的倾斜角是( )A.60°B.120° C 30° D.150°79.经过点A(-1,4),且在x 轴上的截距为3的直线方程是 ( )A. x+y+3=0 B x-y+3=0 Cx+y-3=0 D x+y-5=083.圆06222=-++y x y x 的圆心是( )A.(1,3) B (-1,-3)C (-1,3) D(1,-3)。
中职数学:第八章 直线与圆的方程测试题(含答案)
![中职数学:第八章 直线与圆的方程测试题(含答案)](https://img.taocdn.com/s3/m/d00d1377a9956bec0975f46527d3240c8547a17b.png)
中职数学:第八章直线与圆的方程测试题(含答案)第八章直线与圆的方程测试题班级。
姓名。
得分:选择题(共10题,每题10分)1、点(2,1)到直线4x-3y-1=0的距离等于(B)A、2/5.B、4/5.C、2.D、32、直线与x-y+3=0与圆(x-1)^2+(y-1)^2=1的位置关系是(C)A、相交。
B、相切。
C、相离。
D、无法判断3、求过三点O(0,0),M1 (1,1),M2(4,2)的圆的方程(A)A、x^2+y^2-8x+6y=。
B、x^2+y^2+8x+6y=。
C、(x-4)^2+(y-3)^2=25.D、(x+4)^2+(y+3)^2=254、已知直线l经过点M(2,-1),且与直线2x+y-1=0垂直,求直线l的方程(C)A、x-2y+4=0.B、2x-y-4=0.C、x-2y-4=0.D、2x-y+4=05、求经过点P(-2,4)、Q (0,2),并且圆心在x+y=0上的圆的方程(A)A、(x+2)^2+(y-2)^2=4.B、(x-2)^2+(y-2)^2=4.C、(x+2)^2+(y+2)^2=4.D、(x-2)^2+(y+2)^2=46、设圆过点(2,-1),又圆心在直线2x+y=0上,且与直线x-y-1=0相切,求该圆的方程(B)A、(x-1)^2+(y-2)^2=2或(x-9)^2+(y-18)^2=338.B、(x-1)^2+(y+2)^2=2或(x-9)^2+(y+18)^2=338.C、(x-2)^2+(y-1)^2=12或(x-18)^2+(y-9)^2=36.D、(x-1)^2+(y+2)^2=12或(x-9)^2+(y+18)^2=367、求以C(2,1)为圆心,且与直线2x+5y=0相切的圆的方程(C)A、(x-2)^2+(y-1)^2=1/29.B、(x+2)^2+(y+1)^2=1/29.C、(x-2)^2+(y-1)^2=81/29.D、(x+2)^2+(y+1)^2=81/298、设圆的圆心坐标为C(-1,2),半径r=5,弦AB的中点坐标为M(0,-1),求该弦的长度(D)A、√10.B、√15.C、2√10.D、2√159、求圆(x-3)^2+y^2=1关于点p(1,2)对称的圆的方程(B)A、(x-3)^2+(y-2)^2=1.B、(x+1)^2+(y-4)^2=1.C、(x+3)^2+(y+2)^2=1.D、(x-1)^2+(y+4)^2=1给定三角形ABC的三个顶点坐标A(4,5)。
中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案
![中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案](https://img.taocdn.com/s3/m/e568a9694a7302768f993906.png)
中职数学第八章《直线和圆的方程》单元检测(满分100分,时间:100分钟)一.选择题(3分*10=30分)题号12345678910答案1.已知A(2,-3),B(0,5),则直线AB的斜率是()A.4B.-4C.3D.-32、设A(-1,3),B(1,5),则直线AB的倾斜角为()A.30︒B.45︒C.60︒D.90︒3.下列哪对直线互相垂直A.l1:y=2x+1;l2:y=2x-5 B.l1:y=-2;l2:y=5C.l1:y=x+1;l2:y=-x-5 D.l1:y=3x+1;l2:y=-3x-54.以A(1,2),B(1,6)为直径两端点的圆的方程是()A.(x+1)2+(y-4)2=8B.(x-1)2+(y-4)2=4C.(x-1)2+(y-2)2=4D.(x+1)2+(y-4)2=165.若P(-2,3),Q(1,x)两点间的距离为5,则x的值可以是()A.5B.6C.7D.86.方程为x2+y2-2x+6y-6=0的圆的圆心坐标是()A.(1,3)B.(-1,3)C.(1,-3)D.(2,1)7.过点A(-1,2),且,倾斜角是60︒的直线方程为()A.3x+y-2-3=0B.3x-y+2+3=0C.x-y+3=0D.x+y+3=08.下列哪对直线互相平行()A.l y=-2,l:x=5B.l y=2x+1,l:y=2x-51:21:2C.l y=x+1,l:y=-x-5D.l y=3x+1,l:y=-3x-51:21:29.下列直线与直线3x-2y=1垂直的是()A.4x-6y-3=0B.4x+6y+3=0C.6x+4y+3=0D.6x-4y-3=010.过点A(2,3),且与y轴平行的直线方程为()A.x=2B.y=2C.x=3D.y=3二.填空题(4分*8=32分)11.直线3x-2y-6=0的斜率为,在y轴上的截距为12.方程x2+y2-6x+2y-6=0化为圆的标准方程为13.两直线x+2y+3=0,2x-y+1=0的位置关系是________14.点(1,3)到直线y=2x+3的距离为____________15.平行于直线x+3y+1=0,且过点(1,2)的直线方程为16.直线2x+3y+1=0与圆x2+y2=1的位置关系是_____17.若方程x2+y2-3x+4y+k=0表示一个圆,则k的取值范围是________18.过A(-1,2),B(2,1),C(3,2)三点的圆方程为___________三.解答题(共6题,共计38分)19.已知两点A(2,6),B(m,-4)其中M(-1,n)为AB的中点,求m+n。
中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案
![中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案](https://img.taocdn.com/s3/m/a6d68f552e3f5727a5e962fc.png)
中职数学第八章《直线和圆的方程》单元检测(满分100分,时间:100分钟)一.选择题(3分*10=30分)1.已知A(2,-3),B(0,5),则直线AB 的斜率是( )A.4B.-4C.3D.-3 2、设A(-1,3),B(1,5),则直线AB 的倾斜角为( )A.30︒B.45︒C.60︒D.90︒ 3. 下列哪对直线互相垂直A. 52:;12:21-=+=x y l x y lB. 5:;2:21=-=y l y lC. 5:;1:21--=+=x y l x y lD. 53:;13:21--=+=x y l x y l 4.以A(1,2),B(1,6)为直径两端点的圆的方程是( ) A.(x+1 )2 +(y-4)2 =8 B.(x-1 )2 +(y-4)2 =4C.(x-1 )2 +(y-2)2 =4D.(x+1 )2 +(y-4)2 =16 5.若P(-2,3),Q(1,x)两点间的距离为5,则x 的值可以是( ) A. 5 B. 6 C. 7 D. 8 6.方程为x 2+y 2-2x+6y-6=0的圆的圆心坐标是( ) A.(1,3) B.(-1,3) C.(1,-3) D.(2,1)7.过点A(-1,2),且,倾斜角是60︒的直线方程为 ( )20y +-=20y -++= C. 30x y -+= D. 30x y ++= 8.下列哪对直线互相平行( )A.5:,22:1=-=x l y lB.52:,122:1-=+=x y l x y lC.5:,12:1--=+=x y l x y lD.53:,132:1--=+=x y l x y l9.下列直线与直线123=-y x 垂直的是( )A.0364=--y xB.0364=++y xC.0346=++y xD.0346=--y x 10.过点)3,2(A ,且与y 轴平行的直线方程为( ) A.2=x B.2=y C.3=x D.3=y二.填空题(4分*8=32分)11.直线0623=--y x 的斜率为 ,在y 轴上的截距为 12.方程062622=-+-+y x y x 化为圆的标准方程为 13.两直线230,210x y x y ++= -+=的位置关系是________ 14.点(1,3)到直线y=2x+3的距离为____________15.平行于直线x+3y+1=0,且过点(1,2)的直线方程为 16.直线2x+3y+1=0与圆x 2+y 2=1的位置关系是_____17.若方程x 2+y 2-3x+4y+k=0 表示一个圆,则k 的取值范围是 ________ 18.过A(-1,2),B(2,1),C(3,2)三点的圆方程为 ___________三. 解答题(共6题,共计38分)19.已知两点A(2,6),B(m,-4)其中M(-1,n)为AB 的中点,求m+n 。
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案
![中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案](https://img.taocdn.com/s3/m/d63230c670fe910ef12d2af90242a8956becaace.png)
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35 C . -1 D. 1 3.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ; 18.平行于y 轴的直线的倾斜角为 ; 19.倾斜角为60º的直线的斜率为 ; 20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为: 22.在y 轴上的截距为5,且斜率为4的直线方程为: 23.将y-4=31(x —6)化为直线的一般式方程为: 24.过点(-1,2)且平行于x 轴的直线方程为 25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是 26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是 27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ; 28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为 29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。
(完整版)职高数学第八章直线和圆的方程及答案.docx
![(完整版)职高数学第八章直线和圆的方程及答案.docx](https://img.taocdn.com/s3/m/edd74faa59eef8c75ebfb36f.png)
第 8 章直线和圆的方程练习 8.1两点间的距离与线段中点的坐标1.根据下列条件,求线段P P 的长度:1 2( 2) P ( -3, 1)、 P ( 2, 4)(1) P ( 0, -2)、P ( 3,0)121 2 (3) P ( 4, -2)、P ( 1,2)( 4) P ( 5, -2)、 P ( -1, 6)1 2122.已知 A(2,3) 、 B ( x , 1),且 |AB |= 13 ,求 x 的值。
3.根据下列条件,求线段 P 1P 2 中点的坐标:(1) P 1( 2, -1)、P 2( 3,4) ( 2) P 1( 0, -3)、P 2( 5,0) ( 3) P 1( 3, 2.5)、 P 2(4, 1.5)( 4) P 1( 6, 1)、P 2(3, 3)4.根据下列条件,求线段P 1P 2 中点的坐标:(1) P ( 3, -1)、P ( 3,5)( 2) P ( -3, 0)、 P ( 5,0)1 21 2(3) P 1( 3, 3.5)、 P 2(4, 2.5) ( 4) P 1( 5, 1)、 P 2(5, 3)参考答案:1.(1) 13 ;(2) 34 ;(3)5; (4)102.-1 或 53.(1) ( 5 , 3) ;(2) ( 5 ,3) ;(3) (7, 2) ; (4) (9, 2)222 222 4. (1)(3, 2) ;(2) (1,0) ;(3) (3.5,3) ; (4)(5, 2)练习 8.2.1 直线的倾斜角与斜率1.选择题(1)没有斜率的直线一定是()A. 过原点的直线B.垂直于 y 轴的直线C.垂直于 x 轴的直线D. 垂直于坐标轴的直线(2) 若直线 l的斜率为 -1,则直线 l 的倾斜角为( )A.90 B.0 C. 45D. 1352 已知直线的倾斜角,写出直线的斜率:(1) 30 , k ____ ( 2) (3)120 ,k____( 4)参考答案:1. ( 1) C( 2) D45 , k____150 , k____2. ( 1)3 3;(2) 1 ;(3) 3 ; (4)33练习 8.2.2 直线的点斜式方程与斜截式方程写出下列直线的点斜式方程(1)经过点 A (2,5),斜率是 4;(2)经过点 B ( 2,3),倾斜角为45;(3)经过点 C( -1,1),与 x 轴平行;(4)经过点 D (1,1),与 x 轴垂直。
中职数学直线与圆的方程单元测试含参考答案
![中职数学直线与圆的方程单元测试含参考答案](https://img.taocdn.com/s3/m/1215cc5343323968001c9240.png)
中职数学直线与圆的方程单元测试(一)含参考答案一、单项选择题1.已知A(2,3),B(2,5),则线段AB 的中点坐标为( )A .(1,2) B.(0,-1) C .(0,-2) D .(2,4)2.若直线l 的倾斜角是o 120,则该直线的斜率是( )A .-1B .0 C.3- D .33.已知33+-=x y ,斜率为( ).A .3B .-3C .-1D .04.直线012=--y x 在y 轴上的截距为( )A .1B .1-C .2D .2-5.经过点P(l ,3),且斜率为2的直线方程是( )。
A .012=++y xB .012=+-y xC .012=--y xD .052=++y x6.直线x y 5=与直线3-=ax y 平行,则a =( ).A .-1B .0C . 1D .57.直线52-+y x =0与直线x =3的交点坐标为( ).A. (3,1)B. (1,3)C. (3,2)D. (2,3)8.点M(-3,1)到直线0543=-+y x 的距离为( ).A .2-B .1-C . 2D .19.圆心为C(2,-1),半径为3的圆的方程为( ).A .9)1(222=-++y x )(B .3)1(222=-++y x )( C .9)1(222=++-y x )( D .3)1(222=++-y x )(10.圆6)5(222=++-y x )(的圆心坐标与半径分别是( )A .),(52-,6=rB .),(52-,6=r C . ),(52-,6=r D .),(52-,6=r 11. 直线02=+-m y x 过圆046422=+--+y x y x 的圆心,则m =( ).A .1B .0C .1-D .212.经过圆25)2(122=-++y x )(的圆心且与直线04=--y x 垂直的直线方程为( )A .01=++y xB .01=+-y xC .01=-+y xD .01=+-y x二、填空题13.已知两点A(0,6),B (-8,0),则线段AB 的长度为14.倾斜角为45。
(完整版)中职直线与圆的方程单元测试题
![(完整版)中职直线与圆的方程单元测试题](https://img.taocdn.com/s3/m/19f5b7535ef7ba0d4b733b27.png)
A. 4,4 5
B. 5 ,- 5 4
C. 4,- 2 5
D. - 5 ,5 4
6. 若直线ax by 1 0经过第一、二、三象限,则有
A. a 0,b 0 B. a 0,b 0 C. a 0,b 0 D. a 0,b 0
7.已知直线y 3 k(x 5)过点(- 2,- 2),则k的值为
1. 已知A(5,2),B(0, 3),则直线AB的斜率为
A.-1
B.1
C. 2
D.2
3
2.
已知直线l的一个方向向量为
AB
(2,- 1),则它的斜率为
A. 1 2
B. 1
C. 2
D.-2
2
3. 过点P(2,1),且与向量 v
(3,- 4)平行的直线方程为
A. x 3y 14 0
B. x 3y 14 0
A. A l,l B. A l,l C. A l,l D. A l,l
16.空间中可以确定一个平面的条件是
A. 两条直线 B.一点和一直线 C. 一个三角形 D. 三个点
17. 如果a b,那么a与b
A. 一定相交 B. 一定异面 C. 一定共面 D. 一定不平行
18.“a, b是异面直线”是指:
A. 4
B. 5
C. 7
D. 7
7
7
4
5
8. 直线x ay 2a 2与ax y a 1平行的条件是
A. a 1 2
B. a 1 2
C. a 1
D. a 1
9. 直线2x y C 0与直线2x y 2 0的距离为 5,则C等于
A. 7
B. -3
C. -3 或 7
D. -7 或 3
中职数学第八章直线和圆的方程小测(2018级)+参考答案
![中职数学第八章直线和圆的方程小测(2018级)+参考答案](https://img.taocdn.com/s3/m/43e0cfe650e2524de4187e3f.png)
2019-2020学年第一学期2018级中职数学第八章《直线和圆的方程》测试卷(时间:90分钟,总分:100分)班级: 姓名: 座号:二、填空题:(3′×5=15′) 1.直线132y x =+,则该直线的斜率k = ; 2.已知点(2,0)A 和点(0,6)B ,则线段AB 的中点坐标为 ; 3. 如果直线670x y m -+=过原点,则m = ;4. 已知直线12:20,:210,l kx y l x y --=+-=若12l l ⊥,则k = ;5. A(1,0), B(4,4) , 求AB 的距离为 .三、解答题:(40′,每题8分)1.已知直线l 经过点(,0)A a 和(3,1)B ,问a 为何值时,直线l 的倾斜角 (1)是锐角?(2)是钝角?(3)是直角?2.如图,已知圆C 的一般方程是222440x y x y +--+=. (1)求该圆的圆心坐标和直径;(2)该圆的过原点的切线方程.3. 已知直线1l :30x y ++=, 2l :10x y -+=,且A 为直线1l 与2l 的交点 (1)求交点A 的坐标;(2)求过点A ,并且倾斜角为3π的直线方程.4.如图,直线与两坐标轴的交点为A (2,0),B (0,2).(1)求该直线的方程;(2)求以A 为圆心,以线段AB 为半径的圆的方程.5. 如图,直线3y x m =-+与y 轴交于点(0,4)A(1)求m 的值;(2)求以A 为圆心,且过原点的圆的方程.一、 选择题:(3′×15=45′)1.已知两点(1,0),(3,3)A B ,则直线AB 的斜率为( ) A23 B 32C 2D 3 2.已知直线l 过点(0,1),且与直线l ':y x =平行,则l 的方程为( ) 1010A x y B x y --=+-= C 10x y -+= D 10x y ++=3.若直线1l :2y x =与直线2l :y ax b =+平行,则实数a 等于( ) A 1 B 2 C -2 D 4 4.经过点(1,2),且倾斜角为4π的直线方程为( ) A 10xy B 10xyC 10xy D 10xy5.过点(1,5)A ,且平行于直线250x y +-=的直线方程为( ) A 270xyB 210xy C 210xy D 270x y6.若第一象限的点(2,)A m 到直线3420x y -+=的距离为4,则m 的值为( ) A 3m =- B 7m = C 37m m =-=或 D 37m m ==或7.圆22410200x y x y ++-+=的圆心在第几象限( )A 第一象限B 第二象限C 第三象限D 第四象限 8. 340x y +=与圆22(2)(1)4x y -+-=的位置关系( )A 相离B 相切C 相交且过圆心D 相交但不过圆心 9.过圆225x y +=上一点(1,2)A ,并与该圆相切的直线方程为( )A 250x y ++=B 250x y +-=C 250x y ++=D 250x y +-= 10.半径为2,且与x 轴相切于原点的圆的方程为( )A 22(2)4x y -+=B 22(2)4x y ++=C 22(2)4x y ++=或22(2)4x y +-=D 22(2)2x y -+=或22(2)2x y ++= 11. 已知直线过点(0,2),斜率为4- ,则直线方程是()A. 420x y --=B. 420x y +-=C. 420x y ++=D.420x y -+= 12.过点A(2,3)、B(1,0)的直线方程是( )A 330x y --=B 330x y +-=C 330x y --=D 330x y +-=13.如图所示,直线l 经过( )A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限14.直线1:10l y -=与直线2:20l x y +-=的交点坐标是( ) A (1,1) B (1,2) C (2,1) D (2,2)15. 已知直线12:250:4270l x y l x y --=-+=与,则12l l 与的位置关系是 ( ) . A 重合 . B 平行 . C 相交且垂直 . D 相交不垂直参考答案二、填空题:(3′×5=15′) 1.12; 2.(1,3); 3. 0; 4. 2; 6. 5.三、解答题:(40′,每题8分)1.(1)3a > (2)3a < (3)3a = 2.(1)(1,2),2d =; (2)340x y -=和0x =.3.(1)(2,1)--; (210y --+=.4.(1)20x y +-=; (2)22(2)8x y -+=.5.(1)4m =; (2)22(4)16x y +-=.。
中职数学基础模块下册直线和圆的方程章末测试题(附答案)
![中职数学基础模块下册直线和圆的方程章末测试题(附答案)](https://img.taocdn.com/s3/m/44aa4caa8662caaedd3383c4bb4cf7ec4afeb61e.png)
直线与圆的方程第I 卷(选择题)一、单选题1.已知直线的倾斜角是π3,则此直线的斜率是( )AB .CD .2.已知直线斜率等于1−,则该直线的倾斜角为( ) A .30︒B .45︒C .120︒D .135︒3.已知直线1:210l ax y ++=与直线2:(1)10l x a y +++=平行,则实数a 的值为( ) A .2−B .23−C .1D .1或2−420y −+=的倾斜角为( ) A .30B .45C .60D .1205.已知直线l 经过点()2,4M ,且与直线240x y −+=垂直,则直线l 的方程为( ) A .210x y −+= B .210x y −−= C .220x y −+=D .280x y +−=6.直线2330x y +−=的一个方向向量是( ) A .()2,3−B .()2,3C .()3,2−D .()3,27.若直线1l :430x y −−=与直线2l :310x my −+=(m ∈R )互相垂直,则m =( )A .34B .34−C .12D .12−8.经过(1,A −−,(B 两点的直线的倾斜角为( ) A .30°B .60°C .120°D .150°9.“1a =±”是“直线0x y +=和直线20x a y −=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件10.已知直线:8l y x =−.则下列结论正确的是( ) A .点()2,6在直线l 上 B .直线l 的倾斜角为4π C .直线l 在y 轴上的截距为8D .直线l 的一个方向向量为()1,1v =−11.已知圆C :2225x y +=与直线l :()3400x y m m −+=>相切,则m =( ) A .15B .5C .20D .2512.已知两圆2210x y +=和()()221320x y −+−=相交于A ,B 两点,则AB =( )A .B .CD .13.圆2220x y x y ++−=的圆心坐标为( ) A .11,2⎛⎫− ⎪⎝⎭B .11,2⎛⎫−− ⎪⎝⎭C .11,2⎛⎫⎪⎝⎭D .11,2⎛⎫− ⎪⎝⎭14.已知圆C 的圆心为()10,,且与直线2y =相切,则圆C 的方程是( ) A .()2214x y −+= B .()2214x y ++= C .()2212x y −+=D .()2212x y ++=15.已知圆221:1C x y +=与圆()()()2222:221C x y r r −+−=>有两个交点,则r 的取值范围是( )A .()1 B .()1,1C .(1⎤⎦D .1,1⎡⎤⎣⎦16.在平面直角坐标系xOy 中,圆221:1C x y +=与圆222:6890C x y x y +−++=,则两圆的位置关系是( ) A .外离B .外切C .相交D .内切17.关于x 、y 的方程220Ax Bxy Cy Dx Ey F +++++=表示一个圆的充要条件是( ). A .0B =,且0A C =≠ B .1B =,且2240D E AF +−>C .0B =,且0A C =≠,2240DE AF +−≥ D .0B =,且0A C =≠,2240D E AF +−> 18.圆222410x y x y +−++=的半径为( )A .1BC .2D .419.已知圆的一条直径的端点分别为()12,5P ,()24,3P ,则此圆的标准方程是( ) A .()()22348x y +++= B .()()22348x y −+−= C .()()22342x y +++=D .()()22342x y −+−=20.已知圆C :22430x y y +−+=,则圆C 的圆心和半径为( ) A .圆心(0,2),半径1r = B .圆心(2,0),半径1r = C .圆心(0,2),半径2r =D .圆心(2,0),半径2r =第II 卷(非选择题)二、填空题21.直线l 1:10x y +−=与直线l 2:30x y ++=间的距离是___________. 22.直线l 过点()2,1,若l 的斜率为3,则直线l 的一般式方程为______. 23.圆225x y +=的过点(2,1)M 的切线方程为___________.24.圆()()22:211C x y −+−=关于直线1y x =+对称的圆C '的标准方程为______. 25.赵州桥又名安济桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵县古称赵州而得名.赵州桥始建于隋代,是世界上现存年代最久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是40米,拱顶离水面5米;当水面上涨4米后,桥在水面的跨度为______米;三、解答题26.已知直线l :3450x y +−=,点()1,1P −. (1)求过点P 且与l 平行的直线方程; (2)求过点P 且与l 垂直的直线方程. 27.a 为何值时,(1)直线1:210l x ay +−=与直线()2:3110l a x ay −−−=平行? (2)直线3:22l x ay +=与直线4:21l ax y +=垂直?28.已知三角形ABC 的顶点坐标为()1,5A −,()2,1B −−,()4,3C ,M 是BC 边上的中点.(1)求AB 边所在的直线方程; (2)求中线AM 的方程.29.求直线l :3x +y -6=0被圆C: x 2+y 2-2y -4=0截得的弦长.30.圆C 的圆心为()2,0C ,且过点32A ⎛ ⎝⎭.(1)求圆C 的标准方程;(2)直线:10l kx y ++=与圆C 交,M N 两点,且MN =k .参考答案:1.C 2.D 3.A 4.C 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.D 13.D 14.A 15.B 16.B 17.D 18.C 19.D 20.A21.22.350x y −−= 23.250x y +−= 24.()2231x y +−=25.26.(1)3410x y +−= (2)4370x y −+=.27.(1)当16a =或0时,两直线平行 (2)当a =0时,两直线垂直28.(1)6110x y −+= (2)230x y +−=2930.(1)()2221x y −+= (2)1k =−或17−。
人教版中职数学(基础模块)下册8
![人教版中职数学(基础模块)下册8](https://img.taocdn.com/s3/m/62d54366d0d233d4b04e692a.png)
第四节直线与圆、圆与圆的位置关系[备考方向要明了][归纳·知识整合]1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),设d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.[探究] 1.在求过一定点的圆的切线方程时,应注意什么?提示:应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,则切线不存在.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).[探究] 2.若两圆相交时,公共弦所在直线方程与两圆的方程有何关系?提示:两圆的方程作差,消去二次项得到关于x,y的二元一次方程,就是公共弦所在的直线方程.[自测·牛刀小试]1.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D.不确定解析:选A法一:圆心(0,1)到直线的距离d=|m|m2+1<1< 5.法二:直线mx-y+1-m=0过定点(1,1),又因为点(1,1)在圆x2+(y-1)2=5的内部,所以直线l与圆C是相交的.2.(山东高考)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离解析:选B两圆的圆心距离为17,两圆的半径之差为1,之和为5,而1<17<5,所以两圆相交.3.已知p:“a=2”,q:“直线x+y=0与圆x2+(y-a)2=1相切”,则p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A a=2,则直线x+y=0与圆x2+(y-a)2=1相切,反之,则有a=± 2.因此p是q的充分不必要条件.4.已知圆x2+y2=4与圆x2+y2-6x+6y+14=0关于直线l对称,则直线l的方程是()A.x-2y+1=0 B.2x-y-1=0C.x-y+3=0 D.x-y-3=0解析:选D 法一:圆心O (0,0),C (3,-3)的中点P ⎝⎛⎭⎫32,-32在直线l 上,故可排除A 、B 、C.法二:两圆方程相减得,6x -6y -18=0,即x -y -3=0.5.(重庆高考)设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |=( ) A .1 B.2 C. 3D .2解析:选D 因为直线y =x 过圆x 2+y 2=1的圆心 (0,0),所以所得弦长|AB |=2.[例1] (1)(安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) (2)(江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.[自主解答] (1)因为直线x -y +1=0与圆(x -a )2+y 2=2有公共点,所以圆心到直线的距离d =|a -0+1|2≤r =2,可得|a +1|≤2,即a ∈[-3,1].(2)圆C 方程可化为(x -4)2+y 2=1,圆心坐标为(4,0),半径为1,由题意,直线y =kx -2上至少存在一点(x 0,kx 0-2),以该点为圆心,1为半径的圆与圆C 有公共点,因为两个圆有公共点,故(x -4)2+(kx -2)2≤2,整理得(k 2+1)x 2-(8+4k )x +16≤0,此不等式有解的条件是Δ=(8+4k )2-64(k 2+1)≥0,解之得0≤k ≤43,故最大值为43.[答案] (1)C (2)43——————————————————— 判断直线与圆、圆与圆的位置关系的常用方法(1)判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.(2)判断两圆的位置关系,可根据圆心距与两圆半径的和与差的绝对值之间的关系求解.1.直线l :y -1=k (x -1)和圆x 2+y 2-2y -3=0的位置关系是________. 解析:将x 2+y 2-2y -3=0化为x 2+(y -1)2=4.由于直线l 过定点(1,1),且由于12+(1-1)2=1<4,即直线过圆内一点,从而直线l 与圆相交.答案:相交2.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆D .圆解析:选A 设圆心C (x ,y ),则题意得(x -0)2+(y -3)2=y +1(y >0),化简得x 2=8y -8.[例2] (1)(北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________. (2)(济南模拟)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________.[自主解答] (1)法一:几何法:圆心到直线的距离为d =|0-2|2=2,圆的半径r =2,所以弦长为l =2×r 2-d 2=24-2=2 2.法二:代数法:联立直线和圆的方程⎩⎪⎨⎪⎧y =x ,x 2+(y -2)2=4,消去y 可得x 2-2x =0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为2(2-0)2=2 2.(2)由题意,设所求的直线方程为x +y +m =0,设圆心坐标为(a,0),则由题意知⎝⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或a =-1,又因为圆心在x 轴的正半轴上,所以a =3,故圆心坐标为(3,0).因为圆心(3,0)在所求的直线上,所以有3+0+m =0,即m =-3,故所求的直线方程为x +y -3=0.[答案] (1)22 (2)x +y -3=0 ———————————————————求圆的弦长的常用方法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2;(2)代数方法:运用韦达定理及弦长公式:|AB |x 1-x 2|=3.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ) A .-1或3 B .1或3 C .-2或6D .0或4解析:选D 圆心(a,0)到直线x -y =2的距离d =|a -2|2,则(2)2+⎝ ⎛⎭⎪⎫|a -2|22=22, 所以a =0或a =4.4.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=10[例3] 已知圆C :x 2+y 2+2x -4y +3=0.(1)若不过原点的直线l 与圆C 相切,且在x 轴,y 轴上的截距相等,求直线l 的方程; (2)从圆C 外一点P ( ,O 为坐标原点,且有|PM |=|PO |,求点P 的轨迹方程. [自主解答] (1)将圆C 配方得(x +1)2+(y -2)2=2. 由题意知直线在两坐标轴上的截距不为零, 设直线方程为x +y -a =0, 由|-1+2-a |2=2,得|a -1|=2,即a =-1或a =3. 故直线方程为|2=|PC |2-r 2.又∵|PM |=|PO |,∴|PC |2-r 2=|PO |2, ∴(x +1)2+(y -2)2-2=x 2+y 2. ∴2x -4y +3=0即为所求的方程.若将本例(1)中“不过原点”的条件去掉,求直线l 的方程.解:将圆C 配方得(x +1)2+(y -2)2=2.当直线在两坐标轴上的截距为零时,设直线方程为y =kx ,由直线与圆相切得y =(2±6)x ; 当直线在两坐标轴上的截距不为零时,设直线方程为x +y -a =0,由直线与圆相切得x +y +1=0或x +y -3=0.综上可知,直线l 的方程为 (2+6)x -y =0或 (2-6)x -y =0或x +y +1=0或x +y -3=0.——————————————————— 求过一点的圆的切线方程的方法(1)若该点在圆上,由切点和圆心连线的斜率可确定切线的斜率,进而写出切线方程;若切线的斜率不存在,则可直接写出切线方程x =x 0.(2)若该点在圆外,则过该点的切线将有两条.若用设斜率的方法求解时只求出一条,则还有一条过该点且斜率不存在的切线.5.已知点M (3,1),直线ax -y +4=0及圆(点的圆的切线方程; (2)若直线ax -y +4=0与圆相切,求a 的值.解:(1)圆心C (1,2),半径为r =2,当直线的斜率不存在时,方程为x =3. 由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时,直线与圆相切. 当直线的斜率存在时,设方程为y -1=k (x -3), 即kx -y +1-3k =0. 由题意知|k -2+1-3k |k 2+1=2,解得k =34.故方程为y -1=34(x -3),即3点的圆的切线方程为x =3或3x -4y -5=0. (2)由题意有|a -2+4|a 2+1=2,解得a =0或a =43.2种方法——解决直线与圆位置关系的两种方法直线和圆的位置关系体现了圆的几何性质和代数方法的结合.(1)从思路来看,代数法侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.(2)从适用类型来看,代数法可以求出具体的交点坐标,而几何法更适合定性比较和较为简单的运算.3个注意点——直线与圆相切、相交的三个注意点 (1)涉及圆的切线时,要考虑过切点的半径与切线垂直;(2)当直线与圆相交时,半弦、弦心距、半径所构成的直角三角形在解题中起到关键的作用,解题时要注意把它与点到直线的距离公式结合起来使用;(3)判断直线与圆相切,特别是过圆外一点求圆的切线时,应有两条.在解题中,若只求得一条,则说明另一条的斜率不存在,这一点经常忽视,应注意检验、防止出错.创新交汇——直线与圆的综合应用问题1.直线与圆的综合应用问题是高考中一类重要问题,常常以解答题的形式出现,并且常常是将直线与圆和函数、三角、向量、数列及圆锥曲线等相互交汇,求解参数、函数、最值、圆的方程等问题.2.对于这类问题的求解,首先要注意理解直线和圆等基础知识及它们之间的深入联系;其次要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘,再次要掌握解决问题常用的思想方法,如数形结合、化归与转化、待定系数及分类讨论等思想方法.[典例] (全国卷)在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值.[解] (1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3. 则圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:⎩⎪⎨⎪⎧x -y +a =0,(x -3)2+(y -1)2=9. 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0.从而x 1+x 2=4-a ,x 1x 2=a 2-2a +12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0.②由①②得a =-1,满足Δ>0,故a =-1. [名师点评]1.本题有以下创新点(1)考查形式的创新,将轨迹问题、向量问题和圆的问题融为一体来考查.(2)考查内容的创新,本题摒弃以往考查直线和圆的位置关系的方式,而是借助于参数考查直线与圆的位置关系,同时也考查了转化与化归思想.2.解决直线和圆的综合问题要注意以下几点(1)求点的轨迹,先确定点的轨迹的曲线类型,再利用条件求得相关参数; (2)存在性问题的求解,即先假设存在,再由条件求解并检验. [变式训练]1.已知直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,O 是坐标原点,且△AOB 是直角三角形,则点P (a ,b )与点M (0,1)之间的距离的最大值为( )A.2+1 B .2 C. 2D.2-1解析:选A 直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,则依题意可知,△AOB 是等腰直角三角形,坐标原点O 到直线2ax +by =1的距离d =12a 2+b 2=22,即2a 2+b 2=2, ∴a 2=2-b 22(-2≤b ≤2),则|PM |=a 2+(b -1)2=b 22-2b +2=2|b -2|2,∴当b =-2时,|PM |max =2×|-2-2|2=2+1.2.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析:因为圆的半径为2,且圆上有且仅有四个点到直线12x -5y +c =0的距离为1,即要圆心到直线的距离小于1,即|c |122+(-5)2<1,解得-13<c <13.一、选择题(本大题共6小题,每小题5分,共30分) 1.圆(x -1)2+(y +3)2=1的切线方程中有一个是( ) A .x -y =0 B .x +y =0 C .x =0D .y =0解析:选C 圆心为(1,-3),半径为1,故x =0与圆相切.2.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为( ) A.π6 B.π2 C.2π3D.56π 解析:选D 由题意知,|k +3|k 2+1=1,得k =-33,故直线l 的倾斜角为56π.3.(陕西高考)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:选A 把点(3,0)代入圆的方程的左侧得32+0-4×3=-3<0,故点(3,0)在圆的内部,所以过点(3,0)的直线l 与圆C 相交.4.过点(1,1)的直线与圆(x -2)2+(y -3)2=9相交于A ,B 两点,则|AB |的最小值为( ) A .2 3 B .4 C .2 5D .5解析:选B 由圆的几何性质可知,当点(1,1)为弦AB 的中点时,|AB |的值最小,此时|AB |=2r 2-d 2=29-5=4.5.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0解析:选A 两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0.6.直线ax +by +c =0与圆,N ,若c 2=a 2+b 2,则OM ·ON (O 为坐标原点)等于( ) A .-7 B .-14 C .7D .14解析:选A 设OM ,ON 的夹角为2θ.依题意得,圆心(0,0)到直线ax +by +c =0的距离等于|c |a 2+b 2=1,cos θ=13,cos 2θ=2cos 2θ-1=2×⎝⎛⎭⎫132-1=-79,OM ·ON =3×3cos 2θ=-7.二、填空题(本大题共3小题,每小题5分,共15分)7.设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是(2,2).答案:(2,2)9.(天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本大题共3小题,每小题12分,共36分) 10.求过点P (4,-1)且与圆C :,n ),半径为r , 则A ,M ,C 三点共线,且有|MA |=|AP |=r ,因为圆C :x 2+y 2+2x -6y +5=0的圆心为C (-1,3),则 ⎩⎪⎨⎪⎧n -2m -1=2-31+1,(m -1)2+(n -2)2=(m -4)2+(n +1)2=r , 解得m =3,n =1,r =5,所以所求圆的方程为(x -3)2+(y -1)2=5.11.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A ,B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1),B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k . 12.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知O ,C 两点的斜率k OC =b a=-1,故b =-a ,则|OC |=22,即a 2+b 2=22,可解得⎩⎪⎨⎪⎧ a =-2,b =2,或⎩⎪⎨⎪⎧ a =2,b =-2, 结合点C (a ,b )位于第二象限知⎩⎪⎨⎪⎧a =-2,b =2.故圆C 的方程为(,n )符合题意,则⎩⎪⎨⎪⎧ (m -4)2+n 2=42,m 2+n 2≠0,(m +2)2+(n -2)2=8,解得⎩⎨⎧ m =45,n =125.故圆C 上存在异于原点的点Q ⎝⎛⎭⎫45,125符合题意.1.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( )A .4B .42C .8D .82解析:选C 依题意,可设圆心坐标为(a ,a ),半径为r ,其中r =a >0,因此圆方程是(x -a )2+(y -a )2=a 2,由圆过点(4,1)得(4-a )2+(1-a )2=a 2,即a 2-10a +17=0,则该方程的两根分别是圆心C 1,C 2的横坐标,|C 1C 2|=2×102-4×17=8.2.(天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(+n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)解析:选D 由题意可得|m +n |(m +1)2+(n +1)2=1,化简得mn =m +n +1≤(m +n )24,解得m +n ≤2-22或m +n ≥2+2 2.3.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 与⊙O ′所引的切线长相等,则动点P 的轨迹方程是________.解析:⊙O 的圆心为(0,0),半径为2,⊙O ′的圆心为(4,0),半径为6,设点P 为(x ,y ),由已知条件和圆切线性质得x 2+y 2-2=(x -4)2+y 2-6,化简得x =32. 答案:x =324.已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点.若存在,写出直线l 的方程;若不存在,说明理由.解:依题意,设l 的方程为y =x +b ,①x 2+y 2-2x +4y -4=0,②联立①②消去y 得 2x 2+2(b +1)x +b 2+4b -4=0,设A (x 1,y 1),B (x 2,y 2),则有 ⎩⎪⎨⎪⎧ x 1+x 2=-(b +1),x 1x 2=b 2+4b -42,③ ∵以AB 为直径的圆过原点, ∴OA ⊥OB ,即x 1 x 2+y 1y 2=0, 而y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2, ∴2x 1x 2+b (x 1+x 2)+b 2=0,由③得b 2+4b -4-b (b +1)+b 2=0, 即b 2+3b -4=0,∴b =1或b =-4.∴满足条件的直线l 存在,其方程为 x -y +1=0或x -y -4=0.。
【中职专用】高考数学总复习——第八章直线和圆的方程(单元测试)
![【中职专用】高考数学总复习——第八章直线和圆的方程(单元测试)](https://img.taocdn.com/s3/m/4473008982d049649b6648d7c1c708a1284a0a3e.png)
第八章单元测试一、选择题1.直线ι过点P (-1,3),倾斜角的正弦是54,则直线ι的方程是( ) A .4x+3y-5=0 B.4x-3y+13=0或4x+5y-5=0C.4x+5y-5=0D.4x-3y+13=0或4x+3y-5=02.过点M (-3,2)与直线x+2y —9=0平行的直线方程是( )A.x-2y+7=0B.2y+x-1=0C.2x+y+8=0D.x+2y+4=03.过点(1,1),与直线x-2y+1=0垂直的直线方程是( )A .2x+y-3=0 B.2y-x-1=0 C.y+2x+1=0 D.y+2x-3=04.若直线3x+4y+k=0与圆x ²+y ²-6x+5=0相切,则k 等于( )A.1或-19B.10或-10C.-1或-19D.-1或-195.圆x ²+y ²-4x+4y+6=0 截直线x-y-5=0所得的弦长为( ) A.6 B.225 C.1 D.5 6.已知圆的圆心是点(-5,3),且与y 轴相切,则圆的方程是()A.(x-5)²+(y+3)²=5²B.(x-5)²+(y+3)²=3²C.(x+5)²+(y-3)²=5²D.(x+5)²+(y-3)²=3²7.以y=x 2±为渐近线,一个焦点为F(0,3)的双曲线的方程为( ) A .1222=-y x B.1222=-x y C .16322=-y x D .13622=-x y 8.已知椭圆的方程是125222=+y a x (a>5),它的两个焦点分别为F 1 ,F 2,且丨F 1F 2丨=8弦AB 过F 1,则△ABF 2的周长( ).A .10B .20C .412 D.4149.椭圆的一个顶点与两个焦点构成等边三角形,此椭圆的离心率为( ) A.51 B.43 C.33 D.21 10.以抛物线y 2=20x 的焦点为圆心,且与双曲线191622=-x y 的渐近线相切的圆的方程为( ) A.x 2+y 2+10x+9=0 B.x 2+y 2-10x+9=0 C.x 2+y 2—10x+16=0 D.x 2+y 2-10-9=011.双曲线的离心率为2,则双曲线 的两条渐近线的夹角是( )A. 45°B.30°C.60°D.90°12.直线ax+(1-a)y=3与直线(a-1)x+(2a+3)y=2垂直,则a 的值为( ) A.23-或0 B.-3或1 C.-3 D.1 13.以C (1,3)为圆心,且与直线3x-4y-7=0相切的圆的方程是_________14.若椭圆的短轴长,焦距,长轴长依次成等差数列,则这个椭圆的离心率是__________15.渐近线方程为y=x 23±,且经过点M (29,-1)的双曲线的方程是 _________ 16.渐近线方程为3x ±2y=0,则该双曲线的离心率是________17.已知 双曲 线 与 椭 圆1244922=+y x 共焦点,且以y=x 34±为渐近线,则该双曲线的方程为________ 18.点P (2,5)关于直线x+y=0的对称点的坐标是_________19.已知直线了的斜率为61,且和两坐标轴围成的面积为3的三角形,则了的方程为 _________ 三.解答题 20.F 1 ,F 2为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且∠ F 1P F 2=90°,求△F 1P F 2的面积 .21.已知直线了经过点A (1,3)、B (2,2),解答下列问题。
(完整版)职高数学第八章直线和圆的方程及答案
![(完整版)职高数学第八章直线和圆的方程及答案](https://img.taocdn.com/s3/m/b051f5b65727a5e9856a61a2.png)
第8章直线和圆的方程练习8.1 两点间的距离与线段中点的坐标1.根据下列条件,求线段P 1P 2的长度:(1)P 1(0,-2)、P 2(3,0) (2)P 1(-3,1)、P 2(2,4)(3)P 1(4,-2)、P 2(1,2) (4)P 1(5,-2)、P 2(-1,6)2.已知A(2,3)、B (x ,1),且|AB 求x 的值。
3.根据下列条件,求线段P 1P 2中点的坐标:(1)P 1(2,-1)、P 2(3,4) (2)P 1(0,-3)、P 2(5,0)(3)P 1(3,2.5)、P 2(4,1.5) (4)P 1(6,1)、P 2(3,3)4.根据下列条件,求线段P 1P 2中点的坐标:(1)P 1(3,-1)、P 2(3,5) (2)P 1(-3,0)、P 2(5,0)(3)P 1(3,3.5)、P 2(4,2.5) (4)P 1(5,1)、P 2(5,3)参考答案:2.-1或53.(1) 53(,)22;(2) 53(,)22-;(3) 7(,2)2; (4) 9(,2)24. (1) (3,2);(2) (1,0);(3) (3.5,3); (4) (5,2)练习8.2.1 直线的倾斜角与斜率1.选择题(1)没有斜率的直线一定是( )A.过原点的直线B.垂直于y 轴的直线C.垂直于x 轴的直线D.垂直于坐标轴的直线(2)若直线l 的斜率为-1,则直线l 的倾斜角为( )A. 90︒B. 0︒C. 45︒D. 135︒2已知直线的倾斜角,写出直线的斜率:(1)30,____k α=︒= (2)45,____k α=︒=(3)120,____k α=︒= (4)150,____k α=︒=参考答案:1.(1)C (2)D2.(1;(2) 1 ;(3) 练习8.2.2 直线的点斜式方程与斜截式方程写出下列直线的点斜式方程(1)经过点A (2,5),斜率是4;(2)经过点B (2,3),倾斜角为45︒;(3)经过点C (-1,1),与x 轴平行;(4)经过点D (1,1),与x 轴垂直。
中职数学基础模块下册第八章直线与圆的方程单元练习卷含参考答案
![中职数学基础模块下册第八章直线与圆的方程单元练习卷含参考答案](https://img.taocdn.com/s3/m/23ca76025022aaea988f0f5d.png)
中职数学基础模块下册第八章直线与圆的方程单元练习卷含参考答案(时间:90分钟,满分:100分)一、选择题(每题3分,共60分)1.已知A(2,0),B(2,4),则线段AB 的中点坐标为( ).A .(1,2)B .(0,-2)C .(0,2)D .(2,2)2.若直线l 的倾斜角是45º,则该直线的斜率为( )A .0B .21C .23D .13.过点M(-1,m),N(l ,4)的直线的斜率等于1,则m 的值为() A. 1 B. -1 C .2 D .-24.己知直线过点(0,2),斜率为-4,则其直线方程是( )A.4x -y -2=0 B .4x+y -2=0 C .4x +y +2=0 D.4x -y +2=05.直线3x+2y-6=0在y 轴上的截距为( ).A .2B . 3C .-2 D. -36.直线3x+4y-7=0的斜率为( )A .43B .43-C .34D .34-7.直线x+y -1=0与直线x -y+l=0的交点是( )A. (0,1)B.(1,0)C.(0,-1)D. (-1,0)8.直线2x -y -3=0与y=2x+2的位置关系是( ).A.平行B.相交 C .垂直 D.重合9.若直线l 过点(-1,2),且与直线y=x 垂直,则直线l 的方程是().A. x -y+1=0 B .x+y+l=0 C .x -y -1=0 D.x+y -1=010.下面两条直线互相平行的是( ).A.x -y+1=0与x+y+l=0 B .x -y+l=0 与-x -y+1=0C .x -y +1=0 与y=x D.x -y+1=0与y=-x+111.经过点(2,-3)且垂直于y 轴的直线的方程是( )A. x=2B. y=2C. x=-3D. y=-312.圆25)2(322=++-y x )(的圆心坐标和半径分别为( ) A . (-3,2),5 B .(3,-2),5C . (-3,2), 25 D. (3,-2), 2513.已知直线l 与直线y=x -2平行,则直线l 的倾斜角为( ).A .6πB . 4πC .3π D. 2π14.以点(-1,2)为圆心,3为半径的圆的标准方程为( )A .3)2(122=-+-y x )( B . 3)2(122=++-y x )( C .9)2(122=-++y x )( D. 9)2(122=+++y x )( 15.已知直线:1l 052=--y x ,直线:2l 0724=+-y x ,则1l 与2l 的位置关系是( )A.重合 B .平行 C .相交且垂直 D.相交不垂直16.直线053=+-y x 的倾斜角为( )A .6πB . 3πC .32π D. 65π 17.圆044222=-+-+y x y x 的圆心坐标和半径分别为( )A . (1,-2), 3B .(1,-2), 9C . (-1,2), 3 D. (-1,2),918.点(5,7)到直线4x -3y -1=0的距离等于( )A.252 B .58 C .8 D .52 19.直线03=+-y x 与圆9)1(122=-+-y x )(的位置关系是( ) A.相离 B .相切 C .相交且过圆心 D .相交但不过圆心20.直线01543=+-y x 与圆4)2(122=-+-y x )(的位置关系是( ) A.相切 B .相离 C .相交且过圆心 D .相交但不过圆心二、填空题(每题4分,共40分)21. 已知点A 的坐标为(1,2),点B 的坐标为(0,2),则A 与B 两点间的距离|AB |=22. 若点(2,-3)在直线mx -y+1=0上,则m=23.斜率为1,且过点(0,-2)的直线方程为24.把直线的一般式方程2x -3y -9=0化成斜截式为25.过点A (-1,1),且平行于4x+2y -9=0直线方程为26.斜率为31,且在y 轴上的截距为4的直线方程为27.己知直线kx -2y -2=0与直线x -2y=0平行,则k=28.若直线8x+ay -1=0与x -2y=0垂直,则实数a=29.由点A (-6,3),B(8,7)为端点的线段的垂直平分线方程为30.已知点A(-1,0),B(1,0),则以线段AB 为直径的圆的方程为第八章直线与圆的方程单元练习卷参考答案一、选择题1—5 DDCBB 6—10 BAADC 11—15 DBBCB 16—20 BADDA二、填空题21. 122.-223.x-y-2=02x-324.y=325. 2x+y+1=01x+426.y=327. 128. 429.7x+2y-11=030.12=2x+y。
(完整版)直线和圆的方程单元测试题含答案解析.docx
![(完整版)直线和圆的方程单元测试题含答案解析.docx](https://img.taocdn.com/s3/m/21f40f6c195f312b3069a5a6.png)
完美 WORD 格式 .整理《直线与圆的方程》练习题1一、选择题1.方程 x2+y2+2ax-by+c=0 表示圆心为 C( 2, 2),半径为 2 的圆,则 a、 b、c 的值依次为( B )( A)2、 4、 4;( B)-2 、 4、4;( C) 2、 -4 、 4;( D) 2、-4 、 -42.点 (1,1) 在圆 ( x a ) 2( y a ) 2 4 的内部,则a的取值范围是(A)(A)1a1(B)0a1(C)a1或 a 1 (D) a 13.自点A(1,4 ) 作圆 (x 2 ) 2( y 3 ) 21的切线,则切线长为(B)(A)5(B) 3(C)10(D) 54.已知 M (-2,0), N (2,0),则以 MN为斜边的直角三角形直角顶点P 的轨迹方程是 ( D )(A)x 2y 22(B)x 2y 24(C)x 2y 22(x 2 )(D)x 2y 24( x2)5.若圆 x2y 2(1)x2y0 的圆心在直线x 1 左边区域,则的取值范围是2(C)A. (0,+)B.1,+1(1,∞ )D. R C. (0, )56. . 对于圆x2y121上任意一点P( x, y),不等式x y m0 恒成立,则m的取值范围是BA .( 2 1,+ )B .2,C.( 1,+ )D.1,+ 1 +7. 如下图,在同一直角坐标系中表示直线y =ax与=+,正确的是 (C)y x a完美 WORD 格式 .整理8. 一束光线从点A( 1,1)出发,经x轴反射到圆 C : ( x 2)2( y 3) 2 1 上的最短路径是( A)A. 4B. 5C.32 1D.269.直线 3 x y 230 截圆x2+y2=4得的劣弧所对的圆心角是( C )A、B、C、D、643210. 如图,在平面直角坐标系中,Ω是一个与 x 轴的正半轴、 y 轴的正半轴分别相切于点C、 D的定圆所围成的区域( 含边界 ) ,、、、是该圆的四等分点.若点 (, ) 、点′( ′,y′)A B C D P x yP x满足 x≤ x′且 y≥ y′,则称 P优于 P′.如果Ω中的点 Q满足:不存在Ω中的其它点优于Q,那么所有这样的点组成的集合是劣弧()QA. ABB. BCC. CDD. DA[ 答案 ]D[ 解析 ]首先若点M 是Ω 中位于直线右侧的点,则过,作与BD平行的直线交于AC M ADC一点 N,则 N 优于 M,从而点 Q必不在直线 AC右侧半圆内;其次,设 E 为直线 AC左侧或直线 AC 上任一点,过 E 作与 AC平行的直线交AD于 F.则 F 优于 E,从而在 AC左侧半圆内及 AC上( A 除外 ) 的所有点都不可能为Q,故 Q点只能在 DA上.二、填空题11. 在平面直角坐标系xoy中,已知圆x2y2 4 上有且仅有四个点到直线12x 5 y c 0 的距离完美 WORD 格式 .整理为 1,则实数 c 的取值范围是( 13,13).12. 圆:x2y 24x 6 y0和圆: x 2y26x 0 交于 A, B 两点,则AB的垂直平分线的方程是3x y9013. 已知点 A(4,1) , B(0,4) ,在直线L: y=3x-1 上找一点P,求使 |PA|-|PB|最大时P的坐标是( 2,5 )14. 过点A( - 2,0)22→→的直线交圆 x + y =1交于 P、Q两点,则 AP· AQ的值为________.[ 答案 ]3[ 解析 ]设 PQ的中点为 M,|OM|= d,则| PM|=| QM|= 1-d2AM|2→=2,|= 4-d .∴|AP|4-d-2→221-d, | AQ|= 4-d+ 1-d,∴→·→= |→||→|cos0 °= ( 4-2- 1-2)(4-2+1-2) = (4 -2) - (1 -d2) = 3.AP AQ AP AQ d d d d d15. 如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是________.[ 答案 ]210[ 解析 ]点P关于直线AB的对称点是 (4,2),关于直线的对称点是 ( - 2,0) ,从而所求路OB程为(4 + 2) 2+ 22= 2 10.三.解答题16. 设圆 C满足:①截y 轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3: 1;③圆心到直线 l : x 2 y 0 的距离为5,求圆 C的方程.5解.设圆心为(a,b) ,半径为r ,由条件①:r 2a2 1 ,由条件②:r 22b2,从而有:2b2a21 .由条件③:| a2b | 5 | a 2b |2b 2 a 2 1 a 1 1 ,解方程组 2b | 可得:b 155| a 1或a1, 所 以 r 22b 22 . 故 所 求 圆 的 方 程 是 (x1)2 ( y 1)22 或b1(x 1)2 ( y1)2 2 .17. 已知ABC 的顶点 A 为( 3,- 1),AB 边上的中线所在直线方程为 6x 10 y 59 0 ,B的平分线所在直线方程为x 4y 10 0 ,求 BC 边所在直线的方程.解:设 B(4 y 1 10, y 1) ,由 AB 中点在 6x 10 y59 0 上,可得: 6 4y 17 10 y 1 159 0 , y 1 = 5 ,所以 B(10,5) .22设 A 点关于 x4 y 10 0 的对称点为 A'( x ', y') ,x3 4 y 4 10A (1,7) . 故 BC : 2x 9 y 650 .则有2 1 1 2y1x3 418. 已知过点 M3, 3 的直线 l 与圆 x 2y 2 4 y 21 0 相交于 A, B 两点,( 1)若弦 AB 的长为 2 15 ,求直线 l 的方程;( 2)设弦 AB 的中点为 P ,求动点 P 的轨迹方程.解 : ( 1 ) 若 直 线 l 的 斜 率 不 存 在 , 则 l 的 方 程 为 x3 , 此 时 有 y 24 y 12 0 , 弦| AB | | y A y B | 268 ,所以不合题意.故设直线 l 的方程为 y3 k x 3 ,即 kx y 3k3 0 .x 2y 220, 2 ,半径 r 5 .将圆的方程写成标准式得25,所以圆心圆心 0, 2 到直线 l 的距离 d| 3k 1|,因为弦心距、半径、弦长的一半构成直角三角形,k 213k2所以 152120 ,所以 k3 .k 225,即 k31所求直线 l 的方程为 3xy 12 0 .( 2 )设 P x, y ,圆心 O 1 0, 2 ,连接 O 1 P ,则 O 1 PAB .当 x 0 且 x3 时,kO PkAB1,又kABkMPy( 3),x( 3)1则有y2 y3 22x1,化简得x3 y 55......( 1)0 x 3222当 x0 或 x 3时, P 点的坐标为0, 2 , 0, 3 , 3, 2 , 3, 3 都是方程(1)的解,22所以弦 AB 中点 P 的轨迹方程为 x3 y5 5 .22219. 已知圆 O 的方程为 x 2+y 2= 1,直线 l 1 过点 A (3,0) ,且与圆 O 相切.(1) 求直线 l 1 的方程;(2) 设圆 O 与 x 轴交于 P ,Q 两点, M 是圆 O 上异于 P , Q 的任意一点,过点A 且与 x 轴垂直的直线为 l 2,直线 PM 交直线 l 2 于点 P ′,直线 QM 交直线 l 2 于点 Q ′. 求证:以 P ′Q ′为直径的圆 C 总过定点,并求出定点坐标[ 解析 ](1) ∵直线 l 1 过点(3,0) ,∴设直线 l 1 的方程为 y = ( x - 3) ,即 kx - -3 = 0,Aky k则圆心 O (0,0) 到直线 l 1 的距离为 d = |3 k | = 1,2k + 12解得 k =± 4 .∴直线 l 1 的方程为 y =±2 ( x - 3) .4(2) 在圆 O 的方程 x 2+ y 2= 1 中,令 y = 0 得, x =± 1,即 P ( - 1,0) , Q (1,0).又直线 l 2 过点tA 与 x 轴垂直,∴直线 l 2 的方程为 x = 3,设 M ( s , t ) ,则直线 PM 的方程为 y = s + 1( x + 1) .x = 3 4t解方程组y = t ( x + 1)得, P ′ 3, s + 1 .s + 12 t同理可得 Q ′ 3, s -1 .4t 2t∴以 P ′ Q ′为直径的圆 C 的方程为 ( x -3)( x - 3) + y - s +1 y - s -1 = 0,.专业资料分享.又 s 2+ t 2= 1,∴整理得 ( x 2+ y 2- 6x +1) +6s -2y =0, t2若圆 C 经过定点,则 y = 0,从而有 x - 6x + 1= 0,∴圆 C 总经过的定点坐标为 (3 ±22 ,0) .20. 已知直线 l :y=k (x+2 2 ) 与圆 O: x 2 y 2 4 相交于 A 、B 两点, O 是坐标原点,三角形 ABO 的面积为 S. ( 1)试将 S 表示成的函数 S ( k ),并求出它的定义域; ( 2)求 S 的最大值,并求取得最大值时k 的值 .【解】: : 如图 ,(1) 直线 l 议程 kx y2 2k 0( k 0),原点 O 到 l 的距离为 oc2 2 k 1 k2弦长 AB2 228K 2 OAOC2 421 K( 2) ABO 面积S1AB OC4 2 K 2 (1 K 2 )AB 0,1 K1( K0),1K 22S(k ) 4 2 k 2 (1 k 2 )( 1 k 1且K1 k 2(2)令11 t1,1 k 2t,2S(k )4 2 k 2 (1 k 2 )422t 2 3t 14 22(t3) 2 1 .1 k 248当 t=3时 ,13 , k 2 1 , k 3时,Smax241 k2 4 3321. 已知定点A( 0, 1),B( 0, -1 ),C(1, 0).动点P满足:AP BP k | PC |2.(1)求动点P的轨迹方程,并说明方程表示的曲线类型;(2)当kuuur uuur2 时,求| 2AP BP | 的最大、最小值.uuur( x, yuuur uuur(1x, y) .因为解:( 1)设动点坐标为P(x, y),则AP1) , BP ( x, y1) , PC AP BP k | PC |2,所以x2y2 1 k[( x 1)2y 2 ] . (1k) x2(1k ) y22kx k 1 0 .若 k1,则方程为 x 1 ,表示过点(1, 0)且平行于 y 轴的直线.若 k1,则方程化为 (x k )2y2(1)2.表示以 (k,0) 为圆心,以1为1k1k k1|1 k |半径的圆.( 2)当k 2 时,方程化为(x2) 2y21,uuur uuur uuur uuur9x29 y2 6 y 1 .因为 2AP BP(3x,3 y 1) ,所以| 2 AP BP |又 x2y24xuuur uuur6y26 .3 ,所以| 2 AP BP | 36x因为 ( x 2) 2y 21,所以令 x2cos, y sin,则 36x6y26 6 37 cos()46[46637, 46637] .uuur uuur46637337 ,所以 | 2AP BP |的最大值为最小值为4663737 3 .。
中职基础模块下直线和圆的方程测试题
![中职基础模块下直线和圆的方程测试题](https://img.taocdn.com/s3/m/c6998cb64028915f814dc212.png)
精品资料欢迎下载中职基础模块下直线和圆的方程测试题(时间:60分钟总分:100分)得分:_________ 一、单选题(本大题共6小题,每小题4分,共24分)1、已知A (2,-3),B (0,5),则直线AB 的斜率是() A 、4 B 、-4 C 、3 D 、-32、设A (-1,3),B (1,5),则直线AB 的倾斜角为() A 、30? B 、45? C 、60? D 、90?3、以A (1,2),B (1,6)为直径两端点的圆的方程是()A 、(x+1)2 +(y-4)2 =8 B 、(x-1)2 +(y-4)2 =4 C 、(x-1)2 +(y-2)2 =4 D 、(x+1)2 +(y-4)2 =16 4、若P (-2,3),Q (1,x )两点间的距离为5,则x=( ) A. 5 B. 6 C. 7 D. 8 5、方程为x 2+y 2-2x+6y-6=0的圆的圆心坐标是() A 、(1,3)B 、(-1,3)C 、(1,-3)D 、(2,1)6、过点A (-1,2),且,倾斜角是60?的直线方程为 ( ) A. 3230x y B. 3230x y C. 30x y D.30x y 二、填空题(本大题共6小题,每小题5分,共30分)7、两直线230,210x y x y 的位置关系是________8、点(1,3)到直线y=2x+3的距离为______________9、过A (-1,2),B (2,1),C (3,2)三点的圆方程为 ____________________.10、平行于直线x+3y+1=0,且过点(1,2)的直线方程为11、直线2x+3y+1=0与圆x 2+y 2=1的位置关系是_____12、若方程x 2+y 2-3x+4y+k=0表示一个圆,则k 的取值范围是_________ 三、解答题(本大题共3小题,共45分,解答时应写出简要步骤。
)13. (15分)求顶点坐标为A (-1,-2),B (2,2),C (3,-2)的ABC面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案
中职数学第八章《直线和圆的方程》单元检测
一、选择题(共10题,每题3分,共30分)
1.已知A(2,-3),B(0,5),则直线AB的斜率是()。
A。
4 B。
-4 C。
3 D。
-3
2.设A(-1,3),B(1,5),则直线AB的倾斜角为()。
A。
30° B。
45° C。
60° D。
90°
3.下列哪对直线互相垂直?
A。
l1: y=2x+1.l2: y=2x-5
B。
l1: y=-2.l2: y=5
C。
l1: y=x+1.l2: y=-x-5
D。
l1: y=3x+1.l2: y=-3x-5
4.以A(1,2),B(1,6)为直径两端点的圆的方程是()。
A。
(x+1)^2+(y-4)^2=8
B。
(x-1)^2+(y-4)^2=4
C。
(x-1)^2+(y-2)^2=4
D。
(x+1)^2+(y-4)^2=16
5.若P(-2,3),Q(1,x)两点间的距离为5,则x的值可以是()。
A。
5 B。
6 C。
7 D。
8
6.方程为x^2+y^2-2x+6y-6=0的圆的圆心坐标是()。
A。
(1,3) B。
(-1,3) C。
(1,-3) D。
(2,1)
7.过点A(-1,2),且倾斜角是60°的直线方程为()。
A。
3x+y-2-3=0
B。
3x-y+2+3=0
C。
x-y+3=0
D。
x+y+3=0
8.下列哪对直线互相平行?
A。
l1: y=-2.l2: x=5
B。
l1: y=2x+1.l2: y=2x-5
C。
l1: y=x+1.l2: y=-x-5
D。
l1: y=3x+1.l2: y=-3x-5
9.下列直线与直线3x-2y=1垂直的是()。
A。
4x-6y-3=0
B。
4x+6y+3=0
C。
6x+4y+3=0
D。
6x-4y-3=0
10.过点A(2,3),且与y轴平行的直线方程为()。
A。
x=2
B。
y=2
C。
x=3
D。
y=3
二、填空题(共8题,每题4分,共32分)
11.直线3x-2y-6=0的斜率为_______,在y轴上的截距为_______。
12.方程x^2+y^2-6x+2y-6=0化为圆的标准方程为_______。
13.两直线x+2y+3=0.2x-y+1=0的位置关系是_______。
14.点(1,3)到直线y=2x+3的距离为_______。
15.平行于直线 $x+3y+1=0$,且过点 $(1,2)$ 的直线方程
为 $y=\frac{-1}{3}x+\frac{7}{3}$。
16.直线 $2x+3y+1=0$ 与圆 $x^2+y^2=1$ 的位置关系是相交。
17.若方程 $x^2+y^2-3x+4y+k=0$ 表示一个圆,则 $k$ 的
取值范围是 $-4\leq k\leq 4$。
18.过 $A(-1,2)$,$B(2,1)$,$C(3,2)$ 三点的圆方程为 $(x-2)^2+(y-2)^2=2$。
19.由中点公式可得 $m=\frac{n+10}{3}$,代入 $B$ 的坐
标得 $n=-8$,$m+n=-\frac{14}{3}$。
20.设切点为 $(x_0,y_0)$,则由切线垂直于半径可得
$x_0+5y_0+c=0$,又由切点在圆上可得 $x_0^2+y_0^2=25$。
联立解得 $c=-10$。
21.将直线代入圆的方程得$x^2+(2x+3)^2-6x-8(2x+3)=0$,化简得$5x^2-28x-35=0$,解得$x_1=-1$,$x_2=\frac{7}{5}$。
代入直线方程得两个交点为 $(-1,1)$ 和
$(\frac{7}{5},\frac{23}{5})$,计算两点间的距离得弦长为
$\frac{12\sqrt{10}}{5}$。
22.设圆心为 $(a,1)$,则直线到圆的距离为 $\frac{|2a+b-
1|}{\sqrt{5}}=5$,解得 $a=\frac{11-b}{4}$。
又因为圆心在直
线上,所以$1=2(\frac{11-b}{4})+b$,解得$b=-\frac{5}{3}$。
23.将圆的方程化为 $(x-2)^2+(y+1)^2=6$,则圆的半径为$\sqrt{6}$,圆心为 $(2,-1)$。
由于所求切线平行于直线 $x-2y-
1=0$,所以其斜率为 $-\frac{1}{2}$。
设切点为 $(x_0,y_0)$,
代入圆的方程得 $(x_0-2)^2+(y_0+1)^2=6$,又因为切线垂直
于半径,所以其斜率为$\frac{y_0+1}{x_0-2}$,解得$x_0=1$,$y_0=-4$,所以切线方程为 $x+2y+9=0$。