《高等数学(专升本)》三个阶段测试卷参考答案(全套)

合集下载

高数专升本真题及答案

高数专升本真题及答案

高数专升本真题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = x^2C. y = cos(x)D. y = tan(x)2. 函数f(x) = x^3 - 6x^2 + 9x + 2在区间[1, 3]上的最大值是:A. 2B. -1C. 12D. 153. 曲线y = x^3在点(1,1)处的切线斜率是:A. 1B. 2C. 3D. 44. 无穷小量o(x)与x的关系是:A. o(x)/x → 0 当x → ∞B. o(x)/x → 1 当x → ∞C. o(x)/x → ∞ 当x → ∞D. o(x)/x → x 当x → ∞5. 以下哪个级数是收敛的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 2 + 3 + 4 + ...C. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...6. 函数f(x) = ln(x)的原函数是:A. x^2B. e^xC. x ln(x)D. x7. 已知函数f(x) = 3x^2 + 2x - 1,求f'(1)的值是:A. 7B. 5C. 3D. 18. 以下哪个选项是微分方程dy/dx + 2y = 6x的解?A. y = 3x^2 + CB. y = 2x + CC. y = x^2 + CD. y = 3x + C9. 曲线y = x^2在点(1,1)处的法向量是:A. (1, -1)B. (1, 1)C. (-1, 1)D. (-1, -1)10. 以下哪个选项是二阶偏导数的连续性条件?A. fxx = fyyB. fxx + fyy = 0C. fxx - fyy = 0D. fxx * fyy = 1二、填空题(每空2分,共20分)11. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1,则f'(x) =____________。

专升本高数三试题及答案

专升本高数三试题及答案

专升本高数三试题及答案一、选择题(每题4分,共20分)1. 设函数f(x)=x^2+1,求f(-1)的值。

A. 0B. 1C. 2D. 3答案:C2. 计算极限lim(x→0) (sin x)/x的值。

A. 0B. 1C. 2D. 3答案:B3. 求不定积分∫x^3 dx。

A. x^4/4B. x^4C. x^3/3D. x^2/2答案:C4. 设矩阵A=\[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],求A的行列式。

A. 1B. 2C. 5D. 7答案:C5. 判断函数f(x)=x^3-3x+1在x=1处的导数。

A. 1B. -1C. 3D. -3答案:A二、填空题(每题4分,共20分)6. 设等比数列的首项为2,公比为3,求第5项的值:______。

答案:1627. 求定积分∫(0到π) sin x dx的值:______。

答案:28. 求函数y=x^2-4x+3的对称轴方程:______。

答案:x=29. 设矩阵B=\[\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}\],求B的逆矩阵:______。

答案:\[\begin{bmatrix} 0.5 & 0 \\ 0 & 1 \end{bmatrix}\]10. 求函数f(x)=ln(x)的二阶导数:______。

答案:1/x^2三、解答题(每题10分,共60分)11. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求一阶导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

经检验,x=1为极大值点,x=11/3为极小值点。

12. 计算定积分∫(1到2) (2x-1) dx。

答案:首先求原函数F(x)=x^2-x+C,然后计算F(2)-F(1)=2^2-2-(1^2-1)=3。

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

2020年山东省专升本考试_高等数学三_真题(含答案)

2020年山东省专升本考试_高等数学三_真题(含答案)

高等数学III 试题 第1页(共3页) 高等数学III 试题 第2页(共3页)机密★启用前山东省2020年普通高等教育专升本统一考试高等数学III 试题本试卷分为第Ⅰ卷和第Ⅱ卷两部分,共3页。

满分100分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写到试卷规定的位置上,并将姓名、考生号、座号填(涂)在答题卡规定的位置。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答在本试卷上无效。

3. 第Ⅱ卷答题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I 卷一、单选题(本大题共10小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将答题卡的相应代码涂黑。

错涂、多涂或未涂均无分。

1.以下区间是函数x y sin =的单调递增区间的是 A .2,0[p B .],0[p C .],2[p p D .]23,[p p 2.当0®x 时,以下函数是无穷小量的是A .xe B .1+x C .x sin D .x cos3.=÷øöçèæ'cos x xA .x sinB .x sin -C .2cos sin x x x x + D .2cos sin x xx x --4.极限=++¥®2ln limx xxA .0B .1C .2D .¥+ 5.函数x x y +=3的微分=dyA .dx x x ÷÷øöççèæ+232 B .dx x x ÷øöçèæ+2132 C .dx x x ÷÷øöççèæ+22 D .dx x x ÷øöçèæ+212 6.=òdt t dx d x 02tanA .x x 2tan 2B .2tan 2x x C .x 2tan D .2tan x 7.不定积分=òdx x f )('A .)(x fB .)('x fC .C x f +)(D .C x f +)(' 8.点1=x 是函数112--=x x y 的 A .连续点 B .可去间断点 C .跳跃间断点 D .无穷间断点 9.设)(x y y =是由方程y x e y -=所确定的隐函数,则='yA .1+ye B .ye -1C .11+y e D .y e -1110.已知函数)(x f 在]2,1[-上连续,且2)(01=ò-dx x f ,ò=101)2(dx x f ,则ò-=21)(dx x fA .1B .2C .3D .4姓 名 考生号 座 号高等数学III 试题 第3页(共3页) 高等数学III 试题 第4页(共3页)第II 卷二、填空题(本大题共5小题,每小题3分,共15分) 11.函数3-=x y 的定义域为____________.12.曲线1ln 2+=x y 在点)1,1(处的切线的斜率=k _________. 13.已知函数x e x f 2)(=,则=)(''x f ___________. 14.若2)(1=òdx x f ,则=-òdx x f 1]2)(3[_________.15.极限()=-®xx x 1021lim ___________.三、计算题(本大题共7小题,每小题6分,共42分) 16.已知函数11)(-+=x x x f ,),1(¥+Îx ,求复合函数)]([x f f . 17.求极限232lim22+--®x x x x . 18.求极限xx e x x 21lim 0-+®.19.已知函数ïïîïïíì<-=>+=0,20,20,sin )(x a x x x b x xa x f ,在点0=x 处连续. 求实数a 与b 的值.20.已知函数)12ln(2+=x x y . 求1=x dxdy .21.求不定积分dx x x x ò-2234cos 2.22.求定积分dx xxò+41ln 1. 四、应用题(本大题共2小题,第23小题6分,第24小题7分,共13分) 23.求函数51232)(23+--=x x x x f 的极值,并判断是极大值还是极小值. 24.求曲线x y 1=与直线x y =,x y 41=所围成的在第一象限内的图形的面积.高等数学III 试题参考答案 第1页(共3页) 高等数学III 试题参考答案 第2页(共3页)机密★启用前山东省2020年普通高等教育专升本统一考试高等数学III 试题参考答案高等数学III试题参考答案第3页(共3页)高等数学III试题参考答案第4页(共3页)。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一. 选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1函数1arccos2x y +=的定义域是 ( ) .A 1x < .B ()3,1-.C {}{}131x x x <⋂-≤≤ .D 31x -≤≤.2.极限sin 3limx xx→∞等于 ( ).A 0 .B 13.C 3 .D 1.3.下列函数中,微分等于1ln dx x x的是 ( ) .A ln x x c + .B ()ln ln y x c =+ .C 21ln 2x c + .D ln xc x+.4.()1cos d x -=⎰( ).A 1cos x - .B cos x c -+.C sin x x c -+ .D sin x c +.5.方程2222x y z a b=+表示的二次曲面是(超纲,去掉) ( ).A 椭球面.B 圆锥面.C 椭圆抛物面 .D 柱面.二.填空题(只须在横线上直接写出答案,不必写出计算过程, 本题共有10个小题,每小题4分,共40分)1.2226lim _______________.4x x x x →+-=-2.设函数(),,x e f x a x ⎧=⎨+⎩00x x ≤>在点0x =处连续,则________________a =.3.设函数xy xe =,则()''0__________________y =.4.函数sin y x x =-在区间[]0,π上的最大值是_____________________.5.sin 1_______________________.4dx π⎛⎫+= ⎪⎝⎭⎰6.()() ____________________________.aax f x f x dx -+-=⎡⎤⎣⎦⎰7.设()() xa x F x f t dt x a=-⎰,其中()f t 是连续函数,则()lim _________________.x aF x +→=8.设32, 2a i j k b i j k =--=+-,则____________________.a b ⋅=9.设()2,yz x y =+则()0,1____________________________.zx ∂=∂(超纲,去掉) 10.设(){},01,11,D x y x y =≤≤-≤≤则_____________________.Ddxdy =⎰⎰(超纲,去掉)三.计算题( 本题共有10个小题,每小题6分,共60分)1.计算0lim.x xx e e x-→-2.设函数y =求.dy3.计算1xxe dx e +⎰.4.设 2 02sin cos tx u du y t⎧=⎪⎨⎪=⎩⎰,求.dy dx5.计算 2 .22dxx x +∞-∞++⎰6. 设曲线()y f x =在原点与曲线sin y x =相切,求n7.求微分方程'tan 3y x y +=-满足初值条件02y π⎛⎫= ⎪⎝⎭的特解. .8.设(),z z x y =是由方程2224x y z z ++=所确定的隐函数,求.zx∂∂(超纲,去掉) 9.求D⎰⎰ ,其中区域(){}2222,4D x y x y ππ=≤+≤ .(超纲,去掉)10.求幂级数21113n n n x ∞-=∑的收敛域.四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分) 1.求函数21x y x+=的单调区间,极值及其图形的凹凸区间.(本题14分)2.设()f x 在[]0,1上可导,()()00,11f f ==,且()f x 不恒等于x ,求证:存在()0,1ξ∈使得()' 1.f ξ> (本题8分)3.设曲线22y x x =-++与y 轴交于点P ,过P 点作该曲线的切线,求切线与该曲线及x 轴围成的区域绕x 轴旋转生成的旋转体的体积. (本题8分)参考答案及评分标准一. 选择题(每小题4分,共20分)1.D ,2.A ,3.B ,4.B ,5.C . (超纲,去掉) 二. 填空题(每小题4分,共40分) 1.54 , 2.1 , 3.2 , 4.0 , 5.sin 14x c π⎛⎫++ ⎪⎝⎭ ,6.0 ,7.()af a ,8.3 ,9.2 , (超纲,去掉) 10.2 . (超纲,去掉) 三. 计算题(每小题6分,共60分)1. 解.00lim lim 1x x xxx x e e e e x --→→-+=5分2.=6分2.解.()3221',1y x ==+ 5分故()3221+dxdy x =.6分3.解.原式=()11x xde e++⎰3分()ln 1.x e c =++6分4.解法1.dy dy dtdxdx dt=3分222sin 2.sin t t t t -==-6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-, 4分故2.dyt dx=- 6分 5.解.原式()()2111d x x +∞-∞+=++⎰3分=()tan 1arc x +∞-∞+5分 =.π6分6.解.由条件推得()()'00,1 1.f f ==2分于是()1220lim 220n n f f n n →∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分(第1页,共3页)==6分注:若按下述方法:原式()()112200'lim lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分. 7.解法1.分离变量,得到cot ,3dyxdx y=-+2分积分得到ln 3ln sin y x c +=-+或 ()3 .sin cy c x =-∈4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为33.sin y x=-6分解法2.由()()(),p x dx p x dxy e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 其中()()13,tan tan p x q x x x ==-,得到 ()3 .sin c y c x=-∈4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 3 3.sin y x=-6分8.解.方程两边对x 求偏导数,得到(超纲,去掉)224,z zx z x x∂∂+=∂∂4分故.2z x x z∂=∂-6分9(超纲,去掉)解原式 2 2 0 sin d r rdrπππθ=⎰⎰3分= 222cos cos r r rdr πππππ⎡⎤-+⎢⎥⎣⎦⎰5分=26.π-6分10.解.由121121321131lim lim3n nn n n n n nx ax a x +++-→∞→∞==,可知收敛半径R =4分又当x =,对应数项级数的一般项为级数均发散,故该级数的收敛域为( .6分(第2页,共3页)四. 综合题(第1小题14分,第2小题8分, 第3小题8分,共30分) 1.解.定义域()(),00,-∞⋃+∞,()34232',",x x y y x x++=-= 令'0,y =得驻点12x =- ,5分令"0,y =得23x =- ,610分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-及()0,,+∞在2x =-处,有极小值14-. 其图形的凹区间为)0,3(-及()0,+∞,凸区间为(),3.-∞-14分2.证明.由于()f x 不恒等于x ,故存在()00,1,x ∈使得()00.f x x ≠2分如果()00,f x x >根据拉格朗日定理,存在()00,,x ξ∈使得 10)0()()('f 000=>--=x x x f x f ξ ,5分若()00,f x x <根据拉格朗日定理,存在()0,1,x ξ∈使得 ()()()000011'111f f x x f x x ξ--=>=--.8分注:在“2分”后,即写“利用微分中值定理可证得,必存在ξ,使得()'1f ξ>”者共得3分.3.解.P 点处该曲线的切线方程为2y x =+,且与x轴的交于点()2,0A -2分曲线与x 轴的交点()1,0B -和()2,0C ,因此区域由直线PA 和AB 及曲线弧PB所围成.4分该区域绕x 旋转生成的旋转体的体积 () 02218292330V xx dx πππ-=--++=⎰ .8分注:若计算由直线PA 与AC 及曲线弧PC 所围成,从而() 222 081362315V x x dx πππ=+-++=⎰者得6分.。

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

成人高等学校专升本招生全国统一考试高等数学(一)。

答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.【解题指导】计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.【解题指导】28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。

高数专升本试题及答案

高数专升本试题及答案

高数专升本试题及答案一、选择题(每题2分,共20分)1. 函数 \(f(x) = x^2 - 3x + 2\) 的导数是:A. \(2x - 3\)B. \(x^2 - 3\)C. \(2x + 3\)D. \(-3x + 2\)答案:A2. 曲线 \(y = x^3 - 2x^2 + x\) 在 \(x = 1\) 处的切线斜率是:A. \(-2\)B. \(0\)B. \(2\)D. \(4\)答案:B3. 定积分 \(\int_{0}^{1} x^2 dx\) 的值是:A. \(0\)B. \(\frac{1}{3}\)C. \(\frac{1}{2}\)D. \(1\)答案:B4. 若 \(\lim_{x \to 0} \frac{f(x)}{g(x)} = 1\),则 \(\lim_{x \to 0} f(x) - g(x)\) 存在且等于:A. \(0\)B. \(1\)C. \(-1\)D. \(\infty\)答案:A5. 函数 \(f(x) = \ln(x)\) 的原函数是:A. \(x - 1\)B. \(x^2\)C. \(e^x\)D. \(x\ln(x) - x\)答案:D6. 函数 \(y = \sin(x)\) 的周期是:A. \(2\pi\)B. \(\pi\)C. \(\frac{\pi}{2}\)D. \(1\)答案:B7. 级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2}\) 收敛于:A. \(1\)B. \(2\)C. \(\pi^2\)D. \(\infty\)答案:B8. 函数 \(y = e^x\) 的无穷小量阶是:A. \(0\)B. \(1\)C. \(2\)D. \(\infty\)答案:D9. 若函数 \(f(x)\) 在 \(x = a\) 处可导,则 \(f(x)\) 在 \(x =a\) 处:A. 一定连续B. 一定不可导C. 一定不可积D. 一定有界答案:A10. 函数 \(y = \ln(x)\) 的泰勒展开式在 \(x = 1\) 处的前三项是:A. \(x - 1\)B. \(1 + (x - 1)\)C. \(1 + (x - 1) + \frac{(x - 1)^2}{2}\)D. \(1 + (x - 1) + \frac{(x - 1)^2}{2} + \frac{(x -1)^3}{3}\)答案:C二、填空题(每题2分,共20分)1. 函数 \(y = x^3 - 6x^2 + 11x - 6\) 的导数是 \(f'(x) =\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\)。

专升本高等数学习题集及参考答案

专升本高等数学习题集及参考答案

第一章 函数一、选择题1. 下列函数中,【 C 】不是奇函数A. x x y +=tanB. y x =C. )1()1(-⋅+=x x yD. x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】A.33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-==C. 1)(,1)(2-=-=x x g x x fD. 2ln )(,ln 2)(x x g x x f ==3. A. y C. y4. A. y C. y5. 函数A. C. [6. A. y C. y7. A. (C. (8. A. (C. (9. A. fC.()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x =10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,22ππ-B. (0,)πC. (,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B.arccos y x x =C.arccot y x x = D. 2arctan y x x =13. 函数53sin ln x y=的复合过程为【 A 】A.x w w v v u u y sin ,,ln ,35==== B.x u u y sin ln ,53==C.x u u ysin ,ln 53== D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3.函数1()arcsinx f x +=的定义域为 ___________。

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)习题答案一、单选题1、若无穷级数收敛,而发散,则称称无穷级数(C)A发散 B收敛 C条件收敛 D绝对收敛2、点x=0是函数y=x^4的(D)A驻点但非极值点 B拐点 C驻点且是拐点 D驻点且是极值点3、极限(B)A B C1 D04、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、(C)A B C0 D16、曲线y=1/∣x∣的渐近线情况是(C)A只有水平渐近线 B只有垂直渐近线C既有水平渐近线又有垂直渐近线 D既无水平渐近线又无垂直渐近线7、函数的定义域为(D)A B C D8、y=x/(x^2-1)的垂直渐近线有(B)条A1 B2 C3 D49、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件D既非充分又非必要条件10、当x→0时,下列函数不是无穷小量的是(D)Ay=x By=0 Cy=ln(x+1) Dy=e^x11、,则(D)A BC D12、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷13、(A)A0 B C D14、若f(x)在x=x0处可导,则∣f(x)∣在处(C)A可导 B不可导 C连续但未必可导 D不连续15、直线上的一个方向向量,直线上的一个方向向量,若与平行,则(B)A BC D16、设函数y=f(x)在点x0处可导,且f′(x)>0, 曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为{C}A0 B∏/2 C锐角 D钝角17、设,则(A)A B C D18、函数y=x^2*e^(-x)及图象在(1,2)内是(B)A单调减少且是凸的 B单调增加且是凸的C单调减少且是凹的 D单调增加且是凹的19、和在点连续是在点可微分的(A)A充分条件 B必要条件 C充要条件 D无关条件20、以下结论正确的是(C )A 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.21、无穷大量减去无穷小量是(D)A无穷小量 B零 C常量 D未定式22、下列各微分式正确的是(C)Axdx=d(x^2) Bcos2x=d(sin2x) Cdx=-d(5-x) Dd(x^2)=(dx^2)23、已知向量两两相互垂直,且,求(C)A1 B2 C4 D824、函数y=ln(1+x^2)在区间[-1,-2]上的最大值为(D)A4 B0 C1 Dln525、在面上求一个垂直于向量,且与等长的向量(D)A B C D26、曲线y=xlnx的平行于直线x-y+1=0的切线方程是(C)Ay=x By=(lnx-1)(x-1) Cy=x-1 Dy=-(x-1)27、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件28、曲线y=e^x-e^-x的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)29函数在区间上极小值是(D)A-1 B1 C2 D030函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D331、若,则(A)A4 B0 C2 D32、已知y=xsin3x ,则dy=(B)A(-cos3x+3sin3x)dx B(3xcos3x+sin3x)dxC(cos3x+3sin3x)dx D(xcos3x+sin3x)dx33、二重极限(D)A等于0 B等于1 C等于 D不存在34、曲线 y=x^3+x-2 在点(1,0)处的切线方程是(B)Ay=2(x-1) By=4(x-1) Cy=4x-1 Dy=3(x-1)35、设,则(C)A BC D36、曲线y=2+lnx在点x=1处的切线方程是(B)Ay=x-1 By=x+1 Cy=x Dy=-x37、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D38、半径R为的金属圆片,加热后伸长了R,则面积S的微分dS是(B)A∏RdR B2∏RdR C∏dR D2∏dR39、设在处间断,则有(D)A在处一定没有意义;B;(即);C不存在,或;D若在处有定义,则时,不是无穷小40、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=141、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛42、函数y=(x^2-1)^3的驻点个数为(B)A4 B3 C1 D243、曲线在点处的切线斜率是(A)A B C2 D44、M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=(C)A3 B4 C5 D645、利用变量替换,一定可以把方程化为新的方程表达式(A)A B C D46、两个向量a与b垂直的充要条件是(A)Aab=0 Ba*b=0 Ca-b=0 Da+b=047、已知向量,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,25 48、求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积(B)A1 B8/3 C3 D249、若,为无穷间断点,为可去间断点,则(C)A B C D50、要用铁板做一个体积为2m^3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?(A)A均为³√2m时,用料最省. B均为³√3m时,用料最省.C均为√3m时,用料最省. D均为√2m时,用料最省.二、判断题1、设,则(错)2、已知曲线y=f(x)在x=2处的切线的倾斜角为5/6∏,则f′(2)=-1(错)3、对于无穷积分,有(对)4、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)5、函数的定义域是(对)6、函数就是映射,映射就是函数(错)7、设,且满足,则(错)8、函数有界,则界是唯一的(错)9、设是曲线与所围成,则,是否正确(错)10、极限存在,则一定唯一(对)11、在处二阶可导,且,若,则为极小值点(对)12、1/x的极限为0(错)13、设,其中,则,是否正确(对)14、1/n-1的极限为0(错)15、,是否正确(对)16、对于函数f(x),若f′(x0)=0,则x0是极值点(错)17、,是否正确(对)18、无界函数与其定义域没有关系(错)19、齐次型微分方程,设,则(对)20、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)21、函数可微可导,且(对)22、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)23、微分方程的通解为,是否正确(对)24、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)25、设是由所确定,函数在上连续,那么(对)26、有限个无穷小的和仍然是无穷小(对)27、是齐次线性方程的线性无关的特解,则是方程的通解(对)28、函数在一点的导数就是在一点的微分(错)29、设表示域:,则(错)30、方程x=cos在(0,∏/2)内至少有一实根(错)31、设,则,是否正确(对)32、f〞(x)=0对应的点不一定是曲线的拐点(对)33、设,其中,则(错)34、y=ln(1-x)/(1+x)是奇函数(对)35、设由所确定,则(对)36、方程x=cos在(0,∏/2)内至少有一实根(错)37、设在区间上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点(对)38、无穷间断点就是函数在该点的极限是无穷(对)39、设是圆周围成的区域,是否正确(对)40、定积分在几何上就是用来计算曲边梯形的面积(对)41、,是否正确(对)42、数列要么收敛,要么发散(对)43、函数在点可导(对)44、函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限(对)45、在的邻域内可导,且,若:当时,;当时,则为极小值点(错)46、定积分在几何上就是用来计算曲边梯形的面积(对)47、二元函数的最小值点是(对)48、任何函数都可以求出定积分(错)49、设为,与为顶点三角形区域,则积分方程(对)50、若被积函数连续,则原函数不一定存在(错)。

高等数学试题及答案专升本

高等数学试题及答案专升本

高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。

A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。

A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。

A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。

A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。

A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。

A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。

A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。

A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。

A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。

A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。

答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。

专升本高数参考答案

专升本高数参考答案

全真测试卷答案全真模拟试卷1答案一、选择题1、A2、A3、C4、D5、D6、C二、填空题7、2-e 8、1+=x y 9、810、[)4,211、⎰⎰-+-244202),(x x d y y x f dx 12、1=x ;0。

三、计算题13.解:原式=20303c os )cos(sin cos lim )sin(sin sin limx xx x x x x x x -=-→→=6121l im 31)cos(sin 13cos lim 22020==-⋅→→x xxx x x x 。

注:当0→x 时,2221~s in 21~)cos(sin 1,~tan x x x x x -。

14.解:231112322-+=+--==t t tt t dt dxdt dydx dy ,t t t tt dt dx dx dy dt d dx y d 17611116222++=+-+=⎪⎭⎫⎝⎛=。

15.解:原式=()uduu u dttt x d xx ut tx 211ln ln 1ln 21ln ⋅-=+=+⎰⎰⎰=+=令令=()C x x x C u u d u u ++-++=+-=-⎰ln 12ln 1ln 132232)22(32。

16.解:原式=()ex e dx x x x x x dx ee ee2442]1ln [2ln 21111-=-=⋅-=⎰⎰。

17.解:由已知条件可得,直线过点A (-1,2,0),所求直线的方向向量⊥→s 已知直线的方向向量)0,4,3(0-=→s ,所求直线的方向向量⊥→s 已知平面的法向量)4,3,2(-=→n ,因而)1,12,16(0---=⨯=→→→n s s 。

由直线方程的点向式得所求的直线方程为:1122161-=--=-+z y x ,即1122161zy x =-=+。

18.解:g x y f y x y g y f x z '-'=⎪⎭⎫⎝⎛-⋅'+⋅'=∂∂2121,[]g x y g x f y f x y f x g xy g x y f x f y f y x z ''-'-''+''+'=⋅''-'-⋅''+⋅''+'=∂∂∂32122111221211121211219、解:原式=2910c os 38403cos 204==⋅⎰⎰⎰πθπθθθd r dr r d 。

专升本高数试题及详解答案

专升本高数试题及详解答案

专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。

A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。

A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。

A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。

A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。

2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。

3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。

4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。

5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。

三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。

2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。

3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。

完整word版专升本高等数学测试题答案

完整word版专升本高等数学测试题答案

专升本高等数学测试题1.函数y1sinx是〔D〕.〔A〕奇函数;〔B〕偶函数;〔C〕单调增加函数;〔D〕有界函数.解析因为1sinx1,即01sinx2,所以函数y1sinx为有界函数.2.假设f(u)可导,且y f(e x),那么有〔B 〕;〔A〕dy f'(e x)dx;〔B〕dy f'(e x)e x dx;〔C〕dy f(e x)e x dx;〔D〕dy[f(e x)]'e x dx.解析y f(e x)可以看作由y f(u)和u e x复合而成的复合函数由复合函数求导法y f(u)e x f(u)e x,所以d y y x f x x x.d'(e)ed3.e x dx=(B);(A)不收敛;(B)1;(C)-1;(D)0 .解析0e x dx e x011.4.y2y y(x1)e x的特解形式可设为〔A〕;(A)x2(ax b)e x;(B)x(ax b)e x;(C)(ax)e x;(D)(ax b)x2.b解析特征方程为r22r10,特征根为r1=r2=1.=1是特征方程的特征重根,于是有y p x2(axb)e x.5.x 2y2dxdy(C),其中D:≤x2y2≤4;1D2π42dr;2π4(A)0d r(B)d rdr;11(C )2π22dr;(D)2π2d rd rdr.11解析此题考察直角坐标系下的二重积分转化为极坐标形式.当x rcos时,dxdy rdrd,由于1≤x2y24D1r202≤,表示为,y rsinπ,故x2y2dxdy r rdrd 2π22dr.d1rD D6.函数y =1 arcsin(x1)的定义域3x 22解由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解 .即3 x 0,3 x 3, 3 x 20,推得x 1 1,0 x4,2即0x3,因此,所给函数的定义域为[0, 3).7.求极限lim2x2 =x22 x解:原式=lim(2x 2)(2 x 2) x 2=limx 221=.4(2 x)(2 x 2)1 2恒等变换之后“能代就代〞〕xsin πtdt8.求极限lim1=x11cos πx解:此极限是“0〞型未定型,由洛必达法那么,得x sin πtdtxsin πtdt)1( sin πx11=lim1=limlim(1lim()x11cos πx x1cos πx)x1πsin πxx1ππx t, 9.曲线在点〔1,1〕处切线的斜率yt 3,解:由题意知:1 t,1,1 t 3 t,dy t1(t 3)t13t 2 t13,dx(t)曲线在点〔 1,1〕处切线的斜率为310.方程y''2y' y 0,的通解为解:特征方程r 22r 1 0, 特征根r 1r 21,通解为y(C1C2x)e x.11.交错级数(1)n11的敛散性为n1n(n1)〔4〕(1)n11=1 ,n1n(n 1)n1n(n 1)而级数1收敛,故原级数绝对收敛.n1n(n1)12.lim(112)x.〔第二个重要极限〕xx1)x(11)x1)x1)x ]1解一 原式=lim(1lim(1 lim[(1 =ee 11,xxxx 0 x xx11解二原式=lim[(1( x 2)( x )=e 0 1 .2) ]xx13.lim[112ln(1x)]x0xx解所求极限为型,不能直接用洛必达法那么,通分后可变成或型.11xln(1x)1 11 xln(1x)]limlim[2limx 22xx0xxx0x0lim1x 1 li m1x)1 .x2x(1 x)x02(1 214.设f(x)x e x ,求f'(x).解:令yx e x,两边取对数得:lnye x lnx ,两边关于x 求导数得:1 y'exlnx e xyxy' y(e x lnxe x )x即y'xe x(e xlnxe x ).x15.求f(x)x 3 +3x 2 在闭区间5,5上的极大值与极小值,最大值与最小值.解:f(x)3x 26x ,令f(x)0,得x 1 0,x 2 2,f(x)6x6,f(0)60, f(2)60,∴f(x)的极大值为f(2) 4,极小值为 f(0)0.∵f(5) 50, f(5)200.∴比拟f(5),f(2),f(0),f(5)的大小可知:f(x)最大值为 200,最小值为50.16.求不定积分1dx .11x解:令1 xt ,那么 x t 21, dx 2tdt ,于是原式 = 2t dt =2 t 1 1dt ]= 2t2ln1tC 1 1 dt =2[dt1t t t =21x2ln11xC .17.求定积分41 x.1dxx解:〔1〕利用换元积分法,注意在换元时必须同时换限.令t x ,xt 2 ,dx 2tdt ,当x0时,t 0,当x 4时,t2,于是4xdx =2t2tdt =22t4 ]dt11 [41x1 t1 t4tt24ln1244ln3.t18.求方程(e xye x )dx (e xy e y )dy 0的通解;解 整理得e x (e y 1)dxe y (e x1)dy ,用别离变量法,得e y dye xe ye xdx ,1 1两边求不定积分,得ln(e y1) ln(e x 1) lnC ,于是所求方程的通解为e y1C,e x 1即e yC 1.e x119.uexsinxy ,求u, u.x(0,1)y(1,0)解:因ue x sinxy e x cosxy ye x (sinxyycosxy),xu e x cosxy x, yu e0(sin0cos0)1,x(0,1)ue(cos01)e. y(1,0)20.画出二次积分02dy 24y2f x,ydx的积分区域D并交换积分次序. 24y20y2,y解:D:y 2y224x24的图形如右图,由图可知,D也可表为0x4,O24x 0y4xx2,所以交换积分次序后,得4x04x x2fx ydy.0d,21.求平行于y轴,且过点A(1,5,1)与B(3,2,3)的平面方程.解一利用向量运算的方法。

2023年普通高校专升本高等数学参考答案

2023年普通高校专升本高等数学参考答案

一般高校专升本《高等数学》参照答案一、填空题1. x y e11=+;2. 1-;3.5512a π; 4.⎪⎭⎫⎢⎣⎡34,32; 5.))1((212E A ++++-λλλ; 6. 1; 7. 41;8.⎩⎨⎧>≤0),(20,02y y yf y ξ. 二、单项选择题1. D ;2. B ;3. A ;4. D ;5. C6. B7. D8. A三、计算题1. 解 原式=⎭⎬⎫⎩⎨⎧--+∞→x x a x x ln )1ln(lim exp =⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛--+∞→x a a a x x x 11ln lim exp , ………………………… 3分 当10<<a 时, 01ln lim =-+∞→xx x a aa , ∴ 原式=1e 0=. ……………………………… 5分 当0>a 时, aa a xx ln 1ln lim=--+∞→, ∴ 原式=a a=ln e . …………………………… 7分 2. 解 曲面在)5,2,1(-处旳法向量为)1,4,2()1,,()5,2,1(--=-=-y x z z n ………………………………………………… 2分 平面π方程为0)5()2(4)1(2=--+--z y x , 即 0542=---z y x . ……………………… 4分直线L 旳方程又可写为⎩⎨⎧-++=--=3)(5b x ax z bx y ,代入平面π旳方程解得1=a ,2-=b . …… 7分3. 解 原式=⎰⎰⎰+114d 1d d xzxy z y z x ……………………………… 2分=⎰⎰-+101224d )(1d 21xz x z z x ……………………… 3分=⎰⎰-+100224d )(1d 21zx x z z z ……………………… 5分=⎰+134d 131z z z …………………………………… 6分=18122-. …………………………………………… 7分 4. 解y u f xzx sin e )('=∂∂, y u f y z x cos e )('=∂∂. …………………………………1分 22x z ∂∂=)()(sin e )()sin e )((22u f u u f u y u f y u f x x '+''='+'', ………………………2分 22yz ∂∂=)()sin 1(e )(sin e )()cos e )((222u f u y u f y u f y u f x x x '--''='-'' =)()()(e22u f u u f u u f x'-''-''. …………………………………………………3分由z yz x z x22222e =∂∂+∂∂得0)()(=-''u f u f . ……………………………………………… 4分特性方程012=-r ,特性根11-=r ,12=r . ∴ u uC C u f e e)(21+=-. ………………………………………………………………… 6分由1)0(=f ,1)0(='f 得01=C ,212=C . ∴ uu f e 21)(=. ………………………………………………………………………… 7分 5. 解xx x x x 211112132+--=-+, … ………………………………………………… 2分∑∞==-011n n x x , 1||<x , ……………………………………………………… 4分∑∑∞=∞=-=-=+002)1()2(211n n n n n nx x x , 1|2|<x . …………………………… 6分 ∑∑∞=∞=--=2)1()(n nnnn nx x x f =∑∞=--0]2)1(1[n n n n x , 21||<x . ……………… 7分 6. 解: 1-*=A A A 111)()(--*-=-∴A A B A A E BA ……………… 2分A AB A A A A 1111)(----= …………… 3分ABA = ……… 4分 ⇒ 1))((--=A E A B ………………………5分1200320132-⎪⎪⎪⎭⎫ ⎝⎛------= …………… 6分=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----210043210874321 ………………… 7分 7. 解: 514635241362,,,,,ββββββββββββ++++++=+C B516354132,,,,,βββββββββ+++=+514352136,,,,,βββββββββ+++…… 2分 563412165432,,,,,,,,,,ββββββββββββ+=+543216145236,,,,,,,,,,ββββββββββββ+ ……………………………… 5分 8-=…………………………………………………………………………………………… 7分8. 解: {}121)()()(1,1=====B A P B P BA P P ηξ …………………………… 2分 {}41)()()(1,1=-==-==AB P B P A B P P ηξ …………………………3分{}121)()|()()()()(1,1=-=-===-=AB P A B P AB P AB P A P A B P P ηξ …… 4分{}127)(1)(1,1=⋃-==-=-=B A P A B P P ηξ ……………………… 5分 1211}1,1{}1,1{}1,1{}12{=-==+-=-=+=-==≤+ηξηξηξηξP P P P … 7分 9. 解: 3100)(,10)(==i i D E ξξ …………………………………………………… 2分 )310010010001100310010010100()1100(⋅->⋅⋅-=>ξξP P)33100001000(1≤--=ξP ……………………………………… 5分042.0)3(1211232≈Φ-=-≈-∞-⎰dt e t π……………………… 7分 四、应用题1. 解 如图所示,αβθ-=,θtan =αβαβtan tan 1tan tan +-=2601610xx x +-=6042+x x . ………… 3分 上式两边对x 求导:)60()60(4d d sec 222+-=x x x θθ, …………………………… 5分 令0d d =xθ得惟一驻点152=x . …………………… 6分 由问题旳实际意义知θ必有最大值,故152=x 就是θ旳最大值点,即球员在离底线152米处可获得最大射门张角1515arctan. ………………………… 8分 2. 解: ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==-10111011000010112)(1n n T n A αβ ……………………………3分∴ 00421=++⇔=x x x x A n…………………………………………5分⇒通解:3,2,1010010010011321=∈⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-i Rk k k k i ………………8分3. 解: 22))4(()4()4()(ηξηξηξγa E a D a E E +++=+= ………… 2分),4cov(2)()4(ηξηξa a D D ++=+(4+22)a ……………… 5分2134080a a ++= …………………………………………… 6分∴ 当1320-=a 时,)(γE 到达最小 …………………………………… 8分 五、证明题1. 证 令x x f x F -=)()(, ……………………………………………… 1分 x x F x )(lim-∞→=xxx f x --∞→)(lim =01<-, ………………………… 2分∴ 由极限保号性知,0<∃a ,使得0)(>a F . ……………………… 4 分 同理,由xx F x )(lim+∞→=01<-得,0>∃b ,使得0)(<b F . …………… 5分由于)(x F 在],[b a 上持续,0)()(<b F a F ,故由零点定理知,),(),(∞+-∞⊂∈∃b a ξ,使得0)(=ξF ,即ξξ=)(f . …………………………………………………… 8分2.证: 1)(≥⇒≠A r o A ……………………………………………… 1分 ⇒0=Ax 旳基础解系中含旳向量旳个数n n A r n <-≤-=1)(…… 3分 由B 旳每一种列向量是0=Ax 旳解n A r n B r <-≤⇒)()( …………5分 B ⇒中列向量组是线性有关旳,0=∴B …………………………7分。

2023 年宁夏专升本考试《高等数学》真题试卷参考答案

2023 年宁夏专升本考试《高等数学》真题试卷参考答案

2023 年宁夏专升本考试《高等数学》真题试卷参考答案一、选择题1.B2.A3.C4.D5.B6.C7.A8.D9.B10.C二、解答题1. 求函数f(f)=f3−3f2+f+2的极值点和最值。

首先,求函数的导数f′(f):f′(f)=3f2−6f+1令导数f′(f)等于 0,解得:$$x = \\frac{6 \\pm \\sqrt{36 - 12}}{6} = \\frac{6 \\pm2\\sqrt{2}}{6} = 1 \\pm \\frac{\\sqrt{2}}{3}$$所以,函数的极值点为 $x = 1 + \\frac{\\sqrt{2}}{3}$ 和 $x = 1 - \\frac{\\sqrt{2}}{3}$。

代入原函数f(f),得极值为:$$f\\left(1 + \\frac{\\sqrt{2}}{3}\\right) = \\left(1 +\\frac{\\sqrt{2}}{3}\\right)^3 - 3\\left(1 +\\frac{\\sqrt{2}}{3}\\right)^2 + \\left(1 +\\frac{\\sqrt{2}}{3}\\right) + 2$$$$f\\left(1 - \\frac{\\sqrt{2}}{3}\\right) = \\left(1 -\\frac{\\sqrt{2}}{3}\\right)^3 - 3\\left(1 -\\frac{\\sqrt{2}}{3}\\right)^2 + \\left(1 -\\frac{\\sqrt{2}}{3}\\right) + 2$$分别计算得到的最值为:$$f\\left(1 + \\frac{\\sqrt{2}}{3}\\right) \\approx 3.169$$ $$f\\left(1 - \\frac{\\sqrt{2}}{3}\\right) \\approx 0.463$$所以,函数f(f)=f3−3f2+f+2的极值点为 $x = 1 +\\frac{\\sqrt{2}}{3}$ 和 $x = 1 - \\frac{\\sqrt{2}}{3}$,极值分别为3.169和0.463。

高数专升本试题及答案

高数专升本试题及答案

高数专升本试题及答案一、选择题(每题5分,共20分)1. 函数y=x^3-3x的导数是()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3D. x^3 - 3x答案:A2. 极限lim(x→0) (sin x)/x的值是()A. 0B. 1C. 2D. -1答案:B3. 定积分∫(0,1) x dx的值是()A. 1/2B. 1/3C. 1/4D. 1答案:B4. 函数y=e^x的不定积分是()A. e^x + CB. e^xC. ln(e^x) + CD. x * e^x + C答案:A二、填空题(每题5分,共20分)1. 函数y=x^2-4x+4的最小值是______。

答案:02. 二阶导数y''=6x的原函数是______。

答案:x^3 + C3. 函数y=ln(x)的反函数是______。

答案:e^x4. 定积分∫(0,π) sin x dx的值是______。

答案:2三、解答题(每题10分,共20分)1. 求函数y=x^2-6x+8在区间[1,3]上的定积分。

解:首先计算原函数F(x) = (1/3)x^3 - 3x^2 + 8x。

然后计算F(3) - F(1) = [(1/3)(3)^3 - 3(3)^2 + 8(3)] - [(1/3)(1)^3 - 3(1)^2+ 8(1)] = 9 - 27 + 24 - (1/3 - 3 + 8) = 9。

答案:92. 求函数y=x^3-3x+1的极值点。

解:首先求导数y' = 3x^2 - 3。

令y' = 0,解得x = ±1。

当x < -1或x > 1时,y' > 0;当-1 < x < 1时,y' < 0。

因此,x = -1是极大值点,x = 1是极小值点。

答案:极大值点x = -1,极小值点x = 1四、证明题(每题10分,共20分)1. 证明:若函数f(x)在区间[a,b]上连续,则定积分∫(a,b) f(x) dx 存在。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)高等数学专升本试卷(含答案)第一部分:选择题1. 在两点之间用直线段所构成的最短路径称为什么?选项:A. 曲线B. 斜线C. 弧线D. 线段答案:D. 线段2. 下列哪个函数在定义域内是递增的?选项:A. f(x) = x^2B. f(x) = e^xC. f(x) = ln(x)D. f(x) = 1/x答案:B. f(x) = e^x3. 下列级数中收敛的是:选项:A. ∑(n=1→∞) (-1)^n/nB. ∑(n=1→∞) n^2/n!C. ∑(n=1→∞) (1/n)^2D. ∑(n=1→∞) (1/2)^n答案:C. ∑(n=1→∞) (1/n)^24. 若函数f(x)在区间[0,1]上连续,则下列哪个不等式恒成立?选项:A. f(0) ≤ f(x) ≤ f(1)B. f(0) ≥ f(x) ≥ f(1)C. f(0) ≥ f(x) ≤ f(1)D. f(0) ≤ f(x) ≥ f(1)答案:A. f(0) ≤ f(x) ≤ f(1)第二部分:填空题1. 设函数f(x) = 2x^3 + 5x^2 - 3x + 2,那么f'(x) = ______。

答案:6x^2 + 10x - 32. 若a, b为实数,且a ≠ b,则a - b的倒数是 ________。

答案:1/(a - b)3. 设y = ln(x^2 - 4),则dy/dx = _______。

答案:2x/(x^2 - 4)4. 若两条直线y = 2x + a与y = bx + 6的夹角为60°,那么b的值为_______。

答案:√3第三部分:计算题1. 求极限lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x))。

解:由泰勒展开,sin(x) ≈ x,cos(x) ≈ 1 - x^2/2,当x→0时,忽略高阶无穷小,得到:lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x)) = lim(x→0) (x^2 - x^2)/(x^4 + (1 - x^2/2)^2)= lim(x→0) (0)/(x^4 + (1 - x^2/2)^2)= 0/(1) = 0答案:02. 求定积分∫(0→1) (x^2 + 3x + 2) dx。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案) 高等数学专升本试卷题号得分考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一.选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1.函数y=1-x+arccos(x+1)的定义域是()A。

x<1B。

(-3,1)C。

{x|x<1} ∩ {-3≤x≤1}D。

-3≤x≤12.极限lim(sin3x/x) x→∞等于()A。

0B。

3C。

1D。

不存在3.下列函数中,微分等于ln(2x)+c的是() A。

xlnx+cB。

y=ln(lnx)+cC。

3D。

14.d(1-cosx)=()∫(1-cosx)dxA。

1-cosxB。

-cosx+cC。

x-sinx+cD。

sinx+c5.方程z=(x^2+y^2)/ab表示的二次曲面是(超纲,去掉)()A。

椭球面B。

圆锥面C。

椭圆抛物面D。

柱面.第1页,共9页二.填空题(只须在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.lim(x→2) (x^2+x-6)/(x^2-4) = _________________.2.设函数f(x)={ex。

x>a+x。

x≤aa=__________________.3.设函数y=xe,则y''(x)=__________________.4.函数y=sinx-x在区间[0,π]上的最大值是______________________.5.|sin(π/4)| = _______________.6.设F(x)=∫(π/4)^(x+1)(sin(t)+1)dt=_______________________.7.设F(x)=∫(a,-a) (f(x)+f(-x))dx=____________________________.8.设a=3i-j-2k,b=i+2j-k,则a·b=______________________.9.设z=(2x+y),则(∂z/∂x) (0,1) = ____________________.10.设D= (∂z/∂x) (0,1) = ____________________.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。

高数三专升本试题及答案

高数三专升本试题及答案

高数三专升本试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^3 - 3x + 1在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A2. 极限lim(x→0) (sin x/x)的值为:A. 0B. 1C. 2D. ∞答案:B3. 曲线y = x^2 - 6x + 8与x轴的交点个数是:A. 0B. 1C. 2D. 3答案:C4. 设函数f(x) = 2x - 3,g(x) = x^2 - 6x + 9,则f(g(2))的值为:A. -1B. 1C. 3D. 5答案:D5. 定积分∫(0, 1) (3x^2 - 2x + 1)dx的值为:A. 1B. 2C. 3D. 4答案:B6. 函数y = ln(x)的导数为:A. 1/xB. xC. ln(x)D. e^x答案:A7. 曲线y = x^3 + 2x^2 - 3x + 1在x = 1处的切线斜率为:A. 6B. 4C. 2D. 0答案:A8. 函数y = e^x的不定积分为:A. e^x + CB. e^x - CC. x * e^x + CD. ln(x) + C答案:A9. 函数y = sin(x)的周期为:A. 2πB. πC. 1D. 0答案:B10. 级数∑(1/n^2)从n=1到∞的和为:A. 1B. 2C. π^2/6D. e答案:C二、填空题(每题4分,共20分)1. 函数f(x) = x^2 - 4x + 4的最小值为______。

答案:02. 函数f(x) = x^3 - 6x^2 + 11x - 6的单调递增区间为______。

答案:[2, 3]3. 曲线y = x^2 + 2x - 3与直线y = 2x + 1的交点坐标为______。

答案:(-1, -3), (2, 5)4. 定积分∫(0, 2) (2x - 1)dx的值为______。

答案:35. 函数y = cos(x)的二阶导数为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江南大学现代远程教育2011年下半年第一阶段测试卷考试科目:《高等数学》专升本 第一章至第三章(总分100分) 时间:90分钟__________学习中心(教学点) 批次: 层次:专业: 学号: 身份证号:姓名: 得分:一. 选择题 (每题4分) 1. 函数y =的定义域是 ( a ). (a) (2,6)- (b) (2,6] (c) [2,6) (d)[2,6]- 2. 110lim(1)xx x +→+ ( a )(a) e (b) 1 (c) 3e (d) ∞ 3. 要使函数sin 3()xf x x=在 0x = 处连续, 应给(0)f 补充定义的数值是 ( c ). (a) 1 (b) 2 (c) 3 (d) 4 4. 设 23(21)y x =+, 则 y ' 等于 ( b ).(a) 2212(21)x x -+ (b) 2212(21)x x + (c) 222(21)x x + (d)226(21)x x +5. 设函数 ()f x 在点 0x 处可导, 则 000()(3)limh f x f x h h→-+ 等于 ( ).(a) 03()f x '- (b) 03()f x ' (c) 02()f x '- (d)02()f x '二.填空题(每题4分)6. 设 (4)3f x x =+, 则 ()f x =___________.7. 2sin[2(2)]lim2x x x →-++=___2__.8. 设 12,0,()5,0,34,0x x f x x x x -<⎧⎪==⎨⎪+>⎩, 则 0lim ()x f x +→=___3__.9. 设 2,0(),4,0x e x f x a x x -⎧≤=⎨+>⎩ 在点 0x = 处极限存在, 则常数 a =______ 10. 曲线 1y x -= 在点 (1,1) 处的法线方程为_____y=x__________ 11. 由方程 250y xy e -+=确定隐函数 ()y y x =, 则 y '=________ 12. 设函数 ()ln cos f x x =, 则 (0)f ''=___-1_____ 三. 解答题(满分52分) 13. 求 78lim()79xx x x →∞--. 14. 求 301lim sin 3x x e x→-.15. 确定A 的值, 使函数 5cos ,0(),sin ,02x e x x f x Ax x x -⎧-≤⎪=⎨>⎪⎩在点 0x = 处极限存在。

16. 设 cos xy x=, 求 dy 。

17. 已知曲线方程为 2(0)y x x =>, 求它与直线 y x = 交点处的切线方程。

18. 曲线 1(0)y x x=>, 有平行于直线 10y x ++= 的切线, 求此切线方程。

19. 若()f x 是奇函数, 且(0)f '存在, 求 0(9)limx f x x→。

江南大学现代远程教育2011年上半年第一阶段测试卷考试科目:《高等数学》专升本 第一章至第三章(总分100分) 时间:90分钟__________学习中心(教学点) 批次: 层次:专业: 学号: 身份证号:姓名: 得分:一、选择题 (每题4分) 1. 函数y =的定义域是 ( a ). (a) (2,6)- (b) (2,6] (c)[2,6) (d)[2,6]-2. 10lim(13)xx x →+ ( c )(a) e (b) 1 (c) 3e (d) ∞3. 要使函数()f x x=在0x =处连续, 应给(0)f 补充定义的数值是( d ).(a) 1 (b) 254. 设 sin 3x y -=, 则 y ' 等于 ( b ).(a)sin 3(ln 3)cos x x - (b) sin 3(ln 3)cos x x -- (c) sin 3cos x x -- (d)sin 3(ln 3)sin x x --5. 设函数 ()f x 在点 0x 处可导, 则 000(3)()limh f x h f x h→+-等于 ( b ).(a) 03()f x '- (b) 03()f x ' (c) 02()f x '- (d)02()f x '二.填空题(每题4分)6. 设 2(1)3f x x x -=++, 则 ()f x = .7. 2sin(2)lim2x x x →-++= 1 .8. 设 1,0,()5,0,1,0x x f x x x x -<⎧⎪==⎨⎪+>⎩, 则 0lim ()x f x +→= 1 .9. 设 ,0(),2,0x e x f x a x x -⎧≤=⎨+>⎩ 在点 0x = 处连续, 则常数 a =10. 曲线 54y x -= 在点 (1,1) 处的法线方程为11. 由方程 2250xy x y e -+=确定隐函数 ()y y x =, 则 y '=12. 设函数 2()ln(2)f x x x =, 则 (1)f ''=三. 解答题(满分52分) 13. 求 45lim()46xx x x →∞--. 14. 求x →.15. 确定A 的值, 使函数 62cos ,0(),tan ,0sin 2x e x x f x Ax x x -⎧-≤⎪=⎨>⎪⎩ 在点 0x = 处连续。

16. 设 2sin 1xy x =-, 求 dy 。

17. 已知曲线方程为 12y x =+, 求它与 y 轴交点处的切线方程。

18. 曲线 1(0)y x x =>, 有平行于直线 1104y x ++= 的切线, 求此切线方程。

19. 若()f x 是奇函数, 且(0)f '存在, 求 0(8)lim x f x x→。

江南大学现代远程教育2012年上半年第二阶段测试卷考试科目:《高等数学》专升本 第四章至第六章(总分100分) 时间:90分钟__________学习中心(教学点) 批次: 层次:专业: 学号: 身份证号:姓名: 得分:二. 选择题(每题4分)1. 下列函数中在给定区间满足拉格朗日中值定理条件的是 ( b ).(a) ,[2,1]y x =- (b) 2,[2,6]y x = (c)23,[2,1]y x =- (d)1,[2,6]3y x =- 2. 曲线 331y x x =-+ 的拐点是 ( a )(a) (0,1) (b) (1,0) (c) (0,0) (d)(1,1)3. 下列函数中, ( d ) 是 2cos x x 的原函数.(a) 21cos 2x - (b) 1sin 2x - (c) 21sin 2x - (d)21sin 2x 4. 设()f x 为连续函数, 函数1()xf t dt ⎰ 为 ( b ).(a) ()f x '的一个原函数 (b) ()f x 的一个原函数 (c) ()f x '的全体原函数 (d) ()f x 的全体原函数5. 已知函数()F x 是()f x 的一个原函数, 则43(2)f x dx -⎰等于( c ).(a) (4)(3)F F - (b) (5)(4)F F - (c) (2)(1)F F - (d)(3)(2)F F -二.填空题(每题4分)6. 函数 333y x x =-+的单调区间为________7. 函数 333y x x =-+的下凸区间为________8. tan (tan )xd x ⎰=_______. 9. 233()()x f x f x dx '⎰=_________.10. 220062sin x xdx -⎰=__________.11. 0cos xdx π⎰=_______.12. 极限23ln(1)lim xx x t dttdt→+⎰⎰=________.三. 解答题(满分52分) 13. 求函数 254(0)y x x x=-< 的极小值。

14. 求函数 333y x x =-++ 的单调区间、极值及其相应的上下凸区间与拐点。

15. 计算21(1ln )dx x x +⎰.16.求⎰.17. 计算111xdx e +⎰. 18. 计算4229x dx -⎰.19. 求由抛物线 21y x =+; 0,1x x == 及 0y = 所围成的平面图形的面积, 并求该图形绕x 轴旋转一周所得旋转体体积。

江南大学现代远程教育2011年下半年第二阶段测试卷考试科目:《高等数学》专升本 第四章至第六章(总分100分) 时间:90分钟__________学习中心(教学点) 批次: 层次:专业: 学号: 身份证号:姓名: 得分:三. 选择题(每题4分)1. 下列函数中在给定区间满足拉格朗日中值定理条件的是 ( b ).(a) ,[2,1]y x =- (b) cos ,[2,6]y x = (c)23,[2,1]y x =- (d)1,[2,6]3y x =- 2. 曲线 381y x x =-+ 的拐点是 ( a )(a) (0,1) (b) (1,0) (c) (0,0) (d)(1,1)3. 下列函数中, ( d ) 是 22x xe 的原函数. (a) 22x e (b) 2212x e (c) 2234x e (d) 2214x e4. 设()f x 为连续函数, 函数2()xf u du ⎰ 为 ( b ).(a) ()f x '的一个原函数 (b) ()f x 的一个原函数 (c) ()f x '的全体原函数 (d) ()f x 的全体原函数5. 已知函数()F x 是()f x 的一个原函数, 则98(7)f x dx -⎰等于( c ).(a) (4)(3)F F - (b) (5)(4)F F - (c) (2)(1)F F - (d)(3)(2)F F -二.填空题(每题4分)6. 函数 333y x x =--的单调区间为________7. 函数 333y x x =-- 的下凸区间为________8. x xe dx -⎰=_______. 9. 23()x f x dx '⎰=_________.10. 320083sin x xdx -⎰=__________.11.22sin x dx ππ-⎰=_______.12. 极限33ln(1)lim 2xx t dtx→+⎰=________.三. 解答题(满分52分)13. 求函数 3232132x y x x =-++ 的极小值。

相关文档
最新文档