平方根、算术平方根和立方根

合集下载

《算术平方根、平方根、立方根》易错题训练

《算术平方根、平方根、立方根》易错题训练

《算术平方根、平方根、立方根》易错题训练算术平方根、平方根、立方根易错题训练1. 算术平方根的定义和计算方法在数学中,算术平方根指的是一个数的平方等于给定数的平方根。

如果我们要计算16的算术平方根,我们需要找到一个数,使得这个数的平方等于16。

在这个例子中,16的算术平方根是4,因为4的平方等于16。

在实际计算中,我们可以使用开方符号√来表示算术平方根,即√16=4。

但在实际运用中,很多学生容易将算术平方根和平方根搞混,导致错题。

掌握算术平方根的定义和计算方法非常重要。

2. 平方根的概念和应用与算术平方根类似,平方根也是一个数的平方等于给定数的根。

但与算术平方根不同的是,平方根更常用于几何和物理问题中。

在计算一个矩形的对角线长度时,我们就需要使用平方根来计算。

平方根通常用来求解两边边长已知的等腰三角形的高、直角三角形斜边等问题。

然而,很多学生在高中数学学习中,由于对平方根的概念和应用理解不够深入,容易在相关题目中出错。

理解平方根的概念及其应用也是十分重要的。

3. 立方根的特点和求解方法立方根是一个数的立方等于给定数的根。

27的立方根是3,因为3的立方等于27。

立方根在几何和物理问题中同样有广泛的应用,如求解立方体的体积、长方体的对角线长度等。

虽然立方根的概念和求解方法比较直观,但在实际运用时,一些立方根的运算和问题求解可能会让学生感到困惑,容易出错。

熟练掌握立方根的特点和求解方法对于学生来说也是必不可少的。

4. 总结和回顾通过本篇文章的训练,我们可以得出结论:学生需要深入理解算术平方根、平方根、立方根的定义和计算方法,避免混淆和错题。

学生需要在实际问题中灵活应用平方根和立方根的知识,加深对概念和应用的理解。

学生可以通过练习题目加深对这些数学概念的掌握,并避免在考试中出现低级错误。

5. 个人观点和理解在我看来,数学中的算术平方根、平方根、立方根是非常基础但又非常重要的知识点。

它们不仅在数学中有着广泛的应用,而且还是建立数学思维和逻辑推理能力的重要基础。

平方根_算术平方根_立方根

平方根_算术平方根_立方根

平方根、算术平方根、立方根区别1. 平方根、算术平方根的概念与性质如果一个数x的平方等于a(即),那么这个数x就叫做a的平方根(或二次方根),记作:,这里a是x的平方数,故a必是一个非负数即;例如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。

正数a的正的平方根叫做a的算术平方根,表示为,例如16的算术平方根是,从定义中容易发现:算术平方根具有双重非负性:①;②。

2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。

联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。

3. 立方根的定义与性质如果一个数x的立方等于a(即),那么这个数x就叫做a的立方根(或三次方根),记作:。

立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。

二、解题中常见的错误剖析例1. 求的平方根。

错解:的平方根是剖析:一个正数有两个平方根,它们互为相反数,而是一个正数,故它的平方根应有两个即±3。

例2. 求的算术平方根。

错解:的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。

,而3的算术平方根为,故的算术平方根应为。

仿此你能给出的平方根的结果吗?三、典型例题的探索与解析例3. 已知:是算数平方根,是立方根,求的平方根。

分析:由算术平方根及立方根的意义可知联立<1><2>解方程组,得:代入已知条件得:所以故M+N的平方根是±。

例4. 已知,求的算术平方根与立方根。

分析:由已知得联立<1><2>解方程组,得:所以因而的算术平方根与立方根分别为。

(完整版)平方根立方根知识点归纳及常见题型

(完整版)平方根立方根知识点归纳及常见题型

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a ”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30a ≥0。

4、公式:⑴2=a (a ≥0)(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。

12.1复习算术平方根、平方根、立方根

12.1复习算术平方根、平方根、立方根

12.1.1复习算术平方根、平方根、立方根【温馨寄语】学贵有恒,行成于思【使用说明】复习教材2—7页,独立思考和小组合作相结合。

【学习目标】1、理解算术平方根、平方根、立方根的定义和性质。

2、会求一个数的算术平方根、平方根、立方根。

3、会运用a 2=a (a )2=a 3a =a (3a )2 =a 来解决问题。

【教学重点】 会求一个数的算术平方根、平方根、立方根。

【教学难点】 a 2=a (a )2=a 3a =a (3a )2=a 来解决问题。

【学法指导】 自主探究与小组合作交流一、 夯实双基(一)、算术平方根的定义及性质的运用1、算术平方根的定义是 。

2、下列各数有无算术平方根,若有,请指出。

①16 ②2514 ③ 0 ④ -83、计算:-52= ()112-=(二)、平方根的定义及性质的运用 1、平方根的定义是。

2、求出下列各数的平方根① 25 ② 0.0081 ③ 169144 ④ -243、计算:(-36)2 = (3 )2=(三)、立方根的定义及性质的运用 1、立方根的定义是 。

2、求出下列各数的立方根 ① 27 ② -6427 ③ 0 ④ -64 3、计算:364= 327-= -3125216= (33-)2=二、 综合运用(一)、计算:① 16 ② ±25 ③ 38- ④ ()332-(二)、判断下列式子有无意义①33- ② 3 ③ -0三、拓展延伸1、2m-4与3m-1是同一个数的两个平方根,求m 的值。

2、求符合下列条件的x 的值① 2x 2-21=0 ② (x-2)3=-27四、课堂小结请说说本节课你的收获是:五、课堂检测1、100的平方根是 ; 81的立方根是 ; 平方根是它本身的数是立方根是它本身的数是2、()22= ; ()332010-= 3、16的平方根为 。

4、计算: ① ±001.0 ② 38125- ③ 52教学反思:。

第二章平方根、算术平方根和立方根

第二章平方根、算术平方根和立方根

第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。

2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。

②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。

③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。

④写法不同。

在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。

②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。

3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。

东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。

厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。

算术平方根、平方根、立方根之间区别联系(课堂PPT)

算术平方根、平方根、立方根之间区别联系(课堂PPT)
做二次方根)。记为“ a ”读作“正、负
根号a”
2
立方根的定义. 一般地,如果一个数的立方等于a,这个
数就叫做a的立方根(也叫做三次方根). 用式子表示,如果X3 =a,那么X叫做a的立方根.
数a的立方根用符号“3 a ”表示,读作“三次根号a
其中a是被开方数,3是根指数(注意:根指数3不能省 略).
算术平方根
定义:如果一个正数x的平方等于a,即 x2
=a ,那么这个正数x就叫做a的算术平方
根,记为“ 做被开方数
a
”,读作“ 根号 a ”。a叫
规定:0的算术平方根是0,即 0 0
非负数
a ≥0 (a≥0)
算术平方根具有双重非负性
1
平方根定义
一般的,如果一个数X的平方等于a,即
x2=a那么这个数X叫做a的平方根(也叫
3
区别
你知道算术平方根、平方根、立方根联 系和区别吗?
算术平方根
平方根
立方根
表示方法
a的取值
正数

0

负数
开 方 是本身
a ≠ a
a≥ 0
a≥ 0
3a a是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0 没有
0 没有
0 负数(一个)
求一个数的平方根 求一个数的立方根
的运算叫开平方 的运算叫开立方
10
3.说出下列各式的值:
(1) - 81 9 (4) 3 125 5
(2) (-25)2 2 5 (5)-3 0.027 0 .3
( 3) 25 36
5 (6) - 3 125 5
6
82
11
不 要 遗 漏 哦!

七年级数学专题06 平方根、立方根知识讲解(解析版)

七年级数学专题06 平方根、立方根知识讲解(解析版)

专题06 平方根、立方根知识讲解知识点一:算术平方根、平方根、立方根概念【例1-1】(2020·广东东莞月考)在下列各式中正确的是( )A 3=-B .2=C 8=D 3=【答案】D.3, ∴选项A 错误;∵±2, ∴选项B 错误;4, ∴选项C 错误;3,∴选项D 正确. 故答案为:D .【例1-2】(2021·河北邯郸期末) ) A .0.2的平方根 B .0.2-的算术平方根 C .0.2的负的平方根 D .0.2-的平方根【答案】C.【解析】解:由平方根的定义可得0.2的平方根为:,其中为0.2的负的平方根 故答案为:C .【例1-3】(2020·四川通江县月考)下列说法中,正确的是( ) A .9的平方根是3 B .25-的平方根是5-C .任何一个非负数的平方根都是非负数D .一个正数的平方根有2个,它们互为相反数 【答案】D.【解析】解:A 、9的平方根是±3,错误; B 、−25的没有平方根,错误;C 、任何一个非负数的算术平方根都是非负数,错误;D 、一个正数的平方根有2个,它们互为相反数,正确. 故答案为:D .【例1-4】(2020·鹿邑县期末)若3109,b a =-且b 的算术平方根为4,则a =__________. 【答案】5.【解析】解:∵b 的算术平方根为4, ∴b=16, ∴16=a 3-109 ∴a =5. 故答案为:5.【变式1-1】(2020·福建永春月考)下列说法中,不正确的是( ) A .非负数才有平方根B .非负数的算术平方根是非负数C .任何数都有两个平方根D .负数没有平方根【答案】C.【解析】解:A. 非负数才有平方根,正确; B. 非负数的算术平方根是非负数,正确; C. 0只有1个平方根,错误; D. 负数没有平方根,正确. 故答案为:C .【变式1-2】(2020·山东济南期中)若30a ++=,则+a b 的立方根是______. 【答案】-1.【解析】解:∵30a ++=, ∴3+a=0, 2-b=0, ∴a=-3,b=2 ∴a+b=-1∴a+b 的立方根-1. 故答案为:-1.【变式1-3】(2019·河北邢台期末)有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m . 【答案】1.【解析】解:设正方体集装箱的棱长为a , ∵体积为64m 3,∴=4m ;设体积达到125m 3的棱长为b ,则=5m , ∴b-a=5-4=1(m ). 故答案为:1.【变式1-4】对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2与的值互为相反数,求1- 【答案】见解析.【解析】解:(1)答案不唯一.0=, 8与﹣8互为相反数; (2)由已知,得(3﹣2x )+(x +5)=0, 解得x =8,∴1=1﹣4=﹣3.【变式1-5】(2020·________,2________.【答案】32.,9的算术平方根为33.22,故答案为:32.【变式1-6】(2019·海南海口月考)已知a 的整数,31a b +-的平方根是4±, (1)求,a b 的值; (2)求2+a b 的平方根.【答案】(1)a=5;b=2;(2)±3.<<,且a 的整数, ∴a=5∵3a+b-1的平方根是±4, ∴3a+b-1=16 ∴b=2(2)当a=5,b=2时,a+2b=9 ∴a+2b 的平方根为:±3.知识点二:算术平方根、平方根、立方根性质【例2-1】(2020·海伦市期中)某数x 的两个不同的平方根是23a +与15a -,则x 的值是( ) A .11 B .121C .4D .11±【答案】B.【解析】解:由题意得:2a+3+a-15=0 解得:a=4当a=4时,2a+3=11 则x=112=121. 故答案为:B .【变式2-1】已知一个正数m 的平方根为2n +1和4﹣3n . (1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少? 【答案】(1)121;(2)2.【解析】解:(1)由正数m 的平方根互为相反数,得: 2n +1+4﹣3n =0, ∴n =5, ∴2n +1=11, ∴m =112=121;(2)∵|a ﹣3|(c ﹣n )2=0, ∴a =3,b =0,c =n =5, ∴a +b +c =3+0+5=8, ∴a +b +c 的立方根是2.【变式2-2】(2021·河北唐山期末)如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.【答案】36.【解析】解:由题意得: 2x-2+6-3x=0, 解得x=4,a=62=36 故答案为:36.【例2-2】(2020·江苏南通月考)若x ,y 为实数,且20x +=,则2021x y ⎛⎫⎪⎝⎭的值为( ) A .1 B .-1C .2D .-2【答案】B.【解析】解:由题意得: x+2=0,y-2=0 ∴x=-2,y=2∴2021202122x y ⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭=-1故答案为:B.【例2-3】﹣2x ﹣1=0,则x =_____. 【答案】0或﹣1或﹣12.﹣2x ﹣1=0,=2x+1,∴2x+1=1或2x+1=﹣1或2x+1=0, 解得x =0或x =﹣1或x =﹣12. 故答案为:0或﹣1或﹣12. 知识点三:综合题型【例3-1】(渠县月考)求下列各式中的x 的值 (1)21(1)82x +=;(2)3(21)270x -+= 【答案】(1)x=3或x=5;(2)x=-1.【解析】解:(1)两边乘以2得,(x+1)2=16, x+1=4或x+1=-4(2)(2x-1)3=-27 2x-1=-3 x=-1【变式3-1】(2020·江苏苏州月考)求下列各式中的x . (1)24120x -= (2)()216281x -= 【答案】见解析. 【解析】解:(1)4x 2=12 x 2=3(2)(x-2)2=8116 x-2=94或x-2=-94x=174或x=-14【变式3-2】(2020·剑阁县月考)(1)已知:m 3=8,n 2=9,且mn <0,求m 2-2mn+n 2的值. (2)已知a =5,b 2=9,(c-1)2=4,且ab >0,bc <0,求式子ab-bc-ca 的值. 【答案】(1)25;(2)23或39. 【解析】解:(1)由m 3=8,得m=2, 由n 2=9,得n=±3, 由mn <0,得:m=2,n=-3 当m=2,n=-3时, m 2-2mn+n 2=4+12+9=25 (2)由题意知a=±5, 由b 2=9得:b=±3, 由(c-1)2=4,得:c=3或-1 ∵ab >0,bc <0 ∴a 、b 同号,b 、c 异号当a=5,b=3,c=-1时,原式=15+3+5=23 当a=-5,b=-3,c=3时,原式=15+9+15=39. 【例4-1】(2020·浙江杭州期中)解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -+=,求d +c 的平方根. 【答案】(1)x =5,169或x=-21,1521;(2)±3. 【解析】解:(1)解:①由题意得:2x+3+x-18=0, 解得:x=5这个数是(2×5+3)2=169. ②2x+3=x-18,解得x=-21 这个数是(-21-18)2=1521; (2)由题意得:2c -d =0,d 2-36=0, 解得:d=±6,c=±3. 当d =-6,c =-3时,d +c =-9(没有平方根), 当d=6,c=3时,d+c=9,平方根为±3. 【例4-2】(2020·河南周口期中)在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品. 下面我们用四个卡片代表四名同学(如图):(1)列式,并计算:①﹣3经过A ,B ,C ,D 的顺序运算后,结果是多少? ②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是55,a 是多少? 【答案】(1)①7;②206;(2)-1或-11. 【解析】解:(1)①()23256-⨯--+⎡⎤⎣⎦ =(-6+5)2+6=1+7 =7②()25526--⨯+⎡⎤⎣⎦, =(5+5)2×2+6 =100×2+6 =206(2)由题意得:2(a+6)2-(-5)=55, 整理得:(a+6)2=25, a+6=5或a+6=-5 ∴a=-1或a=-11.【变式4-1】已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的值. 【答案】12.【解析】解:∵2x +1的算术平方根是0, ∴2x +1=0, ∴2x =﹣1,=4,∴y =16,∵z 是﹣27的立方根, ∴z =﹣3,∴2x +y +z =﹣1+16﹣3=12.【变式4-2】(2020·乐清市月考)有一个数值转换器,流程如下:当输入的x 值为64时,输出的y 值是( )A .4BC .2D 【答案】B.,是有理数,8的立方根是2,是有理数,2 故答案为:B .【例5-1】(2020·浙江期中),( ) A .287.2 B .28.72 C .13.33 D .133.3【答案】C.1.3331013.33==≈⨯=. 故答案为:C .【例5-2】(2020· 2.449≈7.746≈≈______. 【答案】0.07746.7.746=0.0774*******≈ 故答案为:0.07746.【例5-3】(2020·余干县月考)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<34<<,可得3040<<, 由此能确定59319的立方根的十位数是3 因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空. ①它的立方根是_______位数. ②它的立方根的个位数是_______. ③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.【答案】(1)①两;②8;③5;④58;(2)①24;②56.==,1000<195112<1000000【解析】解:(1100∴<100,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,83=512,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<,<<,∴56<<,可得5060由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.===,则【变式5-1】(2020·0.5325______________________.【答案】11.47【解析】解:=1.147,===⨯=1.1471011.47故答案为: 11.47.【变式5-2】(2019· 1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10)C.D【答案】B.1之后,扩大10倍即可实现,故答案为:B.【变式5-3】(2020·山西大同月考)观察下表,回答问题:(1)表格中x=_________________,y=_________________;(2)用一句话描述你发现的规律:_________________;(3)根据你发现的规律填空:≈≈≈,2.714=_________________;②58.48≈,则a=_________________.【答案】(1)0.1,10;(2)在开立方运算中,被开方数的小数点向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位;(3)①0.2714;②200000.【解析】解:(1)根据题意,立方根的被开方数扩大1000倍,立方根扩大10倍;∴x=0.1,y=10;故答案为:0.1;10.(2)在开立方运算中,被开方数的小数点向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位;==≈;(30.2714≈,0.5848∴1001000.584858.48≈⨯=,≈,58.48≈=100∴a=200000;故答案为:①0.2714;②200000.【例6-1】(2020·成都双流月考)定义:不超过实数x的最大整数称为x的整数部分,记作[x].例如[3.6]=3,[=﹣2,按此规定,[1﹣=_____.【答案】-4.∴4<5,∴﹣4>﹣5,∴﹣3>1﹣4,故,[1﹣=﹣4.故答案为:﹣4.【例6-2】(2020·x的所有整数x的和是_____.【答案】2.【解析】解:∵﹣21,2<3,x的所有整数有﹣1,0,1,2,∴﹣1+0+1+2=2,故答案为:2.【例6-3】(2020·太原市月考)比较大小______0.5 .(填“>”,“<”或“= ”)【答案】>.1>1故答案为:>.【例6-4】对于实数x,我们规定[]x表示不大于x的最大整数,如==-=-,现对85进行如下操作:[5]5,1,[ 3.5]4第1次第2次第3次,这样对85只需3次操作后−−−→=−−−→=−−−→=85931就变为1.类似地,按照以上操作只需进行3次操作后变为1的所有整数中,最大的正整数是________.【答案】255.=,x为正整数,则1≤,【解析】解:设1∴1≤y<4,即最大正整数是3;=,y为正整数,则3≤,设3∴9≤y<16,即最大正整数是15;=,z为正整数,则15≤,设15∴225≤z<256,即最大正整数是255.∴只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.【例7-1】(2020·舟山普陀区期中)我们规定,对数轴上的任意点P进行如下操作:先将点P表示的数乘以-1,再把所得数对应的点向右平移2个单位,得到点P的对应点P′,现对数轴上的点A,B进行以上操作,分别得到点A′,B′.(1)若点A 对应的数是1,则点A ′对应的数x =_________, 若点B ′对应的数是4,则点B 对应的数y =_________; (2)在(1)的条件下,求代数式x -4y 算术平方根. 【答案】(1)x=1,y=-2;(2)3.【解析】解:(1) 设P 点表示的数为x ,P′表示的数为-x+2,点A 对应的数是1,则点A ′对应的数x =-1+2=1,点B ′对应的数是4,则点B 对应的数y =4×(-1)+2=-4+2=-2, 故答案为:x=1;y=-2,(2)由(1)求出,x=1,y=-2,代数式x -4y 的值为=1-4×(-2)=9, 代数式x -4y 算术平方根为3.【例7-2】(2019·河北保定期中)先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数).【解析】解:(1)14−141+=1120,=1120(2)=1+1 n−1 n 1+=1+()1n n 1+ (n 为正整数). 【变式7-1】(2019·北京昌平期中)如图,是一个无理数筛选器的工作流程图. (1)当x 为16时,y 值为_____;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y x值是否唯一,如果不唯一,请写出其中的两个.【答案】(1)(2)存在,当x=0,1时,始终输不出y值;(3)x<0;(4)x的值不唯一.x=3或x=9.【解析】解:(1)当x=16,则(2)当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)当x<0时,导致开平方运算无法进行;(4)x的值不唯一.x=3或x=9.【例8-1】(2020·湖北黄冈期末)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间t(单位:s)与细线的长度l(单位:m)之间满足关系2t=0.4m时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】1.3.【解析】解:把l=0.4m代入关系式2t=得,∴12=0.45tπππ=⨯≈1.3(秒).【变式8-1】(2020·陕西宝鸡月考)自由下落的物体的高度h(m)与下落时间t(s)的关系为h=4.9t2.有一学生不慎让一个足球从19.6m高的楼上自由落下,刚好另有一学生站在与下落的足球在同一直线的地面上,在足球下落的同时,楼上的学生惊叫一声,若楼下的学生听到惊叫后开始躲.问:这时楼下的学生听到惊叫后能躲开下落的足球吗?(声音的速度为340m/s)【答案】能躲开.【解析】解:足球下落的时间:,学生的声音传播到楼下的时间:t=19.6340=0.06s由2>0.06所以楼下的学生能躲开.【变式8-2】(汉中南郑区期中)如图,每个小正方形的边长均为1,阴影部分是一个正方形.(1)阴影部分的面积是__________,边长是____________;(2)写出不大于阴影正方形边长的所有正整数;(3)a为阴影正方形边长的小数部分,b的整数部分,求+a b的值.【答案】(1)13(2)1,2,3;(3【解析】解:(1)阴影部分面积为:1554232512132⨯-⨯⨯⨯=-=,∵阴影部分是一个正方形,故答案为:13(21,2,3.(3)∵34<,∴3a =,∵34<< ∴b=3∴33+=【例9-1】(2020·四川月考)实数a ,b 在数轴上的位置如图所示,那么化简a b a ++-的结果为( )A .2a -B .22b a -C .0D .2b【答案】A.【解析】解:由图可知:a<0<b ,a+b<0, 原式=-a-b+(-a )+b =-2a故答案为:A .【变式9-1】(2020·江苏徐州月考)如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c |-|a c【答案】2a-c.【解析】解:由数轴得a<b<0<c , ∴a-c<0,a+b<0, 原式=-b-(c-a )+(a+b) =-b-c+a+a+b =2a-c.。

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平方根算术平方根立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质2=),那么这个数x就叫做a的平方根(或二如果一个数x的平方等于a(即x a=±,这里a是x的平方数,故a必是一个非负数即a≥0;例次方根),记作:x a如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。

正数a的正的平方根叫做a的算术平方根,表示为()a a≥0,例如16的算术平方=,从定义中容易发现:算术平方根具有双重非负性:①a≥0;②根是164a≥0。

2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。

联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。

3. 立方根的定义与性质3=),那么这个数x就叫做a的立方根(或三次如果一个数x的立方等于a(即x a=3。

方根),记作:x a立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。

二、解题中常见的错误剖析例1.求()-32的平方根。

2错解:()-=39()∴-32的平方根是-32是一个正数,故它的剖析:一个正数有两个平方根,它们互为相反数,而()-=39平方根应有两个即±3。

例2. 求9的算术平方根。

2=错解: 39∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。

93=,而3的算术平方根为3,故9的算术平方根应为3。

第二章平方根、算术平方根和立方根

第二章平方根、算术平方根和立方根

第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。

2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。

②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。

③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。

④写法不同。

在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。

②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。

3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。

东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。

厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。

探讨平方根、算术平方根、立方根的联系与区别

探讨平方根、算术平方根、立方根的联系与区别
少米?
解:由题意得AC=5.5米, BC=4.5米,∠ABC=90°,
在Rt△ABC中,由勾股定理得:
AB2=AC2-BC2=-4.52=10
AB= 10 米 所以帐篷支撑竿的高是 10 米
做一做:
2、求x的值
3 x 12 363 解: x 12 121
x 1 121
x 1 11 或 x 1 11
平方根包含算术平方根, 算术平方根 是平方根的一种.
只有非负数才有平方根和算术平方根.
2.平方根、算术平方根、立方根的联系:
0的平方根是0 0的算术平方根是0 0的立方根是0
区别 1. 定义不同:
一般地,如果一个正数 x 的平方等于a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根.
一般地,如果一个数x 的平方等于a,即 x2=a, 那么这个数x 叫做a 的平方根(也叫做二次方根).
6.等于它本身的数不同:
算术平方根等于它本身的数是0、1 平方根等于它本身的数是0 立方根等于它本身的数是0、1、-1
7.探索发现的公式不同:
灵活运用公式:
a2 | a|
( a)2 a
, 3
3a a
3 a3 a, 3 a 3 a;
解决问题:
1、如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子 AC固定帐篷.若绳子的长度为5.5米,地面固定点C到帐 篷支撑竿底部B的距离是4.5米,则帐篷支撑竿的高是多
北师大版数学八年级上册
探讨算术平方根、平方根、 立方根的联系与区别
问题引入:
1、如图,从帐篷支撑竿AB的顶部A向地面拉一 根绳子AC固定帐篷.若绳子的长度为5.5米,地 面固定点C到帐篷支撑竿底部B的距离是4.5米,
则帐篷支撑竿的高是多少米?

平方根算术平方根和立方根

平方根算术平方根和立方根

4.已知2a ? 1和3a ? 6是一个正数的两个 平方根.试求出a的值以及这个正数 .
5.已知 x ? 4? | y ? 7 |? 0,试求代数式 2x ? 3 y ? xy的值.
立方根
1.定义:如果一个数的立 方等于 a ,那么 这个数叫做 a的立方根;
表示方法:3 a 立方根的特性:一个正 数有一个正的立
平方根和算术平方根
定义: 1.平方根:如果一个数的平方等于a,那么
这个数叫做a的平方根; 表示方法:? a
2. 算术平方根:正数的正平方根和0 的平方 根,叫做算术平方根;
表示方法: a
平方根和算术平方根的区别与联系
平方根
算术平方根
个数
正数有两个平方根, 它们互为相反数;0的 平方根是0.负数没有 平方根.
方根小.( ) (4).若x的立方根是它本身,则 x的值
? 1或0.( )
方根;一个负数有一个 负的立方 根;0的立方根是 0;
典型例题
1.求下列各数的立方根:
8
- 27
0 (- 8)2
-8
8 -
125Leabharlann 2.计算下列各式的值 3 - 64 ? 64 3 27 - 9
3.判断正误
(1).有理数一定有立方根 .( ) (2). ? 27的立方根是 ? 3.( ) (3).一个数的立方根总比这 个数的平
正数的算术平方根是正数; 0的算术平方根是0.负数
没有算术平方根.
表示 方法
?a
a
联系
被开方数都必须是非负数;
典型例题
1.求下列各数的平方根和算术平方根
2.计算下列各式
? 36
49
(? 5)2 ? (? 7)2 ? 121

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题

平方根 算术平方根 立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质如果一个数x 的平方等于a (即x a 2=),那么这个数x 就叫做a 的平方根(或二次方根),记作:x a =±,这里a 是x 的平方数,故a 必是一个非负数即a ≥0;例如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。

正数a 的正的平方根叫做a 的算术平方根,表示为()a a ≥0,例如16的算术平方根是164=,从定义中容易发现:算术平方根具有双重非负性:①a ≥0;②a ≥0。

2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。

联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。

3. 立方根的定义与性质如果一个数x 的立方等于a (即x a 3=),那么这个数x 就叫做a 的立方根(或三次方根),记作:x a =3。

立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。

二、解题中常见的错误剖析例1. 求()-32的平方根。

错解:()Θ-=392 ()∴-32的平方根是-3剖析:一个正数有两个平方根,它们互为相反数,而()-=392是一个正数,故它的平方根应有两个即±3。

例2. 求9的算术平方根。

错解:Θ392=∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。

Θ93=,而3的算术平方根为3,故9的算术平方根应为3。

仿此你能给出64的平方根的结果吗?三、典型例题的探索与解析例3. 已知:M a a b =++-82是a +8算数平方根,N b a b =--+324是b -3立方根,求M N+的平方根。

平方根与算术平方根立方根无理数

平方根与算术平方根立方根无理数

什么叫开平方?
求一个数a的平方根的运算,叫做开平方. 开平方与平方是什么关系?
指数
根号 互为
平 方 运 算
x a
2
底数
逆运算
x a
被开方数
开 平 方 运 算求幂
已知幂和指数求底数
自学并讨论?
例2 . 求下列各数的平方根: 16 (1)81;(2) ; (3)0.49; 25 解:(1)∵ (±9)2=81, ∴81的平方根为±9.
(4) -0.064
(5)0
通过对以上问题的解答,你能总 结出立方根有什么样的性质?
立方根的性质:
正数的立方根是正数;负数的立方 根是负数;零的立方根是0.
说明:立方根的个数的性质可以概括为 立方根的唯一性,即一个数的立方根是 唯一的.
思考: 平方根与立方根的区别和联系
平方根与立方根的区别和联系
3 B. 5
C.0
D. √— 3
2.下列各组数中,互为相反数的一组是( D )
1 B. -3 与 3 2 D. -3与 √ (-3) —的点表示的数 3.在数轴上与原点距离等于√ 7 ±√— ) 是( 7
这一秒不放弃!
下一秒有奇迹!
探究一
3 = 3.0 9 ~ 0.81 ~ 11 3 = -0.6 5
质疑点拨
47 = 5.875 8
5~ ~ 0.5 9
使用计算器,把下列有理数化成小数的形式:
11 ~ ~ 0.12 90
任何一个有理数都能写成有限小数或无限循环小数的形式 反过来任何有限小数或无限循环小数也都是有理数;
、 2
5的平方根表示为: 5,
25 的平方根表示为: 25 25 5 36 36 36 6

七年级:平方根与立方根

七年级:平方根与立方根

七年级:平方根与立方根1.平方根(1)定义:一般地,如果一个数的平方等于a,那么这个数叫作a的平方根,也叫作a的二次方根,记为“±√a”, 读作“正负根号a”, 如下:b²=a→±√a=b其中把a称之为被开方数。

(2)特性:正数有两个平方根,且互为相反数;负数没有平方根;0的平方根还是0。

2.算术平方根(1)定义:非负数的非负平方根称为算术平方根,一个数a(a≥0)的算术平方根记作√a, 读作“根号a”。

0 的算术平方根为0。

(2)算术平方根的双重非负性:被开方数a是一个非负数,其结果“√a” 也是一个非负数.3.平方根与算术平方根的联系与区别1)联系:(1)算术平方根是平方根中的一部分,是取了一个数a的平方根土√a中的非负部分;(2)平方根和算术平方根的被开方数必须是非负数,负数没有平方根和算术平方根;(3)0的平方根和算术平方根都是0。

2)区别:(1)个数上:正数的平方根有两个,且互为相反数,必有一正一负。

而算术平方根只有一个,取它的正平方根。

(2)表示方法:±√a表示平方根,前面的“±”表示其值有正负;√a表示算术平方根.特别注意的是:±√a≠ √a.4.立方根(1)定义:一般地,一个数的立方等于a,这个数就叫作a的立方根,也叫作a的三次方根3”,读作“三次根号a”.即可以表示如下:,记为“√a3=bb3=a⇒√a其中a,是被开方数,3是根指数。

(2)特性:每个数都有一个立方根,且正数有且仅有一个正的立方根,负数有且仅有一个负的立方根,0的立方根是0。

推广:一个数的奇次方根有且只有一个。

(3)与平方根的主要区别:表示方法的不同;负数也有立方根,但是没有平方根。

5. 几个关于平方根、立方根的记忆点(1)一个数的平方根是本身,这个数是0;(2)一个数的算术平方根是本身,这个数是0,1;(3)一个数的立方根是本身,这个数是一1,0,1。

平方根、算术平方根和立方根

平方根、算术平方根和立方根

唯一性
对于非负实数$a$,其算 术平方根是唯一的。
递增性
随着$a$的增大, $sqrt{a}$也增大。
算术平方根的运算规则
乘法运算
$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$b geq 0$)。
加法运算
$sqrt{a} + sqrt{b} = sqrt{(a + b)^2 - ab}$($a geq 0$,$b geq 0$)。
能够正确计算各种平 方根、算术平方根和 立方根的值。
02 平方根的概念和性质
平方根的定义
平方根
如果一个数的平方等于给定的数, 则这个数称为给定数的平方根。
算术平方根
非负数的平方根称为算术平方根, 表示为√。
立方根
如果一个数的立方等于给定的数, 则这个数称为给定数的立方根。
平方根的性质
01
02
03
平方根、算术平方根和立方根
目 录
• 引言 • 平方根的概念和性质 • 算术平方根的概念和性质 • 立方根的概念和性质 • 平方根、算术平方根和立方根的应用 • 总结与回顾
01 引言
主题简介
平方根
平方根是数学中的一个概念,它表示一 个数的平方等于给定值。例如,4的平方 根是±2,因为2^2=4和-2^2=4。
例如
如果 $a^3 = b$,则 $a$ 是 $b$ 的立 方根。
立方根的性质
非负性
01
一个数的立方根总是非负的。
奇偶性
02
如果一个数是奇数,那么它的立方根也是奇数;如果一个数是
偶数,那么它的立方根也是偶数。
连续性
03
在实数范围内,任何两个不相等的实数都有唯一的介于它们之
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例 2】求下列各数的平方根:
1)49
2)2.89
3)1 7 9
【例 3】求下列各数的算术平方根
1)121
2) 0.64
3) 81 256
4) 52
【例 4】求下列各式的值
1) 144
2) 2.25
3) 1 9 16
【例 5】求 62 的平方根和算术平方根
【例 6】求 1 x 2 27 中的 x 3

A、x>0
B、x≥0
C、a>0
D、a≥0
8、一个数若有两个不同的平方根,则这两个平方根的和为(

A、大于 0 B、等于 0 C、小于 0 D、不能确定
9、一个正方形的边长为 a,面积为 b,则( )
A、a 是 b 的平方根 B、a 是 b 的的算术平方根
C、 a b
D、 b a
10、若 a≥0,则 4a 2 的算术平方根是(
6.用长 28cm,宽 20cm 的瓷砖 140 块恰好不重不漏地将一正方形墙面覆盖,求这面墙的边长(砖与砖 之间的接缝忽略不计).
a ( a 0)
a 0
a2 a
;注意 a 的双重非负性:
- a ( a <0)
a 0
3、立方根
如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 a 3 a ,这说明三次根号内的负号可以移到根号外面。
20、若 x 1 | y 2 | 0 ,求 x+y 的值。
21、已知: x y 3 与 x y 1互为相反数,求 x+y 的算术平方根
1.填空 36 的平方根是
,算术平方根是
;196 的平方根是
,算术平方根是 ;
1 24 的平方根是 25
,算术平方根是 ;0.0289 的平方根是
,算术平方根是 ;
81 的平方根是
,算术平方根是 ; 92 的平方根是 ,算术平方根是

3.14159 2 的平方根是 ,算术平方根是 ; 4x2 4x 1的平方根是 ,算术平方根是 .
若 a 有意义,则 a 的取值范围是
;若 a 有意义,则 a 的取值范围是

2.已知下列各式意义,求 x 的取值范围.
① 3x ; ② 2x2 3 ;
4、平方数是它本身的数是 ( ) ;
平方数是它的相反数的数是 (
);
3
5、若
x
2 ,则 x= __________

3

64
x ,则 x =__________

1 6、计算: 3
二、选择题
25 2 93
27 12 3 8
64
= ______________ ;
7、若 x 2 a ,则(
4) 0.81 10000
5) 106
6) 82 152
分析:开方是又一种代数运算,开方与乘方互为逆运算,故可以用乘方来检验运算是否正确。
【例 10】已知 2a 1 b 1 0 ,求 a 的值
4
b
【例 11】如果 a 为正整数, 14 a 为整数,求 14 a 的最大值及此时 a 的值
C、x≥5
三、计算题
) D、x≤5
14、 100 3 8 3 0.49
15、 102 6 106 3 106
3 24 45 200 144
16、
9
3
( 1)2 (1 5)(1 1)
17、 3
93
18、解方程: (x 1)2 324 0
19、解方程: (2x 3)2 25 12 x

A、2a
B、±2a C、 2a D、| 2a |
11. 若正数 a 的算术平方根比它本身大,则(
A、0<a<1
ห้องสมุดไป่ตู้
B、a>0 C、a<1
) D、a>1
a2
12、若 a<0,则 2a 等于(

1 A、 2
1 B、 2
1 C、±2
D、0
13、若 x-5 能开偶次方,则 x 的取值范围是(
A、x≥0 B、x>5
【例 12】计算 1) 2 4 3 9
2) 0.36 0.25
3) 4 · 36 9 25
【例 13】已知 x 2 y 3 4x 2 y 4 求 x y 的值
【例 14】已知实数 a、b、c 满足,2|a-1|+ 2b c +c2-c+ 1 =0,,求 a+b+c 的值. 4
【例 15】若 y 2x 1 1 2x 1,求 xy 的值。

5 x
1
2

④ 1 x x .
2
3.解下列方程: ① 5x2 125 0 ;
② 1 x2 8 x 16 1; 3 33
③2x2 4x 2 1 . 8
4.已知 a b 2a b 2 45 ,求 a b 的算术平方根.
5.已知 2a 1的平方根是 3, 3a b 1的算术平方根是 4,求 a 2b 的平方根.
平方根、算术平方根和立方根
1、平方根 如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a ”。
2、算术平方根
正数 a 的正的平方根叫做 a 的算术平方根,记作“ a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
【例 7】下列各式中 x 为何值时有意义
1) 2x 2) 1 4x
3) 5 x 1 32
【例 8】求 x x 的值
分析:含有字母的代数式中,字母的取值应使原式有意义,因为负数不能开平方,于是可以确定 x 的值,进而求
出此代数式的值。
【例 9】求下列各式的值
1) 6400
2) 0.0169
3) 121 144
【例 1】平方根、算术平方根、立方根的意义
(1)36 的平方根是
; 16 的算术平方根是

(2)一个数的平方是 9,则这个数是 (
),
一个数的立方根是 1,则这个数是 (
);
(3)当 x=__________ 时, 3x 1 有意义;
当 x= _________
3
时,
5x
2
有意义;
(4)若 x 4 16 ,则 x=_________ ;若 3n 81,则 n= ________ 。
a 【例 16】若 3 2a 1 和 3 1 3b 互为相反数,求 b 的值。
一、填空题:
1、144 的算术平方根是_________ , 16 的平方根是 _________ ;
2、 3 27 = ___________ , 64 的立方根是 ________

3、7 的平方根为 _________ , 1.21 = __________ ;
相关文档
最新文档