组合数学 卢 习题答案

合集下载

组合数学卢开澄课后习题答案

组合数学卢开澄课后习题答案

组合数学卢开澄课后习题答案组合数学是一门研究离散结构和组合对象的数学学科,它广泛应用于计算机科学、统计学、密码学等领域。

卢开澄是中国著名的组合数学家,他的教材《组合数学》是该领域的经典之作。

在学习组合数学的过程中,课后习题是巩固知识、提高能力的重要途径。

下面我将为大家提供一些卢开澄课后习题的答案。

第一章:集合与命题逻辑1.1 集合及其运算习题1:设集合A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}。

习题2:证明若A∩B=A∩C,且A∪B=A∪C,则B=C。

答案:首先,由A∩B=A∩C可得B⊆C,同理可得C⊆B,因此B=C。

然后,由A∪B=A∪C可得B⊆C,同理可得C⊆B,因此B=C。

综上所述,B=C。

1.2 命题逻辑习题1:将下列命题用命题变元表示:(1)如果今天下雨,那么我就带伞。

(2)要么他很聪明,要么他很勤奋。

答案:(1)命题变元P表示今天下雨,命题变元Q表示我带伞,命题可表示为P→Q。

(2)命题变元P表示他很聪明,命题变元Q表示他很勤奋,命题可表示为P∨Q。

习题2:判断下列命题是否为永真式、矛盾式或可满足式:(1)(P∨Q)→(P∧Q)(2)(P→Q)∧(Q→P)答案:(1)该命题为可满足式,因为当P为真,Q为假时,命题为真。

(2)该命题为永真式,因为无论P和Q取何值,命题都为真。

第二章:排列与组合2.1 排列习题1:从10个人中选取3个人,按照顺序排成一队,有多少种不同的结果?答案:根据排列的计算公式,共有10×9×8=720种不同的结果。

习题2:从10个人中选取3个人,不考虑顺序,有多少种不同的结果?答案:根据组合的计算公式,共有C(10,3)=120种不同的结果。

2.2 组合习题1:证明组合恒等式C(n,k)=C(n,n-k)。

答案:根据组合的计算公式可得C(n,k)=C(n,n-k),因此组合恒等式成立。

组合数学-卢开澄-习题答案

组合数学-卢开澄-习题答案

第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 48→49~50, 49→50 ) 2.(a) 5!8! (b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)! (c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 因首数字可分别为偶数或奇数,知结果为 2⨯5⨯P(8,2)+3⨯4⨯P(8,2).6. (n+1)!-17. 用数学归纳法易证。

8. 两数的公共部分为240530, 故全部公因数均形如2m 5n ,个数为41⨯31. 9. 设有素数因子分解 n=p 1n 11p 2 n 22…p k n k k , 则n 2的除数个数为( 2n 1+1) (2n 2+1) …(2n k +1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(1010-=-=+=+=∑∑n nk k k n nnk kk nx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk k n n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学第四版卢开澄标准答案-第三章解析

组合数学第四版卢开澄标准答案-第三章解析

【第 4 页 共 42 页】
|A 1∩A2|=(40+1)(30+1)=1271
于是 |A 1∪A 2|=|A 1|+|A 2|- |A1 ∪A 2|=1681+1891 - 1271=2301 因此,能至少除尽 1040 和 2030 之一的正整数的数目是 2301 。
3.17.n 是 除尽 1060, 2050, 3040 中至少一个数的除数,求 n 的数目。
[ 解 ].定义: P1(x):3| x
A 1 ={ x|x N P1( x)}
P2(x):5|x
A 2={ x|x N P2 (x)}
P3(x):7|x
A 3={ x|x N P3 (x)}
|A1| = 1000/3 =333
|A1∩A2|= 1000/(3 ×5) =66
|A1∩A3|= 1000/(3 7×) =47
= 9001-( 70+12)+1 = 8920
3.19 {1000 ,1001,……, 3000} ,求其中是 4 的倍数但不是 100 的倍数的数的
数目。 【解】: 令 N1={1000, 1001,……, 3000} ,则 |N1|=2001
【第 2 页 共 42 页】
=|C|-( |A ∩C+| |B ∩C-||(A∩C)∩(B∩C)|)
=|C|-|A ∩C-||B ∩C+| |(A∩C)∩( B∩C)| =|C|-|A ∩C-||B ∩C+| |(A∩B∩C)| (结合律,交换律,幂等律 )
3.14. N={1,2, … ,1000} ,求其中不被 5 和 7 除尽,但被 3 除尽的数的数目。
=
10 4 -( 100+21) +4 =9883

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生 排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)第4章课后习题答案

组合数学(卢开澄)版 第四章答案4.1,若群G 的元素a 均可表示为某一个元素x 的幂,即a=x m,则称这个群为循环群,若群的元素交换律成立。

即a ,b ∈G 满足,a ·b=b ·a证明:令a= x m ,b= x n ,则a ·b= x m ·x n = x n ·x m=b ·a ,因此是阿贝尔群4.2若x 是群G 的一个元素,存在一最小的正整数m ,使x m=e ,则称m 为x 的阶,试证: C={e,x,x 2,…x m-1}是G 的一个子群。

证明:一个群G 的不空集合H 作成G 的一个子群的充分必要条件是:1,a b H ab H a H a H-∈⇒∈∈⇒∈,a b 是H 的任意元素。

由题意知C 中的任意两个元素如,a b C ∈则ab C ∈;a C ∈则1a C -∈。

所以21{,,,,}m C e x x x -= 是G 的一个子群。

4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n 。

证明; 因为G 中每有元素都能生成一个与元素等阶的子群,子群的阶当然不能超过群G 的阶;所以则G 的所有元素的阶都不超过n 。

4.4若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂: a 1 ,a 2 。

a n 的元素a 的数目。

证明: 若一个群G 的每一个元都是G 的某一固定元a 的乘方,我们就把G 叫做循环群;我们也说,G 是由元a 所生成的,并且用符号()G a =来表示。

所以就有一个这样的a ,即就有一个母元素。

4.5 试证循环群G 的子集也是循环群根据子群的定义,循环群G 的子群应满足循环群G 所满足的所有运算。

所以其子群页应该是循环群。

4.6若H 是G 的子群,x 和y 是G 的元素,试证xH ∩yH 或为空,或为xH=yHx,y ∉G若 xH ⋂yH ≠Φ可知:存在g ∈xH,g ∈yH 由g ∈xH,知存在h 1∈H,有g=xh 1;由g ∈yH,知存在h 2∈H,有g=yh 2; 从而有 xh1=yh2 ⇒x=y(h 2h 11-)------------式1任取z ∈xH,则存在h ∈H,有z=xh-------------------式2将-式1代入-式2: z=y(h 2h 11-)h=y(h 2h 11-h)--------- -式3H 是子群,有h 1,h 2,h ∈H 可推知,h 2h 11-h ∈H从而 y(h 2h 11-h) ∈yH.再由式3知 z ∈yH,这样我们就可推知xH ⊆yH 同理可推得 yH ⊆xH综上知道 yH=xH4.7若H 是G 的子群,H =k ,试证:xH =k ,其中x ∈GH =k设 H={n h h h h 32,1,} 同时对于i,j ∈{k ,3,2,1} 当i ≠j 时,有ah i≠ah j(否则,若有ah i =ah j ,由消去律得h i =h j ,矛盾) 表明{}n h h h h 32,1, 为n 个不同元而aH 恰有这些元组成, 故 aH =k, ∴aH =H4.8有限群G 的阶为n ,H 是G 的子群,则H 的阶必除尽G 的阶。

组合数学习题答案卢开澄

组合数学习题答案卢开澄

1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下: 6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

卢开澄组合数学--组合数学第二章习题解答精品文档35页

卢开澄组合数学--组合数学第二章习题解答精品文档35页
(b)求序列an与bn的母函数。
(c)用Fibonacci数来表示 a n 与 b n 。
解:...
28. 设 F 1 F 2 1 ,F 1 F n 1 F n 2
(a)证明
F n F k F n k 1 F k 1 F n k , n k 1 (b)证明 Fn Fm 的充要条件是 n m 。
解:...
9.利用 11221231262 ,
改善 §4(2) 的 p n估计式。
解:...
10. 8台计算机分给3个单位,第1单位 的分配量不超过3台,第2单位的分配量 不超过4台,第3个单位不超过5台,问 共有几种分配方案?
解:...
11. 证明正整数n都可以唯一地表示成不 同的且不相邻的Fibonacci数之和。即
(c)证明
FmFn Fmn2 Fmn6 Fmn10
FFmmnn21
当n是奇数, 当n是偶数。
mn2.
(d)证明(F m ,F n ) F (m ,n ),(m ,n )为m,n
的最大公约数。
解:...
29. 从1到n的自然数中选取k个不同且不
相邻的数,设此选取的方案为 f(n,k)。 (a)求 f(n,k)的递推关系。
解:...
22. 求矩阵 3 1100 . 0 2
解:...
23. 求
n
n
Sn k(k1), Sn k(k2),
k0
k0
n
Sn k(k1)(k2).
k0
解:...
24. 在一个平面上画一个圆,然后一条 一条地画n条与圆相交的直线。当r是大 于1的奇数时,第r条直线只与前r-1条直 线之一在圆内相交。当r是偶数时,第r 条直线与前r-1条直线在圆内部相交。如 果无3条直线在圆内共点,这n条直线把 圆分割成多少个不重叠的部分?

组合数学习题答案卢开澄

组合数学习题答案卢开澄

---------------------------------------------------------------------
可编辑
总的组合数为:
C(n,1) {C(n 1,1) C(n 1, 2) C(n 1, n 1)} C(n, 2) {C(n 2,1) C(n 2, 2) C(n 2, n 2)}
r 1
(n r)! (n r)! r
p p (b) (n r 1)
n
(n r 1) •
n!
n! n 等式成立。
1.15 题 求 1 至 1000000 中 0 出现的次数。 解:当第一位为 0 时,后面 6 位组成的数可以从 1-100000,共 100000 个 0; 当第二位为 0 时,当第一位取 0-9 时,后面 5 位可以取 1-9999,此外当第一位取 0 时,后面 5 位还可以取为
10000,这样共有 9999*10+1=99991 个 0; 同理第三位为 0 时,共有 99901 个 0; 第四位为 0 时,共有 99001 个 0;第五位为 0 时,共有 90001 个 0;
P4=C(5,4)*C(5,3)*7!*4!*2
5.若 A,B 之间存在 5 个男生,A,B 之间共有 8 个人,所有的排列应为
P5=C(5,5)*C(5,3)*8!*3!*2
所以总的排列数为上述 6 种情况之和。
1.3 题 m 个男生,n 个女生,排成一行,其中 m,n 都是正整数,若
(a)男生不相邻 (m n 1) ;
分别讨论有多少种方案。
(b)n 个女生形成一个整体; (c)男生 A 和女生 B 排在一起;
解:(a) 可以考虑插空的方法。
n 个女生先排成一排,形成 n+1 个空。因为 m n 1正好 m 个男生可以插在 n+1 个空中,形成不相邻的关系。

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学版卢开澄标准答案

组合数学版卢开澄标准答案

习题四4.1.若群G的元素a均可表示为某一元素x的幂,即a= x m,则称这个群为循环群。

若群的元素交换律成立,即a , b∈G满足a⋅b = b⋅a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。

[证].设循环群(G, ⋅)的生成元是x0∈G。

于是,对任何元素a , b∈G,∃m,n∈N,使得a= x0m , b= x0n ,从而a⋅b = x0m⋅x0n= x0m +n (指数律)= x0n +m (数的加法交换律)= x0n⋅x0m(指数律)= b⋅a故⋅运算满足交换律;即(G, ⋅)是交换群。

4.2.若x是群G的一个元素,存在一个最小的正整数m,使x m=e,则称m为x的阶,试证:C={e,x,x2, ⋯,x m-1}是G的一个子群。

[证].(1)非空性C ≠∅:因为∃e∈G;(2)包含性C⊆G:因为x∈G,根据群G的封闭性,可知x2, ⋯,x m-1,(x m=)e∈G,故C⊆G;(3)封闭性∀a , b∈C⇒ a ⋅b∈C:∀ a , b∈C,∃k,l∈N (0≤k<m,0≤l<m),使a = x k, b = x l,从而a ⋅b = x k⋅ x l = x(k+l) mod m∈C(因为0 ≤ (k+l) mod m < m) ;(4)有逆元∀a ∈C⇒ a -1∈C:∀ a ∈C,∃k∈N (0≤k<m),使a = x k, 从而a -1= x m-k∈C(因为0 ≤m-k < m) 。

综合(1) (2) (3) (4),可知(C, ⋅)是(G, ⋅)的一个子群。

4.3.若G是阶为n的有限群,则G的所有元素的阶都不超过n。

[证].对任一元素x∈G,设其阶为m,并令C={e,x,x2, ⋯,x m-1},则由习题4.2.可知(C, ⋅)是(G, ⋅)的一个子群,故具有包含性C⊆G。

因此有m = |C| ≤ | G | = n所以群G的所有元素的阶都不超过n。

卢开澄《组合数学》习题答案第二章

卢开澄《组合数学》习题答案第二章

2.1 求序列{0,1,8,27,…3n …}的母函数。

解:()()++++++=++++++=nn n x n x x x x G x a x a x a x a a x G 3323322102780()046414321313=+-+--==-----n n n n n n n a a a a a n a n a左右同乘再连加:464:0464:0464:0464:4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x母函数:()()42162036-+-=x x x x G2.2 已知序列()()3433{,,……()33,,n +……},求母函数。

解:1(1)nx -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1)x - 2.3 已知母函数G (X )= 25431783x x x--+,求序列{ n a }解:G (X )=)61)(91(783x x x +-+=)61()91(x Bx A ++-从而有: ⎩⎨⎧-==⇒⎩⎨⎧=-=+4778963B A B A B AG (X )=)61(4)91(7x x +-+-G (X )=7)999x (13322 ++++x x -4))6((-6)(-6)x (13322 +-+++x xn a =7*n )6(*49n -- 2.4.已知母函数239156xx x---,求对应的序列{}n a 。

解:母函数为239()156x G x x x -=--39(17)(18)xx x -=+- A BG(x)17x 18xA(18x)B(17x)39x=++--++=-令 A B 38A +7B =9+=⎧⎨--⎩解得:A=2 B=1所以 ii i 0i 021G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑n n n a 2*(7)8=-+2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。

卢开澄组合数学--组合数学第二章习题解答

卢开澄组合数学--组合数学第二章习题解答

解:...
课件
15
1 AB : AD (1 5) 作 C1B1 使得 2 AB1C1D 是一正方形。试证矩形 B1C1CD 和 ABCD 相似。试证继续这过程可得
一和原矩形相似的矩形序列。 解:...
16. 设一矩形 ABCD ,其中
A D
课件
B1
B
C
16
C1
17. 平面上有两两相交,无三线共点的n 条直线,试求这n条直线把平面分成多少 个域? 解:...
解:...
课件
13
14. 在Hanoi塔问题中,在柱A上从上到 下套着n个圆盘,其编号依次从1到n。现 要将奇数编号与偶数编号的圆盘分别转 移到柱B和柱C上。转移规则仍然是每次 移动一个,始终保持上面的比下面的小。 一共要移动多少次? 解:...
课件
14
15. 一书框中有m格,每格各放n册同类 的书,不同格放的书类型不同。现取出 整理后重新放回,但不打乱相同类。试 问无一本放在原来位置的方案数应多少?
课件
20
21. 求 1 2 3 n 的和。
4 4 4 4
解:...
课件
21
22. 求矩阵 3
1 . 0 2
100
解:...
课件
22
23. 求
Sn Sn
解:...
k 0 n
k (k 1),
nSn ຫໍສະໝຸດ k 0 k (k 2),
n
k 0
解:...
课件 24
25. 用 an 记具有整数边长周长为n的三 角形的个数。 (a)证明
当n是偶数, an 3 , n2 an n (1) 2 ,当n是奇数 an 3 4 (b)求序列 an 的普通形母函数。

组合数学+卢开澄版++答案第三章

组合数学+卢开澄版++答案第三章

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28甲参加的会议数为 28+5=333.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。

解:设 A 3:被3整除的数的集合A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||=||-||=-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.×3.4试给出下列等式的组合意义0j j 0(1)=(1), 1n-m -j+1(2)(1)1 j 1(3)...(1) 1 12m l l n ml n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭---⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑∑证明:(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)()(kn m n mk m n --=--。

设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.1212|...|(...)12 =( (1))1 2 =(1) m m ml n A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫=- ⎪⎝⎭---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛- ⎪⎝⎭ 0ml =⎫ ⎪⎝⎭∑ (2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k12k 121|...|(...)1k 11211 =(...(1)) 1 2 k kk l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫=- ⎪⎝⎭+--+--+--+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭kj j 0k k-j+1 =(1)j l l =-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭∑(3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i个的方案数。

组合数学参考答案解析[卢开澄第四版]_修改版

组合数学参考答案解析[卢开澄第四版]_修改版

1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下:6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:(答案略) (答案略)从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列 (b) 女生两两不相邻有多少种不同的排列(c) 两男生A 和B 之间正好有3个女生的排列是多少[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生 排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学卢开澄第四版课后习题答案再次修正

组合数学卢开澄第四版课后习题答案再次修正

1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下: 6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合数学卢习题答案
组合数学是数学的一个分支,研究的是离散的对象之间的组合方式和计数方法。

它在解决实际问题中有着广泛的应用,例如密码学、图论、组织管理等领域。

本文将为读者提供一些卢习题的答案,帮助读者更好地理解和掌握组合数学的
知识。

1. 卢习题一:从一个有10个字母的字母表中选取3个字母,可以有多少种不同的选择方式?
解答:根据组合数学的知识,从n个不同元素中选取k个元素的组合数可以用
C(n,k)表示。

在这个问题中,n=10,k=3,所以答案为C(10,3) = 10! / (3! * (10-3)!) = 120 种不同的选择方式。

2. 卢习题二:一个班级有20名学生,其中10名男生和10名女生。

如果要从
这个班级中选取5名学生组成一个小组,其中至少有2名男生和2名女生,有
多少种不同的选取方式?
解答:这个问题可以用组合数学中的排列组合原理来解决。

首先,我们可以分
两种情况来考虑:一种是选取3名男生和2名女生,另一种是选取2名男生和
3名女生。

对于第一种情况,选取3名男生的方式有C(10,3) = 120种,选取2名女生的方
式有C(10,2) = 45种,所以总共有120 * 45 = 5400种不同的选取方式。

对于第二种情况,选取2名男生的方式有C(10,2) = 45种,选取3名女生的方
式有C(10,3) = 120种,所以总共有45 * 120 = 5400种不同的选取方式。

将两种情况的结果相加,总共有5400 + 5400 = 10800种不同的选取方式。

3. 卢习题三:有一个由0和1组成的8位二进制数,其中至少有3个1。

问这
样的二进制数有多少个?
解答:这个问题可以用组合数学中的排列组合原理来解决。

首先,我们可以分两种情况来考虑:一种是有3个1,另一种是有4个1、5个1、6个1、7个1和8个1。

对于第一种情况,选取3个位置放置1的方式有C(8,3) = 56种。

对于第二种情况,选取4个位置放置1的方式有C(8,4) = 70种,选取5个位置放置1的方式有C(8,5) = 56种,选取6个位置放置1的方式有C(8,6) = 28种,选取7个位置放置1的方式有C(8,7) = 8种,选取8个位置放置1的方式有
C(8,8) = 1种。

将所有情况的结果相加,总共有56 + 70 + 56 + 28 + 8 + 1 = 219种不同的二进制数。

通过以上几个习题的解答,读者可以看到组合数学在解决实际问题中的应用。

它不仅能够帮助我们计算不同选择方式的数量,还能够提供一种思维方式,帮助我们更好地理解和分析问题。

希望读者通过这些习题的答案,能够对组合数学有更深入的了解和认识。

相关文档
最新文档