直线与圆中的最值问题专题

合集下载

与圆有关的最值(范围)问题

与圆有关的最值(范围)问题

xx与圆有关的最值(范围)问题圆是数学中优美的图形,具有丰富的性质.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形性质,利用数形结合求解.当然,根据《教学要求》的说明,“平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想”,因此在此类问题的求解中,有时也会用到函数思想和基本不等式思想等.本文将就与圆的最值问题有关的题目进行归纳总结,希望能为学生在处理此类问题时提供帮助. 类型一:圆上一点到直线距离的最值问题应转化为圆心到直线的距离加半径,减半径例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 。

【分析】:这是求解“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,这一结论在解题时可直接应用.解:如图1,圆心C到直线y=x +1的距离d =圆半径1r =,故1PQ PC r ≥-=变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QABS的最小值为 。

【分析】本题要求QABS的最大值,因为线段AB 为定长,由三角形面积公式可知,只需求“Q 到AB l 的最小值",因此问题转化为“圆上一动点到直线的最小距离”,即例1. 解:如图2,设Q h 为Q 到AB l 的距离,则11)42QABQ Q SAB h =⋅===+图1 图2变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为 【分析】一般地,当直线和圆相切时,应连接圆心和切点,构造直销三角形进行求解.因为222PA PC r =-,故即求PC 的最小值,即例1.解:如图3,22221PA PC r PC =-=-,∵min PC=∴min PA变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB ,A 、B 为切点,则当PC= 时,APB ∠最大.【分析】APB APC ∠=∠,故即求角APC ∠的最大值,利用其正弦值即可转化为求PC 的最小值,即例1.解:如图4,∵APB APC ∠=∠,1sin APC PC∠=,∵min PC =,∴PC =APC ∠最大,即APB ∠最大.图3 图4变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .【分析】将四边形面积转化为两个全等的三角形的面积,从而转化为PA 的最小值,问题又转化为求切线段的最小值问题.解:如图4,1222PAC PAB PAB S S S S PA AC PA ∆∆∆=+==⨯⋅⋅=四边形PACB ,由变式2可知,min PA =PACB【解题回顾】在上面例1及几个变试题的解题过程中,我们可以总结一句“万变不离其宗”,一般地,求“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,“圆心到直线的距离加半径”即为最大距离,这一结论在解题时可直接应用.另:和切线段有关的问题常利用“连接圆心和切点,构造直销三角形“进行求解.也即将“ 两个动点的问题转化为一个动点的问题”.如下例.例2已知圆C:222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.【分析】本题中,由于点P 和点M 均在动,故直接做很难求解.联系到PM 是切线段,因此可利用222PM PC r =-将条件PM=PO 转化为只含有一个变量P 的式子即可求解.解:由题意,令(,)P x y ,∵222PM PC =-,∴222PC PO -=,即2222(1)(2)2x y x y ++--=+,化简得:2430x y -+=.∵PM=PO ,∴即求直线2430x y -+=到原点O (0,0)的最小距离.d==PMx类型二:利用圆的参数方程转化为三角函数求最值例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.【分析】本题是典型的用圆的参数方程解决的题型,利用圆的参数方程将所求式转化为三角函数求最值,利用辅助角公式即得最大值.解:22(1)(2)5x y ++-=,令1()2x R y θθθ⎧=-+⎪∈⎨=+⎪⎩,则255cos()5x y θθθϕ-=-+-=+-(其中cos ϕϕ==) ∴当cos()1θϕ+=时,max (2)550x y -=-=,故x —2y 的最大值为0.【解题回顾】和圆有关的一次式的求解,利用圆的参数方程可以比较方便的求到最值.类型三:抓住所求式的几何意义转化为线性规划问题求最值若所求式子具有较明显的几何意义,值.比如例2,除了用圆的参数方程求解,这类题通常转化为直线方程的纵截距求解. 解法二:令2x y z -=,则1122y x z =-,由题意,当直线的纵截距最小时,z 最大,此时直线和圆相切,故圆心到直线的距离d ==故010z =-或,由题意,max 0z =,即x-2y 的最大值为0.除了转化为直线的截距求解,还有一些式子具有明显的几何意义,比如斜率、两点间距离、点到直线的距离等.比如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,则可以分别用如下方法求解: 对12y x --,转化为圆上任意一点P 到点(2,1)A 连线斜率的最大值,可设过点(2,1)A 的直线为1(2)y k x -=-,直线和圆相切时,即圆心到直线的距离d ==,可得122k =-或,故1[2,)(,2k ∈+∞⋃-∞-.对22(2)(1)x y -+-,转化为圆上任意一点P 到点(2,1)A 距离的平方的取值范围,由例1易得[PA CA CA ∈+,即222(2)(1)[50PA x y =-+-∈-+对1x y --,联想到点到直线的距离公式中有类似的元素.可将问题转化为圆上任意一点P 到直线10x y --=的距离的问题,易得,圆心到直线的距离为P (x ,y)到直线10x y--=,即1[4x y--∈.【解题回顾】当所求式子含有明显的几何意义时,注意联系线性规划,用线性规划的思路求解可将问题简单化和直观化.类型四:向函数问题转化平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想.有些问题,单纯利用圆的几何性质无法求解.此时应考虑如何利用代数思想将问题转化为函数问题.例4(2010年高考全国卷I理科11)已知圆O:221x y+=,P A、PB为该圆的两条切线,A、B为两切点,则PA PB⋅的最小值为【分析】本题中,由于A、B都是动点,故将PA PB⋅转化为坐标形式较难求解.此时考虑到向量数量积的定义,令2APBα∠=,cos2PA PB PA PBα⋅=,而切线段PA=PB也可用α表示,故所求式可转化为关于α的三角函数求解.解:令2((0,))2APBπαα∠=∈,cos2PA PB PA PBα⋅=,1tanPA PBα==,∴222222cos2cos cos2(1sin)(12sin)tan sin sinPA PBαααααααα⋅--⋅===,令2sin(0)t tα=>,则(1)(12)1233t tPA PB tt t--⋅==+-≥(当且仅当2t=2sin2α=时取等号)【解题回顾】本题以向量定义为载体,巧妙地利用了设角为变量,将与圆有关的问题转化为三角函数的问题求解.将几何问题代数化,利用函数思想求解.同时运用了换元思想,基本不等式思想等解题方法,是一道综合题.类型五:向基本不等式问题转化例5已知圆C:22+24x y+=(),过点(1,0)A-做两条互相垂直的直线12l l、,1l交圆C 与E、F两点,2l交圆C与G、H两点,(1)EF+GH的最大值.(2)求四边形EGFH面积的最大值.【分析】由于EF和GH都是圆的弦长,因此可利用222=+半径半弦长弦心距将EF+GH转化,用基本不等式的相关知识点.解:(1)令圆心C 到弦EF 的距离为1d ,到弦GH 的距离为2d ,则EF +GH =,又222121d d CA +==,2≤==(当且仅当122d d ==取等号)故EF +GH ≤=(2)∵EF GH ⊥,∴22128()12722d d S EF GH -+=⋅=≤⋅=四边形EFGH(当且仅当122d d ==取等号)【解题回顾】本题(1)是利用2a b +≤(2)2a b +.基本不等式是求最值的基本方法.在利用基本不等式求最值时应注意如何构造“定量”.由于圆的对称性,在与圆有关的最值问题中,应把握两个“思想":几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.同时,由于最值问题从代数意义上讲和函数的最值联系紧密,因此在解题过程中灵活的应用函数、不等式等代数思想使问题代数化、简单化也是需要注意的.。

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。

求MP+NP的最小值。

例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。

求PC+CD的最小值。

例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。

求PE+PF的最小值。

类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。

例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。

问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。

方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。

直线和圆的范围问题汇总

直线和圆的范围问题汇总

前言直线和圆的最值是圆这一章节的重点内容,也属于拔高题型。

中等及以下学生很多学生都是有问题的,为此任老师搜集了五十多道题目,我们只能集中做这些题目,不断的总结相关方法。

直线和圆的范围问题汇总1.在平面直角坐标系xOy中,已知圆O:x2+y2=1,圆M:(x+a+3)2+(y-2a)2=1(a为实数).若圆O与圆M上分别存在点P,Q,使得∠OQP=30°,则a的取值范围为________.2.(2015·苏州期末)已知圆M:(x-1)2+(y-1)2=4,直线l:x+y-6=0,A为直线l上一点,若圆M上存在两=60°,则点A的横坐标的取值范围是.点B,C,使得∠BAC3.已知点A(0,2)为圆M:x2+y2-2ax-2ay=0(a>0)外一点,圆M上存在点T使得∠MAT=45°,则实数a 的取值范围是.4.(2015·南京三模)在平面直角坐标系x O y中,圆C的方程为(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C相交于A,B两点,M为弦AB上一动点,若以M为圆心、2为半径的圆与圆C总有公共点,则实数k的取值范围为.5.(2015·苏州调研)已知圆C:(x-a)2+(y-a)2=1(a>0)与直线y=3x相交于P,Q两点,则当△CPQ的面积最大时,实数a的值为.6.在平面直角坐标系x O y中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围为.7.点P(x,y)是圆x2+(y-1)2=1上任意一点,若点P的坐标满足不等式x+y+m≥0,则实数m的取值范围是________.8.已知点P(x,y)在圆x2+(y-1)2=1上运动.(1)求y-1x-2的最大值与最小值;(2)求2x+y的最大值与最小值.9.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a+2)2=1,点A(0,2).若圆C上存在点M,满足MA2+MO2=10,则实数a的取值范围是________.10.在平面直角坐标系xOy中,点A(1,0),B(4,0).若直线x-y+m=0上存在点P使得PA=1PB,2则实数m的取值范围是________.11.在平面直角坐标系xOy中,圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的最小值为________.12.在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是________.13.已知圆O:x2+y2=1,圆M:(x-a)2+(y-a+4)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°,则实数a的取值范围是________.14.已知点A(1,1),B(1,3),圆C:(x-a)2+(y+a-2)2=4上存在点P,使PB2-PA2=32,则圆心横坐标a的取值范围为________.15.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a+2)2=1,点A(0,2).若圆C上存在点M,满足MA2+MO2=10,则实数a的取值范围是________.16.(2017·南京二模)在平面直角坐标系xOy中,圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M 上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的最小值为________.17.(2017·南京学情调研)在平面直角坐标系xOy中,若直线ax+y-2=0与圆心为C的圆(x-1)2+(y -a)2=16相交于A,B两点,且△ABC为直角三角形,则实数a的值为________.18.(2017·南京三模)在平面直角坐标系xOy中,已知圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M上任意一点.若以N为圆心、ON为半径的圆与圆M至多有一个公共点,则a的最小值为________.19.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.20.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB =90°,则m的最大值为________.21.(2017南通第三次调研考试)在平面直角坐标系xOy中,圆C1:(x-1)2+y2=2,圆C2:(x-m)2+(y+m)2=m2,若圆C2上存在一点P满足:过点P向圆C1作两条切线PA,PB,切点分别为A,B,△ABP的面积为1,则正数m的取值范围是.22.(2015·南京模拟)在平面直角坐标系xOy中,圆C的方程为(x-1)2+y2=4,P为圆C上一点.若存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60°,则圆M的方程为________.23.(2015·苏、锡、常、镇四市调研)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx -4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围为________.24在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为________.25已知点A(0,2)为圆M:x2+y2-2ax-2ay=0(a>0)外一点,圆M上存在点T使得∠MAT=45°,则实数a的取值范围是________________.26在直角坐标系xOy中,圆M:( − )2+( + −3)2=1( >0),点N为圆M上任意一点,若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的最小值为______.27已知圆C:(x-3)2+(y-2)2=r2,若直线3x+y=3上存在点P,在圆C上总存在不同的两点M,N 使得点M是线段PN的中点,则圆C的半径的r的取值范围28已知MN圆C:(x-1)2+(y-2)2=2的一条弦,且C M C N,点P是MN的中点,当弦MN在圆C上运动时,直线x-3y-5=0上总存在两点A,B,使得∠APB≥π2恒成立。

高中数学 直线与圆相关的最值问题

高中数学 直线与圆相关的最值问题

直线与圆相关的最值问题常用的处理方法圆的轨迹问题在江苏高考中是常考的内容之一,常常与向量、直线相结合考查,有一定的难度,题型从填空题到解答题不固定。

【母题】(2018年苏州市第一中学高二上期中考试)平面直角坐标系xOy 中,若直线032:=+--k y kx l 上存在点P ,使得过点P 可作一条射线与圆1:22=+y x O 依次交于B A 、,满足AB PA =,则k 的取值范围为 .一、与圆相关的最值问题的联系点1.1 与距离有关的最值问题在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离最小,最大等.这些问题常常联系到平面几何知识,利用数形结合思想可直接得到相关结论,解题时便可利用这些结论直接确定最值问题.常见的结论有:(1)圆外一点A 到圆上距离最近为AO r -,最远为AO r +;(2)过圆内一点的弦最长为圆的直径,最短为该点为中点的弦;(3)直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r +,最近为d r -; (4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆的面积. (5)直线外一点与直线上的点的距离中,最短的是点到直线的距离;(6)两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.【例1】 已知圆C 的方程为:)0()2()3(222>=-+-r r y x ,若直线33=+y x 上存在一点P ,在圆C 上总存在不同的两点N M ,,使得点M 是线段PN 的中点,则圆C 的半径r 的取值范围为 .【变式1】(2015届淮安高三三模第14题)在平面直角坐标系中,圆,圆.若圆上存在一点,使得过点可作一条射线与圆依次交于点,,满足,则半径的取值范围是_______.【变式2】 过点()1,2M 的直线l 与圆C :()()223425x y -+-=交于,A B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是 .【变式3】(2015江苏高考第10题)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。

3直线和圆中的最值问题

3直线和圆中的最值问题

3直线和圆中的最值问题直线和圆中的最值问题1、直线与原的焦点问题总是转化成圆心到直线的距离和半径间的比较,或者利用方程有解的问题;2、圆上一点至直线距离的最值问题总是转化成谋圆心到定直线的距离;3、有些最值问题必须特别注意向函数问题转变;4、把握住式子的几何意义。

一、至圆心距离的最值问题例1:已知p是直线3x+4y+8=0上的动点,pa,pb是圆x2+y2-2x-2y+1=0的两条切线,a,b是切点,c是圆心,求四边形pacb面积的最小值。

二、至圆上一点距离的最值问题例2:已知p是圆x2+y2=1上一点,q是直线l:x+2y-5=0上一点,求pq的最小值。

三、与圆上一点的坐标有关的最值问题基准3:未知定点a(-1,0),b(1,0)和圆(x-3)+(y-4)=4上的动点p,谋并使pa+pb最值时点p的座标。

p,⎪时,x2+y2最大为100⎪55⎪练1:谋实数x,y满足用户x2+(y-1)2=1,谋以下各式的最值:()13x+4y(2)x+y(3x+1(1)最大值为9,最小值为-1,(2)最大值为4,最小值为0,(3)小值为,并无最大值四、与圆半径有关的最值问题基准4:设x,y满足用户⎪y≥x谋(x-1)+(y-3)25⎪4x+3y≤12练2:未知圆c:x2+y2+2x-4y+3=0(1).若圆c的切线在x轴和y轴上截距相等,求切线的方程;(2).从圆c外一点p(x,y)向圆引切线pm,m为切点,o为座标原点,且pm求使pm最小的点p的坐标。

y=2±x,x+y+1=0或x+y-3=0,p-,⎪(练习3:已知∆abc三个顶点坐标a(0,0),b(4,0),c(0,3),点p是它的内切圆上一点,求以pa,pb,pc为直径的三个圆面积之和的最大值和最小值。

解:∆abc的三边长分别为3,4,5∴∆abc是以a为直角顶点的rt∆∴内切圆的圆心(1,1),半径r=1∴内切圆的方程为(x-1)+(y-1)=1即x+y-2x-2y+1=0设p点坐标为(x,y)pa+pb+pcx+y2+(x-4)+y2+x2+(y-3)⎪=(11-x)0≤x≤2∴当x=0时,smax=119π;当x=2时,smin=π22练4:设圆满足用户:(1)封盖y轴税金弦长为2;(2)被x轴分为两圆弧,其弧长比为3:1。

直线与圆的综合问题

直线与圆的综合问题

此时|2k— 0| :k2+1全国名校高考数学复习优质学案考点专题汇编(附详解)a直线与圆的综合问题考点一与圆有关的最值问题考法(一)斜率型最值问题[典例]已知实数x,y满足方程x2 + y2— 4x+ 1= 0,求#的最大值和最小值.入2 2[解]原方程可化为(x— 2) + y = 3,表示以(2,0)为圆心,,3为半径的圆.$的几何意义是圆上一点与原点连线的斜率,所以设x= k,即y= kx.入当直线y= kx与圆相切时(如图),斜率k取得最大值或最小值,解得k= 土, 3.所以x的最大值为一 3,最小值为—一 3.入[解题技法]形如尸y—b型的最值问题,可转化过定点(a, b)的动直线斜率的最值问题x — a求解.如本题y= y~0表示过坐标原点的直线的斜率.x x— 0全国名校高考数学复习优质学案考点专题汇编(附详解)考法(二)截距型最值问题[典例]已知实数x, y满足方程x2 + y2— 4x+ 1 = 0,求y— x的最大值和最小值.全国名校高考数学复习优质学案考点专题汇编(附详解)2)2 + y 2= 3,故可令x — 2= 3cos 0, y= . 3si n 0,X =A /3COS 0+ 2即彳厂y= . 3sin 0,从而 y — 3sin 0—.3cos [解]y —x 可看作是直线y=x+ b 在y 轴上的截距,如图 所示,当直线y= x+ b 与圆相切时,纵截距b 取得最大值或 最小值,此时|2—0^b| = 解得b= — 2±6.所以y —x 的 最大值为—2+ .6,最小值为—2— 6.[解题技法]形如 尸ax+ by 型的最值问题,常转化为动直线截距的最值问题求解. 如本 题可令b= y — x ,即y=x+ b ,从而将y — x 的最值转化为求直线y=x+ b 的截距 的最值问题.另外,此类问题也常用三角代换求解.由于圆的方程可整理为 (x —0-2 = (6S in 〔0—寸―2,进而求出y — x 的最大值和最小值.考法(三)距离型最值问题[典例]已知实数x, y 满足方程x 2 + y 2 — 4x+ 1 = 0,求x 2 + y 2的最大值和最 小值. [解]如图所示,x 2 + y 2表示圆上的一点与原点距离的平 方,由平面几何知识知,在原点和圆心连线与圆的两个交点 处取得最大值和最小值.又圆心到原点的距离为 -2— 0 2+ 0 — 0 2= 2,所以x 2 + y 2的最大值是(2 + ,3)2= 7 + 4 3, x 2 + y 2 的最小值是(2 — . 3)2 = 7 — 4 3. [解题技法]形如 尸(x — a)2+ (y — b)2型的最值问题,可转化为动点(x, y)与定点(a, b) 的距离的平方求最值.如本题中x 2 + y 2 = (x — 0)2 + (y — 0)2,从而转化为动点(x,—2k — 0— k+ 2|. ----- =1解得k=3 土;y — 2 x — 1的最大值为3+^・ y)与坐标原点的距离的平方.[专题训练]1.已知圆C: (x+ 2)2 + /= 1, P(x, y)为圆上任意一点,贝U 匕2的最大值为X — 1解析:设匚2 = k,即 kx — y — k+ 2= 0,x- 1圆心 C(—2,0), r = 1.当直线与圆相切时,k 有最值,答案:节2. ____________________ 设点 P(x, y)是圆:x 2+ (y — 3)2= 1 上的动点,定点 A(2,0), B( — 2,0),则 貳—B 的最大值为 .解析:由题意,知工A = (2 — x, — y), "PB = (— 2—x, — y),所以"PY R 宜= x 2 + y 2 — 4,由于点P(x, y)是圆上的点,故其坐标满足方程x 2 + (y — 3)2= 1,故x 2=— (y — 3)2 + 1,所以"P1? = — (y — 3)2 + 1 + y 2 — 4 = 6y — 12易知 2<y<4,--- A -- A所以,当y= 4时,PA -B 的值最大,最大值为6X 4— 12= 12.答案:12 考点二直线与圆的综合问题[典例]已知直线1: 4x+ ay — 5= 0与直线I': x — 2y= 0相互垂直,圆C 的圆心与点(2,1)关于直线I 对称,且圆C 过点M(— 1,— 1).(1)求直线l 与圆C 的方程.n—•—2 =—1,m= 0,解得].-0(0,0).n = 0,(2)过点M作两条直线分别与圆C交于P, Q两点,若直线MP,MQ的斜率满足k MP+ k MQ = 0,求证:直线P Q的斜率为1.[解]⑴•••直线1: 4x+ ay— 5 = 0与直线I' : x— 2y= 0相互垂直,•'4X 1 — 2a = 0,解得 a = 2.•••直线I的方程为4x+ 2y— 5 = 0.设圆C的圆心C的坐标为(m, n).•••圆心C(m, n)与点(2,1)关于直线I对称,m+2 n+1.4 X 2~ + 2 X ~2~ — 5 = 0,•••圆C 的半径 r = |CM|= 2.•••圆C的方程为x2 + y2= 2.(2)证明:设过点M的直线MP的斜率为k,则过点M的直线MQ的斜率为—k,直线MP的方程为y+ 1 = k(x+ 1).•••直线MP与圆C相交,y+1 = k(x+1,•联立得方程组(2 2lx2+y2=2,2 2 2消去 y 并整理,得(1 + k )x + 2k(k— 1)x+ k — 2k— 1 = 0.•••圆C 过点 M(— 1,— 1),2 2 k — 2k— 1 2k+ 1 — km—2同理,将k替换成—k,可得X Q =2—k2— 2k+1-xP•— 1)= 2 ,• xP= 21 + k 1+ k所以圆心C到直线x+y+ 2= 0的距离为|2+ 2|2 2,y Q — y p — k(X Q + 1)—1 — k(x p+ 1)+ 1 — k(X Q + X P厂 2k •'k pQ = = = = 1.X Q — X P X Q — X P X Q— X P[解题技法]直线与圆的综合问题的求解策略(1)利用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决.(2)直线与圆和平面几何联系十分紧密,可充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放到一起综合考虑.[专题训练]1.(优质试题全国卷川)直线X+ y+ 2 = 0分别与X轴,y轴交于A,B两点,点P在圆(X — 2)2 + y2 = 2上,则△ ABP 面积的取值范围是( )A. [2,6] B . [4,8]C. L.2, 3 2]D. [2 2, 3 2]解析:选A 设圆(x— 2)2+ y2 = 2的圆心为C,半径为r,点P到直线x + y+ 2= 0的距离为d,则圆心 C(2,0),r = .2,可得 d max= 2讥+ r = 3灵 ,d min = 2.2 — r = 2.由已知条件可得AB|= 2 2,1所以△ABP面积的最大值为2AB| d max= 6,1△XBP面积的最小值为2AB|d min = 2.综上,MBP面积的取值范围是[2,6].则圆心C到直线I的距离d= |2— 0+ m| |2+ m|2 = 22 2 CM2匸 d2 + 哆2,所以4=“ 2(2+ m)2 + 2,2.(优质试题湖北八校联考)如图,在平面直角坐标系xOy 中,已知圆 C: x2 + y2— 4x= 0及点 A( — 1,0), B(1,2).(1)若直线I平行于AB,与圆C相交于M , N两点,|MN| =AB|,求直线I的方程;2 2(2)在圆C上是否存在点P,使得|FA |+|PB匸12?若存在,求出点P的个数; 若不存在,说明理由.解:⑴因为圆C的标准方程为(x— 2)2+ y2 = 4,所以圆心C(2,0),半径为2.因为 I /AB, A(— 1,0), B(1,2),2— 0所以直线1的斜率为C=1,设直线I的方程为x — y+ m= 0,因为 |MN匸 |AB|= 22+ 22 = 2 2,解得m= 0或m= — 4,故直线I的方程为x — y= 0或x— y— 4= 0.(2)假设圆 C 上存在点 P,设 P(x, y),则(x— 2)2 + y2 = 4, |PA|2 + |PB|2= (x+1)2 + (y— 0)2 + (x— 1)2+ (y— 2)2= 12, 即卩 x2 + y2— 2y — 3 = 0, 即卩 x2+ (y — 1)2 =4, 因为 |2- 2|v ] 2— 02+ 0— 1 2< 2+ 2,所以圆(x— 2)2 + y2 = 4 与圆 x2+ (y— 1)2= 4 相交,所以存在点P,使得|PA|2 + |PBf= 12,点P的个数为2.即卫手宰、r.由基本不等式,得 严a 2r 三翕=近,当且仅当a 4= 1,即a =±时取 [课时跟踪检测]1. 已知圆 C: x 2 + y 2 — 2x — 2my+ m 2— 3= 0 关于直线 I: x — y+ 1 = 0 对称, 则直线x=—1与圆C 的位置关系是()A .相切B .相交 C.相离D .不能确定解析:选A 由已知得C: (x — 1)2+ (y — m)2 = 4,即圆心C(1, m),半径r =2,因为圆C 关于直线I: x — y+ 1 = 0对称,所以圆心(1, m)在直线I: x — y+ 1= 0上,所以 m= 2.由圆心C(1,2)到直线x= — 1的距离d= 1 + 1 = 2= r 知,直 线x= — 1与圆C 相切.故选A.2. 直线ax+ zy+ 2 = 0与圆x 2 + y 2= r 2相切,则圆的半径最大时,a 的值是a()A. 1 B . — 1C. ±D. a 可为任意非零实数一 1解析:选C 由题意得,圆心(0,0)到直线ax+ -y+ 2 = 0的距离等于半径r ,a等号.故选C.3. 与圆x 2 + y 2 + 2 2y+ 1 = 0相切,且在两坐标轴上截距相等的直线的条数为()A. 2B. 3C. 4D. 6解析:选B圆的标准方程为x 2 + (y+ ,2)2= 1,设切线方程为y= kx+ m ,B. ,21 "T则詈1,整理得(2+ m)2= k 2+ 1,又因为切线在两坐标轴上的截距相等,;k +1mf(>/2+ m k + 1,0,所以m 二—m ,联立方程得m解得或ki m — m,戶±k =—1, 、 、、 、所以切线方程为y=或y= — x —2 2,切线共有3条.m= — 2 2, 4.已知点P(x, y)是直线kx+ y+4 = 0(k>0)上一动点,PA, PB 是圆C: x 2+ y 2 — 2y= 0的两条切线,A, B 是切点,若四边形FACB 的最小面积是2,则k 的值为()A. 3 C. 2 .2解析:选D 圆C: x 2 + y 2— 2y= 0的圆心为(0,1),半径r = 1.由圆的性质, 知S 四边形PACB = 2S PBC .T 四边形PACB 的最小面积是2, /S ZPBC 的最小值为1,则1 rd min = 1(d 是切线长),「d min = 2. v 圆心到直线kx+ y+ 4= 0的距离就是PC 的最小 值,.•.|PC|min = 2= d +1 = 5.・.k>0,.°k = 2故选 D.W + k 25.(优质试题 赣州七校联考)已知圆C: x 2 + y 2— 2ax — 2by+ a 2 + b 2— 1= 0(av 0)的圆心在直线-3x —y+ 3= 0上,且圆C 上的点到直线 3x+ y= 0的距离的最大值为1+ .3,则a 2+ b 2的值为()1解析:直线l 的方程可变形为y=3ax+ 4,所以直线I 过定点 (0,4),且该点在圆M 上.圆的方程可变形为x 2+ (y — 2)2 = 4,所以A. 1 B . 2C. 3D. 4解析:选C易知圆的标准方程为(x— a)2 + (y— b)2= 1,所以圆心为(a, b),由圆心在直线,3x— y+. 3= 0上,可得• 3a— b+ 3= 0,即b= . 3(a+ 1) ①.厂M3a+ b| 厂圆C上的点到直线3x+ y= 0的距离的最大值 d max= 1 + 2 =』3+ 1,3得|.3a+ b匸2 3 ②.由①②得|2a+ 1|= 2,又av0,所以a=—㊁,a2 +2 2a2 + 3(a+ 1)2= 3.6.已知实数x, y满足(x+ 5)2 + (y — 12)2= 25,那么x2+ y2的最小值为解析:由题意得寸x2+ y2= p(x- 0$+( y-0$表示点P(x, y)到原点的距离,所以-‘X + y的最小值表示圆(x+ 5) + (y — 12) = 25上一点到原点距离的最小值.又圆心(—5,12 )到原点的距离为 J — 5 2+ 122= 13,所以[X2 + y2的最小值为 13 — 5 = 8.答案:82 27.已知P(x, y)为圆(x— 2) + y = 1上的动点,贝U |3x + 4y — 3|的最大值为2 1解析:设 t= 3x + 4y— 3, 即卩 3x+ 4y — 3 — t = 0.由圆心(2,0)到直线 3x+ 4y— 3|6- 3—1|—1= 0 的距离 d= —21,\/32+ 42解得—2 w tw 8所以 |3x+4y— 3| max= 8.答案:88.(优质试题贵阳适应性考试)已知直线I: ax— 3y+ 12= 0与圆M : x2 + y2n圆心为M(0,2),半径为2•如图,因为/AMB = 3,所以△AMB是等边三角形,且边长为2,高为.3,即圆心M至U直线I的距离为•. 3,所以2= .3,解得ayj a + 9=± 3.答案:±_ 39.已知曲线C上任一点M(x, y)到点E - 1, 和直线a: y=—扌的距离相等,圆 D: (x—1)2 + Jy — *)= r2(r>0).(1)求曲线C的方程;(2)过点A( — 2,1)作曲线C的切线b,并与圆D相切,求半径r.解: (1)由题意得、(x+ 1 J + Jy—1J = y+ 4 .两边平方并整理,得y= (x+1)2.•••曲线C的方程为y= (x+ 1)2.2(2)由 y= (x+ 1),得 y' = 2(x+ 1).•••点A( — 2,1)在抛物线C 上,•••切线b的斜率为y' |x=-2= — 2.•••切线b 的方程为 y— 1 = — 2(x+ 2),即卩 2x+y+ 3= 0.又直线b与圆D相切,•••圆心D 1, 2到直线b的距离等于半径,| 1, n—4y= 0相交于A, B两点,且/ AMB = 3,则实数a = ________________ .Y1+2 + 3I =诬V5 = 10 .10.已知过点A(1,0)且斜率为k的直线I与圆C:(x— 2)2+ (y— 3)2= 1交于M, N两点.(1)求 k的取值范围;2k 2+ 6k+ 129k 2 1 + k 2.(2) 1OM ON = 12,其中0为坐标原点,求|MN|.解:(1)设过点A(1,0)的直线与圆C 相切,显然当直线的斜率不存在时,直 线x= 1与圆C 相切.当直线的斜率存在时,设切线方程为 y= k o (x-1),即k o x-y — k o = 0. •••圆C 的半径r= 1,|k o — 3|4•••圆心C(2,3)到切线的距离为.2— = 1,解得k o =3.屮0+13 •••过点A 且斜率为k 的直线I 与圆C 有两个交点,44••k >3,即k 的取值范围为3,+.2 2 2(2)将直线I 的方程y= k(x — 1)代入圆C 的方程,得(1 + k)x — (2k + 6k+ 4)x2+ k + 6k+ 12 = o.设 M(X 1,y 1),N(X 2,y 2),则22k 2 + 6k+ 4X 1 + x 2 =2 —,1 + k2 2•°y 1y 2= k (X 1 — 1)(x 2 — 1) = k (X 1X 2 — X 1 — X 2 + 1)=2—>—>1ok 2 + 6k+ 12•OM ON = X 1X 2 + y 1y 2=2= 12,解得 k= 3 或 k= o(舍去).1 + k•直线I 的方程为3x — y — 3= o.故圆心(2,3)在直线I上,•|MN|= 2r = 2.B级1.已知圆 M: (x—2)2 + (y — 2)2 = 2,圆 N: x2+ (y— 8)2 = 4o,经过原点的两直线l1,I2满足11丄12,且l1交圆M于不同两点A,B,I2交圆N于不同两点C,所以k的取值范围为2- 3,于D,记l i的斜率为k.(1)求 k的取值范围;(2)若四边形ABCD为梯形,求k的值.1 解:(1)显然 20,所以可设11的方程为y= kx,则12的方程为y=—只.|2k- 2| 厂依题意得点M到直线l1的距离d1= ------------------ 产 2.A/1 + k3 42整理,得 k — 4k + iv0,解得 2- .3v kv 2+ ,3.①同理,点N到直线12的距离d2= r8k^=2v 2屮0,■\/1 + k2解得-乎kv于②由①②可得2- 3v kv^5.3 2X1 X2 X4 X3 X1 + X2X3 + X4X2 X1 X3 X4 ' X1X2 X3X4 '全国名校高考数学复习优质学案考点专题汇编(附详解)所以X3 + X4=-抚,24k 2X 3X 4=2.将直线12的方程代入圆(2)设 A(x i , y i ), B(x 2, y 2), C(x 3, y 3), D(X 4, y 4).将直线l i 的方程代入圆M 的方程,得(1 + k 2)x 2-4(1 + k)x+ 6= 0,~ .4(1+ k)6所以 x 1 + X 2=2 , X 1X 2=2.1 + k1 + kN 的方程,得(1 + k 2)x 2 + 16kx+ 24k 2 = 0,由四边形ABCD 为梯形可得X = X 6,X 2 X 3所以—+ + 2 = —+ + 2,所以 =全国名校高考数学复习优质学案考点专题汇编(附详解)2 , 「2— 2 ,x— 2)+( y+4)y E — y F k X E— 1 — 3 + k X F— 1 + 3 X E—X F X E — X F —2k+ k X E + X FX E — X F13,故直线EF的斜率所以(1 + k)2= 4,解得k= 1或k= — 3(舍去).故k的值为1.2.(优质试题成都双流中学模拟)已知曲线C上任意一点到点A(1,— 2)的距离与到点B(2,— 4)的距离之比均为*.(1)求曲线C的方程;(2)设点P(1,— 3),过点P作两条相异的直线分别与曲线 C相交于E, F两点,且直线PE和直线PF的倾斜角互补,求线段 EF的最大值.■- i x— 1 + y + 2 2解:⑴设曲线C上的任意一点为Q(x,y),由题意得2整理得x2 + y2= 10,故曲线C(2)由题意知,直线PE和直线PF的斜率存在,且互为相反数,因为P(1,—3),故可设直线PE的方程为y+ 3— k(x— 1),联立方程得节3;" 7 ' 消[x2 + y2— 10,去 y 得(1 + k2)x2— 2k(k+ 3)x+ k2 + 6k— 1— 0,因为 P(1,— 3)在圆上,所以 x— 12 2k + 6k— 1 k — 6k— 1一定是该方程的解,故可得 x E— 2 —,同理可得 X F —厂,所以 k EF1 + k 1 + k7 1为定值一3设直线EF的方程为y——§x+ b,则圆C的圆心(0,0)到直线EF的全国名校高考数学复习优质学案考点专题汇编(附详解)所以当b — 0时,线段EF 取得最大值,最大值为2.10. 、基础知识距离d —平生,所以|EF 寸1 + 9 2 10-9b 2 辿 3 v b <10 3,1.直线与圆的位置关系(半径为r,圆心到直线的距离为d)2.圆与圆的位置关系(两圆半径为r i, r2, d= |O i O2|)二、常用结论(1)圆的切线方程常用结论①过圆x2 + y2 = r2上一点P(x o, y o)的圆的切线方程为x o x+ y o y= r2.②过圆(x-a)2 + (y- b)2 = r2上一点P(x o, y o)的圆的切线方程为(x o — a)(x- a)2+ (y o-b)(y- b) = r .③过圆x2 + y2 =r2外一点M(x o, y o)作圆的两条切线,则两切点所在直线方程为x o x+y o y= r2.(2)直线被圆截得的弦长1 2 2“、弦心距d、弦长I的一半2及圆的半径r构成一直角三角形,且有r = d + ?1 2考点一直线与圆的位置关系全国名校高考数学复习优质学案考点专题汇编(附详解)考法(一)直线与圆的位置关系的判断[典例]直线I: mx— y+ 1 — m= 0与圆C:x2+ (y— 1)2= 5的位置关系是( )A •相交B •相切C •相离D •不确定mx— y+ 1 — m= 0,[解析]法一:由2 2[x +(y-1)= 5,消去 y,整理得(1 + m2)x2— 2m2x+ m2— 5 = 0,因为△= 16m2 + 20>0,所以直线I与圆相交.法二:由题意知,圆心(0,1)到直线I的距离d=<1< , 5,故直线I与寸m2+ 1圆相交.2 2 法三:直线I: mx— y+ 1 — m= 0过定点(1,1),因为点(1,1)在圆x + (y— 1)=5的内部,所以直线I与圆相交.[答案]A[解题技法]判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用△判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.[提醒]上述方法中最常用的是几何法.考法(二)直线与圆相切的问题[典例](1)过点P(2,4)作圆(x— 1)2+ (y— 1)2= 1的切线,则切线方程为()A.3x+ 4y — 4 = 0B.4x— 3y+ 4 = 0C.x= 2 或 4x— 3y+ 4= 0全国名校高考数学复习优质学案考点专题汇编(附详解)D. y=4 或 3x + 4y— 4= 0(2)(优质试题成都摸底)已知圆C: x2 + y2— 2x— 4y+ 1 = 0上存在两点关于直线I: x+ my+ 1 = 0对称,经过点M(m, m)作圆C的切线,切点为P,则|MP|=[解析](1)当斜率不存在时,x= 2与圆相切;当斜率存在时,设切线方程为|k — 1 + 4 — 2k| 4y— 4= k(x—2),即 kx— y+4 — 2k= 0,则 ---------------- =1,解得 k= 3,则切线方彳k2+ 1 3程为4x— 3y+ 4= 0,故切线方程为x = 2或4x— 3y + 4 = 0.2 2⑵圆C: x + y — 2x— 4y+ 1= 0的圆心为C(1,2),半径为2.因为圆上存在两点关于直线I: x+ my+ 1 = 0对称,所以直线l: x+ my+ 1 = 0 过点(1,2),所以 1+ 2m+ 1= 0,解得 m=— 1,所以 |MCf= 13, |MP|= :13-4 = 3.[答案](1)C (2)3考法(三)弦长问题ax+ by+ c= 0 被圆 x2 + y2 = 1 所截[典例]⑴若a2+ b2 = 2C2(CM0),则直线得的弦长为A*D. 2(2)(优质试题海口一中模拟)设直线y=x+ 2a与圆C: x2 + y2— 2ay— 2= 0相交于A,B两点,若AB| = 2 .3,则圆C的面积为( )B. 2nD. 22 n[解析]⑴因为圆心(0,0)到直线ax+ by+ C= 0的距离d= / |C|=刁乩=寸a2 + b2伽誓j=¥,所以-2,因此根据直角三角形的关系,弦长的一半就等于 1—全国名校高考数学复习优质学案考点专题汇编(附详解)弦长为2.(2)易知圆C: x8 9 + y2— 2ay-2= 0的圆心为(0, a),半径为-''a2+ 2.圆心(0,lai 2 2a)到直线y= x+ 2a的距离d = ,由直线y= x+ 2a与圆C: x + y — 2ay— 2 = 02相交于A, B两点,|AB|= 2 .3,可得+ 3= a2 + 2,解得a2= 2,故圆C的半径为2,所以圆C的面积为4n故选A.[答案]⑴D (2)A[专题训练]1 •已知圆的方程是x2 + y2= 1,则经过圆上一点皿于,于的切线方程是解析:因为M于,2是圆x2 + y2= 1上的点,所以圆的切线的斜率为一1,则设切线方程为x+ y+ a= 0,所以今+今+ a = 0,得a=—.2,故切线方程为x+ y— 2 = 0.答案:x+ y—. 2= 09 若直线kx— y+ 2= 0与圆x2 + y2— 2x — 3= 0没有公共点,则实数k的取值范围是 __________ .解析:由题知,圆x2 + y2— 2x— 3 = 0可写成(x— 1)2+ y2 = 4,圆心(1,0)到直|k+ 2| 4线 kx— y+ 2 = 0 的距离 d>2,即,>2,解得 0vkv$.V k2+1 3答案:0,3解析:因为点A, B关于直线I: x+y= 0对称,所以直线y= kx+ 1的斜率k =1,即y=x+ 1.又圆心i— 1, m在直线I: x+ y= 0上,所以m= 2,则圆心的坐标为(—1,1),半径r = 2,所以圆心到直线y=x+ 1的距离d=¥,所以|AB|= 2 ;r2— d2= .6.答案:6考点二圆与圆的位置关系[典例](优质试题山东高考)已知圆M : x2 + y2— 2ay= 0(a>0)截直线x+y 二0所得线段的长度是2.2,则圆M与圆N: (x— 1)2+ (y— 1)2= 1的位置关系是()A •内切B •相交C •外切D •相离x2 + y2— 2ay= 0,[解析]法一:由 x+ y= 0,得两交点为(0,0), (— a, a).•••圆M截直线所得线段长度为2 2,•':;:.、:■:a + — a j = 2\:.2.2 2又 a>0,「a= 2. A圆M 的方程为 x + y — 4y= 0,即 x2+ (y — 2)2 = 4,圆心 M(0,2),半径 r1 = 2.又圆 N: (x— 1)2+ (y— 1)2= 1,圆心 N(1,1),半径匕=1,JMN匸'0— 1 2 + 2— 1 2= 2.•.“一「2= 1, r1 + r2= 3,1<|MN|<3,A两圆相交.法二:由题知圆M : x2+ (y— a)2 = a2(a>0),圆心(0, a)到直线x+y= 0的距离d=;,所以2 a2—;二2 .2,解得a= 2•圆M,圆N的圆心距|MN|=・2, 两圆半径之差为1两圆半径之和为3,故两圆相交.[答案]B[变透练清]1. (优质试题太原模拟)若圆C i: x2 + 1与圆C2: x2 + y— 6x — 8y+ m= 0 外切,则m=()A. 21B. 19C. 9 D . — 11解析:选C 圆C1的圆心为C1(0,0),半径「1 = 1,因为圆C2的方程可化为 (x— 3)2 + (y—4)2= 25— m,所以圆 C2 的圆心为 C2(3,4),半径「2= 25— m(mv 25).从而 C1C2|=」32 + 42= 5•由两圆外切得 |C1C2|=「1 +「2,即卩 1+ 25— m= 5, 解得m= 9,故选C.2.(变结论若本例两圆的方程不变,则两圆的公共弦长为 ______________ .…一“、,、一fx2 + y2— 4y= 0,解析:联立两圆方程 2 2两式相减得,2x— 2y — 1 = 0,[(x—1) + ( y—1) = 1,I—1| y[2因为N(1,1), r = 1,则点N到直线2x — 2y— 1 = 0的距离d= 2一2=広,故公共弦长为2寸1 -乎f =学答案:―4[解题技法]几何法判断圆与圆的位置关系的 3步骤C. 3 解析:选B(1) 确定两圆的圆心坐标和半径长;(2) 利用平面内两点间的距离公式求出圆心距 d,求n +匕,『1 —匕|; ⑶比较d, r 1+ r 2,『1 —呵的大小,写出结论.[课时跟踪检测]1.若直线2x+ y+ a= 0与圆x 2 + y 2 + 2x — 4y= 0相切,则a 的值为()A. ± 5D. ±3圆的方程可化为(x+ 1)2+ (y — 2)2= 5,因为直线与圆相切,所以有曇=75,即 a= ±5.故选 B.2.与圆C i : x 2 + y 2— 6x+ 4y+ 12= 0, C 2: x 2 + y 2— 14x — 2y+ 14= 0 都相切的直线有 C. 3条 解析:选A两圆分别化为标准形式为 C 1: (x — 3)2 + (y+ 2)2= 1, C 2: (x — 7)2+ (y — 1)2 = 36,则两圆圆心距|C 1C 2|=「7 — 3 2+ [1 —— 2 ]2= 5,等于两圆半 径差,故两圆内切.所以它们只有一条公切线.故选 A. 3.(优质试题 南宁、梧州联考)直线y= kx+ 3被圆(x — 2)2 + (y — 3)2 = 4截得 的弦长为2 3,则直线的倾斜角为()n. 5 nA ・6或石n-nB . — 3或 33. 设直线y= kx+ 1与圆x2 + y2 + 2x— my= 0相交于A, B两点,若点A, B 关于直线I: x+ y= 0对称,则AB| = ______________ .。

与圆有关的定点定值最值与范围问题

与圆有关的定点定值最值与范围问题

抓住2个考点
突破3个考向
揭秘3年高考
【训练 2】 (2012·徐州市调研(一))在平面直角坐标系 xOy 中, 直线 x-y+1=0 截以原点 O 为圆心的圆所得弦长为 6. (1)求圆 O 的方程; (2)若直线 l 与圆 O 切于第一象限,且与坐标轴交于点 D、E, 当 DE 长最小时,求直线 l 的方程; (3)设 M、P 是圆 O 上任意两点,点 M 关于 x 轴的对称点为 N,若直线 MP、NP 分别交 x 轴于点(m,0)和(n,0),问 mn 是否为定值?若是,请求出该定值;若不是,请说明理由.

以PPAB22=
xx++95522++yy22=xx22+ +11580xx++92-5+x29+-82x152=
12285··55xx++1177=
9 25
.
从而PB=3为常数. PA 5
抓住2个考点
突破3个考向
揭秘3年高考
法二 假设存在这样的点 B(t,0),使得PPAB为常数 λ,则 PB2= λ2PA2,所以(x-t)2+y2=λ2[(x+5)2+y2],将 y2=9-x2 代入,得 x2-2xt+t2+9-x2=λ2(x2+10x+25+9-x2), 即 2·(5λ2+t)x+34λ2-t2-9=0 对 x∈[-3,3]恒成立,
抓住2个考点
突破3个考向
揭秘3年高考
解 (1)设所求直线方程为 y=-2x+b,即 2x+y-b=0. 因为直线与圆相切, 所以 |2-2+b|12=3,得 b=±3 5. 所以所求直线方程为 y=-2x±3 5. (2)法一 假设存在这样的点 B(t,0). 当点 P 为圆 C 与 x 轴的左交点(-3,0)时,PPAB=|t+2 3|;
故 mn=2 为定值.

高中数学与圆有关的轨迹问题与最值问题

高中数学与圆有关的轨迹问题与最值问题

b a 1 ,解得 a 1 , b 2 ,从而 r 2 2 (5 分)
圆 C 方程为: (x 1)2 ( y 2)2 8(6 分)
(Ⅱ)设 M (x, y) , B(x0

y0
)
,则有
1
x0 2
x,
y0 2
y , (8
分)
解得 x0 2x 1 , y0 2 y ,代入圆 C 方程得: (2x 2)2 (2y 2)2 8 , (10 分)
| MA | 2
(x 3)2 y2 2
化简整理得: x2 y2 2x 3 0 ,即 (x 1)2 y2 4 ,
点 M 的轨迹方程 (x 1)2 y2 4 ,轨迹是以 (1, 0) 为圆心,以 2 为半径的圆;
(2)由(1)可知, P(x, y) 为圆 (x 1)2 y2 4 上任意一点, 3x1 ,
(1)求动点 M 的阿波罗尼斯圆的方程; (2)过 P(2,3) 作该圆的切线 l ,求 l 的方程.
【解答】解:(1)设动点 M 坐标为 (x, y) ,则 AM (x 4)2 y2 , BM (x 1)2 y2 ,
又知 AM 2BM ,则 (x 4)2 y2 2 (x 1)2 y2 ,得 x2 y2 4 .
专题 05 与圆有关的轨迹问题与最值问题
题型一 轨迹问题
1.动圆 x2 y2 (4m 2)x 2my 4m2 4m 1 0 的圆心的轨迹方程是 x 2y 1 0(x 1) .
【解答】解:把圆的方程化为标准方程得 [x (2m 1)]2 ( y m)2 m2 (m 0)
3 / 13
【解答】解: ( 1) 由两点式可知,对角线 AC 所在直线的方程为 y 2 2 2 , x4 04
整理得 y x 2 0 ,

例谈直线与圆中的最值问题

例谈直线与圆中的最值问题

解法2 :显然直线)的斜率存在且不为零. 设直线)的斜率为, ,方程为y =,(%+3)+4.
圆 心$(-1,0)到直线)的 距 离 |2,+41 . V F +T
由$ $
%
(%+3) |4
2 4 ’得 (1+,2)%2+(6,2+8,+2)%+9,2+24,+
13=0.
设* (%1,'1),+ (%2,'2),贝佾%厂%21=^ #
距离使问题迎刃而解,更好地提高学生的解题能力.
三 、根 据 线 性 规 划 思 想 求 的 最 值 问 题
根据所求代数式结构,考 查 它 的几何意义,数形结 合 思 想 ,以及线性规划思想的体现■
例4 已知"(-,,)是圆(-+2)2+,2$1上任一点.
2$ 卜6-4 % 1 ' - 1 1 % 4 % 1 . &32+42
解 :圆的标准方程(%-1 )2+(y 1)2= 1 ,圆 心 (1,1),/=1,如图2.
由对称性知,
S"*$+=2S ap*c= 2 # 1 I"* I•r= LP* 1= 2
故 当 IPCI最 小 值 ,0"*$+最小. 此时P C 丄),转化成了点到直线的距离.
5 8 十 •?炎 ,? 高中版
Id
^ 48 ’ 1+,2
* + l=V
W
% i-%2=V
W
.V
^ 4“ 1+,2
8
=
2
V
#
-16, -12 ,2+1

圆中最值问题(解析版)

圆中最值问题(解析版)

圆中最值问题一、点到直线的最值问题原理:垂线段最短.1、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为().A. B. C. 3 D. 2答案:B解答:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2-OQ2,而OQ=2,∴PQ2=OP2-4,即,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ选B.2、在平面直角坐标系中,以原点O为圆心的圆过点),直线y=kx-3k+4与⊙O交于B,C两点,则弦BC 的长的最小值为().A. 5B.C.D.答案:D解答:直线y=kx-3k+4必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦.∵点D的坐标是(3,4),∴OD=5.∵以原点O为圆心的圆过点,∴圆的半径为BC的长的最小值为3、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为______.答案:3解答:当OM⊥AB时,OM最小,此时.4、如图,在Rt△AOB中,O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ (点Q为切点),切线PQ的最小值为______.解答:连接OP,OQ,如图所示,∵PQ是O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,,∴OA=8,∴S△AOB=12OA·OB=12AB·OP,即OP=OA OBAB⋅=4,∴5、如图,直线y=kx-3k+4与⊙O交于B、C两点,若⊙O的半径为13,求弦BC长度的最小值.答案:24.解答:y=kx-3k+4必过点D(3,4),∴最短的弦BC是过点D且与该圆直径垂直的弦,∴OD=5,OB=13,∴BD=12,∴BC的长的最小值为24.二、点到圆的最值问题原理:定点与圆上的动点之间的距离:当定点、动点和圆心三点共线时有最大或最小值.AP max=OA+r,AP min=|OA-r|.6、已知点P到圆上各点的最大距离为5,最小距离为1,则圆的的半径为().A. 2或3B. 3C. 4D. 2或4答案:A解答:当点P在圆内,则圆的直径=5+1=6,所以圆的半径=3;当点P在圆外,则圆的直径=5-1=4,所以圆的半径=2.通常构造辅助圆求点到圆的最值问题7、(2021·南平延平区模拟)如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点D,使得DC=BD,在直线AD左侧有一动点P满足∠P AD=∠PDB,连接PC,则线段CP长的最大值为______.答案:解答:如图,取AD的中点O,连接OP,OC.∵∠P AD=∠PDB,∠PDB+∠ADP=90°,∴∠P AD+∠ADP=90°,∴∠APD=90°.∵AO=OD,∴PO=OA=OD.∵AD==∴OP=∵BC=CD=4,OD=∴OC===∵PC≤OP+OC∴PC≤∴PC的最大值为8、(2021·佛山三水区校级二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是△ABC内部的一个动点,且满足∠ACD=∠CBD,则AD的最小值为______.答案:2解答:∵∠ACB=90°,∴∠BCD+∠DCA=90°.∵∠DBC=∠DCA,∴∠CBD+∠BCD=90°,∴∠BDC=90°,∴点D在以BC为直径的☉O上,连接OA交☉O于点D,此时DA最小,在Rt△CAO中,∵∠OCA=90°,AC=4,OC=3,OA==∴5∴DA=OA-OD=5-3=2.故答案为29、如图,在△ABC中,∠BCA=90°,AC=BC=2,点P是同一平面内的一个动点,且满足∠BPC=90°,连接AP,求线段AP的最小值和最大值.答案:解答:解:如图,以BC为直径作圆O,连结AO交圆于两点P1,P2,则AP 1最小,AP 2最大.∵AP 1•AP 2=AC 2,AC =2,P 1P 2=2,∴AP 1(AP 1+2)=4,解得AP 1=51±-(负值舍去),∴AP 2=51251+=++-.故线段AP 的最小值和最大值分别是51+-和51+.10、如图,在矩形ABCD 中,AB =3,BC =2,M 是AD 边的中点,N 是AB 边上的动点,将△AMN 沿MN 所在直线折叠,得到△A ′MN ,连接A ′C ,求线段A ′C 的最小值.答案:解答:解:∵四边形ABCD 是矩形∴AB =CD =3,BC =AD =2,∵M 是AD 边的中点,∴AM =MD =1∵将△AMN 沿MN 所在直线折叠,∴AM =A 'M =1∴点A '在以点M 为圆心,AM 为半径的圆上,∴如图,当点A '在线段MC 上时,A 'C 有最小值, ∵1022=+=CD MD MC ,∴A ′C 的最小值=MC -MA '=110-.11、如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,请求出A ′B 长度的最小值.答案:解答:解:如图,由折叠知A ′M =AM ,又M 是AD 的中点,可得MA =MA ′=MD ,故点A ′在以AD 为直径的圆上,由模型可知,当点A ′在BM 上时,A ′B 长度取得最小值,∵边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,∴BM =3122=-,故A ′B 的最小值为13-12、如图,在矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,求四边形AGCD 的面积的最小值.答案:解答:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×=×4×3+21×5×h =25h +6, ∴要四边形AGCD 的面积最小,即h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点,h 2121h 21∴EG ⊥AC 时,h 最小,即点E ,点G ,点H 共线. 由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin ∠BAC =54=AC BC , 在Rt △AEH 中,AE =2,sin ∠BAC =54=AE EH , ∴EH =54AE =58, ∴h =EH -EG =58-1=53,∴S 四边形AGCD 最小=25h +6=5325⨯+6=215.。

圆的最值问题归纳-与圆有关的最值问题

圆的最值问题归纳-与圆有关的最值问题

圆的问题探究安阳市龙安高级中学 段可贺高中数学中,研究最多的一种曲线是圆。

在研究圆的相关问题时,最值问题又是研究的重点和热点,现把常见的与圆相关的最值问题,总结如下。

希望对读者有些启发。

类型一、“圆上一点到直线距离的最值”问题分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。

1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。

所以max min 2; 2.CH BH AH d d d d d =====-2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题, max min BH d d d ===== 3、圆222=+y x 上的点到直线l :02543=++y x 的距离的最小值为________________.解析:方法同第一题, min 5d =类型二、“圆上一点到定点距离的最值”问题分析:本质是两点间距离。

涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。

1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.解析:连接OC 与圆交于A ,延长OC 交于B.max min 1;1.OC OC d d r d d r =+==-=2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求MQ 最大值和最小值. 解析:方法同第一题,max Q min Q C C d d r d d r =+===-==3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离的范围,求max min ,d d 即可,与第一题答案相同.4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值的平方.max min 22maxmin5,6, 4.36,16.[16,36].CP d d dd=====所以范围是5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.解析: 22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去2.max min 22max min 2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求22PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:222222max min 2()2,.2(51)274;2(51)234.[34,74].d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,所以答案类型三、“过定点的弦长”问题1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明l 与C 总相交。

专题二十四 直线与圆的最值问题

专题二十四  直线与圆的最值问题

专题二十四直线与圆的最值问题主干知识整合直线与圆中的最值问题主要包含两个方面1.参量的取值范围由直线和圆的位置关系或几何特征,引起的参量如k,b,r的值变化.此类问题主要是根据几何特征建立关于参量的不等式或函数.2.长度和面积的最值由于直线或圆的运动,引起的长度或面积的值变化.此类问题主要是建立关于参数如k 或b,r的函数,运用函数或基本不等式求最值.要点热点探究►探究点一有关长度的最小值直线与圆中有关长度的问题主要包括直线被坐标轴截得的长度、弦长、切线长等.其中弦长、切线长都可以与半径构造直角三角形来求解.例1 (1)如图24-1,已知圆x2+y2=1的一条切线与x轴、y轴分别交于点A、B,则线段AB长度的最小值为________.(2)直线2ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最大值为________.图24-1►探究点二有关面积的最值问题直线与圆中的面积问题主要指的是由直线与坐标轴形成的三角形、直线与圆形成的多边形及动圆的面积.例2已知圆C通过不同的三点P(m,0)、Q(2,0)、R(0,1),且CP的斜率为-1.(1)试求⊙C的方程;(2)过原点O作两条互相垂直的直线l1,l2,l1交⊙C于E,F两点,l2交⊙C于G,H 两点,求四边形EGFH面积的最大值.► 探究点三 某些参量的取值范围问题动直线和动圆中都会带有参量,此时由于直线和圆的运用,会带来参量取值变化,利用几何特征建立关于参量的不等式或函数来求解.例3已知圆x 2+y 2+2ax -2ay +2a 2-4a =0(0<a ≤4)的圆心为C ,直线l :y =x +m .(1)若m =4,求直线l 被圆C 所截得弦长的最大值;(2)若直线l 是圆心下方的切线,当a 在(0,4]变化时,求m 的取值范围.若曲线x 2+y 2+2x -4y +1=0上的任意一点关于直线2ax -by+2=0(a ,b ∈R +)的对称点仍在该曲线上,则1a +1b 的最小值是________.规律技巧提炼直线与圆中最值问题常规处理方法:(1)直线与圆的最值问题可以考虑找出最值的几何特征,再计算.(如弦长问题)(2)把所讨论的参数作为一个函数,一个适当的参数作为自变量来表示这个函数,通过讨论函数的单调性或利用不等式求最值.(3)如果建立的函数为二元函数,可以考虑用消元、三角换元或利用其几何意义来解决. 课本挖掘提升(教材必修2 P115习题15改编)例 直线l 过点M (-1,2)且与线段A (-2,-3),B (4,0)相交,则斜率的取值范围为________.【分析】 本题利用几何特征来得到k 的取值范围,也可以转化为方程组有解来处理已知集合A ={(x ,y )||x |+|y |≤1},B ={(x ,y )|x 2+y 2≤r 2,r >0},若点(x ,y )∈A 是点(x ,y )∈B 的必要条件,则r 的最大值是________.。

高中数学 直线与圆相关的最值问题

高中数学 直线与圆相关的最值问题

直线与圆相关的最值问题常用的处理方法圆的轨迹问题在江苏高考中是常考的内容之一,常常与向量、直线相结合考查,有一定的难度,题型从填空题到解答题不固定。

【母题】(2018年苏州市第一中学高二上期中考试)平面直角坐标系xOy 中,若直线032:=+--k y kx l 上存在点P ,使得过点P 可作一条射线与圆1:22=+y x O 依次交于B A 、,满足AB PA =,则k 的取值范围为 .一、与圆相关的最值问题的联系点1.1 与距离有关的最值问题在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离最小,最大等.这些问题常常联系到平面几何知识,利用数形结合思想可直接得到相关结论,解题时便可利用这些结论直接确定最值问题.常见的结论有:(1)圆外一点A 到圆上距离最近为AO r -,最远为AO r +;(2)过圆内一点的弦最长为圆的直径,最短为该点为中点的弦;(3)直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r +,最近为d r -; (4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆的面积. (5)直线外一点与直线上的点的距离中,最短的是点到直线的距离;(6)两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.【例1】 已知圆C 的方程为:)0()2()3(222>=-+-r r y x ,若直线33=+y x 上存在一点P ,在圆C 上总存在不同的两点N M ,,使得点M 是线段PN 的中点,则圆C 的半径r 的取值范围为 .【变式1】(2015届淮安高三三模第14题)在平面直角坐标系中,圆,圆.若圆上存在一点,使得过点可作一条射线与圆依次交于点,,满足,则半径的取值范围是_______.【变式2】 过点()1,2M 的直线l 与圆C :()()223425x y -+-=交于,A B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是 .【变式3】(2015江苏高考第10题)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。

直线与圆中最值问题全梳理

直线与圆中最值问题全梳理

直线与圆中最值问题全梳理教师专用模块一、题型梳理题型一 直线与圆与平面向量相结合的最值问题例题1: 已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+的最大值是( )AB .1CD .2【分析】如图所示建立直角坐标系,设()cos ,sin P θθ,则(1)cos PA PB PC θ⋅+=-,计算得到答案.【解析】如图所示建立直角坐标系,则1,0A ,12⎛- ⎝⎭B ,1,2C ⎛- ⎝⎭,设()cos ,sin P θθ,则(1cos ,sin )(12cos ,2si (n ))PA PB PC θθθθ=--⋅--⋅+-222(1cos )(12cos )2sin 2cos cos 12sin 1cos 2θθθθθθθ=---+=--+=-≤.当θπ=-,即()1,0P -时等号成立.故选:D .【小结】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.例题2: 已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =,则PO 的最大值为( ) A .7B .6C .5D .4【分析】设(),P x y ,(),B m n ,根据3PB PA =可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值.【解析】设(),P x y ,(),B m n ,故(),PB m x n y =--,(),2PA x y =--.由3PB PA =可得363m x xn y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=,故选:C.【小结】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.题型二 直线与圆与基本不等式相结合的最值问题例题3: 直线240ax by ++=与圆224210x y x y ++++=截得的弦长为4,则22a b +的最小值是( )A .3B .2CD .1【分析】根据题意知直线过圆心得到2a b +=,再利用均值不等式计算得到答案.【解析】224210x y x y ++++=,即()()22214x y +++=,圆心为()2,1--,半径为2.弦长为4,则直线过圆心,即2240a b --+=,即2a b +=.()()()22222222a b a b ab a a b b +=+-≥+-=+,当1a b ==时等号成立.故选:B .例题4: 点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为( ) A .2B .12C .3D .1【分析】首先可确定曲线C 表示圆心为2,0,半径为5的圆;令d =2222t d a =--;d 的最大值为半径与圆心到点()6,6-的距离之和,利用两点间距离公式求得max d ,代入t 中利用最大值为b 可求得14a b ++=,将所求的式子变为()111111141a b a b a b ⎛⎫+=+++ ⎪++⎝⎭,利用基本不等式求得结果.【解析】曲线C 可整理为:()22225x y -+=,则曲线C 表示圆心为2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---,设d =d 表示圆上的点到()6,6-的距离,则max 515d ==,2max 15222t a b ∴=--=,整理得:14a b ++=,()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b++的最小值为1,本题正确结果:1 题型三 直线与圆与抛物线相结合的最值问题例题5: 已知以圆()22:14C x y -+=的圆心为焦点的抛物线1C 与圆C 在第一象限交于A 点,B 点是抛物线:2:C 28x y =上任意一点,BM 与直线2y =-垂直,垂足为M ,则BM AB -的最大值为( )A .1B .2C .1-D .8【解析】因为()22:14C x y -+=的圆心()1,0,所以,可得以()1,0为焦点的抛物线方程为24y x =,由()222414y x x y ⎧=⎪⎨-+=⎪⎩,解得()1,2A ,抛物线22:8C x y =的焦点为()0,2F ,准线方程为2y =-, 即有1BM AB BF AB AF -=-≤=,当且仅当,,(A B F A 在,B F 之间)三点共线,可得最大值1。

直线与圆的最值问题归纳(推荐)

直线与圆的最值问题归纳(推荐)

直线与圆的最值专题一、动点的最值问题1.若动点P 在直线l 1:2x -y -2=0上,动点Q 在直线圆(x -2)2+(y -1)2=1上,线段PQ 的最小值是________.2.若动点P 在直线l 1:x -y -2=0上,动点Q 在直线l 2:x -y -6=0上,设线段PQ 的中点为M(x 0,y 0),且(x 0-2)2+(y 0+2)2≤8,则x 20+y 20的取值范围是________.3.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为________.4.在平面直角坐标系xOy 中,设点P 为圆C :22(1)4x y -+=上的任意一点,点Q (2a ,3a -)(a ∈R ),则线段PQ 长度的最小值为______.5.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P(a ,b)与点(0,1)之间的距离的最大值为________.6.直线l 过点(0,-4),从直线l 上的一点P 作圆C :x 2+y 2-2y =0的切线PA ,PB (A ,B 为切点),若四边形PACB 面积的最小值为2,则直线l 的斜率k 为________.7.C :(x -a )2+(y -1)2=1在不等式x +y +1≥0所表示的平面区域内,则a 的最小值为________二、定直线与定圆的最值问题8.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为________.9.已知点P (x ,y )是圆(x +2)2+y 2=1上任意一点.(1)求点P 到直线3x +4y +12=0的距离的最大值和最小值;(2)求y -2x -1的最大值和最小值. 10.若曲线x 2+y 2+2x -4y +1=0上的任意一点关于直线2ax -by +2=0(a ,b ∈R +)的对称点仍在该曲线上,则1a +1b的最小值是________. 三、动直线与的动圆的最值问题11.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率为________.12.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率为________.13.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.14.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________15.若对于给定的正实数k ,函数()k f x x=的图像上总存在点C ,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为2,则k 的取值范围是_________.四、弦长的最值问题16.已知圆:C 22(2)4x y ++=,相互垂直的两条直线1l 、2l 都过点(,0)A a .(Ⅰ)当2a =时,若圆心为(1,)M m 的圆和圆C 外切且与直线1l 、2l 都相切,求圆M 的方程;(Ⅱ)当1a =-时,求1l 、2l 被圆C 所截得弦长之和的最大值,并求此时直线1l 的方程.17.1y kx =+与圆C ()2214x y +-=相交于,A B 两点,则AB 的最小值是多少?18.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).(1)求证不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时的l 的方程. 五、切线的最值问题19.与直线x -y -4=0和圆A :x 2+y 2+2x -2y =0都相切的半径最小的圆C 的方程是20.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当PT 最小的时候P 的坐标?21.点P 是直线2x +y +10=0上的动点,PA ,PB 与圆x 2+y 2=4分别相切于A ,B 两点,则四边形PAOB 面积的最小值为________.六、面积的最值问题22.过点P(1,1)的直线,将圆形区域{(x ,y)|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为23.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x +y -2=0上.。

直线与圆的最值问题

直线与圆的最值问题

题型一:过圆内一定点的直线被圆截得的弦长的最值.例1:.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m -n 等于 解析 圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25.所以圆心为(2,-3),半径长为5.因为(-1-2)2+(0+3)2=18<25,所以点(-1,0)在已知圆的内部,则最大弦长即为圆的直径,即m =10.当(-1,0)为弦的中点时,此时弦长最小.弦心距d =(2+1)2+(-3-0)2=32,所以最小弦长为2r 2-d 2=225-18=27,所以m -n =10-27.变式训练1:1y kx =+与圆C ()2214x y +-=相交于,A B 两点,则AB 的最小值是多少? 解:直线1y kx =+过定点()1,0M ,当MC AB ⊥时,AB取最小值,由 2222l d r ⎛⎫+= ⎪⎝⎭,可知,222d R l -=,2==MC d ,故22222=-=d R l变式训练2:已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).(1)求证不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时的l 的方程.(1)证明 因为l 的方程为(x +y -4)+m (2x +y -7)=0(m ∈R ),所以⎩⎨⎧ 2x +y -7=0,x +y -4=0,解得⎩⎨⎧x =3,y =1,即l 恒过定点A (3,1).因为圆心为C (1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 与圆C 恒交于两点.(2)解 由题意可知弦长最小时,l ⊥AC .因为k AC =-12,所以l 的斜率为2. 又l 过点A (3,1),所以l 的方程为2x -y -5=0. 方法总结:过圆内一定点的直线被圆截得的弦长的最大值为圆的直径,最小值为垂直于直径的弦.题型二:圆外一点与圆上任一点间距离的最值直线与圆相离,圆上的点到直线的距离的最值.例2:求点A )(0,2到圆C 122=+y x 的距离的最大值和最小值?解:==AC d 2,故距离的最大值为3=+r d ,最小值为1=-r d变式训练1:圆122=+y x 上的点到直线2x y -=的距离的最大值?解:圆心到直线的距离为222==d , 则圆上的点到直线2x y -=的最大值为12+=+r d 则圆上的点到直线2x y -=的最小值为1-2-=r d方法总结:圆外一点与圆上任一点间距离的最大值为r d +,最小值为r d -直线与圆相离,圆上的点到直线的距离的最大值为r d +,最小值为r d -题型三:切线问题例3 由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当PT 最小的时候P 的坐标?解析 根据切线段长、圆的半径和圆心到点P 的距离的关系,可知PT =PC 2-1,故PT 最小时,即PC 最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x -4),即y =-x +2,联立方程⎩⎨⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2). 变式训练1:点P 是直线2x +y +10=0上的动点,P A ,PB 与圆x 2+y 2=4分别相切于A ,B 两点,则四边形P AOB 面积的最小值为________.解析:如图所示,因为S 四边形P AOB =2S △POA .又OA △AP ,所以S 四边形P AOB =2×12|OA |·|P A | =2|OP |2-|OA |2=2|OP |2-4.为使四边形P AOB 面积最小,当且仅当|OP |达到最小,即为点O 到直线2x +y +10=0的距离:|OP |min =1022+12=2 5.故所求最小值为2252-4=8.题型五:两圆相离,两圆上点的距离的最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆中的最值问题
一、到圆心距离的最值问题:
二、到圆上一点距离的最值问题:
三、与圆上一点的坐标有关的最值问题:
四、与圆半径有关的最值问题:
2213480,2210,P x y PA PB x y x y A B C PACB ++=+--+=例:已知是直线上的动点,是圆的两条切线,是切点,是圆心,求四边形面积的最小值。

2221:250P x y Q l x y PQ +=+-=例:已知是圆上一点,是直线上一点,求的最小值。

()()()()222231,0,1,0344A B x y P PA PB P --+-=+例:已知定点和圆上的动点,求使最值时点的坐标。

()()2204134312x x y y x x y x y ≥⎧⎪≥-+-⎨⎪+≤⎩例:设,满足求的最小值。

2222,(1)1,2134 2 31x y x y y x y x y x +-=++++练习1:求实数满足求下列各式的最值:()()()()()()222430
1.2.,C x y x y C x y C P x y PM M O PM PO PM P ++-+==练习2:已知圆:若圆的切线在轴和轴上截距相等,
求切线的方程;从圆外一点向圆引切线,
为切点,为坐标原点,且,
求使最小的点的坐标。

强化训练
1、如图24-1,已知圆x 2+y 2=1的一条切线与x 轴、y 轴分别交于点A 、B ,则线段AB 长度的最小值为________.
()()()()()()222210,,2,2.
1.222
2..C x y x y l x y A B O OA a OB b a b C l a b AB AOB +--+===>>--=∆例5:已知与曲线:相切的直线交轴,轴于两点,为原点,求证曲线与直线相切的条件是
;求线段中点的轨迹方程;
3求的面积的最小值。

()()()0,0,
4,0,0,3,,ABC A B C P PA PB PC ∆练习3:已知三个顶点坐标,点是它的内切圆上一点,求以为直径的三个圆面积之和
的最大值和最小值。

4(1)2(2)3:1
(1)(2):20y x l x y -=练习:设圆满足:
截轴所得弦长为;被轴分成两圆弧,其弧长比为。

在满足条件的所有圆中,求圆心到
直线的距离最小的圆的方程。

2、直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最大值为________.
3、已知圆x 2+y 2+2ax -2ay +2a 2-4a =0(0<a ≤4)的圆心为C ,直线l :y =x +m .
(1)若m =4,求直线l 被圆C 所截得弦长的最大值;
(2)若直线l 是圆心下方的切线,当a 在(0,4]变化时,求m 的取值范围.
4、若曲线x 2+y 2+2x -4y +1=0上的任意一点关于直线2ax -by +2=0(a ,b ∈R +)的对称
点仍在该曲线上,则1a +1b
的最小值是________.
5、已知集合A ={(x ,y )||x |+|y |≤1},B ={(x ,y )|x 2+y 2≤r 2,r >0},若点(x ,y )∈A 是点(x ,y )∈B 的必要条件,则r 的最大值是________.
6、已知圆C 通过不同的三点P (m,0)、Q (2,0)、R (0,1),且CP 的斜率为-1.
(1)试求⊙C 的方程;
(2)过原点O 作两条互相垂直的直线l 1,l 2,l 1交⊙C 于E ,F 两点,l 2交⊙C 于G ,H 两点,求四边形EGFH 面积的最大值.
7、点A 则点A ( )
A. 9
B. 8
C. 5
D. 2
8
求(1
(2)过P的圆的最长弦所在直线方程
9、已知实数x,y
(1)
(2)
(3)
10P(x,y求切线长的最小值.
友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

相关文档
最新文档