乐乐课堂高中数学必修三统计
高中数学必修三--统计-含答案解析--zhy365
![高中数学必修三--统计-含答案解析--zhy365](https://img.taocdn.com/s3/m/674fa191aa00b52acfc7cad3.png)
高中数学必修三--统计卷I(选择题)一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂2. 某单位200名职工中,年龄在50岁以上占20%,40∼50岁占30%,40岁以下占50%;现要从中抽取40名职工作样本.若用系统抽样法,将全体职工随机按1∼200编号,并按编号顺序平均分为40组(1∼5号,6∼10号,…,196∼200号).若第5组抽出的号码为22,则第8组抽出的号码应是①;若用分层抽样方法,则40岁以下年龄段应抽取②人.①②两处应填写的数据分别为()A.82,20B.37,20C.37,4D.37,503. 某学校有教师160人,其中有高级职称的32人,中级职称的56人,初级职称的72人.现抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数应为()A.4B.6C.7D.94. 2013年中国政府提出共建丝绸之路经济带,受到了世界各国的高度重视和积极响应,并提出打造海上丝绸之路的总体规划,被简称为“一带一路”.经调查,沿线某地区自2013年到2019年经过6年的经济新建设,经济收入增加了3倍.为更好地了解该地区经济收入变化情况,统计了该地区建设前后经济收入构成比例,得到如下表格:则2019年与2013年经济收入相比较,下面结论中正确的是( )A.石油出口收入减少B.其他收入增加了三倍以上C.百姓购物收入增加了三倍D.百姓购物收入与教育文化收入的总和超过了经济收入的一半的样本,若采用系统抽样,则分段的间隔k为()A.50B.60C.30D.406. 如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中第二组月收入在[1.5, 2)千元的频数为300,则此次抽样的样本容量为()A.1000B.2000C.3000D.40007. 一样本的所有数据分组及频数如下:[−0.5, 0.5),C50;[0.5, 1.5),C51;[1.5, 2.5),C52;[2.5, 3.5),C53;[3.5, 4.5),C54;[4.5, 5.5),C55.则在[1.5, 4.5)的频率为()A.5 8B.12C.2532D.15168. 2019年,全国各地区坚持稳重求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度:(同比=本期数−去年同期数去年同期数×100%,环比=本期数−上期数上期数×100%),下列结论中不正确的是()A.2019年第三季度的居民消费价格一直都在增长B.2018年7月份的居民消费价格比同年8月份要低一些C.2019年全年居民消费价格比2018年涨了2.5%以上D.2019年3月份的居民消费价格全年最低A.数据4、4、6、7、9、6的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数10. 某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了扇形统计图,已知步行的人数为60,则初三学生乘公交车的人数为( )A.60B.78C.132D.911. 绘制1000人的寿命直方图时,若组距均为20,60∼80岁范围的纵轴高为0.03,则60∼80岁的人数为()A.300B.500C.600D.80012. 以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月=100)变化图表,给出下列结论:其中正确的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津,上海、重庆)①3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均;②4月份仅有三个城市居民消费价格指数超过102;③仅有天津市从年初开始居民消费价格指数的增长呈上升趋势;④四个月的数据显示北京市的居民消费价格指数增长幅度波动较大.A.①②B.②④C.①②④D.①③④卷II(非选择题)二、填空题(本题共计 6 小题,每题 5 分,共计30分,)13. 某城市收集并整理了该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是_______.①最低气温与最高气温为正相关;②10月的最高气温不低于5月的最高气温;③月温差(最高气温减最低气温)的最大值出现在1月;④最低气温低于0∘C的月份有4个.14. 为了估计鱼塘中鱼的尾数,先从鱼塘中捕出2000尾鱼,并给每条尾鱼做上标记(不影响存活),然后放回鱼塘,经过适当的时机,再从鱼塘中捕出600尾鱼,其中有标记的鱼为40尾,根据上述数据估计该鱼塘中鱼的尾数为________.15. 已知数据:x,y,10,11,9,这组数据的平均值10,方差为2,则|x−y|=________.16. 抽样统计甲,乙两个城市连续5天的空气质量指数(AQI),数据如下:17. 某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]然后画出如下图的部分频率分布直方图.观察图形的信息,可知数学成绩低于50分的学生有________人;估计这次考试数学学科的及格率(60分及以上为及格)为________;18. 为了调查某野生动物保护区内某种野生动物的数量,调查人员逮到这种动物1200只作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估算保护区有这种动物________只.三、解答题(本题共计 5 小题,每题 12 分,共计60分,)19. 已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程.20. 某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.(1)设消费者的年龄为x ,对该款智能家电的评分为y .若根据统计数据,用最小二乘法得到y 关于x 的线性回归方程为y ̂=1.2x +40,且年龄x 的方差为s x 2=14.4,评分y 的方差为s y 2=22.5.求y 与x 的相关系数r ,并据此判断对该款智能家电的评分与年龄的相关性强弱.(2)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“ 好评”和“差评”,整理得到如下数据,请判断是否有99%的把握认为对该智能家电的评价与年龄有关.附:线性回归直线y ̂=b ̂x +a ̂的斜率b̂=∑(x i −x ¯)n i=1(y i −y ¯)∑(x i −x ¯)2n i=1相关系数r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1.独立性检验中的K 2=n(ad−bc)2(a+b)(a+c)(b+d)(c+d), 其中n =a +b +c +d .临界值表:21. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得附:相关系数: r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1√2≈1.414.22. 某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:i i−1i i−1x i 7i−1y i =3487. (1)求x ¯,y ¯;参考公式:b ̂=∑=n ∑(ni−1x i −x ¯)2∑n ∑x i 2n i−1−nx−2,a ̂=y ¯−b ̂x ¯(2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.23. 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示:为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具代表性,每类中各应抽选出多少份?并且写出具体操作过程.参考答案与试题解析高中数学必修三--统计一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【解答】A、了解某班学生“50米跑”的成绩,是精确度要求高的调查,适于全面调查;B、C、D了解一批灯泡的使用寿命,了解一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,故不适于全面调查.2.【解答】解:若用系统抽样,则样本间隔为5,若第5组抽出的号码为22,则第8组抽出的号码应22+15=37,若用分层抽样方法,则40岁以下年龄段应抽取40×50%=20,故选:B.3.【解答】解:∵中级职称的56人,∴抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数为56160=n20,解得n=7,即抽取的中级职称的教师人数应为7人.故选C.4.【解答】解:假设建设前经济收入为a,则建设后经济收入为4a,所以石油出口收入在建设前为0.49a,建设后为4a×0.33=1.32a,石油出口收入较之前增加;其他收入在建设前为0.06a,建设后为0.24a,即其他收入增加了三倍;百姓购物收入建设前为0.3a,建设后为0.38×4a=1.52a,即百姓购物收入增加了四倍以上;教育文化收入建设前为0.1a,建设后为0.15×4a=0.6a,百姓购物收入与教育文化收入的总和为1.52a+0.6a=2.12a>2a,超过了经济收入的一半.故选D.5.【解答】解:由题意知本题是一个系统抽样问题,总体中个体数是3000,样本容量是100,根据系统抽样的步骤,得到分段的间隔k=3000100=30,解:由频率的意义可知,从左到右各个小组的频率之和是1,同时每小组的频率=小组的频数样本容量.∴[1.5, 2)长方形的面积为0.3.第二组月收入在[1.5, 2)千元的频数为300,所以此次统计的样本容量是300÷0.3=1000.故选A.7.【解答】解:由题意知本题共有C50+C51+C52+C53+C54+C55=25个数据,在[1.5, 4.5)的频数是C52+C53+C54∴在[1.5, 4.5)的频率为:C52+C53+C5425=2532,故选C.8.【解答】解:A,从环比看,2019年第三季度的居民消费价格一直都在增长,故A正确;B,从同比看,2018年7月份的居民消费价格比同年8月份要低一些,故B正确;C,从同比看,1.7+1.5+2.3+2.5+2.7+2.7+2.8+2.8+3.0+3.8+4.5+4.512=2.9,所以2019年全年居民消费价格比2018年涨了2.5%以上,故C正确;D,从环比看,2019年1月份的居民消费价格最低,故D错误.故选D.9.【解答】解:数据4、4、6、7、9、6的众数是4和6,故A错误;一组数据的标准差是这组数据的方差的算术平方根,故B错误;∵3,5,7,9的平均数=14(3+5+7+9)=6,∴3,5,7,9的标准差=√14[(3−6)2+(5−6)2+(7−6)2+(9−6)2]=√5.∵6、10、14、18的平均数=14(6+10+14+18)=12,∴6、10、14、18的标准差√14[(6−12)2+(10−12)2+(14−12)2+(18−12)2]= 2√5,∴数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半,故C正确;频率分布直方图中各小长方形的面积等于相应各组的频率,故D错误.故选:C.10.【解答】解:调查的学生总数是:60÷20%=300(人),则乘公交车的人数为:300×(1−20%−33%−3%)=300×44%=132(人).解:因为:组距均为20,60∼80岁范围的纵轴高为0.03,所以;频率为:0.03×20=0.6.∴60∼80岁的人数为:0.6×1000=600.故选:C.12.【解答】解:根据题目所给信息,①,3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为大,不平均,①错误;②,4月份仅有三个城市居民消费价格指数超过102;③,天津市和上海从年初开始居民消费价格指数的增长呈上升趋势,③错误;④,四个月的数据显示北京市的居民消费价格指数增长幅度波动较大,④正确.故正确的有②④.故选B.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【解答】解:由该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得:在①中,最低气温与最高气温为正相关,故①正确;在②中,10月的最高气温不低于5月的最高气温,故②正确;在③中,月温差(最高气温减最低气温)的最大值出现在1月,故③正确;在④中,最低气温低于0∘C的月份有3个,故④错误.故答案为:④.14.【解答】解:根据题意,设该鱼塘中鱼的尾数为x,则;x 2000=60040,解得x=30000;∴估计该鱼塘中鱼的尾数为30000.故答案为:30000.15.【解答】解:由平均值10得,x+y+10+11+9=50,则x+y=20,①由方差为2得,2=15[(x−10)2+(y−10)2+0+1+1],即(x−10)2+(y−10)2=8,②设x=10+t,y=10−t,代入②2t2=8,解得t=±2,∴|x−y|=2|t|=4,故答案为:4.16.甲城市连续5天的空气质量指数是109,111,132,118,110;它的极差是132−109=23,且数据的波动性较大些;乙城市连续5天的空气质量指数是110,111,115,132,112;它的极差是132−110=22,且数据的波动性较小些;由此得出,空气质量指数较为稳定(方差较小)的城市是乙.故答案为:乙.17.【解答】解:由图可知,成绩在[50, 60)的频率为0,015×10=0.15,成绩在[60, 70)的频率为0.015×10=0.15,成绩在[70, 80)的频率为0.030×10=0.3,成绩在[80, 90)的频率为0.025×10=0.25,成绩在[90, 100]的频率为0.005×10=0.05,∴成绩不低于50分的频率为0.15+0.15+0.3+0.25+0.05=0.9,成绩不低于60分的频率为0.15+0.3+0.25+0.05=0.75∴成绩低于50分的频率为为1−0.9=0.1∵共有60名学生,∴成绩低于50分的学生数为60×0.1=6,这次考试数学学科的及格率为75%.故答案为6;75%18.【解答】解:设保护区有这种动物有x只,则由题意可得1200x =1001000,求得x=12000,故答案为12000.三、解答题(本题共计 5 小题,每题 12 分,共计60分)19.【解答】解:由于三个车间的产品有差别,故应采用分层抽样的方法,先计算抽样比:k=40150+130+120=110,再计算各车间内抽取样本的件数:甲车间:150×110=15,乙车间:130×110=13,丙车间:120×110=12,再分析使用简单随机抽样的办法在各个车间中抽取样本,最后终成一个样本.20.【解答】解:(1)相关系数r=∑(x−x¯)50(y−y¯)√∑(xi−x)250i=1∑(y i−y)250i=1;=∑(x i−x¯)50i=1(y i−y¯)∑(x i−x¯)250i=1√∑(xi−x¯)250i=1√∑(yi−y)250i=1=b̂⋅√50s x2√50s y =1.2×1215=0.96.故对该款智能家电的评分与年龄的相关性较强.(2)由列联表可得K 2=50×(8×6−20×16)224×26×28×22≈9.624>6.635.故有99%的把握认为对该智能家电的评价与年龄有关.21.【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得 ,r =∑(x i −x ¯)n i=1(y i −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1=80×9000=62≈0.94 ;(3)由题意可知,各地块间植物短盖面积差异很大,因此在调查时,先确定该地区各地块间植物短盖面积大小并且由小到大排序, 每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计. 22.【解答】解:(1)x ¯=17(3+4+5+6+7+8+9)=6, y ¯=17(66+69+73+81+89+90+91)=5597≈79.86;(2)把所给的7对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.(3)∵ 3×66+4×69+5×73+6×81+7×89+8×90+9×91=3487,32+42+52+62+72+82+92=280,∴ b =3487−7×6×5597280−7×36=4.75,a =5597−6×4.75≈51.36,故线性回归方程为y =4.75x +51.36.23.【解答】解:每个个体被抽到的频率是 50050000=1100,10800×1100=108,12400×1100=124,15600×1100=156,11200×1100=112,每类中各应抽选出有效帖子的份数:很满意的108份,满意的124份,一般的156份,不满意的112份.在很满意的有效帖子中采用简单随机抽样的方法随机抽取108份,在满意的有效帖子中采用简单随机抽样的方法随机抽取124份,在一般的有效帖子中采用简单随机抽样的方法随机抽取156份,在不满意的有效帖子中采用简单随机抽样的方法随机抽取112份.。
人教B版高中数学必修三第二章统计2.2.1
![人教B版高中数学必修三第二章统计2.2.1](https://img.taocdn.com/s3/m/dd22c37533687e21af45a99a.png)
高中数学学习材料金戈铁骑整理制作2.2.1用样本的频率分布估计总体的分布课时目标 1.通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体的分布,初步体会样本频率分布的随机性.1.极差的概念极差是一组数据的__________________的差,它反映了一组数据__________,极差又叫________.2.频数、频率的概念将一批数据按要求分为若干组,对落在各个小组内数据的________进行累计,这个累计数叫做各个小组的________,各个小组的________除以__________,即得该小组的________.3.频率分布直方图在频率分布直方图中,纵轴表示________________,各小长方形的面积等于________________,所有长方形面积之和等于____.4.频率分布折线图把频率分布直方图中各个长方形____________用线段连接起来,就得到频率分布折线图.5.总体密度曲线如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的__________________的大小;当样本容量不断增大,分组的组距不断缩小时,频率分布直方图实际上越来越接近于______________,它可以用一条______________来描绘,这条光滑曲线就叫做_______________________________.6.茎叶图用茎叶图表示数据的两个优点在于:一是从茎叶图上没有__________的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时__________,方便记录与表示.一、选择题1.下列说法不正确的是()A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2.一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]频数12 13 24 15 16 13 7则样本数据落在(10,40]上的频率为()A.0.13 B.0.39 C.0.52 D.0.643.如图是总体密度曲线,下列说法正确的是()A.组距越大,频率分布折线图越接近于它B.样本容量越小,频率分布折线图越接近于它C.阴影部分的面积代表总体在(a,b)内取值的百分比D.阴影部分的平均高度代表总体在(a,b)内取值的百分比4.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A.20% B.69% C.31% D.27%5.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75C.60 D.45题号 1 2 3 4 5答案二、填空题6.将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 7.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________.8.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题9.美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51, 54,51,60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.10.抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508 511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?绘制频率分布直方图的具体步骤:①求极差:找出一组数据中的最大值和最小值,最大值与最小值的差是极差(正值).②确定组距与组数:组数与样本容量有关,当样本容量不超过100时,按照数据的多少,常分成5~12组;组距的选择力求“取整”,组数=极差组距.③将数据分组:将数据分成互不相交的组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间.④列频率分布表:一般分“分组”、“频数累计”、“频数”、“频率”四列,最后一行是合计.注意频数的合计是样本容量,频率的合计是1.⑤绘制频率分布直方图:根据频率分布表绘制频率分布直方图,其中纵轴表示频率与组距的比值,其相应组距上的频率等于该组距上的矩形的面积,即每个矩形的面积=组距×频率组距=频率.这样频率分布直方图就以面积的形式反映了数据落在各个小组的频率的大小,各小矩形的面积的总和等于1.第二章 统 计§2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布知识梳理1.最大值与最小值 变化的幅度 全距 2.个数 频数 频数 样本容量 频率 3.频率与组距的比值 相应各组的频率 1 4.上边的中点 5.个数与总数比值 总体的分布 光滑曲线y =f(x) 总体密度曲线 6.原始信息 随时记录作业设计1.A2.C [样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.] 3.C4.C [由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.] 5.A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为360.3=120. ∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.]6.60解析 ∵n·2+3+42+3+4+6+4+1=27,∴n =60. 7.45,46解析 由茎叶图及中位数的概念可知x 甲中=45,x 乙中=46.8.m h解析 频率组距=h ,故|a -b|=组距=频率h =m h . 9.解 (1)以4为组距,列表如下:(2)从频率分布表中可以看出,将近60%的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小.10.解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计 频数 频率 累积 频率[482.5,486.5) 正8 0.08 0.08 [486.5,490.5) 3 0.03 0.11 [490.5,494.5) 正正正 17 0.17 0.28[494.5,498.5) 正正正正- 21 0.21 0.49[498.5,502.5) 正正14 0.14 0.63 [502.5,506.5) 正9 0.09 0.72 [506.5,510.5) 正正正 19 0.19 0.91[510.5,514.5) 正-6 0.06 0.97 [514.5,518.5]3 0.03 1.00 合计100 1.00 (2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44.设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55. 11.解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.。
北师大版必修3高中数学第1章统计3统计图表
![北师大版必修3高中数学第1章统计3统计图表](https://img.taocdn.com/s3/m/e5daf803376baf1ffc4fad54.png)
1.没有信息的损失,所有的原始数据都可以从图中得到的统计
图是( )
A.折线统计图
B.扇形统计图
C.条形统计图
D.茎叶图
D [结合各个统计图的特点可知,茎叶图可以保留原始数据,且
没有信息损失.]
2.当收集到的数据量很大或有多组数据时,用哪种统计图表示
[解] (1)从统计图上可以看出: 喜欢收听于丹析《庄子》的男生有 20 人,女生有 10 人; 喜欢收听《故宫博物院》的男生有 30 人,女生有 15 人; 喜欢收听于丹析《论语》的男生有 30 人,女生有 38 人; 喜欢收听易中天《品三国》的男生有 64 人,女生有 42 人; 喜欢收听刘心武评《红楼梦》的男生有 6 人,女生有 45 人. 所以抽取的学生数为 20+10+30+15+30+38+64+42+6+ 45=300(人).
2.扇形统计图中,用圆面代表总体,圆面中的各个扇形分别代表总 体中的不同部分,扇形的大小反映部分占总体的百分比的大小.扇形统计 图可以很清楚地表示各部分数量同总数之间的关系,即扇形统计图能清楚 地表示出各部分在总体中所占的百分比.
2.(1)如图所示的是某市 2019 年 4 月 1 日至 4 月 7 日每天最高、最低 气温的折线统计图,在这 7 天中,日温差最大的一天是( )
2.茎叶图的应用范围是什么? 提示:茎叶图只适用于样本数据较少的情况. 3.茎叶图有什么优缺点? 提示:优点:能保留原始数据,并随时记录,记录和表示比较方 便. 缺点:当数据量很大或有多组数据时不便表示.
【例 3】 某赛季甲、乙两名篮球运动员每场比赛的得分情况如 下:
甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50; 乙的得分:8,13,14,16,23,26,28,33,38,39,51. (1)画出甲、乙两名运动员得分数据的茎叶图; (2)根据茎叶图分析甲、乙两名运动员的水平. [思路探究] (1)利用十位数作“茎”,个位数作为“叶”绘制. (2)根据数据的对称情况进行判断.
人教版高中数学必修三课件:第2章 统计 (8份打包)
![人教版高中数学必修三课件:第2章 统计 (8份打包)](https://img.taocdn.com/s3/m/4068a6ff804d2b160b4ec0e5.png)
同.
2.随机数表法的编号要求位数相同,且第一
个数字的抽取是随机的,开始读数的方向是
任意的.
失误防范 1.抽签法抽取样本前,把号签要搅拌均匀, 且逐一不放回抽取. 2.在编号时,对于两位数的编号,一般是将 起始号编为00,而不是01,它的好处在于它可 使100个个体都可用两位数字号码表示,否则 将会出现三位数字号码100,这样确定的起始 号便于我们使用随机数表.(如例3)
__随__机__数__法 其中,随机数法即利用随机数表、随机数骰 子或计算机产生的随机数进行抽样. 3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总
体个数不多的情况下是行之有效的.
问题探究
1.利用随机数表读数时,开始位置和读数方向 可以任意选择吗? 提示:可以,但是通常要在抽样前确定好. 2.袋中有6个质地同样的小球,用简单随机抽 样方法,不放回地抽取2个小球,在第一次抽取 和第二次抽取时,每个小球被抽到的机会各是 多少?
2.1 随机抽样 2.1.1 简单随机抽样
学习目标 1.理解并掌握简单随机抽样的概念、特点和步 骤. 2.掌握简单随机抽样的两种方法.
2.1.1 简 单 随 机 抽 样
课前自主学案 课堂互动讲练 知能优化训练
课前自主学案
温故夯基
在初中我们已学过一些统计知识. 1.总体:我们所要考察对象的____. 2.样本:从总体中抽出的若干个个体组成的集 合叫做总体的一个__样__本___,样本中个体的数量 叫做__样__本__容__量_______.
【思维总结】 一个抽样能否用抽签法,关键 看两点:一是制签是否方便,二是号签是否容 易被搅匀,在适用此法时,一定要注意“放入 不透明容器,并充分搅匀”.
考点三 随机数表法的应用
高一数学(人教A版)必修3课件:第二章 统计
![高一数学(人教A版)必修3课件:第二章 统计](https://img.taocdn.com/s3/m/af876a50f242336c1eb95ed7.png)
第二章
章末总结
高中新课程
· 学习指导 · 人教A版 · 数学 · 必修3
A.②③都不能为系统抽样 B.②④都不能为分层抽样 C.①④都可能为系统抽样 D.①③都可能为分层抽样
第二章
章末总结
高中新课程
· 学习指导 · 人教A版 · 数学 · 必修3
[解析]
分层抽样时,在各层所抽取的样本个数与该层
个体数的比值等于抽样比;系统抽样抽取的号码从小到大排 列后,每一个号码与前一个号码的差都等于分段间隔.
第二章
章末总结
高中新课程
· 学习指导 · 人教A版 · 数学 · 必修3
[分析]
第二章
章末总结
高中新课程
· 学习指导 · 人教A版 · 数学 · 必修3
[解析]
(1)列出样本的频率分布表如下:
分组 [122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158) 频数 5 8 10 22 33 20 11 6 5 频率 0.04 0.07 0.08 0.18 0.28 0.17 0.09 0.05 0.04
研究统计问题的基本思想方法就是从总体中抽取样本, 用样本估计总体,因此选择适当的抽样方法抽取具有代表性 的样本对整个统计问题起着至关重要的作用.高考中主要考 查三种抽样方法的比较和辨析以及应用.
第二章
章末总结
高中新课程
· 学习指导 · 人教A版 · 数学 · 必修3
[例1]
某高级中学有学生270人,其中一年级108人,
第二章
章末总结
高中新课程
· 学习指导 · 人教A版 · 数学 · 必修3
高一数学 (人教版必修3):第三章 统计 Word版含解析
![高一数学 (人教版必修3):第三章 统计 Word版含解析](https://img.taocdn.com/s3/m/66274b9619e8b8f67d1cb91a.png)
重点列表:重点 名称重要指数 重点1 频率分布直方图 ★★★★ 重点2 茎叶图 ★★★ 重点3抛物线★★★★重点详解:用样本的频率分布估计总体分布(1)通常我们对总体作出的估计一般分成两种:一种是用样本的__________估计总体的__________;另一种是用样本的________估计总体的__________.(2)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用________________表示.各小长方形的面积总和等于________.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布________.随着样本容量的增加,作图时所分的________增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称之为______________________,它能够更加精细地反映出____________________________________.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以____________________,而且可以______________,给数据的记录和表示都带来方便.【参考答案】(1)频率分布 分布 数字特征 数字特征 (2)频率组距 各小长方形的面积 1 (3)折线图 组数 总体密度曲线 总体在各个范围内取值的百分比 (4)保留所有信息 随时记录重点1:频率分布表、频率分布直方图及其应用 【要点解读】用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.【考向1】根据数据画出频率分布直方图【例题】某市2013年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成下列频率分布表、频率分布直方图;频率分布表分组频数频率41,51)51,61)61,71)71,81)81,91)91,101)101,111)频率分布直方图(2)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解:(1)如图所示:频率分布表分组频数频率41,51) 2 230 51,61) 1 130 61,71) 4 430 71,81) 6 630 81,91) 10 1030 91,101) 5 530 101,111)2230(2)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115,有26天处于良的水平,占当月天数的1315,处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115,污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%,说明该市空气质量有待进一步改善.【评析】首先根据题目中的数据完成频率分布表,作出频率分布直方图,根据污染指数,确定空气质量为优、良、轻微污染、轻度污染的天数;对于开放性问题的解答,要选择适当的数据特征进行考察,根据数据特征分析得出实际问题的结论.本题主要考查运用统计知识解决简单实际问题的能力、数据处理能力和应用意识. 【考向2】频率分布直方图的逆用【例题】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60, [)60,70,[)70,80,[)80,90,[]90,100.(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生的语文成绩在某些分数段的人数(x )与数学成绩在相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数.分数段[)50,60 [)60,70 [)70,80 [)80,90x ∶y1∶12∶13∶44∶5解:(1)由()2a +×10=1, 解得a =0.005.(2)=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.(3)由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段 50,60) 60,70) 70,80) 80,90)x 5 40 30 20 x ∶y 1∶1 2∶1 3∶4 4∶5 y5204025于是数学成绩在50重点2:茎叶图 【要点解读】茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作. 【考向1】根据茎叶图求方差【例题】以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.如果X =8,求乙组同学植树棵数的平均数和方差;注:方差s2=1n(x1-)2+(x2-)2+…+(x n-)2],其中x为x1,x2,…,x n的平均数.解:当X=8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为=8+8+9+104=354;方差为s2=14⎝⎛⎭⎪⎫8-3542+⎝⎛⎭⎪⎫8-3542+⎝⎛⎭⎪⎫9-3542+⎝⎛⎭⎪⎫10-3542]=1116.【考向2】根据茎叶图求平均数【例题】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.179201 530(1)根据茎叶图计算样本平均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?难点列表:难点名称难度指数难点1 用样本的数字特征估计总体的数字特征★★★★难点2导数与函数的极值、最值★★★难点详解:用样本的数字特征估计总体的数字特征(1)众数,中位数,平均数众数:在一组数据中,出现次数________的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或者最中间两个数据的________)叫做这组数据的中位数.平均数:样本数据的算术平均数,即=_______.在频率分布直方图中,中位数左边和右边的直方图的面积应该________. (2)样本方差,样本标准差 标准差s =])()()[(122221x x x x x x nn -+⋯+-+-,其中x n 是__________________,n 是________,是________.标准差是反映总体__________的特征数,________是样本标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.【答案】 (1)最多 平均数 1n(x 1+x 2+…+x n ) 相等(2)样本数据的第n 项 样本容量 平均数 波动大小 样本方差难点1:用样本的数字特征估计总体的数字特征 【要点解读】能从一组数据中求出中位数、平均数和众数 【考向1】平均数、中位数【例题】某汽车制造厂分别从A ,B 两种轮胎中各随机抽取了8个进行测试,列出了每一个轮胎行驶的最远里程数(单位:1000 km): 轮胎A 96 11297108100103 86 98轮胎B 108 101 94 105 9693 97 106(1)分别计算A ,B 两种轮胎行驶的最远里程的平均数、中位数; (2)分别计算A ,B 两种轮胎行驶的最远里程的极差、标准差; (3)根据以上数据,你认为哪种型号轮胎的性能更加稳定?(2)A 轮胎行驶的最远里程的极差为:112-86=26, 标准差为:s =8)2()14(308)3(12)4(22222222-+-++++-++-=2212≈7.43; B 轮胎行驶的最远里程的极差为:108-93=15, 标准差为:s =86)3()7()4(5)6(1822222222+-+-+-++-++=1182≈5.43. (3)虽然A 轮胎和B 轮胎的最远行驶里程的平均数相同,但B 轮胎行驶的最远里程的极差和标准差相对于A 轮胎较小,所以B 轮胎性能更加稳定.【评析】在理解平均数、中位数、众数、极差、标准差、方差的统计意义和数学表达式的情况下,不难作出解答. 【考向2】平均数、标准差【例题】某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4. 则(1)平均命中环数为____________; (2)命中环数的标准差为____________.难点2:根据频率分布直方图计算样本的数字特征【要点解读】会从频率分布直方图中求出中位数、平均数和众数【考向1】中位数【例题】如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,可知其中位数为( )A.12.5 B.13C.13.5 D.14【答案】 B【考向2】平均数【例题】某市为了节约能源,拟出台“阶梯电价”制度,即制订住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的月用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18,63,43,119,65,77,29,97,52,100.组别月用电量频数统计频数频率①0,20)②20,40)正正③40,60)正正正正④60,80)正正正正正⑤80,100)正正正正⑥100,120](1)完成频率分布表并绘制频率分布直方图;(2)根据已有信息,试估计全市住户的平均月用电量(同一组数据用该区间的中点值作代表);(3)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a. 解] (1)组别月用电量频数统计频数频率①0,20)40.04②20,40)正正120.12③40,60)正正正正240.24④60,80)正正正正正正300.30⑤80,100)正正正正正250.25⑥100,120]正50.05(2)由题意,用每小组的中点值代表该小组的平均月用电量,则100户住户组成的样本的平均月用电量为10×0.04+30×0.12+50×0.24+70×0.30+90×0.25+110×0.05=65(度).用样本估计总体,可知全市居民的平均月用电量约为65度.(3)计算累计频率,可得下表:分组0,20)20,40)40,60)60,80)80,100)100,120] 频率0.040.120.240.300.250.05累计频率0.040.160.400.700.95 1.00由此可知临界值a应在区间80,100)内,且频率分布直方图中,在临界值a左侧小矩形的总面积(频率)为0.75,故有0.7+(a-80)×0.012 5=0.75,解得a=84,由样本估计总体,可得临界值a为84.【趁热打铁】1.容量为20的样本数据,分组后的频数如下表:分组10,20)20,30) 30,40) 40,50) 50,60) 60,70)频数2 3 4 5 4 2A.0.35 B.0.45C.0.55 D.0.652.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m o,平均值为,则( )A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<3.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数小于该班女生成绩的平均数4.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A .30%B .10%C .3%D .不能确定5.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为甲,乙,中位数分别为m 甲,m 乙,则( )甲乙8 6 5 0 8 8 4 0 0 1 0 2 87 5 2 2 0 2 3 3 7 8 0 0 3 1 2 4 4 8 3 1 4 2 3 8A.甲<乙,m 甲>m 乙 B .甲乙甲乙C .甲>乙,m 甲>m 乙 D .甲>乙,m 甲<m 乙6.样本(x 1,x 2,…,x n )的平均数为,样本(y 1,y 2,…,y m )的平均数为y (≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数=α+(1-α) y ,其中0<α<12,则n ,m 的大小关系为( ) A .n <mB .n >mC .n =mD .不能确定7.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下.中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天中甲、乙两人日加工零件的平均数分别为________和________.甲乙9 8 1 9 7 10 1 3 2 0 2 1 4 2 41 1 5 3 02 08.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5],样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________.9.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.10.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.23.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?第三章1解:由频率分布表可知:样本数据落在区间10,40)内的频数为2+3+4=9,样本总数为20,故样本数据落在区间10,40)的频率为920=0.45.故选B.2解:中位数为5.5,众数为5,平均值为17930.故选D.3解:这种抽样方法为简单随机抽样,该班这五名男生成绩的平均数为86+94+88+92+905=90,方差为15(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8;该班这五名女生成绩的平均数为 88+93+93+88+935=91,方差为15(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6.故选C.5解:易知甲=21.5625,乙=28.5625,m 甲=20,m 乙=29,∴甲<乙,m 甲<m 乙.故选B. 6解:∵x 1+x 2+…+x n =n ,y 1+y 2+…+y m =m y ,∴x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n ) =(m +n )α+(1-α)y ] =(m +n )α+(m +n )(1-α)y , ∴n +m y =(m +n )α+(m +n )(1-α)y .∴⎩⎪⎨⎪⎧n =(m +n )α,m =(m +n )(1-α). 故n -m =(m +n )α-(1-α)]=(m +n )(2α-1). ∵0<α<12,∴2α-1<0.∴n -m <0,即n <m .故选A.7解:设甲、乙在这10天中日加工零件的平均数分别为a ,b ,则a =20+-1-2+0+1+3+2+0+11+11+1510=24,b =20+-1-3-9+1+4+2+4+10+12+1010=23.故填24;23.8解:平均气温低于22.5℃的城市所占频率为最左边两个矩形面积之和,即0.10×1+0.12×1=0.22,又其频数为11,故总城市数为110.22=50,故样本中平均气温不低于25.5℃的城市共有50×0.18=9(个). 故填9.9解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组频率=第二小组频数样本容量,所以样本容量=第二小组频数第二小组频率=120.08=150.(2)由图可估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.10解:(1)计算得A=2.3, B=1.6,从计算结果来看,A药的疗效更好.(2)从以上茎叶图可以看出,A药疗效的试验结果有10的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.。
北师大版高中数学必修三第一章统计§1.docx
![北师大版高中数学必修三第一章统计§1.docx](https://img.taocdn.com/s3/m/07dadd9e6f1aff00bfd51e08.png)
高中数学学习材料鼎尚图文*整理制作第一章统计§1从普查到抽样课时目标 1.了解普查与抽样调查的概念.2.明确普查与抽样调查的优缺点.1.统计的概念统计是研究如何合理收集、整理、分析数据的学科.2.普查(1)定义:普查是指一个________或一个________专门组织的__________大规模的全面调查,目的是为了详细地了解________重要的国情、国力.(2)普查的主要特点:①所取得的资料更加全面、________;②主要调查在特定时段的社会经济现象总体的________.(3)普查的对象________时,普查无疑是一项非常好的调查方式.3.抽样调查(1)定义:通常情况下,从调查对象中______________抽取一部分,进行__________,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查,其中,调查对象的全体称为________,被抽取的一部分称为________.(2)抽样调查最突出的优点①____________.②______________________.一、选择题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是()A.200个表示发芽天数的数值B.200个球根C.无数个球根发芽天数的数值集合D.无法确定2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是()A.40 B.50C.120 D.1503.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是1004.若要调查某城市家庭的收入情况,在该问题中,总体是()A.某城市B.某城市的所有家庭的收入C.某城市的所有人口D.某城市的工薪阶层5.对于下列调查:①测定海洋中微生物的含量;②某种灯泡使用寿命的测定;③入学报考者的学历调查;④全国人口普查.其中不属于样本调查的是()A.①②B.③④C.②③D.①④6.下列调查,比较适用普查而不适用抽样调查方式的是()A.为了了解中央电视台春节联欢晚会的收视率B.为了了解初三年级某班的每个学生周末(星期六)晚上的睡眠时间C.为了了解夏季冷饮市场上一批冰淇淋的质量情况D.为了考察一片试验田某种水稻的穗长情况题号123456答案二、填空题7.抽样调查一定要保证________原则,尽可能地避免人为因素的干扰,并且要保证每个个体以相同的可能性被抽取到.8.(1)对某班学生视力作一个调查;(2)某汽车生产厂要对所生产的某种品牌的轿车的抗碰撞情况进行检验;(3)联合国教科文组织要对全世界适龄儿童的入学情况做一个调查.对于上述3个实际问题所应选用的调查方法分别为__________、____________、____________.9.某公司新上市一款MP4,为了调查产品在用户中受欢迎的情况,采用什么形式调查为好____________(填“普查”或“抽样调查”).三、解答题10.儿童的喂养及辅食添加是影响儿童生长发育、身体健康的重要因素,喂养不当及辅食添加不正确,容易导致儿童贫血及其他疾病,影响儿童生长发育.为了了解农村儿童的喂养、辅食添加情况、发现存在的问题、确定儿童的喂养及辅食添加的促进措施,欲在该地农村进行一次农村3岁以下儿童的喂养、辅食添加情况和贫血相关因素的调查研究.请给出一个合理的调查方案.(该地区共10个县)11.为调查小区平均每户居民的月用水量,下面是2名同学设计的方案:学生甲:我把这个用水量调查表放在互联网上,只要登陆网站的人就可以看到这张表,他们填的表可以很快地反馈到我的电脑中,这样就可以很快估算出小区平均每户居民的月用水量;学生乙:我给我们居民小区的每一个住户发一张用水调查表,只要一两天就可以统计出小区平均每户居民的月用水量.请你分析上述2名学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?能力提升12.春节前夕,质检部门检查一箱装有2 500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是()A.总体是指这箱2 500件包装食品B.个体是一件包装食品C.样本是按2%抽取的50件包装食品D.样本容量是5013.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.校医务室若从高一年级中抽取50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果会怎样?该问题中的总体和样本是什么?普查与抽样调查是我们调查问题常用的方法,它们各有优缺点.普查一般适用于:总体容量不大,要获取详实、系统和全面的信息;而抽样调查一般适用于:大批量检验,且检验对检验对象具有破坏性.答案知识梳理2.(1)国家地区一次性某项(2)①系统②数量(3)很少 3.(1)按照一定的方法调查或观测总体样本(2)①迅速、及时②节约人力、物力和财力作业设计1.A2.C[由于样本容量即样本的个数,抽取的样本的个数为40×3=120.]3.D[此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.] 4.B 5.B 6.B7.随机性8.普查抽样调查抽样调查9.抽样调查10.解可采用如下抽样:先从该地区10个县中随机抽取4个县,再在随机抽取的各县中随机抽取5个乡(镇),在随机抽取的乡(镇)中再随机抽取5个行政村,在被抽中的行政村中各抽取24户有3岁以下儿童的住户,在样本户的3岁以下儿童中随机抽取1名儿童.当抽样村符合要求的家庭不足24户时,将其全部调查,不够的户在邻村补齐(邻村是指距离最近的非抽样村).(根据实际情况,也可有其他合理的抽样)11.解学生甲的方法得到的样本不能够反映不上网的居民的用水情况,它是一种方便样本,所得到的样本代表性差,不能很准确地获得平均每户居民的月用水量;学生乙的方法实际上是普查,花费的人力、物力更多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量.12.D[质检部门关心的是食品的质量,所以质检部门检查的也是食品的质量,得到的数据也是食品的质量.因此,无论总体还是个体还是样本都是指食品的质量,故A、B、C错.]13.解由于学生的身高会随着年龄的增长而增高,校医务室想了解全校高中学生的身高情况,在抽样时应当关注高中各年级学生的身高,并且还要分性别进行抽查.如果只抽取高一的学生,结果一定是片面的.这个问题涉及的调查对象的总体是某校全体高中学生的身高,其中准备抽取的50名学生的身高是样本.。
高一数学必修三之统计(2021年整理)
![高一数学必修三之统计(2021年整理)](https://img.taocdn.com/s3/m/8e16981c910ef12d2bf9e772.png)
高一数学必修三之统计(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修三之统计(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修三之统计(word版可编辑修改)的全部内容。
高一数学必修三之统计一:选择题:1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a , 中位数为b ,众数为c ,则有( )A . c b a >>B .a c b >>C .b a c >>D .a b c >>2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( ) A .3.5 B .3- C .3 D .5.0- 3.要从已编号(160)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48 4组号 1 2 3 4 5 6 7 8 频数 10 13 x 14 15 13 12 9A .14和0.14B .0.14和14C .141和0.14 D . 31和1415.一个容量为40的样本数据分组后组数与频数如下:[25,25。
3),6;[25。
3,25。
6),4;[25.6, 25。
9),10;[25.9,26.2),8;[26.2,26.5),8;[26。
高中数学必修3概率统计学习知识点归纳.docx
![高中数学必修3概率统计学习知识点归纳.docx](https://img.taocdn.com/s3/m/c4e3dccf31b765ce040814ad.png)
概率知点平均数、众数和中位数平均数、众数和中位数.要描述一数据的集中,最重要也是最常的方法就是用“三数”来明.一、正确理解平均数、众数和中位数的概念1.平均数平均数是反映一数据的平均水平的特征数,反映一数据的集中.平均数的大小与一数据里的每一个数据都有关系,任何一个数据的化都会引起平均数的化.2.众数在一数据中出次数最多的数据叫做一数据的众数.一数据中的众数有不唯一.众数着眼于各数出的次数的考察,就告我在求一数据的众数,既不需要排列,又不需要算,只要能找出本中出次数最多的那一个(或几个)数据就可以了.当一数据中有数据多次重复出,它的众数也就是我所要关心的一种集中.3.中位数中位数就是将一数据按大小序排列后,在最中的一个数(或在最中的两个数的平均数).一数据中的中位数是唯一的.二、注意区平均数、众数和中位数三者之的关系平均数、众数和中位数都是描述一数据的集中的量,但它描述的角度和适用的范又不尽相同.在具体中采用哪种量来描述一数据的集中,那得看数据的特点和要关注的.三、能正确用平均数、众数和中位数来解决由于平均数、众数和中位数都是描述一数据的集中的量,所以利用平均数、众数和中位数可以来解决生活中的.极差、方差、准差极差、方差和准差都是用来研究一数据的离散程度的,反映一数据的波范或波大小的量 .一、极差一数据中最大与最小的差叫做数据的极差,即极差=最大 - 最小 . 极差能反映数据的化范 , 差是最的一种度量数据波情况的量,它受极端的影响大.二、方差方差是反映一数据的整体波大小的特征的量. 它是指一数据中各个数据与数据的平均数的差的平方的平均数,它反映的是一数据偏离平均的情况 . 方差越大,数据的波越大;方差越小,数据的波越小 .求一数据的方差可以先求平均,再求差,然后平方,最后求平均数.一数据x1、x2、x3、⋯、x n的平均数为x,则该组数据方差的计算公式为:S21[( x1 x )2( x2 x )2( x n x) 2 ] . n三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差 .即标准差 =方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小 . 两组数据中极差大的那一组并不一定方差也大 . 在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象 .一、随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
高二数学必修三知识点统计
![高二数学必修三知识点统计](https://img.taocdn.com/s3/m/b3b4252acd7931b765ce0508763231126fdb7759.png)
高二数学必修三知识点统计在高二数学必修三中,统计学是一个非常重要的知识点。
统计学的内容包括描述统计和推断统计两个部分。
描述统计是指通过对数据的整理、分析和总结,对数据的集中趋势、离散程度、分布形态等进行描述。
推断统计是指通过对抽样数据的处理和分析,从有限的样本中推断关于总体的性质和规律的统计方法。
下面我们将详细介绍高二数学必修三中的统计学知识点。
1. 数据的整理和显示在统计学中,对数据进行整理和显示是非常重要的一步。
常用的数据整理和显示方法有频数表、频率分布表、统计图表等。
频数表是将数据按照不同的取值进行分类,并统计每个类别中的数据个数。
频率分布表是在频数表的基础上除以总数据个数,得到每个类别的频率。
统计图表可以通过直方图、饼图、折线图等形式直观地显示数据的分布情况。
2. 数据的中心趋势数据的中心趋势是用来表征一组数据集中的位置的指标。
常见的数据的中心趋势有算术平均数、中位数和众数。
算术平均数是所有数据值的总和除以数据个数,它可以用来描述数据的平均水平。
中位数是将数据按照大小排列后的中间值,当数据个数为奇数时,中位数即为中间值,当数据个数为偶数时,中位数是中间两个值的平均数。
众数是数据中出现次数最多的值,它可以用来描述数据的典型特征。
3. 数据的离散程度数据的离散程度是用来描述一组数据分散程度的指标。
常见的数据的离散程度有极差、方差和标准差。
极差是最大值和最小值之差,它可以用来描述数据的全距。
方差是每个数据与平均数之差的平方和的平均数,它可以衡量数据与平均数的偏离程度。
标准差是方差的正平方根,它可以衡量数据的相对离散程度。
4. 正态分布和标准正态分布正态分布是一种重要的概率分布,也称为高斯分布。
它具有钟形曲线,以平均数为对称轴,标准差为曲线的控制参数。
正态分布在实际问题中有着广泛的应用。
标准正态分布是平均数为0,标准差为1的正态分布。
5. 抽样和抽样分布在推断统计中,抽样是指从总体中随机选取一部分个体作为样本。
高中数学必修3(人教B版)第二章统计2.2知识点总结含同步练习题及答案
![高中数学必修3(人教B版)第二章统计2.2知识点总结含同步练习题及答案](https://img.taocdn.com/s3/m/93d63d83a0116c175f0e481f.png)
4. 某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方 图,其中产品净重的范围是 [96, 106] ,样本数据分组为 [96, 98) , [98, 100) , [100, 102) ,
[102, 104) , [104, 106] ,已知样本中产品净重小于 100 克的个数是 36 ,则样本中净重大于或等于 98 克
并且小于 104 克的产品的个数是 (
).
A.90
答案: A 解析: 产品净重小于
B.75
C.60
D.45
100 克的概率为 (0.050 + 0.100) × 2 = 0.300 , 已知样本中产品净重小于 100 克的个数是 36 ,设样本容量为 n , 36 则 ,所以 n = 120 ,净重大于或等于 98 克并且小于 n 104 克的产品的概率为 (0.100 + 0.150 + 0.125) × 2 = 0.75 ,所以样本 中净重大于或等于 98 克并且小于 104 克的产品的个数是 120 × 0.75 = 90 .
).
A.2, 5
答案: C
B.5, 5
C.5, 8
D.8, 8
3. 样本中共有五个个体,其值分别为 a, 0, 1, 2, 3 ,若该样本的平均值为 1 ,则样本方差为 (
− − 6 A.√ 5
答案: D 解析:
)
B.
6 5
C.√2
D.2
a+0+1+2+3 = 1 ,得 a = −1 . 5 1 所以 s2 = [(−1 − 1)2 + (0 − 1)2 + (1 − 1)2 + (2 − 1)2 + (3 − 1)2 ] = 2 . 5
人教版高中数学必修三课件:第2章 统计 (8份打包)5
![人教版高中数学必修三课件:第2章 统计 (8份打包)5](https://img.taocdn.com/s3/m/d551a901284ac850ac024233.png)
变式训练2 某调查机构为了了解某地区的家庭 收入水平与消费支出的相关情况,抽查了多个家
庭,根据调查资料得到以下数据:每户平均年收 入为88000元,每户平均年消费支出为50000元, 支出对于收入的回归系数为0.6. (1)求支出对于收入的回归方程; (2)平均年收入每增加100元,则平均年消费支出 约增加多少元?
^
4.回归直线方程y =bx+a,其中
b 是回归方程的斜率,a 是截距.
5.最小二乘法
n
通过求 Q= yi-bxi-a2的最小值而得出回归
i=1
直线的方法,即求回归直线,使得样本数据的点 到 它的距离 的平方和 最小,这 一方法 叫做 _最___小__二__乘__法____.
问题探究
1.如果样本的数据形成的点均匀分布于一个圆 内,数据之间还能线性相关吗? 提示:不能,这样的点不具有线性相关关系. 2.画散点图时,坐标系中的横、纵坐标的长度 单位必须相同吗? 提示:可以不同,应考虑数据分布的特征.
【思维总结】 求线性回归直线方程的步骤如
下:
(1)列表表示 xi,yi,xiyi;
n
Байду номын сангаас
n
(2)计算 x , y , x2i ,xiyi;
i= 1
i= 1
(3)代入公式计算 b,a 的值; (4)写出 线性回归直线方程.
互动探究1 如果把本题中的y的值:2.5及 4.5分别改为2和5,如何求回归直线方程.
解:散点坐标分别为(3,2),(4,3),(5,4),(6,5). 可验证这四点共线,斜率 k=34- -23=1, ∴直线方程为 y-2=x-3,即 y=x-1.
考点三 利用回归方程估计总体
利用回归直线,我们可以进行预测.若回归直线 方程为 y^=bx+a,则 x=x0 处的估计值为:y^= bx0 + a.
(完整版)高一数学必修三《统计》知识点+练习+答案(最新整理)
![(完整版)高一数学必修三《统计》知识点+练习+答案(最新整理)](https://img.taocdn.com/s3/m/0c97536b6c85ec3a86c2c508.png)
三、
⑥控制图
总体特征的估计
中心线——y=μ 上界线——y=μ+3σ 下界线——y=μ-3σ
1、特征数:总体平均数 μ
总体方差 2 总体标准差
样本平均数 x
样本方差 s2 或 s*2
样本标准差
s 或 s*
1 2、有关公式:样本平均数 : x = (x1+x2 +...+xn)
n
样本方差
1 : s2 或 s*2 s 2= n [(x1- x )2+(x2+ x )2+...+(xn- x )2]
样本,则抽取的 m 个个体中带有标记的个数估计为( )
m
A. N·
M
M
B. m·
N
M
C. N·
D. N
m
8.从 60 件产品中抽取 10 件进行检查,写出抽取样本的过程.
9.某车间工人已加工一种轴 100 件,为了了解这种轴的直径,要从中抽出 10 件在同一条件 下测量(轴的直径要求为 20 mm±0.5 mm),如何采用简单随机抽样法抽取上述样本?
当总体由差异 明显的几部分 组成时,常将 总体分成几部 分,然后按照 各部分所占的 比进行抽样, 这样的抽样叫 ∽。其中分成 的各部分叫做 层。
各自
要点
从总 体中 逐个 抽取
总体 均分 成几 部分 按事 先确 定的 规则 在各 部分 抽取 将总 体分 成几 层, 分层 进行 抽取
方法步骤
1、 抽签法: ①编②放③抽
必修三统计知识点
一、
类 别 内 容 名 称
简 单 随 机 抽 样
系 统 抽 样
分 层 抽 样
抽样方法
定义
快乐课堂学数学-多余老师趣讲“统计”-高中数学必修3
![快乐课堂学数学-多余老师趣讲“统计”-高中数学必修3](https://img.taocdn.com/s3/m/28dbcd04524de518964b7ded.png)
快乐课堂学数学-多余老师趣讲“统计”本讲义非常特别,虽然是专为高一学生写的,但各位家长和小学生、初中生都值得一看,可以对“现代学校课程学习”有更全面的了解,知道“语文”学的是什么?数学学的是什么?英语学的是什么?物理学的是什么?政治、历史、地理、化学、生物,又是学的是什么?一、“统计”概述统计:指对某一现象有关的数据的搜集、整理、计算和分析等的活动。
即大量数据的收集、分析、解释和表述。
汉语中的“统计”有合计、总计的意思“统计”一词,英语为statistics,用作复数名词时,意思是统计资料,作单数名词时,指的是统计学。
statistics起源于国情调查,最早意为国情学,即“政治算术”。
统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。
它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。
统计学主要又分为描述统计学和推断统计学。
给定一组数据,统计学可以摘要并且描述这份数据,这个用法称作为描述统计学。
另外,观察者以数据的形态建立出一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称做推论统计学。
这两种用法都可以被称作为应用统计学。
另外也有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。
20世纪初以来,科学技术迅猛发展,社会发生了巨大变化,统计学进入了快速发展时期。
归纳起来有以下几个方面。
1、由记述统计向推断统计发展。
记述统计是对所搜集的大量数据资料进行加工整理、综合概括,通过图示、列表和数字,如编制次数分布表、绘制直方图、计算各种特征数等,对资料进行分析和描述。
而推断统计,则是在搜集、整理观测的样本数据基础上,对有关总体作出推断。
其特点是根据带随机性的观测样本数据以及问题的条件和假定(模型),而对未知事物作出的,以概率形式表述的推断。
高中数学必修3统计知识点-word文档资料
![高中数学必修3统计知识点-word文档资料](https://img.taocdn.com/s3/m/069ab8c7700abb68a982fbd1.png)
高中数学必修3统计知识点高中数学必修3统计知识点:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
②先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
(2)分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:①以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
②以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
③以那些有明显分层区分的变量作为分层变量。
高中数学必修3统计知识点:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模) 前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
高中数学必修3统计知识点:简单随机抽样(1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分: x1,x2 , ....,xx 研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐乐课堂高中数学必修三统计
(原创版)
目录
1.乐乐课堂高中数学必修三统计概述
2.统计的基本概念与方法
3.统计的应用实例
4.总结与展望
正文
一、乐乐课堂高中数学必修三统计概述
乐乐课堂高中数学必修三统计是针对高中阶段学生学习数学统计知识的课程。
课程旨在帮助学生掌握统计学的基本概念、方法和应用,培养学生的数据分析能力和解决实际问题的能力。
二、统计的基本概念与方法
1.统计的基本概念
(1)总体与样本
(2)参数与统计量
(3)随机变量及其分布
2.统计的基本方法
(1)收集数据:调查与抽样
(2)整理数据:描述性统计
(3)分析数据:推断性统计
三、统计的应用实例
1.概率与概率分布在实际问题中的应用
(1)判断事件发生的可能性
(2)求解随机变量的数学期望和方差
2.抽样分布与参数估计在实际问题中的应用
(1)t 分布与假设检验
(2)卡方分布与独立性检验
3.回归分析与相关性在实际问题中的应用
(1)线性回归分析
(2)相关性分析
四、总结与展望
乐乐课堂高中数学必修三统计课程涵盖了统计学的基本概念、方法和应用,对于培养学生的数据分析能力和解决实际问题的能力具有重要意义。