singular value and eigenvalue
Cleve Moler - MATLAB数值计算第十章-eigenvalues and singular values
10.1
Eigenvalue and Singular Value Decompositions
An eigenvalue and eigenvector of a square matrix A are a scalar λ and a nonzero vector x so that Ax = λx. A singular value and pair of singular vectors of a square or rectangular matrix A are a nonnegative scalar σ and two nonzero vectors u and v so that Av = σu, AH u = σv. The superscript on AH stands for Hermitian transpose and denotes the complex conjugate transpose of a complex matrix. If the matrix is real, then AT denotes the same matrix. In Matlab, these transposed matrices are denoted by A’. The term “eigenvalue” is a partial translation of the German “eigenvert.” A complete translation would be something like “own value” or “characteristic value,” but these are rarely used. The term “singular value” relates to the distance between a matrix and the set of singular matrices. Eigenvalues play an important role in situations where the matrix is a transformation from one vector space onto itself. Systems of linear ordinary differential equations are the primary examples. The values of λ can correspond to frequencies of vibration, or critical values of stability parameters, or energy levels of atoms. Singular values play an important role where the matrix is a transformation from one vector space to a different vector space, possibly with a different dimension. Systems of over- or underdetermined algebraic equations are the primary examples.
矩阵论中的奇异值分解方法研究
矩阵论中的奇异值分解方法研究矩阵论是数学中的重要分支,研究矩阵的性质和特征。
奇异值分解(Singular Value Decomposition,简称SVD)是矩阵论中的一种重要方法,广泛应用于线性代数、信号处理、图像处理等领域。
本文将对奇异值分解方法进行深入研究和讨论。
一、奇异值分解的基本原理在介绍奇异值分解之前,我们首先需要了解特征值分解(Eigenvalue Decomposition)的基本概念。
特征值分解是将一个矩阵分解为特征向量和特征值的形式,用于寻找矩阵的主要特征。
奇异值分解是特征值分解的推广,适用于非方阵以及具有零特征值的方阵。
对于任意一个矩阵A,可以将其分解为以下形式:A = UΣV^T其中,U和V是正交矩阵,Σ是一个对角矩阵。
U的列向量称为左奇异向量,V的列向量称为右奇异向量,Σ对角线上的元素称为奇异值。
奇异值的大小表示了矩阵A在相应方向上的重要性,越大的奇异值表示了越重要的特征。
二、奇异值分解的应用领域奇异值分解方法在多个领域中被广泛应用。
以下是几个典型的应用领域:1. 线性代数奇异值分解在线性代数中有着广泛的应用,特别是在最小二乘问题的求解中。
通过对矩阵进行奇异值分解,可以得到一个最优的近似解,从而解决线性方程组的问题。
2. 信号处理在信号处理中,奇异值分解被用于降噪和信号压缩。
通过分解并选取奇异值较大的部分,可以过滤噪声并减少数据维度,从而提高信号质量和处理效率。
3. 图像处理奇异值分解在图像处理领域中也有广泛的应用。
通过对图像矩阵进行奇异值分解,可以实现图像压缩和去噪等处理,同时保留图像的主要特征。
三、奇异值分解的算法奇异值分解的计算过程一般可以通过各种数值计算方法来实现。
常见的奇异值分解算法包括Jacobi迭代法、幂迭代法和Golub-Kahan迭代法等。
其中,Golub-Kahan迭代法是一种效率较高的算法。
该算法通过不断迭代,逐步逼近奇异值和奇异向量。
四、奇异值分解的优缺点奇异值分解作为一种重要的矩阵分解方法,具有以下优点:1. 稳定性奇异值分解对于数据的扰动具有较好的稳定性。
Eigenvalues, singular values, and Littlewood-Richardson Coefficients
for this concept is [5]. Here we describe the formal definition and give a simple example. Let [n] = (1, . . . , n) and J = (j1 , . . . , jm ) be an increasing subsequences of [n], i.e., 1 ≤ j1 < · · · < jm ≤ n. Define µ(J ) = (jm − m, . . . , j1 − 1).
n n
cs =
s=1 n with m < n and for any (J0 , J1 , J2 ) ∈ LRm s=1
(as + bs ),
cj ≤
j ∈J 0 j ∈J 1
aj +
j ∈ J2
bj .
n . A good reference In the theorem, we use the concepts of Littlewood-Richardson sequences LRm
n if and only if j = j + j − 1. [Weyl’s inequalities] ((j0 ), (j1 ), (j2 )) ∈ LR1 0 1 2
[Thompson’s standard inequalities] If J1 = (i1 , . . . , im ) and J2 = (j1 , . . . , jm ) satisfy im +jm −m ≤ n, then J0 = (i1 + j1 − 1, . . . , im + jm − m) is admissible. Note that one can do a good construction by adding jr − r to the (m − r + 1)st row of µ(J1 ) to get µ(J2 ). In general, it is not easy to solve the following. Problem How to generate all the (J0 , J1 , J2 ) sequences, and do it efficiently? By the result in [12], one can focus on (J0 , J1 , J2 ) sequences with LR coefficient equal to one, i.e., there is a unique construction of µ(J0 ) from µ(J1 ) and µ(J2 ). However, it is hard to determine when the LR coefficient is positive or equals one. In particular, it is difficult to write a computer program to generate all LR sequences. in some situations, one may prefer to generate a class of sequences systematically even though the class may contain many redundant sequences. Taking this approach, one can use the Horn’s consistent sequences (R, S, T ), which is defined recursively as follows. Let R = (r1 , . . . , rm ), S = (s1 , . . . , sm ), T = (t1 , . . . , tm ) ∈ [n]. • For m ≥ 1,
对应分析数据
对应分析数据一、背景介绍在当今信息爆炸的时代,大量的数据被生成和收集,为了更好地理解和利用这些数据,对数据进行对应分析是非常重要的。
对应分析是一种统计方法,用于研究两组数据之间的关系和相互作用。
通过对数据进行对应分析,我们可以发现数据中的模式、趋势和相关性,从而为决策提供有价值的信息。
二、对应分析的定义和原理对应分析(Correspondence Analysis,简称CA)是一种多变量数据分析方法,它通过将高维数据映射到低维空间中,从而揭示数据之间的关系。
对应分析的原理基于数学上的奇异值分解(Singular Value Decomposition,简称SVD)和特征值分解(Eigenvalue Decomposition),通过计算数据矩阵的特征值和特征向量,将数据在低维空间中进行降维和可视化。
三、对应分析的步骤和方法1. 数据预处理:对数据进行清洗和标准化,去除异常值和缺失值,并将数据转换为适合对应分析的格式。
2. 计算数据矩阵:根据数据的特点,构建数据矩阵,其中行表示样本或观测对象,列表示变量或属性。
3. 计算对应分析的结果:通过对数据矩阵进行奇异值分解或特征值分解,得到对应分析的结果,包括特征值、特征向量和对应坐标。
4. 解释和解读结果:根据对应分析的结果,进行可视化和解释,发现数据中的模式、趋势和相关性,并提取有用的信息。
5. 结果验证和应用:对对应分析的结果进行验证和应用,评估模型的准确性和可靠性,并将结果应用于实际问题的决策和优化。
四、对应分析的应用领域对应分析广泛应用于各个领域,包括市场调研、消费者行为、社会科学、生物学、医学等。
以下是对应分析在几个典型领域的应用示例:1. 市场调研:通过对应分析,可以分析不同产品或品牌在市场中的位置和竞争关系,帮助企业制定市场策略和推广计划。
2. 消费者行为:对应分析可以帮助分析消费者对不同产品或服务的偏好和关联性,为企业提供精准的市场定位和产品定价策略。
Solution of the damped least-squares problem by
(2)
damped least-squares (DLS) approach is the most familiar and widely recognized. Currently there is a need for a complicated configurational lens design such as an aspheric lens with high-order coefficients.The conventional DLS method does not have sufficient capability to design such lenses because of its numerical inaccuracy in computations. Here we present a different method from the traditional DLS method to solve the normal equation together with a numerical experiment for a 14-term biaspheric lens.
obtain the EVD of (A*TA*) as follows:
A*TA* = VSV T , (6)
H. Matsui is with the Lens Development Center, Canon Incorporated, 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146, Japan. K. Tanaka is with the Research and Development Headquarters,
(13)
where
图像的分割和配准中英文翻译
外文文献资料翻译:李睿钦指导老师:刘文军Medical image registration with partial dataSenthil Periaswamy,Hany FaridThe goal of image registration is to find a transformation that aligns one image to another. Medical image registration has emerged from this broad area of research as a particularly active field. This activity is due in part to the many clinical applications including diagnosis, longitudinal studies, and surgical planning, and to the need for registration across different imaging modalities (e.g., MRI, CT, PET, X-ray, etc.). Medical image registration, however, still presents many challenges. Several notable difficulties are (1) the transformation between images can vary widely and be highly non-rigid in nature; (2) images acquired from different modalities may differ significantly in overall appearance and resolution; (3) there may not be a one-to-one correspondence between the images (missing/partial data); and (4) each imaging modality introduces its own unique challenges, making it difficult to develop a single generic registration algorithm.In estimating the transformation that aligns two images we must choose: (1) to estimate the transformation between a small number of extracted features, or between the complete unprocessed intensity images; (2) a model that describes the geometric transformation; (3) whether to and how to explicitly model intensity changes; (4) an error metric that incorporates the previous three choices; and (5) a minimization technique for minimizing the error metric, yielding the desired transformation.Feature-based approaches extract a (typically small) number of corresponding landmarks or features between the pair of images to be registered. The overall transformation is estimated from these features. Common features include corresponding points, edges, contours or surfaces. These features may be specified manually or extracted automatically. Fiducial markers may also be used as features;these markers are usually selected to be visible in different modalities. Feature-based approaches have the advantage of greatly reducing computational complexity. Depending on the feature extraction process, these approaches may also be more robust to intensity variations that arise during, for example, cross modality registration. Also, features may be chosen to help reduce sensor noise. These approaches can be, however, highly sensitive to the accuracy of the feature extraction. Intensity-based approaches, on the other hand, estimate the transformation between the entire intensity images. Such an approach is typically more computationally demanding, but avoids the difficulties of a feature extraction stage.Independent of the choice of a feature- or intensity-based technique, a model describing the geometric transform is required. A common and straightforward choice is a model that embodies a single global transformation. The problem of estimating a global translation and rotation parameter has been studied in detail, and a closed form solution was proposed by Schonemann. Other closed-form solutions include methods based on singular value decomposition (SVD), eigenvalue-eigenvector decomposition and unit quaternions. One idea for a global transformation model is to use polynomials. For example, a zeroth-order polynomial limits the transformation to simple translations, a first-order polynomial allows for an affine transformation, and, of course, higher-order polynomials can be employed yielding progressively more flexible transformations. For example, the registration package Automated Image Registration (AIR) can employ (as an option) a fifth-order polynomial consisting of 168 parameters (for 3-D registration). The global approach has the advantage that the model consists of a relatively small number of parameters to be estimated, and the global nature of the model ensures a consistent transformation across the entire image. The disadvantage of this approach is that estimation of higher-order polynomials can lead to an unstable transformation, especially near the image boundaries. In addition, a relatively small and local perturbation can cause disproportionate and unpredictable changes in the overall transformation. An alternative to these global approaches are techniques that model the global transformation as a piecewise collection of local transformations. For example, the transformation between each local region may bemodeled with a low-order polynomial, and global consistency is enforced via some form of a smoothness constraint. The advantage of such an approach is that it is capable of modeling highly nonlinear transformations without the numerical instability of high-order global models. The disadvantage is one of computational inefficiency due to the significantly larger number of model parameters that need to be estimated, and the need to guarantee global consistency. Low-order polynomials are, of course, only one of many possible local models that may be employed. Other local models include B-splines, thin-plate splines, and a multitude of related techniques. The package Statistical Parametric Mapping (SPM) uses the low-frequency discrete cosine basis functions, where a bending-energy function is used to ensure global consistency. Physics-based techniques that compute a local geometric transform include those based on the Navier–Stokes equilibrium equations for linear elastici and those based on viscous fluid approaches.Under certain conditions a purely geometric transformation is sufficient to model the transformation between a pair of images. Under many real-world conditions, however, the images undergo changes in both geometry and intensity (e.g., brightness and contrast). Many registration techniques attempt to remove these intensity differences with a pre-processing stage, such as histogram matching or homomorphic filtering. The issues involved with modeling intensity differences are similar to those involved in choosing a geometric model. Because the simultaneous estimation of geometric and intensity changes can be difficult, few techniques build explicit models of intensity differences. A few notable exceptions include AIR, in which global intensity differences are modeled with a single multiplicative contrast term, and SPM in which local intensity differences are modeled with a basis function approach.Having decided upon a transformation model, the task of estimating the model parameters begins. As a first step, an error function in the model parameters must be chosen. This error function should embody some notion of what is meant for a pair of images to be registered. Perhaps the most common choice is a mean square error (MSE), defined as the mean of the square of the differences (in either feature distance or intensity) between the pair of images. This metric is easy to compute and oftenaffords simple minimization techniques. A variation of this metric is the unnormalized correlation coefficient applicable to intensity-based techniques. This error metric is defined as the sum of the point-wise products of the image intensities, and can be efficiently computed using Fourier techniques. A disadvantage of these error metrics is that images that would qualitatively be considered to be in good registration may still have large errors due to, for example, intensity variations, or slight misalignments. Another error metric (included in AIR) is the ratio of image uniformity (RIU) defined as the normalized standard deviation of the ratio of image intensities. Such a metric is invariant to overall intensity scale differences, but typically leads to nonlinear minimization schemes. Mutual information, entropy and the Pearson product moment cross correlation are just a few examples of other possible error functions. Such error metrics are often adopted to deal with the lack of an explicit model of intensity transformations .In the final step of registration, the chosen error function is minimized yielding the desired model parameters. In the most straightforward case, least-squares estimation is used when the error function is linear in the unknown model parameters. This closed-form solution is attractive as it avoids the pitfalls of iterative minimization schemes such as gradient-descent or simulated annealing. Such nonlinear minimization schemes are, however, necessary due to an often nonlinear error function. A reasonable compromise between these approaches is to begin with a linear error function, solve using least-squares, and use this solution as a starting point for a nonlinear minimization.译文:部分信息的医学图像配准Senthil Periaswamy,Hany Farid图像配准的目的是找到一种能把一副图像对准另外一副图像的变换算法。
Linear.Algebra.Done.Right.思路札记
Linear Algebra Done Right 思路札記September 28, 2009 by 茅盛 終于在掙扎中,把這本書的線性空間部分看完了,行列式部分也在看,不過札記是可以寫了。
可以說這本書的確和最初宣傳的很相符,把線性算子這個賣點拿捏得很好。
數學我僅停留在科普的階段,所以有理解錯誤是不能幸免的,歡迎指正。
還是從第一章開始。
開篇作者就特意快速瀏覽了一下復數(complex number)的性質,并且定義域,或者。
這里的定義需要引起注意,因為全書的行文是明確分復數域和實數域這兩個域分別證明的,特別是后文關于特征值(本征值,eigenvalue)的部分,實數域不能保證有本征值,因此導致是正規(normal)還是自伴(self‐adjoint)條件強弱不同,還有引出了2維不變子空間的概念。
這些部分后文再提。
瀏覽完復數的性質,就引入了最關鍵的向量空間(Vector Space)的定義。
向量大家都很熟悉,向量空間定義為向量的集合,滿足加法(addition)和標量乘法(scalar multiplication)。
文中列舉了六個基本性質,但是作為后面討論子空間(subspace),最重要的就是三個:加法單位元(additive identity),對加法封閉(closed under addition),對標量乘法的封閉性(closed under scalar multiplication)。
底下的關于子空間的問題大多是證明包含加法單位元的問題,不再做討論。
引入子空間后,連接子空間和空間的是和(sum)與直和(direct sum)。
參考集合的術語,和相對于并集(union),直和相當于分劃(slice)。
對于每個,都可以表示為的形式,對于直和來說,這個表示是唯一的。
直和是后面的重要工具,所以作者對直和找了兩個充要條件。
充要條件1.8是說n個子空間,如果,那么首先能完全覆蓋,其次要求中每個。
矩阵的特征值分解和奇异值分解
矩阵的特征值分解和奇异值分解矩阵的特征值分解和奇异值分解是线性代数中非常重要的理论和方法。
它们在很多领域都有着广泛的应用,如机器学习、图像处理、信号处理等。
本文将详细介绍矩阵的特征值分解和奇异值分解的概念、计算方法以及应用。
一、特征值分解(Eigenvalue Decomposition)特征值分解是将一个矩阵分解为可对角化的形式,其中对角线上的元素为特征值,对应的非零特征值所对应的特征向量构成的集合构成了矩阵的特征向量矩阵。
特征值分解可以表示为以下形式:A = PDP^{-1}其中,A是一个n×n的矩阵,P是一个由特征向量构成的矩阵,D 是一个对角阵,对角线上的元素是矩阵A的特征值。
特征值分解可以用于解决线性方程组、矩阵对角化、矩阵幂的计算等问题。
它在降维、特征提取、谱聚类等领域也有广泛的应用。
二、奇异值分解(Singular Value Decomposition)奇异值分解是将一个矩阵分解为三个矩阵的乘积,形式如下:A = UΣV^T其中,A是一个m×n的矩阵,U是一个m×m的酉矩阵,Σ是一个m×n的矩阵,对角线上的元素称为奇异值,V是一个n×n的酉矩阵的转置。
奇异值分解是一种对矩阵进行降维和压缩的方法。
它可以用于最小二乘问题的求解、图像压缩、特征提取等领域。
在机器学习中,奇异值分解也常用于主成分分析(PCA)方法。
三、特征值分解与奇异值分解的计算特征值分解的计算比较复杂,需要求解矩阵的特征多项式,然后通过求解特征多项式的根来得到特征值和特征向量。
对于大规模矩阵,特征值分解计算的时间复杂度较高。
奇异值分解的计算相对简单,可以通过多种算法来实现,如Jacobi迭代法、分裂法等。
在实际应用中,大部分计算都是基于奇异值分解来进行的。
四、特征值分解与奇异值分解的应用特征值分解和奇异值分解在科学研究和工程实践中有着广泛的应用。
以下列举几个常见的应用场景:1. 图像处理和压缩:奇异值分解可以用于图像压缩,通过取前k个奇异值实现图像的降维和压缩。
线性代数重点词汇
线性代数——Linear algebras第一章行列式——Chapter 1. 奇排列Odd行列式Determinant行Row列Column主对角线Leading次对角线Minor三角行列式Triangular余子式Cofactor代数余子式Algebra子式Minor子行列式Minor Determinantpermutationdiagonal;Principal diagonaldiagonal;Secondary diagonaldeterminant;Complement minorCofactordeterminant;Subdeterminant;Underdeterminant第二章矩阵——Chapter 2. 矩阵Matrix方阵Square矩阵的阶零矩阵Null矩阵的元素对角阵Diagonal单位矩阵Identity三角矩阵Triangular上三角矩阵下三角矩阵转置Transpose矩阵的转置转置矩阵Transposed 对称矩阵Symmetric反对称Inverse反对称矩阵Anti-symmetric 矩阵乘法左乘法Left右乘Postmultiplication 幂等矩阵Idempotent 幂零矩阵Nilpotent 可逆Invertible非奇异的Nonsingular 非奇异矩阵Nonsingular 奇异的Singular奇异矩阵Singular互逆的Mutually不可逆Irreversible逆矩阵Inverse互逆矩阵ReciprocalMatrixmatrixOrder of a matrixmatrixElement of matrixmatrixmatrixmatrixUpper triangular matrixLower triangular matrixTranspose of a matrixmatrixmatrixsymmetricmatrix;Inverse symmetric matrix Multiplication of matricesmultiplicationmatrixmatrix;Reversiblematrixmatrixinverse matrix;Invertible matrix matrix伴随矩阵Adjoint分块矩阵Partitioned 分块对角矩阵Block 子块Subblock子矩阵Submatrix秩Rank行秩Row列秩Column满秩Full变换Transform初等变换Elementary 等价变换Equivalencematrixmatrixdiagonal matrixrankrankrank;Transformationtransformationtransformation第三章向量与线性方程组——Chapter 3. Vector and linear equation system 消元法Elimination向量Vector行向量Row列向量Column零向量Null非零向量Non-vanishing 线性相关Linear线性无关Linear部分相关Part线性表示Linear线性方程Linear线性方程组非线性方程组齐次Homogeneous 非齐次Inhomogeneous 非齐次线性方程系数矩阵Matrix增广矩阵Augmented唯一解Unique零解Null非零解Untrivial基本解Fundamental基础解系解向量Solutionvectorvectorvectorvectordependence;Linearly dependent;Linear correlationindependence;Linearly independentcorrelationexpression;Linear representationequationSystem of linear equations System of nonlinear equationsHomogeneous linear equationNon-homogeneous linear equationof coefficientsmatrixsolutionsolutionsolutionsolutionFundamental system of solutions;System of fundamental solutions vector第四章向量空间——Chapter 4. 空间Space线性空间Linearn 维空间n-dimensional多维的Multidimensional Vector spacespacespace2度量空间Metric基Basis基变换Change内积Inner向量内积向量积Vector单位向量Unit正交的Orthogonal正交向量Orthogonal两两正交Pairwise正交基Orthogonal标准正交基Normal正交化Orthogonalization 斯密特正交化法Schmidt’sspaceof baseproduct;Interior product;Dot product Inner product of vectorproductvectorvectorsorthogonalbasisorthogonal basis;Orthonormal basisorthogonalization第五章特征值与特征向量——Chapter 5. Eigenvalue and eigenvector特征多项式Eigenpolynomial特征根Characteristic特征值Eigenvalue特征向量Eigenvector迹Trace矩阵的迹Matrix多重特征值Multiple特征值的重数Multiplicity 相似性Similarity相似矩阵Similar相似变换Similarity变换矩阵Transformation逆变换Inverse 矩阵的对角化Diagonalization 约当标准型约当矩阵Jordan第六章二次型——Chapter 6. 齐次多项式Homogeneous 二次齐次多项式n 次齐次多项式二次型Quadratic实二次型二次型的矩阵线性变换Linear非奇异线性变换Nonsingular 标准型Canonical配方法root;Characteristic value;Characteristic vector;Spurtrace;Spur of matrixeigenvaluesof eigenvaluematricestransformation;Equiform transformationmatrixtransformationtransformationof matrixJordan canonical formmatrixQuadratic formpolynomial Quadratic homogeneous polynomial Homogeneous polynomial of degree nform;Quadric formReal quadratic formMatrix of a quadratic formtransformationlinear transformationformMethod of completing the square3定二次型正定的Positive正定矩阵Positive正定二次型正定对称矩阵半定二次型Semi-definite 半正定的Positive半正定型Semi-positive 半正定矩阵半正定二次型不定二次型Indefinite 负定矩阵负定二次型Definite quadratic formdefinitedefinite matrixPositive definite quadratic form Positive definite symmetricmatrixquadratic formsemi-definitedefinite form Positive semi-definite matrix Positive semi-definite quadratic formquadratic formNegative definite matrix Negative definite quadraticform。
Eigenvalue and SVD
3Eigenvalues,Singular Values and Pseudoinverse.3.1Eigenvalues and EigenvectorsFor a square n×n matrix A,we have the following definition:Definition3.1.If there exist(possibly complex)scalarλand vector x such thatAx=λx,or equivalently,(A−λI)x=0,x=0then x is the eigenvector corresponding to the eigenvalueλ.Recall that any n×n matrix has n eigenvalues(the roots of the polynomial det(A−λI)).Definition3.2.Matrix A is called simple if it has n linearly independent eigen-vectors.Definition3.3.Let A H =¯A T,x H =¯x T(i.e.,complex conjugate transpose). Matrix A is:Hermitian if A=A H⇔x H Ax=real,for all x∈C nNormal if AA H=A H AUnitary if AA H=A H A=IOrthogonal if AA T=A T A=I,(for A real)Definition3.4.Hermitian matrix D(i.e.,D=D H)ispositive definite if x H Dx>0for all x=0positive semi definite if x H Dx≥0for all x=0negative definite if x H Dx<0for all x=0negative semi definite if x H Dx≤0for all x=0indefinite if x H Dx<0for some nonzero x and x H Dx>0for some other nonzero xDefinition3.5.If A=QBQ−1,for some nonsingular Q,then‘A is similar to B’or B is obtained via a similarity transformation(Q)of A.If we had A=QBQ T,then A is obtained through a‘congruent’transformation on B.P1.For general matrix A:If all e-values are distinct;i.e.,λi=λj,(i=j), then A has n linearly independent eigenvectors;i.e.,it is simple.Furthermore, we haveA=QΛQ−1,Λ=Q−1AQwhere Q=[x1...x n](the e-vectors)andΛis a diagonal matrix withλi on the (i,i)element.(Such a matrix is sometimes called Diagonalizable).P2.For Hermitian D,its eigenvalues are real;i.e,Imag(λi)=0∀i.Further-more,if D is real(i.e.,real symmetric)the eigenvectors are real as well.3–1P3.If D is Hermitian,it is also simple.P4.For D=D H(i.e,Hermitian D)eigenvectors corresponding to distinct eigenvalues are orthogonal in the sense that x H j x i=0,ifλi=λj.P5.For D=D H,let x1···x m be the eigenvector corresponding to the repeated eigenvalueˆλ.Show that if we replace the x i s with their Gramm-Schmidt vectors, we still have m eigenvectors forˆλ.P6.For Hermitian D,the eigenvector matrix can be written as a unitary matrix;that isD=QΛQ H,QQ H=Q H Q=I,,Λreal,Q real if D real symmetricP7.If D=D H is positive(semi)definite,then D ii>(≥)0,with similar result for negative(semi)definite.P8.For a Hermitian matrix D,we haveD positive semi definite if and only if(iffor⇐⇒)λi≥0,∀iD is positive definite iffλi>0,∀iD is negative semi definite iffλi≤0,∀iD is negative definite iffλi<0,∀iD is indefinite iffλi>0for some i andλi<0for some other iP9.For any matrix A,x H A H Ax≥0,∀x.Sometimes we write A H A≥0for short.P10.If Hermitian D is positive semi definite(D≥0),then there exist Hermi-tian matrices V such thatD=V V,; e.g.,V=Q(Λ)0.5Q Hand furthermore there exist matrices C such thatD=C H C; e.g.,C=(Λ)0.5Q HP11.If Q is unitary,all of its eigenvalues have magnitude one;i.e,|λi(Q)|=1. P12.Ifλis an eigenvalue of A,it is also an eigenvalue of A T.Also,¯λis an eigenvalue of A H.Therefore if A is real,eigenvalues appear in complex conjugate pairs.P13.If A is normal,thenAx=λx⇐⇒A H x=¯λx3–2P14.If A is normal,its eigenvectors are orthogonal,in the sense that x H i x j=0 P15.If A2=A then all eigenvalues of A are either zero or one(idempotent matrix)P16.If A k=0for any integer k,then all eigenvalues of A are zero(nilpotent matrix)P17.For any Hermitian matrix Dλmin(D)x H x≤x H Dx≤λmax(D)x H x∀x∈C nwhereλmin is the smallest eigenvalue(algebraically).This inequality is often called Raleigh’s inequality.P18.For any two Hermitian matrices M and N,λmin(M+N)≥λmin(N)+λmin(M),andλmax(M+N)≤λmax(N)+λmax(M) P19.If(λ,x)are an eigenvalue/eigenvector pair of the matrix AB,withλ=0, then(λ,Bx)is an eigenvalue/eigenvector pair for BA.P20.If A and B are similar(via transformation Q),they have the same eigen-values and their eigenvectors differ by a Q term.3–33.2Singular Value Decomposition(SVD)For the development below,assume A∈C m×n,m≥n,with rank r(i.e.,ρ(A)=r).Note that A H A∈C n×n and AA H∈C m×m.Also,for inner product and norm,we use x 2=<x,x>,with<x,y>=x H y.We need to review the following propertiesRange(A)=Range(AA H),and Range(A H)=Range(A H A)which impliesρ(A)=ρ(A H)=ρ(AA H)=ρ(A H A)=r.The basic SVD can be obtained through the followingSVD1.Let AA H u i=σ2i u i,for i=1,2,···m.U =[u1u2···u m],U∈C m×m,UU H=U H U=I m.We then have A H u i =σi for i=1,2,···m.SVD2.Let A H Av i=ˆσ2i v i,for i=1,2,···n,such thatV =[v1v2···v n],V∈C n×n,V V H=V H V=I n.Then nonzeroˆσi’s are equal to nonzeroσi’s of SVD1,with v i=A H u iσi .For zeroˆσi,we have Av i=0.(To show this,use P19of the eigenvalue handout.Show that A H A and AA H have the same nonzero eigenvalues,with v s as defined above).These v i’s are linearly independent and form a set of orthonormal vectors.SVD3.Consider the following n equations for i=1,2,···n:Av i=AA H u iσi(or zero)=σi u i(or zero).These equations can be written asAV=UΣ,⇐⇒A=UΣV H(3.1) where U and V are the same as SVD1and SVD2,respectively.Σis a m×nmatrix,with the top left n×n block in diagonal form withσi’s on the diagonaland the bottom(m−n)×n rows zero.Without loss of any generality,we letσ1≥σ2≥···σn≥0.Theseσi’s are called the singular values of A(or A H). Since rank of A is assumed to be r≤min{m,n},there are exactly r nonzerosingular values(Why?recall SVD1and SVD2).Therefore,we can write U=[U r¯U r],U r∈C m×r,V=[V r¯V r],V r∈C n×r,(3.2) andΣ= Σr000 ,Σr=diag{σ1,σ2,...,σr}(3.3)3–4withσ1≥σ2≥···≥σr>0.Or condensing(3.1),A=U rΣr V H r.(3.4) Equations(3.1)or(3.4)are often called the‘singular value decomposition of A’.If A is a real matrix,all vectors(i.e,u i’s,v i’s)will be real and the superscript‘H’is replaced by‘T’-transpose.We can now discuss some of the main properties of singular values.First we introduce the following notationσ(A) =σmax(A),σ(A) =σmin(A),(3.5) whereσi i the i th singular value.Recall that an m×n matrix has n singular values,of which the last n−r are zero(r=ρ(A)).P1-SVD.The‘principal gains’interpretation:σ(A) x 2≥ Ax 2≥σ(A) x 2,∀x(3.6) P2-SVD.The induced2-norm:σ(A)= A 2=sup Ax 2x 2,x=0.(3.7) P3-SVD.If A−1exists,σ(A)=1σ(A−1).(3.8)Extra1.Null space of A=span{v r+1···v n}and range space of A=span{u1···u r}. Extra2.U H r U r=I r and U r U H r is the orthogonal projection operator onto the Range of A.(recall R(A)=R(AA H),but R(AA H)=span(u1,···,u r), since u i’s are orthonormal,direct calculation of the projection operator gives the result).Extra3.V H r V r=I r and V r V H r is the orthogonal projection operator onto the Range of A H.3–53.3A Famous Application of SVDLet us consider the equationAx o=b o⇒x o=A−1b oassuming that the inverse exists and A is known accurately.Now let there be some error in our data;i.e.,let b=b o+δb,whereδb is the error or noise,etc. Therefore,we are now solvingAx=b o+δb⇒x=A−1b o+A−1δb=x o+δx.We are interested in investigating how small or large is this error in the answer (i.e.,δx)for a given amount of error.Note thatδx=A−1δb⇒ δx ≤ A−1 δbor since A−1 =σmax A−1=1σmin A,we can writeδx ≤ δbσmin A.(3.9) However,recall that x o=A−1b o and thereforex o ≥σmin(A−1) b o = b oσmax A.(3.10) Combining(3.9)and(3.10)δxo ≤ δbmin1oorδxx o ≤ δbb oσmax Aσmin Awhere the last fraction is called‘the condition number of A’.This number is indicative of the magnification of error in the linear equation of interest.Simi-lar analysis can be done regarding a great many numerical and computational issues.In most problems,a matrix with very large condition number is called ill conditioned and will result in severe numerical difficulties.Note that by definition,the condition number is equal or larger than one. Also,note that for unitary matrices,the condition number is one(one of the main reasons these matrices are used heavily in computational linear algebra).3–63.4Important Properties of Singular ValuesIn the following,useσ(A)as the maximum singular value of A,σ(A)as the minimum singular value andσi(A)as the generic i th singular value.In all cases,A∈C m×n.Recall thatσ2i=λi(A H A)=λI(AA H),and that σi(A)≥0.P4-SVD.σi(αA)=|α|σi(A),∀α∈CP5-SVD.σ(AB)≤σ(A).σ(B)P6-SVD.σ(A+B)≤σ(A)+σ(B)P7-SVD.σ(AB)≥σ(A).σ(B)P8-SVD.σ(A)≤|λi(A)|≤σ(A)∀iP9-SVD.σ(A)−1≤σ(I+A)≤σ(A)+1P10-SVD.σ(A)−σ(B)≤σ(A+B)≤σ(A)+σ(B)P11-SVD.σ(A)≤ trace(A H A)≤√nσ(A)P12-SVD.T raceA H A= k1σ2i(A),k=min(n,m)P13-SVD.detA H A= k1σ2i(A)P14.-SVD In general,σi(AB)=σi(BA)P15-SVD.σ(A)σ(B)≤σ(AB)A∈C m×n,B∈C n×l n≤l only−σ(B)σ(A)≤σ(AB)A∈C m×n,B∈C n×l n≤m onlyP16-SVD.σ(AB)≤σ(A)σ(B)no restrictions−σ(AB)≤σ(B)σ(A)no restrictionsP17-SVD.σ(A)σ(B)≤σ(AB)≤σ(A)σ(B)≤σ(AB)≤σ(B)σ(A),n≤l −σ(A)σ(B)≤σ(AB)≤σ(B)σ(A)≤σ(AB)≤σ(B)σ(A),n≤m3–73.5Pseudo InverseThe basic definition of inverse of a matrix A is well known,when it is square and full rank.For non-square,but full rank,matrix A∈R m×n,we have the following:When m>n(n>m)left(right)inverse of A is the matrix B in R n×m(in R m×n)such that BA(AB)is I n(I m).When the matrix is not full rank,the so called‘pseudo’inverses are used. The famous definition of Penrose is the following.The pseudo inverse of A is the unique matrix(linear operator)A†that satisfies the following1.(A†A)H=A†A2.(AA†)H=AA†3.A†AA†=A†4.AA†A=ARecalling that matrix P is a projection if P2=P and is orthogonal pro-jection if P=P2and P=P H,we can see that the pseudo inverse has the following properties•A†A is the orthogonal projection onto Range of A H•AA†is the orthogonal projection onto Range of A•(A†)†=ANow we will suggest the following candidate:A=U rΣr V H r=⇒A†=V rΣ−1r U H r(3.11) PINV1.Show that for full rank matrices,the definition in(3.11)reduces to standard inverse(square matrices)or left or right inverse.PINV2.Verify that A†defined in(3.11)satisfies the basic properties of pseudo inverse.To gain a better understanding of the pseudo inverse,consider the linear equation Ax=y.When A is square and full rank,the solution is A−1y.In general,we say that the least squares solution of this problem is A†y!Let us investigate some more.PINV3.Show that when A is a wide(or long)matrix with full row rank,the problem has infinitely many solutions,among which only one is in the range of A H.Further,this solution has the smallest norms among all possible solutions. The solution is x=(right inverse of A)y.3–8PINV4.When A is a tall matrix with full column rank,then x=(left inverseof A)y gives the unique solution or(if no solution exists)the solution thatminimizes the2-norm of the error(y−Ax).We can generalize this by letting A be rank deficient.Starting with y,wefind y p its projection onto range of A to minimize the norm of the error(y p=yif at least one solution exists).Now Ax=y p has one or many solutions,amongwhich the one with minimum norm is the unique vector x o such that it is in therange space of A H.The relationship between x o and y is x o=A†y.In short, the pseudo inverse simultaneously minimizes the norm of the error as well asthe norm of the solution itself.PINV5.Show that the definition of A†in(3.11)is the same as the development discussed above(i.e.,show that Ax o is equal to y p and x o is in the range of A H. For this last part recall that the range of A H is the same as range of A H A which is the same as span of the v1to v r).Another common,and equivalent,definition(see Zadeh and Desoer)for the pseudo inverse is the matrix satisfying1.A†Ax=x∀x∈range ofA H2.A†z=0∀z∈null space ofA H3.A†(y+z)=A†y+A†z∀y∈R(A),∀z∈R(A)⊥Finally,they suggest the following calculation for the inverseA†=(A H A)†A H(3.12) PINV6.Show that(3.12)results in the same matrix as(3.11).3–9。
线性代数中的奇异值特征值关系
线性代数中的奇异值特征值关系线性代数中的奇异值-特征值关系线性代数是数学的一个重要分支,研究向量空间、线性变换、矩阵和线性方程组等概念和性质。
在线性代数中,奇异值和特征值是两个常见的概念,它们扮演着重要的角色。
本文将探讨奇异值和特征值之间的关系以及它们在线性代数中的应用。
一、奇异值和特征值的定义在介绍奇异值和特征值之间的关系之前,我们先来了解一下它们的定义。
1. 奇异值(Singular Value)对于一个m×n的矩阵A,假设它的秩为r。
则A可以表示为A=UΣV^T的形式,其中U是一个m×r的正交矩阵,V是一个n×r的正交矩阵,Σ是一个r×r的对角矩阵。
其中,Σ的对角元素称为A的奇异值。
2. 特征值(Eigenvalue)对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=λx,其中λ为一个常数,则称λ为A的特征值,x为对应于特征值λ的特征向量。
二、奇异值和特征值的关系奇异值和特征值之间存在着紧密的联系,下面我们来详细探讨这种关系。
1. 奇异值与特征值的关系当矩阵A是一个方阵时,其奇异值就是它的特征值的平方根。
即A的奇异值为A的特征值的平方根。
2. 存在奇异值和特征值之间的联系对于一个m×n的矩阵A,其奇异值和特征值之间存在一定的联系。
具体来说,A的非零奇异值的平方根是A^TA的特征值的平方根,也是AA^T的特征值的平方根。
3. 奇异值与特征值分解的关系奇异值和特征值分解是矩阵分解的重要方法之一。
任何一个矩阵都可以进行奇异值分解和特征值分解。
奇异值分解将矩阵分解为三个矩阵的乘积,其中两个矩阵是正交矩阵,一个矩阵是对角矩阵,对角元素就是奇异值。
特征值分解将矩阵分解为三个矩阵的乘积,其中两个矩阵是特征向量组成的正交矩阵,一个矩阵是特征值组成的对角矩阵。
三、奇异值和特征值的应用奇异值和特征值在线性代数中有着广泛的应用,下面我们来介绍一些常见的应用领域。
奇异值分解与特征值分解的比较分析(Ⅱ)
奇异值分解与特征值分解是线性代数中非常重要的概念,它们在数据分析、信号处理和机器学习等领域中有着广泛的应用。
在本文中,我们将对这两种分解方法进行比较分析,探讨它们的异同以及在不同场景下的应用。
奇异值分解(Singular Value Decomposition,简称SVD)是一种将一个矩阵分解为三个矩阵乘积的方法。
对于一个矩阵A,它的奇异值分解可以表示为A=UΣV^T,其中U和V分别是正交矩阵,Σ是一个对角矩阵,对角线上的元素称为矩阵A的奇异值。
特征值分解(Eigenvalue Decomposition,简称EVD)则是将一个方阵分解为三个矩阵乘积的方法,表示为A=QΛQ^T,其中Q是正交矩阵,Λ是对角矩阵,对角线上的元素称为矩阵A的特征值。
首先,我们来比较一下这两种分解方法的适用范围。
特征值分解只适用于方阵,而奇异值分解适用于任意的矩阵,包括非方阵。
这使得奇异值分解在实际应用中更加灵活,可以处理各种形状的数据。
另外,特征值分解要求矩阵A是对称矩阵,而奇异值分解对矩阵的对称性没有要求,这也增加了奇异值分解的适用范围。
其次,我们来看一下这两种分解方法的计算复杂度。
特征值分解的计算复杂度为O(n^3)次方,其中n是矩阵的维度。
而奇异值分解的计算复杂度也为O(n^3)次方,但是由于奇异值分解可以应用于任意形状的矩阵,所以在实际应用中,奇异值分解的计算复杂度往往要比特征值分解低。
这使得奇异值分解在大规模数据处理中有着更好的性能表现。
另外,我们还可以从几何意义上来比较这两种分解方法。
特征值分解可以将一个线性变换表示为对角化的形式,从而可以直观地理解线性变换对向量的影响。
而奇异值分解则可以将一个线性变换表示为一个旋转、一个缩放和一个再旋转的形式,这种形式更加直观且易于理解。
因此,在几何分析和图像处理领域,奇异值分解更加常用。
最后,我们来看一下这两种分解方法在实际应用中的情况。
在图像处理和压缩中,奇异值分解被广泛应用于图像的降噪和压缩,可以保留图像的主要特征并减小数据的维度。
实对称矩阵分解 -回复
实对称矩阵分解-回复什么是实对称矩阵分解?如何进行实对称矩阵分解?实对称矩阵分解有哪些应用领域?实对称矩阵分解(Real Symmetric Matrix Decomposition)是将一个实对称矩阵进行分解的过程,通过将矩阵分解为特定形式的矩阵相乘的形式,可以得到矩阵的特征值和特征向量。
实对称矩阵分解是线性代数中的一个重要问题,因为实对称矩阵具有很多特殊的性质,可以应用到许多实际问题中。
接下来,我们将详细介绍如何进行实对称矩阵分解。
实对称矩阵分解有几种方法,其中最常用的方法是特征值分解(Eigenvalue Decomposition)和奇异值分解(Singular Value Decomposition)。
首先,我们来介绍特征值分解。
对于一个实对称矩阵A,我们可以将其分解为A=QΛQ^T的形式,其中Q是一个正交矩阵,Λ是一个对角矩阵。
Q 的列向量就是A的特征向量,而Λ的对角元素就是A的特征值。
特征值分解可以通过计算矩阵A的特征值和特征向量来实现。
对于n阶实对称矩阵A,我们可以得到n个特征值和对应的特征向量。
特征值分解在实际应用中有很多重要的应用领域。
首先,特征值分解可以用于解决线性方程组问题。
通过将一个线性方程组表示为矩阵形式,我们可以通过特征值分解求解矩阵的逆矩阵,从而得到线性方程组的解。
此外,特征值分解还可以用于矩阵的对角化、主成分分析、信号处理等领域。
特征值分解在机器学习和数据挖掘中也被广泛应用,例如在降维、聚类分析、推荐系统等领域。
除了特征值分解,奇异值分解也是一种常用的实对称矩阵分解方法。
奇异值分解将一个实对称矩阵A分解为A=UΣV^T的形式,其中U和V是正交矩阵,Σ是一个对角矩阵。
与特征值分解不同的是,奇异值分解适用于任意矩阵,不仅限于实对称矩阵。
奇异值分解可以通过求解A^TA和AA^T 的特征值和特征向量来实现。
奇异值分解在实际应用中也有广泛的应用领域。
首先,奇异值分解可以用于矩阵的逆运算,从而可以解决线性方程组问题。
eigenvalue
» The norm is also invariant to orthogonal transformation
Similarity Transformations
Eigenbasis
» If a nxn matrix has n distinct eigenvalues, the eigenvectors form a basis for Rn » The eigenvectors of a symmetric matrix form an orthonormal basis for Rn » If a nxn matrix has repeated eigenvalues, the eigenvectors may not form a basis for Rn (see text)
0 if j ≠ k a ak = 1 if j = k
T j
Orthogonal transformation
» y = Ax where A is an orthogonal matrix » Preserves the inner product between any two vectors
(a, b) ≤ a b
» Unit vector: ||a|| = 1
a+b ≤ a + b
Linear Transformation
Properties of a linear operator F
F ( v + x) = F ( v ) + F (x) F (cx) = cF ( x)
» Linear operator example: multiplication by a matrix » Nonlinear operator example: Euclidean norm
eigen svd求解直线方程
eigen svd求解直线方程在解决线性方程组问题时,特征值分解(Eigenvalue Decomposition)和奇异值分解(Singular Value Decomposition,SVD)是两个非常重要的方法。
在本篇文章中,我们将探讨如何使用特征值分解和奇异值分解来求解直线方程。
特征值分解和奇异值分解都是对矩阵进行分解的方法,其目的是将一个复杂的矩阵分解为简化形式,以便于进一步分析和求解问题。
首先,我们来介绍特征值分解。
特征值分解是将一个方阵分解为特征向量和对应的特征值的方法。
给定一个n×n的方阵A,特征值分解的表示为:A = PDP⁻¹其中,P是由A的特征向量组成的矩阵,每一列是一个特征向量;D是由A的特征值组成的对角矩阵,对角线上的元素对应特征值。
接下来,我们来看如何使用特征值分解求解直线方程。
假设我们有一个二维空间中的一条直线,可以用二维向量表示为(x,y)。
我们希望找到一个矩阵A,使得A乘以向量(x,y)等于0,即Ax=0。
为了简化问题,我们可以将直线上的点表示为A的特征向量,其中对应的特征值为0。
这样一来,我们就可以将直线方程转化为特征值分解的形式,即解决Ax=0的问题。
在特征向量P中,每一列都对应着直线上的一个点,这些点可以看作是直线上的向量。
这些向量相互平行,并且可以从原点出发到直线上的任意一点。
特征向量对应的特征值为0,表示这些向量在A的作用下不变。
在这种情况下,我们可以得出结论:直线上的所有点都可以通过矩阵A的特征向量表示,并且它们的坐标系在A的作用下保持不变。
特征值分解可以将一个复杂的问题简化为求解矩阵的特征向量和特征值的问题,进一步帮助我们理解和求解直线方程。
但是,特征值分解只适用于方阵,且矩阵必须具有n个线性无关的特征向量。
接下来,我们来介绍奇异值分解(Singular Value Decomposition,SVD)。
奇异值分解是将一个任意m×n矩阵分解为三个矩阵的乘积的形式,表示为A=UΣVᵀ,其中,U和V都是正交矩阵,Σ是一个对角矩阵,对角线上的元素称为奇异值。
协方差矩阵求特殊向量
协方差矩阵求特殊向量1.引言1.1 概述协方差矩阵是一种重要的数学工具,用于衡量多个变量之间的相互关系。
它能够揭示变量之间的相关性,进而帮助我们理解和分析数据的特征。
在数据分析领域,协方差矩阵被广泛应用于特征选择、主成分分析、线性回归等多个方面。
协方差矩阵求特殊向量是指在给定协方差矩阵的条件下,寻找一些特殊的向量。
这些特殊向量具有特定的特征,可以帮助我们更好地理解数据的模式和结构。
通常,这些特殊向量被称为特征向量,而对应的特征值则表示了该特征向量所描述的特征的重要程度。
在本文中,我们将介绍协方差矩阵的定义和计算方法,以及特殊向量的含义和求解方法。
首先,我们将从协方差矩阵的概念和计算公式入手,详细解释如何通过样本数据计算出协方差矩阵。
然后,我们将重点介绍特殊向量的含义和重要性,以及如何通过特征值分解等方法来求解这些特殊向量。
我们将探讨特殊向量和特征值之间的关系,以及它们在数据分析中的应用。
最后,我们将对本文的内容进行总结,总结协方差矩阵求特殊向量的方法和应用。
同时,我们还将展望协方差矩阵求特殊向量在未来的应用前景,探讨其在数据分析、统计学和机器学习等领域中可能发挥的作用。
希望通过本文的阐述,读者能够更好地理解协方差矩阵的求解方法和特殊向量的意义,从而为实际问题的分析和解决提供一定的指导和帮助。
1.2文章结构1.2 文章结构本文将以以下几个部分来讨论协方差矩阵求解特殊向量的方法和意义。
第一部分,引言,将首先对整篇文章进行概述,介绍协方差矩阵求解特殊向量的背景和意义,同时给出本文的目的和写作结构。
第二部分,正文,将详细介绍协方差矩阵的定义和计算方法。
我们将解释协方差矩阵的概念以及它在统计学和数据分析领域的重要性。
接着,我们将讨论协方差矩阵的计算方法,包括样本协方差矩阵和理论协方差矩阵的求解过程。
第三部分,正文,将探讨特殊向量的含义和求解方法。
我们将解释特殊向量在线性代数和统计分析中的作用,并介绍几种常见的特殊向量,如特征向量和正交向量。
矩阵的迹矩阵的特征值(eigenvalue)
EigenValue/vector
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本 mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可 能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1] 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得
请您及时更换请请请您正在使用的模版将于2周后被下线请您及时更换
矩阵的迹矩阵的特征值( eigenvalue)
Trace:
X∈P(n×n),X=(xii)的主对角线上的所有元素之和称之为X的迹,记为tr(X),即tr(X)=∑xii
性质: (1) 设有N阶矩阵A,那么矩阵A的迹(用tr(A)表示)就等于A的特征值的总和,也即A矩阵的主对角线元素的总和。 1.迹是所有对角元的和 2.迹是所有特征值的和 3.某些时候也利用tr(AB)=tr(BA)来求迹 (2) 奇异值分解(Singular value decomposition ) 奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与 AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。 如果A是复矩阵,B中的奇异值仍然是实数。 SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A 的列向量空间的正交基。
人工智能 特征值 算法
人工智能特征值算法引言人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,旨在开发能够模拟和执行人类智能的技术和系统。
特征值算法是人工智能领域中一种重要的数学工具,用于数据分析、模式识别和聚类等任务。
本文将介绍人工智能特征值算法的基本概念、应用领域以及常见的特征值算法。
1. 特征值与特征向量在介绍特征值算法之前,我们首先需要了解特征值(eigenvalue)和特征向量(eigenvector)的概念。
在线性代数中,对于一个n阶方阵A,如果存在非零向量v和实数λ,使得Av=λv成立,则称λ为矩阵A的一个特征值,v为对应于该特征值的特征向量。
2. 特征值分解特征值分解是一种常见且重要的线性代数运算,用于将一个矩阵分解为一组特征向量和对应的特征值。
对于一个n阶方阵A,其可以被表示为A = PDP^-1的形式,在这个等式中,P是一个由特征向量组成的方阵,D是一个对角矩阵,对角线上的元素为A的特征值。
特征值分解在人工智能领域中有着广泛的应用。
例如,在图像处理中,可以通过特征值分解来提取图像的主要特征,并进行图像压缩和重建。
此外,在机器学习中,特征值分解可以用于降维和特征选择,从而提高模型的性能和效率。
3. 奇异值分解奇异值分解(Singular Value Decomposition,简称SVD)是一种常见的矩阵分解方法,可以将一个矩阵分解为三个矩阵的乘积。
对于一个m×n的矩阵A,其可以被表示为A = USV^T的形式,在这个等式中,U和V是正交矩阵,S是一个对角矩阵。
奇异值分解在人工智能领域中也有着广泛的应用。
例如,在推荐系统中,可以使用奇异值分解来进行用户-物品评分矩阵的降维和预测。
此外,在自然语言处理中,奇异值分解可以用于词嵌入和语义相似度计算等任务。
4. 主成分分析主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,可以通过线性变换将原始数据映射到一个新的低维空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A=
=
, ,…, can be viewed as basic components.A is constructed by adding up those weighted components.
=0(j )
3.SymmetricandHermitanMatrices
(m×n)
(n×n)
(m )
Singular value is equaltopositivesquare root of correspondingeigenvalueof matrix or . At same time, we should pay attention to the sign of u and v. hasto be satisfied.
For real matrix A, If A= ,Aiscalled symmetric matrix.
For complex matrix A, If A= ( means the complex conjugate transpose of A), A is calledHermitanmatrix.
We want to find:
, or (notes:m×n=(m×m)(m×n)(n×n))
whereU and V areorthonormalmatrix.
Computing method:
From , we have:
(notes: m×m=(m×m)(m×m)(m×m))
(notes: n×n=(n×n)(n×n)(n×n))
Meaning:
View A as a system. Inputs u and output v can have different dimensions. Singular value concerns with mapping from one vector space to a different vector space.
1.Eigenvalue , where A has to be square matrix (n×n).
Computing method:
Solving function:
(A- I)x=0;det(A- )=0;
MHale Waihona Puke aning:View A as a system. We want to find a input x, which has output at the same direction, and the output is obtained by multiplying input x by correspondingfactor . The can correspond to frequencies of vibration, or index of stability of the system.
If the A is full-rank matrix,we can have
AX=X ,
or ,
whereX consists of n eigenvectors, and =diag( )
2.Singular value , where A can be non-square matrix (m×n, usually m>n)
Singular value andEigenvalue
ZhongJingshan
Singular value andEigenvaluearetwodifferent things. They have different meanings, and they are computed with different methods. Under some conditions (symmetric andHermitianmatrices) theeigenvaluesand singular values are closely related.
Because ,asis already known, is semi-positive definedmatrix.Column vectors ofVarethe eigenvectorsof , andcolumn vectors ofUarethe eigenvectors of .
Singular value: