人教版数学七年级上册《期中测试题》(含答案)
人教版数学七年级上册《期中测试题》含答案
![人教版数学七年级上册《期中测试题》含答案](https://img.taocdn.com/s3/m/d780b962360cba1aa911daac.png)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分)1.2-的相反数是( ) A. 2-B. 2C. 12D. 12- 2.下列各式计算正确的是()A. ﹣513﹣713=﹣12 B. ﹣42×58=10 C. 3x 2﹣2x 2=1 D. 2x ﹣(x ﹣1)=x +13.23-的值是( ) A .﹣3B. 3C. 9D. ﹣94.用四舍五入法按要求对 1.06042 取近似值,其中错误的是( ) A. 1.1(精确到 0.1) B. 1.06(精确到 0.01) C. 1.061(精确到千分位)D. 1.0604(精确到万分位)5.设 a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A. ﹣1B. 0C. 1D. 不存在6.若﹣2a n+5b 3 和 5a 4b m 为同类项,则 n m 的值是( ) A. 1B. ﹣3C. ﹣1D. 37.下列比较大小正确的是( ) A. ﹣56<﹣45B. ﹣(﹣21)<+(﹣21)C. ﹣|﹣1012|>8 23D. ﹣|﹣723|=﹣(﹣7 23) 8.如图所示,下列判断正确的是( )A. a +b >0B. a ﹣b >0C. ab >0D. |b |<|a |9.现有四种说法:①﹣a 表示负数;②倒数等于本身的数有 2 个.③3×102x 2y 是 5 次单项式;④5x y是多项式.其中正确的是( ) A. ①③B. ②④C. ②③D. ①④10.正整数按如图的规律排列,请写出第 15 行,第 17 列的数字是( )A. 271B. 270C. 256D. 255二、填空题(本大题共 6 题,每题 3 分,共 18 分)11.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.12.《战狼 2》在 2017 年暑假档上映 36 天,取得历史性票房突破,共收获5490000 000 元,数据 5 490 000 000 用科学记数法表示为_________.13.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温 y ℃与向上攀登的高度 x km 的几组对应值如表:若每向上攀登1km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为___________.14.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是____________.15.已知线段AB 在数轴上且它的长度为7,点A 在数轴上对应的数为3,则点B在数轴上对应的数为_______________.16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,点A4 表示的数,是__________ ,如果点A n与原点的距离不小于20, 那么n 的最小值是________________ .三、解答题(本大题共8 题,共72 分,解答时写出必要的文字说明,演算步骤或推证过程)17.计算:(1)﹣4﹣28+19﹣24(2)(﹣1)100﹣16×[3﹣(﹣3)2](3)(1572612+-)×(﹣36)18.先化简,再求值:y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=-12,y=2.19.某天上午小李驾驶出租车沿东西向公路接送乘客.早晨从A 地出发,最后收工时到到B 地,约定向东为正方向,当天上午的行驶记录如下(单位:千米):+3,﹣14,+11,﹣10,﹣8,+9,﹣2,+9.(1)问B 地在A 地的哪个方向?它们相距多少千米?(2)若汽车耗油量为0.2 升/千米,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为5 元,起步里程为3km(包括3km),超过部分每千米加收20.若|a|=8,|b|=5,且a+b>0,那么a﹣b 的值是多少?21.(8 分)2013 年 4 月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户 2013 年 6 月份的用水量为 35 吨,按三级计算则应交水费为: 20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家 2013 年 6 月份的用水量为 20 吨,则需缴交水费多少元?(2)如果小明家 2013 年 7 月份的用水量为 a 吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含 a 的代数式表示,并化简)(3)若一用户 2013 年 7 月份应该水费 90.8 元,则该户人家 7 月份用水多少吨? 22.阅读下面的解题过程: 计算:(﹣130)÷(211231065-+-)方法一:原式=(﹣130)÷[(21+36)﹣(12+105)]=(﹣ 130)÷(5162-)=-130×3=﹣110方法二:原式的倒数为(211231065-+-)÷(﹣ 130))=( 211231065-+-))×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣110通过阅读以上解题过程,你认为哪种方法更简单,选择合适的方法计算下题: (﹣142)÷(132261437-+-). 23.定义一种新运算:观察下列式子:1⊗3=1×4+3=7,3⊗(﹣1)=3×4﹣1=11,5⊗4=5×4+4=24,4⊗(﹣3)=4×4﹣3=13 (1)请你想一想:a ⊗b = ;(2)若 a ≠b ,那么 a ⊗b b ⊗a ;(填入“=”或“≠”) (3)若[a ⊗(﹣6)]⊗3=3⊗a ,请求出 a的值.24.有理数 a 、b 、c 在数轴上的位置如图所示: (1)比较 a 、|b |、c 的大小(用“<”连接);(2)若 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |,求 1﹣2013•(m +c )2013 的值;(3)若 a =﹣2,b =﹣3,c =23,且 a 、b 、c 对应的点分别为 A 、B 、C ,问在数轴上是否存在一点 P ,使 P 与 A 的距离是 P 与 C 的距离的 3 倍?若存在,请求出 P 点对应的有理数;若不存在,请说明理由.答案与解析一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分)1.2-的相反数是( )A. 2-B. 2C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.下列各式计算正确的是( )A. ﹣513﹣713=﹣12 B. ﹣42×58=10 C. 3x 2﹣2x 2=1 D. 2x ﹣(x ﹣1)=x +1【答案】D 【解析】试题解析:A 、1125712333--=-, 故本选项错误, B 、254108-⨯=-, 故本选项错误, C 、22232x x x -=, 故本选项错误,D 、()211x x x ,--=+ 故本选项正确,故选D .3.23-的值是( ) A. ﹣3 B. 3C. 9D. ﹣9【答案】C 【解析】 【分析】负数的绝对值等于它的相反数.【详解】解:23 =9故选:C.【点睛】本题考查绝对值的计算,注意符号是解题关键.4.用四舍五入法按要求对1.06042 取近似值,其中错误的是()A. 1.1(精确到0.1)B. 1.06(精确到0.01)C. 1.061(精确到千分位)D. 1.0604(精确到万分位)【答案】C【解析】【分析】根据近似数的定义逐一进行求解即可得答案.【详解】1.06042≈1.1(精确到0.1),故A选项正确,不符合题意;1.06042≈1.06(精确到0.01),故B选项正确,不符合题意;.1.06042≈1.060(精确到千分位),故C选项错误,符合题意;1.06042≈1.0604(精确到万分位),故D选项正确,不符合题意,故选C.【点睛】本题考查了近似数,根据要求结合近似数的定义正确求解是解题的关键.5.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a,b,c 三个数的和为()A. ﹣1B. 0C. 1D. 不存在【答案】A【解析】【分析】先根据题意得到a、b、c值,再相加即可得到结果.【详解】解:由题意得a=0,b=-1,c=0,则a+b+c=-1,故选A.考点:有理数的初步认识【点睛】本题属于基础应用题,只需学生熟练掌握特殊的有理数,即可完成.6.若﹣2a n+5b3和5a4b m 为同类项,则n m的值是()A. 1B. ﹣3C. ﹣1D. 3【答案】C 【解析】试题解析:∵532n a b +-和45m a b 同类项,∴543n m +==,, 13n m =-=,, ∴()311m n =-=-. 故选C .点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项. 7.下列比较大小正确的是( ) A. ﹣56<﹣45B. ﹣(﹣21)<+(﹣21)C. ﹣|﹣10 12|>8 23D. ﹣|﹣723|=﹣(﹣7 23) 【答案】A 【解析】试题分析:A .-56<-45;该选项正确; B 、-(-21)=21>+(-21)=-21,故原选项错误; C .-|-1012|=-1012<823,故原选项错误; D .-|-723|=-723<-(-723)=723,故原选项错误. 故选A.考点:有理数大小比较.8.如图所示,下列判断正确的是( )A. a +b >0B. a ﹣b >0C. ab >0D. |b |<|a |【答案】B 【解析】试题分析:根据数轴可得:b <0<a,且b a >,所以a+b <0,ab <0,所以A 、C 、D 错误;B 正确,故选B .考点:1.数轴与有理数;2.有理数的大小比较.9.现有四种说法:①﹣a 表示负数;②倒数等于本身的数有 2 个.③3×102x 2y 是 5 次单项式;④5x y-是多项式.其中正确的是( ) A. ①③ B. ②④C. ②③D. ①④【答案】B 【解析】①∵当a=0时,﹣a=0,不是负数,故不正确;②绝对值最小的有理数是0,正确;③∵3×102x 2y 是3次单项式,故不正确;④5x y-是多项式,正确. 故选B.10.正整数按如图的规律排列,请写出第 15 行,第 17 列的数字是( )A. 271B. 270C. 256D. 255【答案】A 【解析】 【分析】首先观察出第2、3、4、5、6列的第一个数为1+1、4+1、9+1、16+1、25+1,由此进一步解决问题. 【详解】由于第2、3、4、5、6列的第一个数为1+1、4+1、9+1、16+1、25+1. 那么第17列的第一个数为162+1=257,∴第15行,第17列的数字是257+15﹣1=271. 故选A .【点睛】本题考查了数字的变化规律,培养观察分析和归纳总结规律的能力,解答此题的关键是找出每列第一个数与列数的规律.二、填空题(本大题共 6 题,每题 3 分,共 18 分)11.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.【答案】3- 【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣3, 故答案为﹣3. 考点:正数和负数12.《战狼 2》在 2017 年暑假档上映 36 天,取得历史性票房突破,共收获5490000 000 元,数据 5 490 000 000 用科学记数法表示为_________. 【答案】5.49×109 【解析】试题解析:95490000000 5.4910.=⨯ 故答案为95.4910.⨯点睛:科学记数法的表示形式为:10n a ⨯,其中110.a ≤<13.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温 y ℃与向上攀登的高度 x km 的几组对应值如表:若每向上攀登 1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温约为___________.【答案】-10【解析】【分析】根据题意和表格中各个数据的变化规律即可推测向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温大于是多少.【详解】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为﹣10℃, 故答案为﹣10.【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义,此题答案不唯一,在﹣10.8≤t≤﹣9.6 范围内即可.14.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是____________.【答案】+2ab【解析】(2a2+3ab- b2)-(-3a2+ab+5b2)=2a2+3ab- b2+3a2-ab-5b2=5a2+2ab-6b2,所以被墨水弄脏的一项是+2ab,故答案为+2ab.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,括号前是正号,括号里的各项不变号;括号前是负号,括号里的各项要变号.15.已知线段AB 在数轴上且它的长度为7,点A 在数轴上对应的数为3,则点B在数轴上对应的数为_______________.【答案】10或-4【解析】当点B在点A的左边时,3−7=−4;当点B在点A的右边时,3+7=10.则点B在数轴上对应的数为−4或10.故答案为10或−4.16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,点A4 表示的数,是__________ ,如果点A n与原点的距离不小于20, 那么n 的最小值是________________ .【答案】7,13.【解析】试题分析:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19, 所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.考点:1.规律型:数字的变化类;2.数轴.三、解答题(本大题共8 题,共72 分,解答时写出必要的文字说明,演算步骤或推证过程)17.计算:(1)﹣4﹣28+19﹣24(2)(﹣1)100﹣16×[3﹣(﹣3)2](3)(1572612+-)×(﹣36)【答案】(1)-37;(2)2;(3)-27.【解析】【分析】(1)根据有理数的加减法可以解答本题;根据有理数的乘法和减法可以解答本题;根据乘法分配律可以解答本题.【详解】(1)﹣4﹣28+19﹣24=(﹣4)+(﹣28)+19+(﹣24)=﹣37;(2)(﹣1)100﹣16×[3﹣(﹣3)2]=1﹣16⨯(3-9)=1﹣16×(﹣6)=1+1 =2;(3)(1572612+-)×(﹣36)=(﹣18)+(﹣30)+21=﹣27.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.18.先化简,再求值:y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=-12,y=2.【答案】3.【解析】试题分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题解析:原式=y2+5xy-8x2-4xy+8x2=y2+xy,当x=-12,y=2时,原式=4-1=3.考点:整式的加减—化简求值.19.某天上午小李驾驶出租车沿东西向公路接送乘客.早晨从A 地出发,最后收工时到到B 地,约定向东为正方向,当天上午的行驶记录如下(单位:千米):+3,﹣14,+11,﹣10,﹣8,+9,﹣2,+9.(1)问B 地在A 地的哪个方向?它们相距多少千米?(2)若汽车耗油量为0.2 升/千米,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为5 元,起步里程为3km(包括3km),超过部分每千米加收【答案】(1)B地在A 地的正西方,它们相距2 千米;(2)出租车共耗油13.2 升;(3)小李这天上午共得车费104.5 元.【解析】【分析】(1)要求B 地在A 地的哪个方向以及B 地与A 地的距离,只需要将行走记录相加即可;(2)要求总耗油,需要将行走记录的绝对值相加,再乘以0.2 即可;(3)不超过3km 的按5 元计算,超过3km 的在5 元的基础上,再加上超过部分每千米乘以1.5 元,即可.【详解】解:(1)+3﹣14+11﹣10﹣8+9﹣2+9=(3+11+9+9)﹣(14+10+8+2)=32﹣34=﹣2.所以B 地在A 地的正西方,它们相距2 千米;(2)(+3+14+11+10+8+9+2+9)×0.2=66×0.2=13.2(升).所以出租车共耗油13.2 升;(3)5×8+(11+8+7+5+6+6)×1.5=40+64.5=104.5(元).答:小李这天上午共得车费104.5 元.【点睛】本题考查了有理数的加法和正负数的意义,正负数的实际应用是重点又是难点.20.若|a|=8,|b|=5,且a+b>0,那么a﹣b 的值是多少?【答案】3 或13.【解析】试题分析:由a+b>0得,a,b同为正数或正数的绝对值较大,结合|a|=8,|b|=5得到a,b的值.试题解析:解:由题可知:a的值可以取8 , b的值可以去5和—5所以a - b的值是3 或13.点睛:本题主要考查了绝对值的意义和有理数加减法的法则,难点是确定a,b的值,由绝对值的意义,a,b的值各有两个,再结合a+b>0知a,b同为正数或正数的绝对值较大,得到a=8,b=±5,即可求解.21.(8 分)2013 年4 月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户2013 年6 月份的用水量为35 吨,按三级计算则应交水费为:20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家2013 年6 月份的用水量为20 吨,则需缴交水费多少元?(2)如果小明家2013 年7 月份的用水量为a 吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a 的代数式表示,并化简)(3)若一用户2013 年7 月份应该水费90.8 元,则该户人家7 月份用水多少吨?【答案】(1)33;(2)2.48a-16.6;(3)40【解析】试题分析:(1)小东家2013年6月份的用水量为20吨,所以根据第1级的水价和用水量列代数式计算即可;(2)根据水价要按两级计算,用每一级的价格乘以每一级的用水量,再把所得的结果相加,最后进行化简即可;(3)根据所给的例子知:90.8>74.3,所以7月份的用水量大于35吨,所以算出第三级的用水量与30吨的和即是7月份的用水量,试题解析:解:(1)(元) 3分 (2)6分 (3)(吨) 8分(吨) 9分考点:列代数式. 22.阅读下面的解题过程: 计算:(﹣130)÷(211231065-+-) 方法一:原式=(﹣130)÷[(21+36)﹣(12+105)]=(﹣ 130)÷(5162-)=-130×3=﹣110 方法二:原式的倒数为(211231065-+-)÷(﹣ 130))=( 211231065-+-))×(﹣30)=﹣20+3﹣5+12=﹣10 故原式=﹣110通过阅读以上解题过程,你认为哪种方法更简单,选择合适的方法计算下题:(﹣142)÷(132261437-+-). 【答案】. 【解析】试题分析:根据题目中所给的方法,类比解决即可.试题解析:解:所以原式=.考点:阅读理解;有理数的混合运算.23.定义一种新运算:观察下列式子:1⊗3=1×4+3=7,3⊗(﹣1)=3×4﹣1=11,5⊗4=5×4+4=24,4⊗(﹣3)=4×4﹣3=13 (1)请你想一想:a⊗b=;(2)若a≠b,那么a⊗b b⊗a;(填入“=”或“≠”)(3)若[a⊗(﹣6)]⊗3=3⊗a,请求出a 的值.【答案】(1)4a+b;(2)≠;(3)a=6.【解析】试题分析:(1)观察所对的等式可得到a⊗b=4×a+b=4a+b;(2)根据(1)中得到的新定义得到b⊗a=4b+a,由于a≠b,所以a⊗b≠b⊗a;(3)根据新定义得到4a﹣6=3×4+a,然后解关于a的一元一次方程.解:(1)a⊗b=4×a+b=4a+b;(2)∵a⊗b=4a+b,b⊗a=4b+a,而a≠b,∴a⊗b≠b⊗a;(3)由题意得4a﹣6=3×4+a,移项、合并得3a=18,解得a=6.考点:有理数的混合运算;解一元一次方程.24.有理数 a 、b 、c 在数轴上的位置如图所示:(1)比较 a 、|b |、c 的大小(用“<”连接);(2)若 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |,求 1﹣2013•(m +c )2013 的值;(3)若 a =﹣2,b =﹣3,c =23,且 a 、b 、c 对应的点分别为 A 、B 、C ,问在数轴上是否存在一点 P ,使 P 与 A 的距离是 P 与 C 的距离的 3 倍?若存在,请求出 P 点对应的有理数;若不存在,请说明理由.【答案】(1)a <c <|b|;(2)2014;(3) 0 或 2.【解析】【分析】(1)根据数轴可得 b <0,因此|b |=﹣b ,在数轴上表示出﹣b 的位置, 再根据数轴上的数,左边的数总比右边的小可得答案;(2)首先根据 a 、b 、c 的位置得到 a +b <0,b ﹣1<0,a ﹣c <0,然后再把 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |化简可得 m +c =﹣1,再代入计算出代数式的值即可;(3)设 P 点对应的有理数为 x ,然后分情况讨论:①当点 P 在点 A 的左边时;②当点 P 在点A 和点 C 之间时;③当点 P 在点 C 的右边时.【详解】(1)如图所示:a <c <|b |;(2)由 a 、b 、c 在数轴上的位置知:a +b <0,b ﹣1<0,a ﹣c <0, 所以m =﹣(a +b )+(b ﹣1)+(a ﹣c ),=﹣a ﹣b +b ﹣1+a ﹣c ,=﹣1﹣c ,所以 m +c =﹣1,即 1﹣2013•(m +c )2013=1﹣2013•(﹣1)2013=1+2013=2014;(3)存在.设 P 点对应的有理数为 x .①当点 P 在点 A 的左边时,有﹣2﹣x =3(23﹣x ),解之得:x =2(不合条件,舍去),②当点 P 在点 A 和点 C 之间时,有 x ﹣(﹣2)=3(23﹣x ),解之得:x =0,③当点P 在点C 的右边时,有x﹣(﹣2)=3 (x﹣23),解之得:x=2,综上所述,满足条件的P 点对应的有理数为0 或2.【点睛】此题主要考查了数轴和一元一次方程的应用,解题关键是正确掌握数轴上两点之间的距离如何计算.。
人教版七年级上册数学《期中》考试含答案
![人教版七年级上册数学《期中》考试含答案](https://img.taocdn.com/s3/m/01935b89b8f3f90f76c66137ee06eff9aef849a1.png)
人教版七年级上册数学《期中》考试含答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2B.3C.9D.±32.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×1010 3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.已知三角形三边长为a、b、c,且满足247-=-,b c-=,246a b2618-=-,则此三角形的形状是()c aA.等腰三角形B.等边三角形C.直角三角形D.无法确定5.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或59.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=_______________,△APE的面积等于6.3.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如果一个角的补角是150°,那么这个角的余角的度数是________度.69 ________.三、解答题(本大题共6小题,共72分)1.解方程组(1)3759y xx y=+⎧⎨+=⎩(2)325352x yx y+=⎧⎨-=-⎩(3)5512237x yx y+=⎧⎨+=⎩(4)1354x yy zx z+=⎧⎪+=⎨⎪+=⎩2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D (1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、C6、D7、A8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、1.5或5或93、(-2,0)4、205、606、3三、解答题(本大题共6小题,共72分)1、(1)1252xy⎧=-⎪⎪⎨⎪=⎪⎩;(2)11xy=⎧⎨=⎩;(3)15115xy⎧=⎪⎪⎨⎪=⎪⎩;(4)672xyz=⎧⎪=⎨⎪=-⎩2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)∠AOE,∠BOC;(2)125°4、(1)略;(2)4.5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。
人教版七年级上册数学期中试卷及答案【完整版】
![人教版七年级上册数学期中试卷及答案【完整版】](https://img.taocdn.com/s3/m/1a421100aef8941ea66e053b.png)
人教版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.6的相反数为( )A .-6B .6C .16-D .16 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5364 的平方根为________.6.若实数a 、b 满足a 2b 40+-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x、y的方程组354526x yax by-=⎧⎨+=-⎩与2348x yax by+=-⎧⎨-=⎩有相同的解,求a、b的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320第二次 2 6 300第三次 5 7 258解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、A6、D7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、03、70.4、(3)m m-5、±26、1三、解答题(本大题共6小题,共72分)1、(1)y=3;(2)x=113;(3)x=﹣3.2.2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、略4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。
人教版数学七年级上册《期中检测试卷》附答案解析
![人教版数学七年级上册《期中检测试卷》附答案解析](https://img.taocdn.com/s3/m/b739817f3a3567ec102de2bd960590c69ec3d8c7.png)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 在整数集合{-3、-2、-1、0、 1、2、3、4、5、6)中选取两个整数填入“6⨯=-"口内,使等式成立,则选取后填入的方法有( ). A. 2种B. 4种C. 6种D. 8种3. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A. 91.210⨯个B. 91210⨯个C. 101.210⨯个D. 111.210⨯个4. 下列说法中, 正确的是( ) .A. 单项式223x y-.的系数是-2,次数是3 B. 单项式a 的系数是1,次数是0C. 2341x y x -+-是三次三项式,常数项是1 D. 单项式32abπ-.的次数是2.系数为32π- 5. 某超市老板先将进价a 元排球提高20%出售80个,后又按进价出售剩下的20个,则该超市出售这100个排球的利润(利润=总售价-总进价)是( ). A. 1.6a 元B. 16a 元C. 80a 元D. 96a 元6. 有理数a, b, c 在数轴上的对应点的位置如图所示,且|a|<|b|, 则该数轴的原点位置不可能( ).A. 在a 的左边B. 在a 、c 之间.C. 在c 、b 之间D. 在b 的右边二、填空题(每题3分,满分18分,将答案填在答题纸上)7. 计算: 2019(1)(1)-+-= ________.8. 化简: a+3a+5a+7a =__________.9. 设a 与b 互为相反数,c 与d 互为倒数,比较大小则: 2019()a b --______2020()cd - (填>、=、<). 10. 若x+2y=3, 则代数式3x+6y+2的值是__________.11. 写出两个只含字母x 的二次二项式,使它们的和为x+1,满足要求的多项式可以是: _________、_________.12. 已知a 、b 是有理数,若|a|=3,b 2=4,则a+b 的所有值为_____________.三、计算题(本大题共4小题,每小题4分,共16分)13. 9(14)(7)15--+--;14. 21|5|10.8274⎛⎫⎛⎫-÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭:15. 1171(36)1296⎛⎫-⨯--⎪⎝⎭ 16. ()2295(3)(2)2+⨯---÷-四、化简(本大题共4小题,每小题4分,共16分)17. 2267946a b a b +-+-+; 18. 52(45)3(34)x x y x y -++- 19. ()()22222351a b ababa b --++;20. ()2242422()x xy x y xy y ⎡⎤---++⎣⎦.五、解答题(本大题共2小题,每小题6分,共12分)21. 如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题: (1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少? (2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最小值是多少?(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果24.请写出运算式.(只需写出一种)22. 定义:若a+b=2,则称a 与b 是关于1的平衡数. (1)直接填写:①3与_ 是关于1的平衡数: :②1-x 与________是关于 1平衡数(用含x 的代数式表示); (2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--++⎣⎦,先化简a. b,再判断a 与b 是否是关于1的平衡数.六、解答题(本大题共2小题,每小题10分,共20分)23. 已知: 5335P x x x =++,42246Q x x =++.(1)当x=1和-1时,分别求P ,Q 的值;(2)当x=19时,P 的值为a, Q 的值为b ,当x=-19时,分别求P, Q 的值(用含a ,b 的代数式表示);(3)当x=m 时,P, Q 的值分别为c, d; 当x=-m 时,P, Q 的值分别为e, f,则在c ,d, e, f 四个有理数中,以下判断正确的是 (只要填序号即可).①有两个相等的正数;②有两个互为相反数;③至多有两个正数;④至少有两个正数;⑤至多有一个负数;⑥至少有一个负数.24. 如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了元”.表1花去剩余(1)为了解释“剩余金额总计”与“我手里有100元”无关,请按要求填写表2中的空格.表2表3(2)如表3中,直接写出以下各代数式的值:①a b c d +++= ;②a x += ;③a b y ++= ;④a b c z +++= ;(3)如表3中,,a b c d 、、都是正整数,则的最大值等于 ;最小值等于 .由此可以知道“为什么多出了元”只是一个诡辩而已.(4)我们将“花去”记为“”,“剩余”记为“”,请在表4中将表1数据重新成号.答案与解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 在整数集合{-3、-2、-1、0、 1、2、3、4、5、6)中选取两个整数填入“6⨯=-"的口内,使等式成立,则选取后填入的方法有( ). A. 2种 B. 4种C. 6种D. 8种【答案】C 【解析】 【分析】根据有理数乘法法则选取即可.【详解】解:由题意可知,326-⨯=-,2(3)6⨯-=-,236,3(2)6,166,6(1)6,填入的方法有6种,故选C.【点睛】本题考查了有理数的乘法运算,熟练掌握运算法则是解题关键.3. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A. 91.210⨯个B. 91210⨯个C. 101.210⨯个D. 111.210⨯个【答案】C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数,表示时关键要正确确定的值以及的值. 4. 下列说法中, 正确的是( ) .A. 单项式223x y-.的系数是-2,次数是3 B. 单项式a 的系数是1,次数是0C. 2341x y x -+-是三次三项式,常数项是1 D. 单项式32abπ-.的次数是2.系数为32π- 【答案】D 【解析】 【分析】根据单项式系数、次数的定义和多项式系数、次数、项数的定义进行判断.【详解】解:A. 单项式223x y-的系数是23-,次数是3,故该选项错误;B. 单项式a 的系数是1,次数是1,故该选项错误;C. 2341x y x -+-是三次三项式,常数项是-1,故该选项错误;D. 单项式32abπ-的次数是2,系数为32π-,正确, 故选D.【点睛】本题考查了的单项式和多项式的相关概念,熟练掌握系数、次数、项数的定义是解题关键.5. 某超市老板先将进价a元的排球提高20%出售80个,后又按进价出售剩下的20个,则该超市出售这100个排球的利润(利润=总售价-总进价)是( ).A. 1.6a元B. 16a 元C. 80a元D. 96a元【答案】B【解析】【分析】由于按进价出售剩下的20个排球,故只需计算按进价提高20%出售的80个排球所得的利润即可.【详解】解:由题意得,该超市出售这100个排球的利润为:20%a×80=16a,故选B.【点睛】本题考查了列代数式,弄清题意,正确列出代数式是解题关键.6. 有理数a, b, c在数轴上的对应点的位置如图所示,且|a|<|b|,则该数轴的原点位置不可能( ).A. 在a的左边B. 在a、c之间.C. 在c、b之间D. 在b的右边【答案】D【解析】【分析】根据绝对值的意义结合数轴判断即可.【详解】解:∵|a|<|b|,∴a到原点的距离小于b到原点的距离,∴该数轴的原点位置不可能在b的右边,故选D.【点睛】本题考查了数轴和绝对值,正确理解绝对值的意义是解题关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)7. 计算: 2019-+-= ________.(1)(1)【答案】0【解析】【分析】根据有理数的乘方法则进行计算即可. 【详解】解:2019(1)(111)0-+-=-=, 故答案为0.【点睛】本题考查了有理数的乘方运算,熟练掌握运算法则是解题关键. 8. 化简: a+3a+5a+7a =__________. 【答案】16a 【解析】 【分析】根据合并同类项法则计算即可.【详解】解:a+3a+5a+7a=(1+3+5+7)a=16a , 故答案为16a.【点睛】本题考查了合并同类项:将同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 9. 设a 与b 互为相反数,c 与d 互为倒数,比较大小则: 2019()a b --______2020()cd - (填>、=、<).【答案】< 【解析】 【分析】根据相反数和倒数的定义得到a+b=0,cd=1,然后求出2019()a b --和2020()cd -的值,再进行比较即可.【详解】解:∵a 与b 互相反数,c 与d 互为倒数, ∴a+b=0,cd=1, ∴20190()a b -=+,20201()cd -=,∴2019()a b --<2020()cd -,故答案为<.【点睛】本题考查了相反数和倒数的定义以及有理数的乘方运算,熟练掌握运算法则是解题关键. 10. 若x+2y=3, 则代数式3x+6y+2的值是__________. 【答案】11 【解析】 【分析】将所求代数式变形,然后整体代入即可.【详解】解:∵x+2y=3,∴3x+6y+2=3(x+2y)+2=9+2=11,故答案为11.【点睛】本题考查了代数式求值,注意整体思想的应用.11. 写出两个只含字母x的二次二项式,使它们的和为x+1,满足要求的多项式可以是: _________、_________.【答案】(1). x2+1(2). -x2+x【解析】【分析】让写出的两个二次二项式的二次项系数互为相反数,其中一个多项式有常数项1,另一个多项式有一次项x即可.【详解】解:由题意可得:满足要求的多项式可以是x2+1,-x2+x(答案不唯一),故答案为x2+1,-x2+x(答案不唯一).【点睛】本题考查了多项式系数、次数的定义以及整式的加减运算,根据运算法则得到满足要求的多项式的特点是解题关键.12. 已知a、b是有理数,若|a|=3,b2=4,则a+b的所有值为_____________.【答案】土1或士5【解析】【分析】首先根据绝对值和平方根的性质求出a,b,然后分情况计算即可.【详解】解:∵|a|=3,b2=4,∴a=±3,b=±2,当a=3,b=2时,a+b=5,当a=-3,b=2时,a+b=-1,当a=3,b=-2时,a+b=1,当a=-3,b=-2时,a+b=-5,∴a+b的所有值为:±1或±5,故答案为±1或±5.【点睛】本题考查了绝对值和平方根的性质,根据绝对值和平方根的性质求出a,b是解题关键.三、计算题(本大题共4小题,每小题4分,共16分)13. 9(14)(7)15--+--; 【答案】1 【解析】 【分析】根据有理数的加减运算法则进行计算. 【详解】解:原式=9+14-7-15=1.【点睛】本题考查了有理数的加减运算,熟练掌握运算法则是解题关键. 14. 21|5|10.8274⎛⎫⎛⎫-÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭: 【答案】7 【解析】 【分析】首先根据绝对值的性质化简,然后根据有理数的乘除运算法则进行计算. 【详解】解:原式=21510.8274⎛⎫⎛⎫÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=9495754⎛⎫⎛⎫÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=7495954⨯⨯⨯= 7. 【点睛】本题考查了有理数的乘除运算,熟练掌握运算法则是解题关键. 15. 1171(36)1296⎛⎫-⨯-- ⎪⎝⎭【答案】1 【解析】 【分析】用乘法分配律进行计算即可. 【详解】解:原式=-33+28+6=1.【点睛】本题考查了有理数的乘法运算,熟练掌握运算法则和运算律是解题关键. 16. ()2295(3)(2)2+⨯---÷-.【答案】-5 【解析】 【分析】先算乘方,再算乘除,最后算加减.【详解】解:原式()95(3)4491515=+⨯--÷-=-+=-.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.四、化简(本大题共4小题,每小题4分,共16分)17. 2267946a b a b +-+-+; 【答案】21063a b +- 【解析】 【分析】根据合并同类项法则进行计算即可. 【详解】解:原式=()22(64)7(96)a a b b++-+-+=21063a b+-.【点睛】本题考查了整式的加减运算,熟练掌握合并同类项法则是解题关键. 18. 52(45)3(34)x x y x y -++- 【答案】6x-22y 【解析】 【分析】去括号,然后合并同类项即可.【详解】解:原式=5x-8x-10y+9x-12y=(5x-8x+9x)-(10y+12y)=6x-22y.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键. 19. ()()22222351a b ababa b --++;【答案】22571b ab -+ 【解析】 【分析】去括号,然后合并同类项即可.【详解】解:原式=22226251a b ab ab a b ---+ =()()22226251a b a b ab ab --++=22571b ab -+.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键. 20. ()2242422()x xy x y xy y ⎡⎤---++⎣⎦. 【答案】10xy - 【解析】 【分析】去括号,然后合并同类项即可.【详解】原式=()22484222x xy x y xy y ---++ =224842x xy x xy --- =()2244(82)x x xy xy --+=10xy -.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键.五、解答题(本大题共2小题,每小题6分,共12分)21. 如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题: (1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少? (2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最小值是多少?(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果为24.请写出运算式.(只需写出一种)【答案】(1)抽取-8和6,最小值是-8-6=-14;(2)抽取-6和-8,最大值是(-4)×(-8)=32;答案不唯一. 【解析】试题分析: (1)观察这五个数,要找数字的差最小的就要找最大的数和最小的数,所以选-8和6; (2)2张卡片上数字的积最大就要找符号相同且绝对值最大的数,所以选就要选-6和-8;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如抽取3,-4,6,-8,结果为(-8+6)×3×(-4)=-2×(-12)=24. 试题解析:(1)抽取-8和6,它们的差最小,最小值是-8-6=-14; (2)抽取-6和-8,它们的积最大,最大值是(-4)×(-8)=32; (3)本题答案不唯一,如抽取3,-4,6,-8,结果为(-8+6)×3×(-4)=-2×(-12)=24.点睛:此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 22. 定义:若a+b=2,则称a 与b 是关于1平衡数. (1)直接填写:①3与_ 是关于1的平衡数: :②1-x 与________是关于 1的平衡数(用含x 的代数式表示); (2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--++⎣⎦,先化简a. b,再判断a 与b 是否是关于1的平衡数.【答案】(1)①-1;②1+x ;(2)234a x x =--+,232b x x =+-,a 与b 是关于1的平衡数,理由见解析. 【解析】 【分析】(1)①根据平衡数的定义列式计算即可; ②根据平衡数的定义列式计算即可;(2)首先去括号,合并同类项化简a ,b ,然后计算a+b 的值即可进行判断. 【详解】解:(1)①∵2-3=-1, ∴3与-1是关于1的平衡数; ②∵2-(1-x)=2-1+x=1+x ,∴1-x 与1+x 是关于 1的平衡数;(2)()22222234233434a x x x x x x x x =-++=---+=+-,()22342b x x x x ⎡⎤=--++⎣⎦()22342x x x x =---+ 22342x x x x =-++- 232x x =+-,∵2222(34)(32)34322a b x x x x x x x x +=-++-=-++-+-+=-, ∴a 与b 是关于1的平衡数.【点睛】本题考查了整式加减的实际应用,正确理解平衡数的定义是解题关键.六、解答题(本大题共2小题,每小题10分,共20分)23. 已知: 5335P x x x =++,42246Q x x =++.(1)当x=1和-1时,分别求P ,Q 的值;(2)当x=19时,P 的值为a, Q 的值为b ,当x=-19时,分别求P, Q 的值(用含a ,b 的代数式表示);(3)当x=m 时,P, Q 的值分别为c, d; 当x=-m 时,P, Q 的值分别为e, f,则在c ,d, e, f 四个有理数中,以下判断正确的是 (只要填序号即可).①有两个相等的正数;②有两个互为相反数;③至多有两个正数;④至少有两个正数;⑤至多有一个负数;⑥至少有一个负数.【答案】(1)当x=1时,P=9,Q=12;当x=-1时,P =-9,Q =12;(2)P=-a ,Q=b ;(3)①②④⑤. 【解析】 【分析】(1)分别代入求值即可;(2)根据互为相反数两个数的奇次幂仍然互为相反数,互为相反数的两个数的偶次幂相等可得答案; (3)首先求出c ,d ,e ,f 并化简,然后利用相反数的和偶次方的性质逐个判断即可.【详解】解:(1)当x=1时,53351359P x x x =++=++=,4224624612Q x x =++=++=; 当x=-1时,53351359P x x x =++=---=-,4224624612Q x x =++=++=; (2)∵当x=19时,P 的值为a ,Q 的值为b , ∴当x=-19时,P=-a ,Q=b ;(3)由题意得:5335c m m m =++,42246d m m =++,535353()3()5()35(35)e m m m m m m m m m =-+-+-=-=-++--,42422()4()6246f m m m m =-+-+=++,①∵422460m m ++>,∴0d f =>,即有两个相等的正数,正确; ②∵5335c m m m =++,53(35)e m m m =-++,∴有两个互相反数,正确; ③∵0d f =>,ce 互为相反数,∴至少有两个正数,错误; ④由③可知,正确;⑤∵0d f =>,ce 互为相反数,∴至多有一个负数,正确; ⑥由⑤可知,错误; 故判断正确的是:①②④⑤.【点睛】本题主要考查了有理数的乘方以及相反数等知识,熟练掌握奇次幂和偶次幂的性质是解题关键. 24. 如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了元”.表1花去剩余买牛肉40元60元买猪脚元元买蔬菜元元买调料元元总计100元102元(1)为了解释“剩余金额总计”与“我手里有100元”无关,请按要求填写表2中的空格.表2花去剩余买牛肉40元60元买猪脚元元买蔬菜元元买调料元元总计100元102元表3(2)如表3中,直接写出以下各代数式的值:①a b c d +++= ;②a x += ;③a b y ++= ;④a b c z +++= ;(3)如表3中,,a b c d 、、都是正整数,则的最大值等于 ;最小值等于 .由此可以知道“为什么多出了元”只是一个诡辩而已.(4)我们将“花去”记为“”,“剩余”记为“”,请在表4中将表1数据重新成号.【答案】(1), ,;(2)①100,②100,③100,④100;(3)294,;(4)见表格解析. 【解析】 【分析】(1)根据剩余的总计是102元,可知买蔬菜后剩余12元,据此计算其余的空格;(2)根据花去的钱数+剩余的钱数=总钱数分别计算即可;(3)当a,b,c依次取最小值时,则对应的剩余钱数就最大,w的值也就最大;当b,c,d尽可能取最小值时,则对应的剩余钱数就最小,w的值也就最小;(4)根据正负数的意义进行填表即可.【详解】解:(1)如下表:故答案为:(1), ,;(2)①100,②100,③100,④100;(3)294,;(2)由题意可得:①a+b+c+d=100;②a+x=100;③a+b+y=100;④a+b+c+z=100;故答案为:100,100,100,100;(3)当a=1,b=1,c=1时,则x=99,y=98,z=97,此时w取最大值99+98+97=294;当b=1,c=1,d=1时,则x=3,y=2,z=1,此时w取最小值3+2+1=1,故w的最大值等于294,最小值等于6;故答案为:294,;()4如下表:【点睛】本题考查了正负数的意义以及有理数加减运算的实际应用,正确理解题意并熟练掌握等量关系:花去的钱数+剩余的钱数=总钱数是解决此题的关键.。
(完整版)初一数学上册期中考试试卷及答案(人教版)
![(完整版)初一数学上册期中考试试卷及答案(人教版)](https://img.taocdn.com/s3/m/ba107e01974bcf84b9d528ea81c758f5f61f2926.png)
(完整版)初⼀数学上册期中考试试卷及答案(⼈教版)七年级数学上册期中测试试卷⼀、选⼀选,⽐⽐谁细⼼(本⼤题共12⼩题,每⼩题3分,共36分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1?.1.)的绝对值是(211?(D) -2(B) (C)2 (A) 222.武汉长江⼆桥是世界上第⼀座弧线形钢塔斜拉桥,该桥全长16800m,⽤科学记数法表⽰这个数为().×10m (B)16.8×10 m (C)0.168×10m (D)1.68×10m4343(A)1.683.如果收⼊15元记作+15元,那么⽀出20元记作()元.(A)+5 (B)+20 (C)-5 (D)-20123?121)(?1)?(?1?,,-(-1)4 ). .有理数,,, 中,其中等于1的个数是(1?(D)6(A)3个 (B)4个 (C)5个个5.已知p与q互为相反数,且p≠0,那么下列关系式正确的是().q?1p?q?0p?q?p.q?10 (D) (C) (B)(A)p6.⽅程5-3x=8的解是().1313(A)x=1 (B)x=-1 (C)(Dx=- )x=337.下列变形中, 不正确的是().(A) a+(b+c-d)=a+b+c-d (B) a-(b-c+d)=a-b+c-d(C) a-b-(c-d)=a-b-c-d (D) a+b-(-c-d)=a+b+c+d8.如图,若数轴上的两点A、B表⽰的数分别为a、b,则下列结论正确的是().B A1 a 0 b -1(A) b-a>0 (B) a-b>0 (C) ab>0 (D) a+b>09.按括号内的要求,⽤四舍五⼊法,对1022.0099取近似值, 其中错误的是().个有效数字保留2精确到0.01) (B)1.0×10((A)1022.01()3)精确到千分位精确到⼗位) (D)1022.010((C)1020(. )的⽅程为(,若设这数是x,则可列出关于x10.“⼀个数⽐它的相反数⼤-4”=4-x)-4) (D)x-( (A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(ababa7a7a?b4a?7ba?b,①若;③若,则11. 下列等式变形:,则;④若;②若,则44bbxxxxb?74a.则.其中⼀定正确的个数是() (D)4个个个 (A)1 (B)2个(C)31xx?)?(cda?bacx db的值为次⽅,的互为倒数,、等于-4212.(互为相反数,则式⼦已知、).2 (A)2 (B)4 (C)-8 (D)8)_______”处⼩题, 每⼩题3分, 共12分, 请将你的答案写在“⼆、填⼀填, 看看谁仔细(本⼤题共41?13.写出⼀个⽐⼩的整数:.2.14.已知甲地的海拔⾼度是300m,⼄地的海拔⾼度是-50m,那么甲地⽐⼄地⾼____________m.⼗⼀国庆节期间,吴家⼭某眼镜店开展优15 元原价:惠学⽣配镜的活动,某款式眼镜的⼴告如图,请你为⼴告牌补上原价.国庆节8折优惠,现价:160元16.⼩⽅利⽤计算机设计了⼀个计算程序,输⼊和输出的数据如下表:输⼊ (1)2345…12345…输出…26175102那么,当输⼊数据为8时,输出的数据为.三、解⼀解, 试试谁更棒(本⼤题共8⼩题,共72分)1310348)?)(1??(??4?2))?2?((?1 分17.(本题10)计算(1)2)(64解:解:11x?3?1?xx32?273x?? (2) (1)1018.(本题分)解⽅程62解:解:664座城市中,按⽔资源情况可分为三类:暂不缺⽔城市、⼀般缺⽔统计数据显⽰,在我国的分本题.19(7)座,⼀般缺⽔城市数是严重城市和严重缺⽔城市.其中,暂不缺⽔城市数⽐严重缺⽔城市数的523倍多2缺⽔城市数的倍.求严重缺⽔城市有多少座?解:、…我们发现,这⼀列数从第⼆项起,每⼀项与它前⼀项的⽐都4、8、16本题9分)观察⼀列数:1、2、(20.⼀般地,如果⼀列数从第⼆项起,每⼀项与它前⼀项的⽐都等于同⼀个常数,这⼀列数就叫做等⽐数等于2..列,这个常数就叫做等⽐数列的公⽐ _________.(2分))等⽐数列5、-15、45、…的第4项是(12qaa?,a,a,aaqaq?aq? (aq)?a q,那么有:是等⽐数列,且公⽐为,)如果⼀列数(2.132114221332aaq?qa)qa?aq?(a q的式⼦表⽰)(2分).(⽤与。
人教版七年级上学期期中数学试卷(含解析)
![人教版七年级上学期期中数学试卷(含解析)](https://img.taocdn.com/s3/m/d12f0e02cec789eb172ded630b1c59eef8c79a09.png)
人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。
人教版七年级上册数学《期中检测卷》附答案
![人教版七年级上册数学《期中检测卷》附答案](https://img.taocdn.com/s3/m/718ecf23b42acfc789eb172ded630b1c59ee9b3c.png)
人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣55.如图所示几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.6.某粮店出售三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ). A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏7.下列计算正确是( ) A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣38. 5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A.B.C.D.9.下列说法中,正确的是( )A. 24m n不是整式B. ﹣32abc的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0B. 1C. 7D. -111.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( ) A. 3B. -3C. 9D. -3或9二、填空题(每小题4分,共24分)13.笔尖在纸上快速滑动写出英文字母C ,这说明了_____.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为 个.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.16.有一种“24点”游戏,其游戏规则是这样,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)21.将6个棱长为2cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.22.解下列各题:(1)化简:(5a2b﹣3ab2)﹣2(a2b﹣7ab2).(2)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣32x2y)+xy],其中x=3,y=﹣13.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.答案与解析一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】根据棱柱的意义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.由此分析判定即可.解:第一、二、四个几何体属于棱柱.故选B.2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.【答案】A【解析】【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同【答案】A【解析】①②都是棱长为边的正方形,故相同;③④为对角面,故相同.所以选A.4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣5【答案】D【解析】试题分析:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选D.考点:有理数大小比较.5.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.【答案】A【解析】A选项通过旋转得到两个圆柱;B选项通过旋转得到一个圆柱,一个圆桶,本选项错误;C选项通过旋转得到一个圆柱,两个圆桶,本选项错误;D选项通过旋转得到三个圆柱,本选项错误.故选A.点睛:圆柱体可以由矩形绕着一边旋转得到.6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差().A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏【答案】B【解析】【分析】根据题意给出三袋面粉的质量波动范围,从而求出任意两袋质量相差的最大数.【详解】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3-(-0.3)=0.6kg.故选:B.【点睛】此题主要考查了正数和负数表示的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.7.下列计算正确的是( )A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣3【答案】D【解析】A选项错误,-5+2=-3;B选项错误,(﹣1)2017=-1;C选项错误,-22=-4;D选项正确.故选D.8.5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( )A. B. C. D.【答案】B【解析】试题分析:44亿==4.4×109,故选B.考点:科学记数法—表示较大的数.9.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C 【解析】 【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc 的系数是﹣32,次数是3;多项式2x 2y ﹣xy 是三次二项式;故选择C .10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0 B. 1 C. 7 D. -1【答案】B 【解析】 【分析】直接利用同类项的概念得出n ,m 的值,再利用绝对值的性质求出答案. 【详解】∵232nx y 与2m-5xy 是同类项,∴2n =1,2m =3,解得:m =32,n =12, ∴|m−n|=|32−12|=1.故选:B .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键. 11.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C . 考点:合并同类项.12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( )A. 3B. -3C. 9D. -3或9【答案】D【解析】本题考查的是绝对值的定义和有理数的加减法法则先根据计算的结果是等于6得到绝对值里面的数,再根据有理数的加减法法则即可求得结果.,,当时,,当时,,故选D.二、填空题(每小题4分,共24分)13.笔尖纸上快速滑动写出英文字母C,这说明了_____.【答案】点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线.故答案为点动成线.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为个.【答案】5【解析】【详解】由俯视图可以看出组成这个几何体的底面小正方体有4个,由左视图可知第二层最少有1个,故组成这个几何体的小正方体的个数最少为:4+1=5(个),故答案为5.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.【答案】2 3【解析】【分析】将16+17+18看成一个整体,利用分配律进行计算即可.【详解】原式=(16+17+18)-2×12+2×(16+17+18)-3×(16+17+18)+3×19=-1+1 3=-23.故答案为-23.16.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.【答案】3×[4+10+(﹣6)]=24【解析】3×[4+10+(-6)]=24或3×(10-4)-(-6)=24等.故答案为3×[4+10+(-6)]=24.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.【答案】–x+5y【解析】【详解】(x+y)△(x-y)=2(x+y)-3(x-y)=2x+2y-3x+3y=-x+5y.故答案为-x+5y.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).【答案】(1). 62(2). 6n+2【解析】搭第1条小鱼需要的火柴棒个数为:2+6=8;搭第2条小鱼需要的火柴棒个数为:2+6×2=14;搭第3条小鱼需要的火柴棒个数为:2+6×3=20;…搭第n条小鱼需要的火柴棒个数为:2+6n.搭第10条小鱼需要的火柴棒个数为:2+6×10=62. 故答案为(1)62 ;(2) 6n+2.三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).【答案】(1)415;(2)1.【解析】试题分析:(1)先对乘方和绝对值进行运算,然后进行乘除运算,最后进行加法运算;(2)利用乘法分配律将式子展开,计算出括号里面的数值再进行除法运算.试题解析:解:(1)原式=-1×125×(-53)+0.2=415;(2)原式=(-9+4+3)÷(-2)=-2÷(-2)=1.点睛:有理数混合运算时,有时运用乘法分配律会简化运算.20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)【答案】(1)明明解法较好;(2)还有更好的解法;解法见解析;(3)1 2392 -.【解析】【分析】(1)根据计算过程的步骤长短判断出明明的解法好;(2)把492425写成(50-125),然后利用乘法分配律进行计算即可得解; (3)把191516写成(20-116),然后利用乘法分配律进行计算即可得解. 【详解】解:(1)因为明明计算步骤比较少,所以明明的解法较好(2)还有更好的解法24149(5)(50)(5)2525150(5)()(5)251250542495⨯-=-⨯-=⨯-+-⨯-=-+=- (3)1529(8)161(30)(8)16130(8)()(8)161240212392⨯-=-⨯-=⨯-+-⨯-=-+=- 【点睛】本题考查有理数的乘法分配律,解题的关键是掌握乘法分配律.21.将6个棱长为2cm 的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.【答案】(1)见解析;(2)84cm 2.【解析】试题分析:(1)分别作出主视图、主视图、俯视图;(2)数出露出表面正方形的个数,再用计算出的个数乘以每个正方形的面积即可.试题解析:解:(1)作图如下:(2)(4+4+4+4+5)×(2×2)=21×4=84(cm 2)答:该几何体被染成红色部分的面积为84cm 2.点睛:计算露出表面的正方形个数时,要考虑前面,后面,左面,右面,上面,不能遗漏.22.解下列各题:(1)化简:(5a 2b ﹣3ab 2)﹣2(a 2b ﹣7ab 2).(2)先化简,再求值:3x 2y ﹣[2xy ﹣2(xy ﹣32x 2y)+xy],其中x=3,y=﹣ 13. 【答案】(1)3a 2b+11ab 2;(2) 1.【解析】试题分析:(1)先去括号,再合并同类项;(2)先去小括号,再去中括号,最后合并同类项得到最简形式,接着将x 、y 的值分别代入化简后的式子求出结果.试题解析:解:(1)原式=5a 2b -3ab 2-2a 2b +14ab 2=3a 2b +11ab 2;(2) 原式=3x 2y -2xy +2xy -3x 2y -xy =-xy ,当x =3,y =-13时,原式=-3×(-13)=1. 点睛:去括号的时候注意符号问题.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【答案】(1)x 2﹣8x+4;(2)13.【解析】试题分析:(1)根据题意确定出所挡的二次三项式即可;(2)把的值代入计算即可求出值.试题解析:(1)所挡的二次三项式为:()222513151338 4.x x x x x x x x -+--=-+-+=-+ (2)当1x =-时,原式=1+8+4=13.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?【答案】(1)见解析;(2)点C与点A的距离为6 km;(3)这趟路共耗油0.54升.【解析】试题分析:(1)再数轴上分别表示出A、B、C三个村庄位置;(2)用A点表示的数减去C点表示的数;(3)计算出邮递员行驶的总路程,再用总路程乘以每千米的耗油量.试题解析:解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2-(-4)=6km;(3)依题意得邮递员骑了:2+3+9+4=18km,∴共耗油量为:18×0.03=0.54升.点睛:数轴上两个点所表示的数之差的绝对值即为这两个点之间的距离.25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.【答案】(1)0,0,0;(2)输入任何数的结果都为0;(3)理由见解析【解析】(1)利用计算程序:x→平方→+x→÷2→-12x 2→-12x→答案,即可求出结果. (2)由前几项都为0可得出规律:输入任何数的结果都为0.(3)根据程序可写出关于x 的方程式,此方程式的值为0,所以无论x 取任何值,结果都为0. 解:(1)0,0,0;(2)输入任何数的结果都为0;(3)因为222211111102222222x x x x x x x x +--=+--=222211111102222222x x x x x x x x +--=+--=, 所以无论x 取任何值,结果都为0,即结果与字母x 的取值无关“点睛”本题是找规律题,计算程序实际是整式的运算.。
人教版七年级数学上册期中测试卷-有参考答案
![人教版七年级数学上册期中测试卷-有参考答案](https://img.taocdn.com/s3/m/b541ac9585254b35eefdc8d376eeaeaad1f316c5.png)
人教版七年级数学上册期中测试卷-有参考答案一、选择题(本题共12小题 每小题4分 共48分 在每小题给出的四个选项中 只有一项是符合题目要求的 请用2B 铅笔把答题卡上对应题目答案标号涂黑)1.(4分)古人都讲“四十不惑” 如果以40岁为基准 张明50岁 记为+10岁 那么王横25岁记为( )A .25岁B .﹣25岁C .﹣15岁D .+15岁【分析】以40岁为基准 张明50岁 记为+10岁 25减去40即可解答.【解答】解:以40岁为基准 张明50岁 记为+10岁那么王横25岁记为25﹣40=﹣15(岁).故选:C .2.(4分)中国信息通信研究院测算.2020﹣2025年 中国5G 商用带动的息消费规模将超过8万亿元 直接带动经济总产出达10.6万亿元 其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×108【分析】科学记数法的表示形式为a ×10n 的形式 其中1≤|a |<10 n 为整数.确定n 的值时 要看把原数变成a 时 小数点移动了多少位 n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时 n 是正整数;当原数的绝对值<1时 n 是负整数.【解答】解:10.6万亿=10600000000000=1.06×1013.故选:B .3.(4分)下列说法正确的是( )A .52xy 的系数是﹣5 B .单项式a 的系数为1 次数是0C .﹣5232b a 的次数是6D .x y +x ﹣1是二次三项式 【分析】直接利用单项式的次数与系数确定方法、多项式的次数与项数确定方法分别判断得出答案.【解答】解:A .﹣的系数是﹣ 故此选项不合题意;B .单项式a 的系数为1 次数是1 故此选项不合题意;C.﹣的次数是﹣故此选项不合题意;D.xy+x﹣1是二次三项式故此选项符合题意;故选:D.4.(4分)下列各组整式中不是同类项的是()A.3a2b与﹣2a2b B.2xy与5yxC.2x3y2与﹣x2y3D.5和0【分析】根据同类项的定义:所含字母相同相同字母的指数也相同判断即可.【解答】解:A、3a2b与﹣2a2b所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;B、2xy与5yx所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;C、2x3y2与﹣x2y3所含字母相同但相同字母的指数不相同不是同类项故本选项符合题意;D、5和0都是常数项所有常数项都是同类项故本选项不符合题意;故选:C.5.(4分)如图A B C D E为某未标出原点的数轴上的五个点且AB=BC=CD=DE则点C所表示的数是()A.2B.7C.11D.12【分析】先根据点A、E表示的数求出线段AE的长度再根据长度相等的线段表示相同的单位长度求出AB、BC、CD、DE的长即可解答【解答】解:∵AE=17﹣(﹣3)=20又∵AB=BC=CD=DE AB+BC+CD+DE=AE∴DE=AE=5∴D表示的数是17﹣5=12 C表示的数是17﹣5×2=7故选:B.6.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A .∵32=9 23=8∴32≠23 故本选项不符合题意;B .∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3 故本选项符合题意;C .∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2 故本选项不符合题意;D .∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2 故本选项不符合题意;故选:B .7.(4分)如果a b 互为相反数 c d 互为倒数 m 的绝对值是2 那么cd m m b a 2212-++⨯的值( ) A .2 B .3 C .4 D .不确定【分析】根据a b 互为相反数 c d 互为倒数 m 的绝对值是2 可以得到a +b =0 cd =1 m 2=4 然后代入所求式子计算即可.【解答】解:∵a b 互为相反数 c d 互为倒数 m 的绝对值是2∴a +b =0 cd =1 m 2=4∴=×+4﹣2×1=0+4﹣2=2故选:A .8.(4分)某快递公司受新一次疫情影响 4月份业务量比3月份下降了30% 由于采取了科学的防控措施 5月份疫情明显好转 该快递公司5月份业务量比4月份增长了40% 若设该快递公司3月份业务量为a 则5月份的业务量为( )A .(1﹣30%+40%)aB .(30%+40%)aC .(40%﹣30%)aD .(1﹣30%)(1+40%)a 【分析】先表示出4月份业务量是(1﹣30%)a 再根据5月份业务量比4月份增长了40% 即可列出代数式.【解答】解:∵该快递公司3月份业务量为a 4月份业务量比3月份下降了30%∴4月份业务量是(1﹣30%)a∵5月份业务量比4月份增长了40%∴5月份业务量是(1+40%)(1﹣30%)a故选:D .9.(4分)已知m n 满足6m ﹣8n +4=2 则代数式12n ﹣9m +4的值为( )A .0B .1C .7D .10【分析】将6m ﹣8n +4=2移项变形后 可以与12n ﹣9m +4建立联系 进而计算即可.【解答】解:∵6m ﹣8n +4=2∴8n ﹣6m ﹣2=0∴4n ﹣3m ﹣1=0∴12n ﹣9m ﹣3=0∴12n ﹣9m +4=7 故选:C .10.(4分)下列说法正确的个数有( )(1)若a 2=b 2 则|a |=|b |;(2)若a 、b 互为相反数 则1-=ba ;(3)绝对值相等的两数相等;(4)单项式7×102a 4的次数是6;(5)﹣a 一定是一个负数;(6)平方是本身的数是1 A .1 B .2 C .3D .4 【分析】根据去绝对值法则 相反数的定义 绝对值的性质 单项式的定义 有理数的分类以及性质作答.【解答】解:(1)若a 2=b 2 则|a |=|b | 原说法正确;(2)若a 、b 互为相反数且ab ≠0时 原说法错误;(3)绝对值相等的两数相等或互为相反数 原说法错误;(4)单项式7×102a 4的次数是4 原说法错误;(5)当a =0时 说法“﹣a 一定是一个负数”错误;(6)平方是本身的数是1或0 原说法错误.故选:A .11.(4分)已知|a |=2 b 2=25 3c =27 且ab >0 则a ﹣b +c 的值为( )A .10B .6C .3D .6或者0【分析】先根据绝对值的性质 乘方的性质求得a 、b 、c 再根据ab >0 分情况代值计算便可.【解答】解:∵|a |=2 b 2=25 3c =27∴a =±2 b =±5 c =3∴a、b同号∴当a=2 b=5 c=3时a﹣b+c=2﹣5+3=0;当a=﹣2 b=﹣5 c=3时a﹣b+c=﹣2+5+3=6;故选:D.12.(4分)如图在矩形ABCD中放入正方形AEFG正方形MNRH正方形CPQN点E在AB上点M、N在BC上若AE=4 MN=3 CN=2 则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【分析】设AB=DC=a AD=BC=b用含a、b的代数式分别表示BE BM DG PD.再表示出图中右上角阴影部分的周长及左下角阴影部分的周长然后相减即可.【解答】解:矩形ABCD中AB=DC AD=BC.正方形AEFG中AE=EF=FG=AG=4.正方形MNRH中MN=NR=RH=HM=3.正方形CPQN中CP=PQ=QN=CN=2.设AB=DC=a AD=BC=b则BE=AB﹣AE=a﹣4 BM=BC﹣MN﹣CN=b﹣3﹣2=b﹣5 DG=AD﹣AG=b﹣4 PD=CD﹣CP=a﹣2.∴图中右上角阴影部分的周长为2(DG+DP)=2(b﹣4+a﹣2)=2a+2b﹣12.左下角阴影部分的周长为2(BM+BE)=2(b﹣5+a﹣4)=2a+2b﹣18∴图中右上角阴影部分的周长与左下角阴影部分的周长的差为(2a+2b﹣12)﹣(2a+2b﹣18)=6.故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应13.(4分)已知x y满足|x﹣5|+(x﹣y﹣1)2=0 则(x﹣y)2021的值是.【分析】根据绝对值和偶次方的非负数的性质求出x、y的值再代入计算即可.【解答】解:∵|x﹣5|+(x﹣y﹣1)2=0 而|x﹣5|≥0 (x﹣y﹣1)2≥0∴x﹣5=0 x﹣y﹣1=0解得x=5 y=4∴(x﹣y)2021=12021=1.故答案为:1.14.(4分)如图a b c d e f均有有理数图中各行各列及两条对角线上三个数的和都相等则a﹣b+c﹣d+e﹣f的值为.a4﹣1b3cd e f【分析】先找出具有已知量最多且含有公共未知量的行或列即4﹣1+a=d+3+a得到d=0 再以4+b+0=b+3+c解得c=2 以此类推求出各个字母的值即可得出结论.【解答】解:由题意得:4﹣1+a=d+3+a解得:d=0.∵4+b+0=b+3+c∴c=1.∵4﹣1+a=a+1+f∴f=2.∴a﹣1+4=4+3+2∴a=6 b=5 e=7.∴a﹣b+c﹣d+e﹣f=6﹣5+1﹣0+7﹣2=7.故答案为:7.15.(4分)若多项式2x3﹣8x2+x﹣1与多项式x3+(3m+1)x2﹣5x+7的差不含二次项则m的值为.【分析】先列式化简代数式 再根据条件得出x 的二次项系数为0 列出m 的方程进行解答便可.【解答】解:(2x 3﹣8x 2+x ﹣1)﹣[x 3+(3m +1)x 2﹣5x +7]=2x 3﹣8x 2+x ﹣1﹣x 3﹣(3m +1)x 2+5x ﹣7=x 3﹣(3m +9)x 2+6x ﹣8∵多项式2x 3﹣8x 2+x ﹣1与多项式x 3+(3m +1)x 2﹣5x +7的差不含二次项∴3m +9=0∴m =﹣3.故答案为:﹣3.16.(4分)如M ={1 2 x } 我们叫集合M 其中1 2 x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在) 互异性(如x ≠1 x ≠2) 无序性(即改变元素的顺序 集合不变).若集合N ={x 1 2} 我们说M =N .已知集合A ={1 0 a } 集合B ={a 1 |a | ab } 若A =B 则b ﹣a 的值是 .【分析】根据集合的定义和集合相等的条件即可得到答案.【解答】解:∵A =B a ≠0≠0 ∴=0 =1 |a |=a 或=0=a |a |=1 ∴b =0 a =1(舍去)或b =0 a =﹣1∴b ﹣a =0﹣(﹣1)=1故答案为:1.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)计算:(1)2+(﹣3)﹣(﹣5);(2)(﹣143)﹣(+631)﹣2.25+310; (3)(﹣81)÷49×94÷(﹣16); (4)(﹣21+43﹣31)÷(﹣241). 【分析】(1)先化简符号 再计算;(2)把减化为加 再将相加得整数的先相加;(3)把除化为乘 再约分即可;(4)把除化为乘 再用乘法分配律计算.【解答】解:(1)原式=2﹣3+5=4;(2)原式=(﹣1.75﹣2.25)+(﹣6+3)=﹣4﹣3=﹣7;(3)原式=﹣81×××(﹣)=1;(4)原式=(﹣+﹣)×(﹣24)=24×﹣24×+24×=12﹣18+8=2.18.(8分)已知A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y若A+B﹣C=0 求C+A.【分析】直接利用已知得出C进而利用整式的加减运算法则计算得出答案.【解答】解:∵A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y A+B﹣C=0∴C=8x2y﹣6xy2﹣3xy+7xy2﹣2xy+5x2y=13x2y+xy2﹣5xy∴C+A=13x2y+xy2﹣5xy+8x2y﹣6xy2﹣3xy=21x2y﹣5xy2﹣8xy.19.(10分)东江湖蜜桔是我们湖南郴州的特产口感香甜入口即化.科技改变生活当前网络销售日益盛行.湖南某网红主播为了帮助农民脱贫致富在某直播间直播销售东江湖蜜桔计划每天销售20000千克但实际每天的销售量与计划量相比有增减超过计划量记为正不足计划量记为负.下表是该主播在直播带货期间第一周销售蜜桔的情况:星期一二三四五六日蜜桔销售情况(单位:千克)+300﹣400﹣200+100﹣600+1200+500(1)该主播在直播带货期间第一周销售蜜桔最多的一天比最少的一天多销售多少千克?(2)若该主播在直播期间按6元/千克进行蜜桔销售平均快递运费及其它费用为2元/千克则该主播第一周直播带货销售蜜桔为当地农民一共创收多少元?【分析】(1)7天销量求和即可;(2)由7天的总销量即可求解;【解答】解:(1)+1200﹣(﹣600)=1800(千克)答:第一周销售蜜桔最多的一天比最少的一天多销售1800千克.(2)∵20000×7+300﹣400﹣200+100﹣600+1200+500=140900(千克)∴(6﹣2)×140900=563600(元).答:该主播第一周直播带货销售蜜桔为当地农民一共创收563600元.20.(10分)(1)化简:﹣5a ﹣(4a +3b )+(9a +2b );(2)先化简 再求值:2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3) 其中x =3 y =﹣2.【分析】(1)把整式去括号、合并同类项即可;(2)把整式去括号、合并同类项化简后 代入计算即可得出答案.【解答】解:(1)﹣5a ﹣(4a +3b )+(9a +2b )=﹣5a ﹣4a ﹣3b +9a +2b=﹣b ;(2)2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3)=2x 3﹣4y 2﹣x 3+4y 2﹣2x 3=﹣x 3当x =3时原式=﹣33=﹣27.21.(12分)(1)如图 数轴上的点A B C 分别表示有理数a b c .化简:|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |;(2)已知关于x 、y 的多项式(3y ﹣ax 2﹣3x ﹣1)﹣(﹣y +bx ﹣2x 2)中不含x 项和x 2项 且22x a ﹣x +b =0 求代数式:2332x x a ﹣x ﹣b 的值.【分析】(1)由数轴可知 a <﹣2<b <﹣1 0<c <1 据此可得b +2>0 a +c <0 b +1<0 1﹣c >0 再根据绝对值性质去绝对值符号化简可得;(2)多项式合并后 根据结果中不含x 3项和xy 2项 求出a 与b 的值 代入原式计算即可得到结果.【解答】解:(1)∵a <﹣2<b <﹣1 0<c <1∴b +2>0 a +c <0 b +1<0 1﹣c >0∴|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |=﹣a ﹣(b +2)﹣(﹣a ﹣c )﹣(﹣b ﹣1)+1﹣c=﹣a ﹣b ﹣2+a +c +b +1+1﹣c=0.(2)原式=3y ﹣ax 2﹣3x ﹣1+y ﹣bx +2x 2=(2﹣a )x 2﹣(b +3)x +4y ﹣1由题意得2﹣a =0 b +3=0解得a =2 b =﹣3∵x 2﹣x ﹣3=0∴x 2﹣x =3∴原式=x 3﹣3x 2﹣x +3=x 3﹣x 2﹣2x 2﹣x +3=x (x 2﹣x )﹣2x 2﹣x +3=3x ﹣2x 2﹣x +3=2x ﹣2x 2+3=﹣2(x 2﹣x )+3=﹣6+3=﹣3.∴﹣x ﹣b 的值为﹣3.22.(12分)对于含绝对值的算式 在有些情况下 可以不需要计算出结果也能将绝对值符号去掉 例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;|3121-|=3121-;|2131-|=2131-. 观察上述式子的特征 解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|= ;②|5232-|= ; (2)当a >b 时 |a ﹣b |= a ﹣b ;当a <b 时 |a ﹣b |= b ﹣a ;(3)计算:2021120221...31412131121-++-+-+-. 【分析】(1)结合有理数加法减法运算法则以及绝对值的意义进行化简;(2)根据绝对值的意义进行化简;(3)根据有理数减法运算法则结合绝对值的意义先化简绝对值 然后根据数字的变化规律进行分析计算.【解答】解:(1)①|23﹣47|=47﹣23;②=﹣;故答案为:47﹣23 ﹣;(2)当a>b时|a﹣b|=a﹣b;当a<b时|a﹣b|=b﹣a;故答案为:a﹣b b﹣a;(3)原式=1﹣+﹣+﹣+•+﹣=1﹣=.23.(12分)【知识回顾】七年级学习代数式求值时遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关求a的值”通常的解题方法是:把x、y看作字母a看作系数合并同类项因为代数式的值与x的取值无关所以含x项的系数为0 即原式=(a+3)x﹣6y+5 所以a+3=0 则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x无关求m的值【能力提升】(2)7张如图1的小长方形长为a宽为b按照图2方式不重叠地放在大长方形ABCD内大长方形中未被覆盖的两个部分(图中阴影部分)设右上角的面积为S1左下角的面积为S2当AB的长变化时S1﹣S2的值始终保持不变求a与b的等量关系.【分析】(1)根据含x项的系数为0建立方程解方程即可得;(2)设AB=x先求出S1、S2从而可得S1﹣S2再根据“当AB的长变化时S1﹣S2的值始终保持不变”可知S1﹣S2的值与x的值无关由此即可得.【解答】解:(1)(2x﹣3)m+m2﹣3x=2mx﹣3m+m2﹣3x=(2m﹣3)x+3m+m2∵关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关∴2m﹣3=0解得m=.(2)设AB=x由图可知S1=a(x﹣3b)=ax﹣3ab S2=2b(x﹣2a)=2bx﹣4ab则S1﹣S2=ax﹣3ab﹣(2bx﹣4ab)=ax﹣3ab﹣2bx+4ab=(a﹣2b)x+ab.∵当AB的长变化时S1﹣S2的值始终保持不变∴S1﹣S2的值与x的值无关∴a﹣2b=0∴a=2b.24.(14分)定义:数轴上有A B两点若点A到原点的距离为点B到原点的距离的两倍则称点A为点B的2倍原距点.已知点A M N在数轴上表示的数分别为4 m n.(1)若点A是点M的2倍原距点①当点M在数轴正半轴上时则m=;②当点M在数轴负半轴上且为线段AN的中点时判断点N是否是点A的2倍原距点并说明理由;(2)若点M N分别从数轴上表示数10 6的点出发向数轴负半轴运动点M每秒运动速度为2个单位长度点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时点A恰好也是点N的2倍原距点请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4 根据定义可知点M到原点距离为2 点M在数轴正半轴进而可求出m.②m<0 则m=﹣2 4﹣(﹣2)=﹣2﹣n得出n的值再根据定义来判断.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t 的值将t代入4=2×|6﹣at| 求出a的所有可能值即可.【解答】解:(1)①∴m=±2.∵m>0∴m=2.故答案为:2.②∵m<0∴m=﹣2.∵点M为线段AN的中点∴4﹣(﹣2)=﹣2﹣n解得n=﹣8.∴ON=8 ON=2OA故N点是点A的2倍原距点.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点.∴解①得:t1=9 t2=1.将t1=9代入②得:4=2×|6﹣9t|解得:;将t2=1代入②得:4=2×|6﹣a|解得:a3=4 a4=8.故a所有的可能值为:4 8 .。
人教版七年级上学期期中考试数学试卷及答案(共7套)
![人教版七年级上学期期中考试数学试卷及答案(共7套)](https://img.taocdn.com/s3/m/866c23a5580216fc710afd88.png)
人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。
人教版七年级上册数学《期中测试题》附答案解析
![人教版七年级上册数学《期中测试题》附答案解析](https://img.taocdn.com/s3/m/46d000ed0408763231126edb6f1aff00bed570db.png)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小有理数是( ) A. -112B. 0C. 1D. -22.下列关于单项式 235xy -的说法中,正确的是( ) A. 系数是25-,次数是2 B. 系数是35,次数是2 C. 系数是一3,次数是3 D. 系数是35,次数是33.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5B. 1.5C. 2.5D. 3.54.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( ) A. 847.2410⨯ B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3B. 6C. 8D. 47.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7B. 5C. 1D.9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 810.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C 为( )A. 2225x y z --B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( ) A. 比进货价便宜了0.52a 元 B. 比进货价高了0.2a 元 C. 比进货价高了08a 元 D. 与进货价相同13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为( )A.B. 12-C.12D. 114.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则a b c abc++的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是(). A. 200-60xB. 160-15xC. 200-15xD. 140-15x16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值. (1)()41-=______; (2)()()32--=______.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.计算下列各小题. (1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?22.已知a,b,c在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c+a______0,c-b______0,;---+-.(2)化简a c a b b c23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:与标准质量的−3.5−2−1.50 1 2.5差值(单位:千克)筐数 2 4 2 1 3 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.答案与解析一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小的有理数是( )A. -112B. 0C. 1D. -2【答案】D【解析】【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【详解】-2<-112<0<12<1,所以最小的有理数是-2.故选D.【点睛】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5 B. 1.5C. 2.5D. 3.5【答案】D 【解析】 【分析】直接利用倒数的定义结合绝对值的性质得出答案. 【详解】解:∵b 的倒数等于-23, ∴b =﹣32, ∵a =|2﹣b|, ∴a =|2+32|=72=3.5. 故选D .【点睛】此题主要考查了倒数和绝对值,正确得出b 的值是解题关键.4.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.【答案】C 【解析】 【分析】根据绝对值的性质可得a≤0,b≥0,再根据|a|>|b|可得a 距离原点比b 距离原点远,进而可得答案. 【详解】∵|a |=a ,|b |=-b , ∴a 0,b 0, ∵|a |>|b |,∴表示数a 的点到原点的距离比b 到原点的距离大, 故选:C.【点睛】本题考查了绝对值的应用及数轴的有关知识,熟练掌握利用数轴上的位置判断正负是解题的关键. 5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( )A. 847.2410⨯B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯【答案】B 【解析】 【分析】根据科学记数法的表示方法即可得出答案. 【详解】解:47.24亿=94.72410⨯, 故答案为:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是熟知科学记数法的表示方法. 6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3 B. 6C. 8D. 4【答案】D 【解析】 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得a 的指数要相等,b 的指数也要相等,即可得到m ,n 的值,代入计算可得. 【详解】解:单项式m 42a b +与2n1a b 2的和是单项式, 单项式m 42a b +与2n1a b 2是同类项, 则m 42+=,n 2=, 解得m 2=-,n 2=,n 2m (2)4∴=-=,故选D .【点睛】本题考查了同类项定义,关键是把握两点:一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.7.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭【分析】根据有理数的混合运算的运算法则一一判断即可.【详解】A. 72571017--⨯=--=-,故本选项错误; B. 54444833455525÷⨯=⨯⨯=,故本选项错误; C. ()331312726---=-+=,故本选项错误; D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭,故本选项正确. 故选D.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7 B. 5C. 1D.【答案】A 【解析】 【分析】原式去括号整理后,将已知等式代入计算即可求出值. 【详解】3a b -=,2c d += 原式=223a d b c b d --+++ =22a b c d -++ =2()a b c d -++ =3+22 =7 故选A.【点睛】本题考查了代数式求值,将原式整理为与-a b 和+c d 有关的式子是解题的关键. 9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 8【分析】根据有理数的加法,原有人数,上车为正,下车为负,即可得答案. 【详解】10+2+(-3)+8+(-5)+1-6=7 故选C.【点睛】本题考查了正数和负数,有理数的加法运算是解题的关键. 10.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭是正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 【答案】D 【解析】 【分析】正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.02=0. 【详解】A 、(a+13)2是非负数,错误; B 、-a 2+13不一定是负数,可能是0,也可能是正数,错误; C 、-(a-13)2是非正数,错误;D 、a 2+13是正数,正确;故选D .【点睛】此题考查非负数的性质,关键要注意全面考虑a 的取值.11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C ( )A. 2225x y z -- B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 【答案】B 【解析】由于A+B+C=0,则C=-A-B,代入A 和B 的多项式即可求得C .解:由于多项式A=x 2+2y 2-z 2,B=-4x 2+3y 2+2z 2且A+B+C=0,则C=-A-B=-(x 2+2y 2-z 2)-(-4x 2+3y 2+2z 2)=-x 2-2y 2+z 2+4x 2-3y 2-2z 2=3x 2-5y 2-z 2.故答案选B .12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A. 比进货价便宜了0.52a 元B. 比进货价高了0.2a 元C. 比进货价高了0.8a 元D. 与进货价相同【答案】B【解析】【分析】直接利用标价以及打折之间的关系得出服装的实际价格,再和进货价相减即可.【详解】由题意得,这件服装的实际价格是:(1200%)40%a +⨯=1.2a又因为进货价为a这件服装的实际价格比进货价高了0.2a 元故选B.【点睛】本题考查了列代数式,根据题意得出关系式是解题的关键.13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为() A. B. 12- C. 12 D. 1【答案】B【解析】【分析】根据非负性即可解得x ,y 的值,根据整式的混合运算法则化简,代入即可. 【详解】21202x y ⎛⎫-++= ⎪⎝⎭且20-≥x ,2102y ⎛⎫+≥ ⎪⎝⎭.20x -=,102y += 12,2x y ==-. ()()222233143x y xy x y xy +----=2222333343x y xy x y xy +-+--=2xy - =2122⎛⎫-⨯- ⎪⎝⎭=12- 故选B.【点睛】本题考查了绝对值的非负性及整式的化简求值,熟练掌握运算法则是解题的关键.14.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则abca b c ++ 的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个 【答案】D【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;②两个四次多项式的和不一定是四次多项式,不符合题意;③若abc>0,则abca b c ++的值为3或一1,符合题意;④如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键. 15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是().A. 200-60xB. 160-15xC. 200-15xD. 140-15x【答案】C【解析】【分析】 先由“学校租用45座的客车x 辆,则余下20人无座位”表示出师生的总人数,再根据“租用60座的客车则可少租用2辆,但只有一辆还没坐满”这个条件求出最后一辆60座客车的人数.【详解】∵学校租用45座的客车x 辆,则余下20人无座位,∴师生总人数为:4520x +,又∵租用60座的客车则可少租用2辆,但只有一辆还没坐满,∴最后一辆60座客车的人数为:()452060320015x x x +--=-.所以答案为C 选项.【点睛】本题主要考查根据实际情况列出代数式,仔细读题,读懂题中各个量之间的联系是解题关键. 16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 【答案】C【解析】【分析】根据有理数的乘方的定义解答即可. 【详解】∵第一次剪去绳子的23,还剩13; 第二次剪去剩下绳子的23,还剩13-23×13=13×(1-23)=(13)2, …… ∴第十次剪去剩下绳子的23后,剩下绳子的长度为(13)10, 故选C .【点睛】本题考查了有理数的乘方,理解乘方的意义是解题的关键. 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.【答案】8.20【解析】【分析】把千分位上的数字3进行四舍五入即可.【详解】8.203828.20故答案为8.20.【点睛】本题考查了近似数和有效数字,熟练掌握四舍五入是解题的关键.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值.(1)()41-=______;(2)()()32--=______. 【答案】 (1). 17 (2). 1【解析】【分析】(1)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值; (2)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值. 【详解】(1)()41-=24(1)17--=. (2)()()32--=23(2)1-+-=.故答案为:17,1.【点睛】本题考查了新定义下的实数运算,根据所给式子分情况代入是解题的关键.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.【答案】 (1). 22 (2). (3n +1)【解析】【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…依此规律,第n 个图案有(3n+1)个三角形.【详解】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形, 第(3)个图案有3×3+1=10个三角形, …∴第n 个图案有(3n +1)个三角形.当n =7时,3n +1=3×7+1=22,故答案为:22,(3n +1).【点睛】本题考查了图形的规律,根据数据找到规律是解题的关键.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.计算下列各小题.(1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 【答案】(1)192;(2)169. 【解析】【分析】 (1)先计算乘方,再算乘除,最后计算加减.(2)先计算乘方,再算乘除,最后计算加减.【详解】(1)()2213602210--÷⨯+-; 119602410=-⨯⨯+ 3922=-+ 192=(2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭ 4316525=-+⨯+⨯448125=-++169=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?【答案】(1)–2x 2+6;(2)5.【解析】【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“”是a,则原式=(ax 2+6x+8)﹣(6x+5x 2+2)=ax 2+6x+8﹣6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∵标准答案的结果是常数,∴a ﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.22.已知a ,b ,c 在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c +a______0,c -b______0,;(2)化简a c a b b c ---+-.【答案】(1) >,<,<;(2) 2b−2c.【解析】【分析】先根据a、b、c三点在数轴上的位置判断出abc的符号及其绝对值的大小,再比较大小和化简即可.【详解】(1) ∵c<b<0<a,∴abc>0,c+a<0,c−b<0(2) ∵c<b<0<aa-c>0,a-b>0,b-c>0|a−c|−|a−b|+|b−c|=a−c−a+b+b−c=2b−2c.故答案为:>,<,<;2b−2c.【点睛】本题考查了绝对值的化简,根据数轴判断式子的符号是解题的关键.23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.【答案】(1)5a+3b;2a+3b;(2)9a+11b.【解析】【分析】(1)根据题意表示出第二边与第三边即可;(2)三边之和表示出周长,化简即可;【详解】(1)则第二边的边长为5a+3b,第三边的边长为2a+3b;故答案为5a+3b;2a+3b;(2)周长为:2a+5b+5a+3b+2a+3b=9a+11b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.【答案】(1)最大是20,运算式是(-5) (-4);(2)最小是-2.5,运算式是(-5) 2;(3)()()456224-⨯-+-=,()()425624----⨯=⎡⎤⎣⎦(答案不唯一)【解析】【分析】(1)根据题意和给出的五张卡片可以解答本题;(2)根据题意和给出的五张卡片可以解答本题;(3)根据题意可以写出相应的算式,本题答案不唯一.【详解】(1)由题意得,抽取2张卡片,乘积最大是20,运算式是(-5) (-4)(2)由题意得,抽取2张卡片,卡片上数字相除的商最小是-2.5,运算式是(-5) 2(3)由题意得,()()456224-⨯-+-=()()425624----⨯=⎡⎤⎣⎦【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下: 与标准质量的差值(单位:千克)−3.5 −2 −1.5 0 1 2.5筐数2 4 2 13 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?【答案】(1)6;(2)与标准重量比较,20筐白菜总计超过5千克;(3)出售这20筐白菜可卖549元.【解析】【分析】(1)求出最重的一筐的重量和最轻的一筐的重量,相减即可得出答案;(2)将20筐白菜的重量相加即可得出答案;(3)将总重量乘以价格即可得出答案.详解】解:(1)根据题意可得最重的一筐重:15+2.5=17.5(千克)最轻的一筐重:15-3.5=11.5(千克)∴最重的一筐比最轻的一筐重:17.5-11.5=6(千克);(2)2×(-3.5)+4×(-2)+2×(-1.5)+1×0+3×1+8×2.5=5答:与标准重量比较,20筐白菜总计超过5千克;(3)1.8×(15×20+5)=549(元)答:出售这20筐白菜可卖549元.【点睛】本题主要考查了正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性.26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示的数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.【答案】(1) −32;(2) t=3;(3)283;(4) |m−n|.【解析】分析】(1)根据实数在数轴上的排列特点和绝对值的意义,先根据E点到原点的距离是确定该数的绝对值是32,在根据该点在原点的左侧还是右侧判断其符号.(2)分别求出两个时间点上点P 的位置,即可判断;(3)根据t=8时,求出点P到E点的距离,确定t=p时P点的位置,即可求n的值;(4)根据数轴上两点间的距离公式即可.【详解】(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是32,符号是“−”,故答案是:−3 2 .(2)当t=3,t=4时0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t=3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t=3(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是−1.6.此时点P到点A距离是2.6个单位长度,所以p=2.6÷0.3=2 83.故答案是2 83.(4)根据数轴上两点间的距离公式点M和N的距离等于|m−n|,故答案是|m−n|.【点睛】本题考查了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.。
人教版七年级上学期期中考试数学试卷(含答案)
![人教版七年级上学期期中考试数学试卷(含答案)](https://img.taocdn.com/s3/m/91fe0d22ba68a98271fe910ef12d2af90242a87a.png)
人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。
人教版七年级上学期期中考试数学试题(含答案)
![人教版七年级上学期期中考试数学试题(含答案)](https://img.taocdn.com/s3/m/0b2a9c0a182e453610661ed9ad51f01dc2815764.png)
人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。
人教版七年级上册数学《期中考试题》(含答案)
![人教版七年级上册数学《期中考试题》(含答案)](https://img.taocdn.com/s3/m/1c57ecc8162ded630b1c59eef8c75fbfc77d94e5.png)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:1.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( ) A. -2B. -1C. 0.3D. 1.22.2019年4月10日,人类首张黑洞照片在全球六地同步发布,据天文学家测算,该黑洞与地球的距离为55000000光年,将55000000这个数用科学记数法表示为( ) A 65.510⨯B. 75.510⨯C. 75510⨯D. 85.510⨯3.下列说法中,正确的是( ) A. 正整数和负整数统称为整数; B. 最小的自然数是-1 C. 正分数和负分数统称为分数;D. a>-a4.俗语:“下雪不冷化雪冷”,温度由2-℃下降6℃后是( ) A. 4℃B. 8℃C. 4-℃D. 8-℃5.对于下列四个式子:①2x;②2a b +;③3π;④15,其中不是整式的是( )A. ①B. ②C. ③D. ④6.下列计算正确的是( ) A. 3(2)5a a a --= B. 2232a b ab ab -=- C. 2243x x -=D. (3)(2)12a a a ---=-7.如果235a b -+的值是9,则462019a b -++=( ) A. 2009B. 2010C. 2011D. 20128.若多项式32281x x x -+-与多项式32(31)57x m x x ++-+的差不含二次项,则的值为( ) A 4B. -4C. 3D. -39.由四舍五入得到的近似数88.35万.精确到( ) A 十分位B. 百分位C. 百位D. 十位10.已知||3x =,||7y =,且0x y ->,0xy <,则x y +值为( ) A. -10B. -4C. -10或-4D. 4二、填空题11.58-的倒数是__________.12.若2(23)|2|0a b ++-=,则b a =__________. 13.对于有理数a b 、,定义一种新运算“※”如下:2ab b a b a -=※,则3(3)()4--=※__________. 14.多项式__________是一个关于的三次四项式,它的次数最高项的系数是-5,二次项的系数是34,一次项的系数是-2,常数项是4.15.用形状大小完全相同的等边三角形和正方形按如图所示的规律拼图案,即从第2个图案开始每个图案比前一个图案多4个等边三角形和1个正方形,则第10个图案中等边三角形的个数为__________.三、解答题16.计算:(1)1931()()84224--+÷- (2)20203213(2)(6)3(3)-+⨯-+-÷⨯-17.请根据图示的对话解答下列问题.求:(1),,a b c 的值; (2)2019a b c -+-的值.18.有理数x y ,在数轴上对应点如图所示:(1)用“>”“=”或“<”填空: 0,x y + 0,||x - ||y ; (2)化简:||||||x y y x y +--+.19.先化简,再求值22[]32(54)21x x x x ---++-,其中3x =-. 20.已知22223A a b ab =-+-,2221255B a b ab =---. (1)求2()3(2)A B A B +--的值(结果用化简后的a b 、的式子表示); (2)当12a =-,0b =时,求(1)中式子的值 21.如图所示(图中单位长度:cm ). (1)求阴影部分面积(用含的代数式表示); (2)当179x =时,求阴影部分的面积(取3.14,结果精确到0.01).22.随着人们生活水平提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每天行驶100km 需用汽油6升,汽油价7.5元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?23.观察下列各式:212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;…… (1)根据你发现的规律,计算下面算式的值:2222212345++++= ; (2)请用一个含的算式表示这个规律:2222123n ++++= ;(3)根据发现的规律,请计算算式2222515299100++++的值(写出必要的解题过程).答案与解析一、选择题:1.质检员抽查4袋方便面,其中超过标准质量克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( ) A. -2 B. -1C. 0.3D. 1.2【答案】C 【解析】 【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】:∵0.31 1.22--<<<, ∴0.3最接近标准; 故答案为:C .【点睛】本题考查了正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键. 2.2019年4月10日,人类首张黑洞照片在全球六地同步发布,据天文学家测算,该黑洞与地球的距离为55000000光年,将55000000这个数用科学记数法表示为( ) A. 65.510⨯ B. 75.510⨯C. 75510⨯D. 85.510⨯【答案】B 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将5500 0000这个数字用科学记数法表示为5.5×107; 故答案为:B .【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.下列说法中,正确的是( ) A. 正整数和负整数统称为整数;B. 最小的自然数是-1C. 正分数和负分数统称为分数;D. a>-a【答案】C 【解析】 【分析】按照有理数的分类做出判断.【详解】A .整数包括正整数、负整数和零,故此选项错误; B 、最小的自然数是0,故此选项错误; C. 正分数和负分数统称为分数,故此选项正确; D.当a=0时,a=-a ,故此选项错误. 故选C.【点睛】此题考查了有理数,掌握有理数的分类是本题的关键,注意0是整数,但它既不是正数,也不是负数. 4.俗语:“下雪不冷化雪冷”,温度由2-℃下降6℃后是( ) A. 4℃ B. 8℃C. 4-℃D. 8-℃【答案】D 【解析】 【分析】根据题意列出算式26--,再依据减法法则计算可得.【详解】温度由2-℃下降6℃后是()()26268--=-+-=-℃, 故选D .【点睛】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则. 5.对于下列四个式子:①2x;②2a b +;③3π;④15,其中不是整式的是( )A. ①B. ②C. ③D. ④【答案】A 【解析】 【分析】直接利用整式的定义分析得出答案. 【详解】①2x ;②2a b +;③3π;④15,中,①2x不是整式;故答案为:A .【点睛】此题主要考查了整式,正确把握整式的定义是解题关键. 6.下列计算正确的是( ) A. 3(2)5a a a --= B. 2232a b ab ab -=- C. 2243x x -= D. (3)(2)12a a a ---=-【答案】A 【解析】 【分析】直接利用整式的加减运算法则计算得出答案. 【详解】A 、3a-(-2a )=5a ,正确;B 、a 2b-3ab 2,不是同类项,无法合并,故此选项错误;C 、4x 2-x 2=3x 2,故此选项错误;D 、(3-a )-(2-a )=1,故此选项错误; 故答案为:A .【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键. 7.如果235a b -+的值是9,则462019a b -++=( ) A. 2009 B. 2010 C. 2011 D. 2012【答案】C 【解析】 【分析】根据移项,可得234a b -=,整体代入,可得答案. 【详解】移项,得234a b -=,()46201922320192420192011a b a b -++=--+=-⨯+=; 故答案为:C .【点睛】本题考查了代数式求值,利用(23a b -)整体代入是解题关键.8.若多项式32281x x x -+-与多项式32(31)57x m x x ++-+的差不含二次项,则的值为( ) A. 4 B. -4C. 3D. -3【答案】D【解析】 【分析】根据题意列出关系式,由结果不含二次项确定出m 的值即可. 【详解】根据题意得:(2x 3-8x 2+x-1)-[x 3+(3m+1)x 2-5x+7] =2x 3-8x 2+x-1-x 3-3mx 2-x 2+5x-7 =x 3+(-3m-9)x 2+6x-8,由结果不含二次项,得到-3m-9=0, 解得:m=-3. 故答案为:D .【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 9.由四舍五入得到的近似数88.35万.精确到( ) A. 十分位 B. 百分位C. 百位D. 十位【答案】C 【解析】 【分析】根据近似数的精确度进行判断. 【详解】近似数88.35万精确到百位. 故选C .【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.10.已知||3x =,||7y =,且0x y ->,0xy <,则x y +的值为( ) A. -10 B. -4C. -10或-4D. 4【答案】B 【解析】 【分析】根据绝对值的意义得到x=3或-3,y=7或-7,而由0x y ->,0xy <,,则当x=3时,y=-7,然后代入即可计算出x+y .【详解】:∵|x|=3,|y|=7,∴x=3或-3,y=7或-7, 又∵0x y ->,0xy <, ∴x=3时,y=-7, ∴x+y=3-7=-4; 故答案为:B .【点睛】本题考查了绝对值的意义:当a >0,|a|=a ;当a=0,|a|=0;当a <0,|a|=-a .二、填空题11.58-的倒数是__________. 【答案】85- 【解析】 【分析】根据乘积为1的两个数互为倒数,可得答案. 【详解】58-的倒数是85-; 故答案为:85-.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键. 12.若2(23)|2|0a b ++-=,则b a =__________. 【答案】94【解析】 【分析】根据非负数的和为零,则非负数为零,求出a 、b 的值,即可求出答案. 【详解】∵2(23)|2|0a b ++-=, ∴2(23)0a +=,|2|0b -=, ∴3,22a b ==﹣,∴23=294ba ⎛⎫ ⎪⎝⎭=﹣;故答案为:94. 【点睛】本题考查了非负数的性质:几个非负数的和为0时,则这几个非负数为0.13.对于有理数a b 、,定义一种新运算“※”如下:2ab b a b a -=※,则3(3)()4--=※__________. 【答案】12- 【解析】 【分析】 根据2ab ba b a-=※,可以求得所求式子的值. 【详解】:∵2ab ba b a-=※, ∴3393(3)()()+34444(3)()=42(3)6-⨯-----=⨯--※ 31==62-- 故答案为:12-. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 14.多项式__________是一个关于的三次四项式,它的次数最高项的系数是-5,二次项的系数是34,一次项的系数是-2,常数项是4. 【答案】3235244x x x -+-+ 【解析】 【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【详解】由题意可得,此多项式可以为:3235244x x x -+-+; 故答案为:3235244x x x -+-+. 【点睛】此题主要考查了多项式,解题关键是正确把握相关定义.15.用形状大小完全相同的等边三角形和正方形按如图所示的规律拼图案,即从第2个图案开始每个图案比前一个图案多4个等边三角形和1个正方形,则第10个图案中等边三角形的个数为__________.【答案】38【解析】【分析】根据题目中的图形,可以发现正三角形个数的变化情况,从而可以求得第10个图案中等边三角形的个数.【详解】当n=1时,等边三角形的个数为:2,当n=2时,等边三角形的个数为:2+4×1=6,当n=3时,等边三角形的个数为:2+4×2=10,当n=4时,等边三角形的个数为:2+4×3=14,故第10个图案中等边三角形的个数为:2+4×9=38;故答案为:38.【点睛】本题考查图形变化类,解答本题的关键是明确题意,发现题目中三角形个数的变化规律,利用数形结合的思想解答.三、解答题16.计算:(1)1931()()84224--+÷- (2)20203213(2)(6)3(3)-+⨯-+-÷⨯-【答案】(1);(2)43-【解析】【分析】(1)利用乘法分配律求解即可;(2)根据有理数的混合运算法则,先算乘方,再求乘除,最后算加减,求解即可.【详解】(1)1931()()84224--+÷- 1931=()()84224--+÷-193=(24)+(24)(24)842⎛⎫⎛⎫-⨯--⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=3+5436-=21;(2)20203213(2)(6)3(3)-+⨯-+-÷⨯-=13(8)(6)39-+⨯-+-÷⨯=12429---⨯=12418---=43-.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则.17.请根据图示的对话解答下列问题.求:(1),,a b c 值;(2)2019a b c -+-的值.【答案】(1)3c =-;(2)2052或2016【解析】【分析】(1)根据相反数、到原点的距离的定义及有理数的加法求解可得;(2)将所得a ,b ,c 的值代入计算可得.【详解】(1)∵的相反数是3,∴3a =-∵到原点的距离是9,∴9b =±.∵与的和是-12,∴12b c +=-,∴当9b =时,9+c=-12,∴21c =-;当9b =-时,912c -+=-,∴3c =-.(2)当3921a b c =-==-,,时,20192019(3)9(21)a b c -+-=--+--201939212052=+++=当393a b c =-=-=-,,时,20192019(3)9(3)a b c -+-=-----20193932016=+-+=【点睛】本题主要考查代数式求值、有理数的加减混合运算,解题的关键是掌握相反数与到原点的距离的定义及有理数的混合运算顺序和法则.18.有理数x y ,在数轴上对应点如图所示:(1)用“>”“=”或“<”填空: 0,x y + 0,||x - ||y ;(2)化简:||||||x y y x y +--+.【答案】(1)< > >;(2)【解析】【分析】(1)根据图示,可得y <0<x ,且x >-y >0,据此解答即可.(2)首先根据y <0<x ,且x >-y >0,分别判断出x+y 、y-x 的正负,然后根据整式加减法的运算方法,求出算式的值是多少即可.【详解】(1):根据图示,可得y <0<x,且x >-y >0,∴y<0,x+y >0,|x|>|y|.故答案为:< > >;(2)由(1)知,0y <,0x y +>,又0x >,∴0y x -<∴原式()x y x y y x y x y y y =+---=+-+-=【点睛】本题考查了数轴与绝对值的性质,有理数大小的比较,熟记数轴上的数,右边的总比左边的大是解题的关键.19.先化简,再求值22[]32(54)21x x x x ---++-,其中3x =-.【答案】2223x x -+-,-27【解析】【分析】先去小括号,再去中括号,最后合并同类项,最后把3x =-代入计算即可.【详解】原式223(2542)1x x x x =-+-+- 223(522)1x x x =--+-2235221x x x =-+--2223x x =-+-当3x =-时,原式22(3)2(3)3186327=-⨯-+⨯--=---=-【点睛】本题考查了整式的化简求值.解题的关键是去括号、合并同类项.20.已知22223A a b ab =-+-,2221255B a b ab =---. (1)求2()3(2)A B A B +--的值(结果用化简后的a b 、的式子表示);(2)当12a =-,0b =时,求(1)中式子的值 【答案】(1)22631011a b ab +-+;(2)192 【解析】【分析】(1) 先把2()3(2)A B A B +--化简,再把A 与B 代入A 化简计算即可;(2)把12a =-,0b =代入(1)中式子求值即可. 【详解】(1)2()3(2)A B A B +--2263A B A B =+-+45A B =-+2222214(223)5(2)55a b ab a b ab =--+-+---2222224881210521631011a b ab a b ab a b ab =-+-++---=+-+ (2)当12a =-,0b =时, 2()3(2)A B A B +--216()112=⨯-+ 11961142=-⨯+= 【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.如图所示(图中单位长度:cm ).(1)求阴影部分面积(用含的代数式表示);(2)当179x =时,求阴影部分面积(取3.14,结果精确到0.01).【答案】(1)1198x π+-;(2)21.61cm 【解析】【分析】 (1)由图知:阴影面积=两个长方形面积和半圆的面积;(2)把179x =代入(1)的结果中,即可求解. 【详解】(1)阴影部分的面积:21121112112111()[()]3332233393898S x x x x x πππ=⨯++-⨯⨯⨯+=++-=+- (2)当179x =时,阴影部分的面积2171112 3.14 1.61()9988S cm π=+-=-⨯≈ 【点睛】本题考查列代数式求值,涉及长方形的面积公式,圆的面积公式,代数式求值等问题.22.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每天行驶100km 需用汽油6升,汽油价7.5元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?【答案】(1)50千米;(2)675元.【解析】【分析】(1)根据有理数的加法,可得超出或不足部分的路程平均数,再加上50,可得平均路程; (2)根据总路程乘以100千米的耗油量,可得总耗油量,根据有的单价乘以总耗油量,可得答案.【详解】解:(1)50+(﹣6+11﹣15+0﹣13+17+6)÷7=50(千米). 答:这七天中平均每天行驶50千米(2)平均每天所需用汽油费用为50×(6÷100)×7.5=22.5(元),估计小明家一个月的汽油费用是22.5×30=675 (元). 答:估计小明家一个月的汽油费用是675元.【点睛】考查了正数和负数,利用有理数的运算得出总耗油量是解题关键.23.观察下列各式: 212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;…… (1)根据你发现的规律,计算下面算式的值:2222212345++++= ;(2)请用一个含的算式表示这个规律:2222123n ++++= ; (3)根据发现的规律,请计算算式2222515299100++++的值(写出必要的解题过程). 【答案】(1)55;(2)(1)(21)6n n n ++;(3)295425 【解析】【分析】(1)根据所给的4个算式的规律,12+22+32+42+52等于56161⨯⨯; (2)根据所给的4个算式的规律,12+22+32+…+n 2等于()1216n n n ++(); (3)用12+22+…+992+1002的值减去12+22+…+492+502的值,求出算式512+522+…+992+1002的值是多少即可.【详解】(1)22222561112345==556⨯⨯++++; (2)()22221612123=n n n n +++++⋯+(); (3)原式22222222(1299100)(124950)=++++-++++100101201505110166⨯⨯⨯⨯=- 101(1002015051)6⨯⨯-⨯= 101(201002550)6⨯-= 101175506⨯=295425=【点睛】此题主要考查了有理数的混合运算,以及数字的变化规律,熟练掌握有理数混合运算顺序是解题的关键 .。
人教版七年级上册数学《期中测试卷》及答案
![人教版七年级上册数学《期中测试卷》及答案](https://img.taocdn.com/s3/m/d133715a1611cc7931b765ce0508763231127419.png)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果向东走5米记为+5米,那么-8米表示( )A. 向东走8米B. 向西走8米C. 向南走8米D. 向北走8米 2.如图,几何体从上面看到的几何图形是( )A. B. C. D. 3.下列运算中正确的是( )A. 2233a a -=B. 235a b ab +=C. ()333a b a b --=-+D. 224a b a += 4.下列图形中,经过折叠不能围成正方体的是( ) A. B. C. D. 5.中国倡导的“一带一路”是中国与世界的互利共赢之路,据统计,“一带一路”地区覆盖的总人口约为44亿人,则“44亿”这个数用科学记数法可表示为( )A. 44×107B. 4.4×108C. 4.4×109D. 0.44×1010 6.将1, ,3-,2这四个数分别用点表示在数轴上,其中与所表示的点最近的数是( )A. 1B. -2C. -3D. 27.将3p ﹣(m +5n ﹣4)去括号,下列结论正确的是( )A 3p ﹣m +5n +4B. 3p ﹣m +5n ﹣4C. 3P ﹣m ﹣5n ﹣4D. 3p ﹣m ﹣5n +48.有理数a 、b 在数轴上的对应位置如图所示,则下列四个结论正确的是( )A. 0a b <B. 0ab >C. 0a b ->D. 0a b += 9.已知x ﹣2y =5,则整式2x ﹣4y 的值为( )A. 5B. ﹣5C. 10D. ﹣1010.下列说法: ①﹣1乘以任何一个有理数得这个有理数的相反数;②任何互为相反数的商都等于﹣1;③数轴上原点两侧的数互为相反数;④互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数.其中正确说法的个数有( )A. 1个B. 2个C. 3个D. 4个二.填空题11.计算:①12-+=__;②12--=___;③12-⨯=___;④12-÷=____.12.式子“21-”读作________.13.单项式7xy -的系数是_____;多项式224532x y y -+的次数是_____. 14.如图,是一个数值转换机,若输入数x 为一1,则输出数是_________.三.解答题15.计算(1)114 1.55( 2.75)45⎛⎫-+--- ⎪⎝⎭ (2)321|2|3182⎛⎫--+⨯- ⎪⎝⎭16.先化简,再求值:已知(x-2)2+|y+1|=0求代数式4(12x2-3xy-y2)-3(x2-7xy-2y2)的值.17.对于有理数a,b,定义一种新运算“”,规定.(1)计算的值;(2)当,在数轴上位置如图所示时,化简18.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.19.某出租车一天上午从A地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km)依先后次序记录如下:+18,-5,-2,+3,+10,-9,+12,-3,-7,-15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?20.小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低? 一.填空题21.计算:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=_____.22.已知|a |=4,|b |=2,且a >b ,a +b 值为___.23.下列是有规律排列的一列数:12345,,,,2481632---,…,请观察此一列数,按此规律,第n 个数应是__________.24.三个互不相等的有理数,既可以表示为0,b ,b a 的形式,也可以表示为1,a ,a +b 的形式,那么a =_______;b =_________.25.在数轴上有理数a ,11a-分别用点A ,A 1表示,我们称点A 1是点A 的“差倒数点”.已知数轴上点A 的差倒数点为点A 1;点A 1的差倒数点为点A 2;点A 2的差倒数点为点A 3…这样在数轴上依次得到点A ,A 1,A 2,A 3,…,A n .若点A ,A 1,A 2,A 3,…,A n 在数轴上分别表示的有理数为a ,a 1、a 2、a 3、…,a n .则当a 12=-时,代数式a 1+a 2+a 3+…+a 2020的值为______. 二.解答题26.已知与互为相反数,与互为倒数,的绝对值是,的相反数是它本身,求20192020223xy b m a n -+-+的值 27.观察下列等式: 第1个等式:a 1=114⨯=13×(11﹣14); 第2个等式:a 2=147⨯=13×(14﹣17); 第3个等式:a 3=1710⨯=13×(11710-);第4个等式:a 4=11013⨯=13×(111013-); … 请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;第n (n 正整数)个等式:a n = = ;(2)求a 1+a 2+a 3+a 4+…+a 100的值;(3)数学符号1n x =∑f (x )=f (1)+f (2)+f (3)+…+f (n ),试求10x=13(3)x x +∑值. 28.已知数轴上有A ,B ,C 三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A ,B ,C 的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A 、B 、C 的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.答案与解析一、选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果向东走5米记为+5米,那么-8米表示()A. 向东走8米B. 向西走8米C. 向南走8米D. 向北走8米【答案】B【解析】【分析】根据题意,向东走5米记为+5米,则米就表示相反的概念,问题得以解决.【详解】解:向东走5米记为+5米,则米就表示向西走8米;故答案选:B.【点睛】本题考查相反数的意义.2.如图,几何体从上面看到的几何图形是( )A. B. C. D.【答案】C【解析】【分析】根据从上面看得到的图形是俯视图,可得答案.【详解】解:观察几何体,俯视图如下:故选C .【点睛】本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.下列运算中正确的是( )A. 2233a a -=B. 235a b ab +=C. ()333a b a b --=-+D. 224a b a +=【答案】C【解析】【分析】根据合并同类项法则以及去括号法则,逐一判断选项,即可得到答案.【详解】A. 22232a a a -=,故本选项错误,B. 2a 与不是同类项,不能合并,故本选项错误,C. ()333a b a b --=-+,正确,D. 2a 与2b 不是同类项,不能合并,故本选项错误.故选C .【点睛】本题主要考查合并同类项法则以及去括号法则,掌握合并同类项法则以及去括号法则,是解题的关键.4.下列图形中,经过折叠不能围成正方体的是( ) A. B. C. D.【答案】A【解析】【分析】由平面图形的折叠及正方体的展开图的常见形式作答即可.【详解】解:A 、有两个面重叠,不能折成正方体; 选项B 、C 、D 经过折叠均能围成正方体. 故选A.【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.5.中国倡导的“一带一路”是中国与世界的互利共赢之路,据统计,“一带一路”地区覆盖的总人口约为44亿人,则“44亿”这个数用科学记数法可表示为( )A. 4.4×107B. 4.4×108C. 4.4×109D. 0.44×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:44亿=4400000000,∴将44亿用科学记数法表示应为4.4×109. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.将1, ,3-,2这四个数分别用点表示在数轴上,其中与所表示的点最近的数是( )A. 1B. -2C. -3D. 2 【答案】B【解析】【分析】分别计算出选项中各点与的距离,即可解答.【详解】解:∵选项A :1与的距离为()112--=;选项B :与的距离为()211---=;选项C :3-与的距离为()312---=;选项D :2与的距离为()213--=;∴-2与的距离最近,故选:B .【点睛】本题考查了数轴两点的距离,解决本题的关键是掌握数轴上两点距离的计算方法,即AB 两点距离A B AB x x =- .7.将3p ﹣(m +5n ﹣4)去括号,下列结论正确的是( )A. 3p ﹣m +5n +4B. 3p ﹣m +5n ﹣4C. 3P ﹣m ﹣5n ﹣4D. 3p ﹣m ﹣5n +4【答案】D【解析】【分析】根据去括号法则解答即可.【详解】解:3p ﹣(m +5n ﹣4)=3p ﹣m ﹣5n +4故选:D . 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.8.有理数a 、b 在数轴上的对应位置如图所示,则下列四个结论正确的是( )A. 0a b <B. 0ab >C. 0a b ->D. 0a b += 【答案】A【解析】【分析】根据相反数在数轴上的表示,可判断0a b b a <-<<<-,由此可知答案B 、C 、D 均是错误的,答案A 为正确的.【详解】解:观察图形可知:a <0<b ,且|a|>|b|,∴0a b b a <-<<<-, ∴0a b<,0ab <,0a b -<,0a b +<, 故选A.【点睛】本题考查的是有理数的大小比较,利用数形结合的数学思想是解决本题的关键.9.已知x ﹣2y =5,则整式2x ﹣4y 的值为( )A. 5B. ﹣5C. 10D. ﹣10【答案】D【解析】【分析】将整式2x ﹣4y 变形为2(x-2y ),再将已知式子代入求值即可.【详解】解:∵x ﹣2y =5,∴2x ﹣4y =2(x-2y )=2×(-5)=-10,故选D.【点睛】本题考查了代数式求值,能将待求式子进行适当变形是解题的关键.10.下列说法: ①﹣1乘以任何一个有理数得这个有理数的相反数;②任何互为相反数的商都等于﹣1;③数轴上原点两侧的数互为相反数;④互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数.其中正确说法的个数有( )A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据乘法法则、相反数的意义、乘方的意义判断即可.【详解】解:(1)﹣1乘以任何一个有理数得这个有理数的相反数,这个说法正确;(2)任何互为相反数的商都等于﹣1,这个说法错误,例如0的相反数是0,但0除以0没有意义;(3)数轴上原点两侧的数互为相反数,这个说法错误,例如﹣1和6是数轴上原点两侧的数,但不是互为相反数;(4)互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数,这个说法正确;则说法正确的个数有2个.故选:B .【点睛】此题考查了有理数的乘法法则、相反数的意义、乘方的意义,熟练掌握运算法则是解本题的关键. 二.填空题11.计算:①12-+=__;②12--=___;③12-⨯=___;④12-÷=____.【答案】 (1). 1 (2). -3 (3). -2 (4). 12-【解析】【分析】分别根据有理数的加减乘除运算法则计算即可.【详解】解:121-+=,123--=-,122-⨯=-,1122-÷=-, 故答案为:1;-3;-2;12-. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是掌握运算法则. 12.式子“21-”读作________. 【答案】1的平方的相反数 【解析】 【分析】根据﹣12表示12的相反数,即可求解.【详解】解:式子﹣12的底数是1,指数是2,读作1的平方的相反数,结果是﹣1. 故答案为:1的平方的相反数.【点睛】本题考查了乘方的定义, a n 中,a 叫底数,n 叫指数,n 表示相同的因数的个数.13.单项式7xy -的系数是_____;多项式224532x y y -+的次数是_____. 【答案】 (1). 17- (2). 3【解析】 【分析】根据单项式和多项式的概念进行解答. 【详解】解:单项式7xy -的系数是17-, 多项式224532x y y -+的次数是3, 故答案为:17-,3. 【点睛】本题考查了单项式和多项式的概念,单项式的系数,多项式的次数是基础知识,应该掌握. 14.如图,是一个数值转换机,若输入数x 为一1,则输出数是_________.【答案】7 【解析】【分析】依题意可以得到x×(-3)-8=-3x-8,代入x=-1计算求解即可.【详解】解:∵x=-1,∴x×(-3)-8=-3x-8,则原式=-3×(-1)-8=3-8=-5<0,∴-3×(-5)-8=15-8=7.故答案为7.【点睛】本题考查了代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.三.解答题15.计算(1)114 1.55( 2.75)45⎛⎫-+---⎪⎝⎭(2)321|2|3182⎛⎫--+⨯-⎪⎝⎭【答案】(1)0;(2)37 4 -【解析】【分析】(1)根据有理数的加减法法则及加法运算律计算即可;(2)根据有理数的乘方的意义、乘法法则、加减法法则及绝对值的代数意义计算即可.【详解】解:(1)原式=[414﹣(﹣2.75)]+[﹣1.5+(﹣512)]=7+(﹣7) =0;(2)原式=1 2918()8 -+⨯-=9 74 --=374 -.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则、运算顺序及有理数的加法运算律是解决本题的关键.16.先化简,再求值:已知(x-2)2+|y+1|=0求代数式4(12x2-3xy-y2)-3(x2-7xy-2y2)的值.【答案】﹣x 2+9xy +2y 2,﹣20 【解析】 【分析】先根据整式的加减化简代数式,再根据(x -2)2+|y +1|=0确定x 和y 的值,代入化简后的的代数式求值即可. 【详解】解:原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy +6y 2 =﹣x 2+9xy +2y 2 ∵(x -2)2+|y +1|=0, ∴x =2,y =﹣1原式=﹣4﹣18+2=﹣20【点睛】本题考查整式的化简求值,熟练掌握整式的加减运算法则,同时还需掌握平方的非负性及绝对值的非负性是解题关键.17.对于有理数a ,b ,定义一种新运算“”,规定.(1)计算的值;(2)当,在数轴上位置如图所示时,化简【答案】(1)-6;(2)2b 【解析】 【分析】(1)根据定义:a b a b a b ⊗=---代入计算即可; (2)根据定义:a b a b a b ⊗=---,再化简绝对值即可. 【详解】解:(1)原式=2323----- =﹣6(2)由a ,b 在数轴上位置,可得0,0b a <> a ﹣b >0, 则a b a b a b ⊗=--- =a+b ﹣a+b =2b【点睛】本题考查定义新运算与绝对值结合,掌握绝对值化简是解题关键. 18.如图,大小两个正方形的边长分别为a 、b .(1)用含a 、b 的代数式表示阴影部分的面积S ; (2)如果a =6,b =4,求阴影部分的面积. 【答案】(1)22111222a b ab +-;(2)14 【解析】 【分析】(1)依据阴影部分的面积等于两个正方形的面积之和减去空白部分的面积,即可用含a 、b 的代数式表示阴影部分的面积S ;(2)把a =6,b =4,代入代数式,即可求阴影部分面积. 【详解】(1)大小两个正方形的边长分别为a 、b , ∴阴影部分的面积为:S =a 2+b 2﹣12a 2﹣12(a+b )b =12a 2+12b 2﹣12ab ; (2)∵a =6,b =4,∴S =12a 2+12b 2﹣12ab =12×62+12×42﹣12×6×4 =18+8﹣12 =14.所以阴影部分的面积是14.【点睛】本题考查了列代数式和求代数式的值,解题的关键是利用面积的和差关系求出阴影部分的面积. 19.某出租车一天上午从A 地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km )依先后次序记录如下:+18,-5,-2,+3,+10,-9,+12,-3,-7,-15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?【答案】(1)在向东2km 处;(2)营业额为210元. 【解析】分析】(1)把各数相加即可得相对出发地的位置;(2)根据不同路程不同价格进行计算,再加起来即可.【详解】(1)∵+18-5-2+3+10-9+12-3-7-15=2,故在向东2km处;(2)营业额=1010+(15+2+7+6+9+4+12) 2=210元.【点睛】此题主要考查有理数的计算,解题的关键是根据题意列出式子求解.20.小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低? 【答案】(1)3;(2)木地板:75﹣7x,地砖:7x+53;(3)B种活动方案【解析】【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.【详解】解:(1)根据题意,可得a +5=4+4, 得a =3;(2)铺设地面需要木地板:4×2x +a [10+6﹣(2x ﹣1)﹣x ﹣2x ]+6×4=8x +3(17﹣5x )+24=75﹣7x , 铺设地面需要地砖:16×8﹣(75﹣7x )=128﹣75+7x =7x +53; (3)∵卧室2面积为21平方米, ∴3[10+6﹣(2x ﹣1)﹣x ﹣2x ]=21, ∴3(17﹣5x )=21, ∴x =2,∴铺设地面需要木地板:75﹣7x =75﹣7×2=61, 铺设地面需要地砖:7x +53=7×2+53=67,A 种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B 种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元), 22335>22165,所以小方家应选择B 种活动方案,使铺设地面总费用(含材料费及安装费)更低.【点睛】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积,理解A ,B 两种活动方案是解题的关键.一.填空题21.计算:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=_____.【答案】13- 【解析】 【分析】根据积的乘方和同底数幂的乘法运算法则计算即可. 【详解】解:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=()2019201911333⎛⎫-⨯⨯ ⎪⎝⎭=201911333⎛⎫-⨯⨯ ⎪⎝⎭ =113-⨯=13-.故答案为:13-.【点睛】本题考查了积的乘方运算和同底数幂的乘法,解题的关键是掌握运算法则. 22.已知|a |=4,|b |=2,且a >b ,a +b 的值为___. 【答案】6或2 【解析】 【分析】先根据绝对值的定义,得出a =±4,b =±2,所以a 与b 的对应值有四种可能性.再根据a >b 确定具体值,最后代入即可求出a +b 的值. 【详解】解:∵|a |=4,|b |=2, ∴a =±4,b =±2. ∵a >b ,∴当a =4,b =2时,a +b =4+2=6; 当a =4,b =﹣2时,a +b =4﹣2=2. ∴a +b 的值为6或2. 故答案为:6或2.【点睛】此题主要考查了绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.本题还用到了分类讨论的数学思想. 23.下列是有规律排列的一列数:12345,,,,2481632---,…,请观察此一列数,按此规律,第n 个数应是__________. 【答案】(1)2nn n -⨯ 【解析】 【分析】第奇数个数是负数,第偶数个数是正数,那么第n 个数的符号为(﹣1)n ,第1个数的分子是1,分母为21,第2个数的分子为2,分母为22,可得第n 个数的分子与分母.【详解】解:第n 个数的符号为(﹣1)n ,分子为n ,分母为2n , ∴第n 个数应是(1)2nnn -⨯, 故答案为:(1)2nn n -⨯. 【点睛】本题考查了数字的变化规律;得到第n 个数的符号,分子,分母相应的规律是解决本题的关键. 24.三个互不相等的有理数,既可以表示为0,b ,ba的形式,也可以表示为1,a ,a +b 的形式,那么a =_______;b =_________.【答案】 (1). ﹣1 (2). 1 【解析】 【分析】根据三个互不相等的有理数,既可以表示为1,a +b ,a 的形式,又可以表示为0,ba,b 的形式,也就是说这两个数组的数分别对应相等,即a +b 与a 中有一个是0,ba与b 中有一个是1,再根据分母不能为0的条件判断出a 、b 的值,代入代数式进行计算即可.【详解】解:∵三个互不相等的有理数,既表示为1,a +b ,a 的形式,又可以表示为0,ba,b 的形式, ∴这两个数组的数分别对应相等.∴a +b 与a 中有一个是0,b a 与b 中有一个是1,但若a =0,会使ba无意义, ∴a ≠0,只能a +b =0,即a =﹣b ,于是 ba=﹣1.只能是b =1,于是a =﹣1.故答案为:﹣1,1.【点睛】本题考查的是有理数的概念及计算,能根据题意得出“a +b 与a 中有一个是0,ba与b 中有一个是1”是解答此题的关键. 25.在数轴上有理数a ,11a-分别用点A ,A 1表示,我们称点A 1是点A 的“差倒数点”.已知数轴上点A 的差倒数点为点A 1;点A 1的差倒数点为点A 2;点A 2的差倒数点为点A 3…这样在数轴上依次得到点A ,A 1,A 2,A 3,…,A n .若点A ,A 1,A 2,A 3,…,A n 在数轴上分别表示的有理数为a ,a 1、a 2、a 3、…,a n .则当a 12=-时,代数式a 1+a 2+a 3+…+a 2020的值为______. 【答案】127916【解析】 【分析】先根据已知求出各个数,根据求出的数得出规律,即可得出答案. 【详解】解:∵a 12=-, ∴11121131()2a a ===---,∴21113211()3a a ===--, ∴321111132a a ===---, ∴431121131()2a a ===---,…,∵2020÷3=673……1, ∴202011121131()2a a a ====---∴a 1+a 2+a 3+…+a 20202123()673323⎡⎤=++-⨯+⎢⎥⎣⎦127916=故答案为:127916. 【点睛】本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.二.解答题26.已知与互为相反数,与互为倒数,的绝对值是,的相反数是它本身,求20192020223xyb m a n -+-+的值 【答案】43或23- 【解析】 【分析】根据相反数的性质、倒数的定义、绝对值的性质可得+=0,1xy=,1m =±, =0,然后代入求值即可.【详解】解:∵与互为相反数,与互为倒数,的绝对值是,的相反数是它本身, ∴+=0,1xy=,1m =±, =020192020223xyb m a n -+-+ =2019202012()03a b m -+++ =201912003m -⨯++ =201913m + 当=1时,原式=43; 当1m =-时,原式=23-. 【点睛】此题考查的是有理数的相关运算,掌握相反数的性质、倒数的定义、绝对值的性质和有理数的各个运算法则是解决此题的关键. 27.观察下列等式:第1个等式:a 1=114⨯=13×(11﹣14); 第2个等式:a 2=147⨯=13×(14﹣17);第3个等式:a 3=1710⨯=13×(11710-);第4个等式:a 4=11013⨯=13×(111013-); …请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;第n (n 为正整数)个等式:a n = = ; (2)求a 1+a 2+a 3+a 4+…+a 100的值; (3)数学符号1nx =∑f (x )=f (1)+f (2)+f (3)+…+f (n ),试求10x=13(3)x x +∑值. 【答案】(1)11316⨯,13×(111316-);1(32)(31)n n -+,13×(113231n n --+);(2)100301;(3)905572【解析】【分析】(1)根据题干中的规律可得第5个等式,再总结规律可得1(32)(31)n n -+的值等于132n -和131n +的差再乘以13; (2)将a 1+a 2+a 3+a 4+…+a 100用各自算式替换,再根据(1)中归纳的等式进行拆项计算;(3)依据数学符号1n x =∑的概念,可得10x=13(3)x x +∑对应的算式,再利用前两问得到的拆项算法计算即可. 【详解】解:(1)按以上规律知第5个等式为a 5=11316⨯=13×(111316-), 第n 个等式a n =1(32)(31)n n -+=13×(113231n n --+) (2)a 1+a 2+a 3+a 4+…+a 100 =114⨯+ 147⨯+ 1710⨯+…+ 1(31002)(31001)⨯-⨯⨯+ =13×(1﹣14)+13×(1147-)+ 13×(11710-)+…+13×(11298301-) =13×(1﹣111447+-+ 11710-+…+11298301-) =13×(1﹣1301) =13×300301=100301; (3)()10x=133x x +∑ =314⨯+ 325⨯+ 336⨯+…+11013⨯. =3×(111142536++⨯⨯⨯+…+11013⨯) =3×[13×(1﹣ 14 )+ 13×(1125-)+13×(1136-)+…+13×(111013-)] =1﹣14+ 12﹣15+ 13﹣16+ 14﹣17+ 15﹣18+ 16﹣19 + 17﹣11018+﹣ 111 +11912-+111013-=1+ 12+13﹣111﹣112﹣113=905 572.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,理解拆分数字的变化,利用变化的规律解决问题.28.已知数轴上有A,B,C三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A,B,C的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【答案】(1)AB之间时2s:BC之间时5s:3.4s(2)-10.4点处(3)不能相遇,理由见解析.【解析】【详解】(1)设x秒后,甲到A,B,C的距离和为40个单位.B点距A,C两点的距离为14+20=34<40,A点距B,C两点的距离为14+34=48>40,C点距A,B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4x+(14-4x)+(14-4x+20)=40,x=2s;②BC之间时:4x+(4x-14)+(34-4x)=40,x=5s,(2)设xs后甲与乙相遇4x+6x=34解得:x=3.4s,4×3.4=13.6,-24+13.6=-10.4,答:甲,乙在数轴上表示-10.4的点处相遇;(3)①甲位于AB之间时:甲返回到A需要2s,乙4s只能走24连AB之间的一半都到不了,故不能与A相遇;②甲位于BC时:甲已用5s,乙也已用5s,走了30,距A点只剩4了,连一秒都用不了,甲距A20,故不能相遇.。
人教版七年级上册数学期中考试试卷含答案
![人教版七年级上册数学期中考试试卷含答案](https://img.taocdn.com/s3/m/f8ee1f12f6ec4afe04a1b0717fd5360cba1a8dd8.png)
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
人教版数学七年级上册《期中测试卷》(带答案)
![人教版数学七年级上册《期中测试卷》(带答案)](https://img.taocdn.com/s3/m/db5d2f5003768e9951e79b89680203d8ce2f6a22.png)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2018年中国GDP 比2017年增长6.6%,GDP 增长率记作:+6.6%,而阿根廷GDP 比2017年下降2.51%,GDP 增长率记作( )A. 2.51%B. +2.51%C. -2.51%D. 2.51%± 2.(7)(5)--+的结果等于( )A. -12B. 12C. 2D. -23.下列各项是同类项的是( )A.与 2x yB. 1x 与xC. 2r π与D. 232p q 与233q p 4.下列一元一次方程中,解为3x =的是( )A. 220x +=B. 5772x x +=-C. 6884x x -=-D. 324x x -=+5.2018年全年中国GDP 排名世界第二约为900000亿元,用科学计数法表示为( )元A. 129010⨯B. 13910⨯C. 12910⨯D. 140.910⨯ 6.一个两位数个位上的数是1,十位上的数是x ,则这个两位数是( )A. 1x +B. 110x +C. 10x +D. 1010x + 7.下列说法中正确的是( )A. 若||a a =,则0a >B. 若a ,b 互为相反数,则||1a b= C. 若||||a b =,则a=bD. 若0a <,0b <,则||ab ab =8.关于x ,y 的多项式22233(1)8x kxy k y xy --++-合并同类项后为二次三项式,则k 的值为( ) A. 13 B. 0 C. -1 D. 13- 9.以下等式的变形:①如果1x y =,那么1y x=; ②如果ax b ay b +=+,那么x y =;③如果11x y a a+=+,那么x y =; ④如果x y =,那么2211x y a a =++. 正确的有( )个A 1 B. 2 C. 3 D. 410.如图,在边长为1厘米的正方形网格有12个格点,用这些格点做三角形顶点,一共可以连成面积为2平方厘米的三角形个数为( )A. 24B. 32C. 28D. 12二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若 a =﹣a,则 a =__________.12.在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a ,小正方形的边长是b ,则剩余部分的面积为_________.(用含a ,b 的式子表示)13.把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,则获得一等奖的学生有多少人?设获得一等奖的学生有x 人,依题意列方程得___________________________.14.若232325322n m x y x y x y -=,则m-n=__________________. 15.在一列数:1,2,1,-1,...,其规律是:从第二个数起,每个数都是其前后两个数之和,根据此规律,则第2019个数是_________________.16.已知a ,b ,c 为非零的实数,则||||||||c ab ac bc c ab ac bc +++的最大值与最小值的差为________. 三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)1273-⨯;(2)21133()(24)468-+++⨯-. 18.解下列方程(1)726x +=;(2)1262x --=. 19.先化简,再求值(1)325a b a b +--,其中2a =-,1b =(2)2211312()()2323x x y x y --+-+,其中x=-2,23y = 20.某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍少2公顷,玉米种植面积是水稻种植面积的2倍多5公顷.(1)用a 式子分别表示水稻和玉米的种植面积;(2)若a=10,求这三种农作物种植面积和.21.2019年10月18日至27日(共10天)武汉军运会期间,从19日起武汉体育中心9天中接收观众人数的变化情况如下表(正数表示比前一天多的人数,负数表示经前一天少的人数):(1)请判断这9天中,游客人数最多和最少各是哪一天?它们相差多少万人?(2)如果10月18日观众人数为2万人,平均每人门票100元,请问武汉体育中心在军运会这10天期间门票总收入为多少万元?22.某小区要在一块长方形的空地上修建三条人行道(阴影部分),其余空地铺设草坪进行美化,设计规划如图所示,长方形空地长为m 米,宽为n 米,且三条人行道宽均为2米.(1)请直接写出草坪面积是多少平方米?(用m ,n 表示)(2)若n=18,且人行道所占面积为整个长方形空地面积的29,则该长方形空地的长为多少米? 23.我们知道,||a 的几何意义是数轴上表示数a 的点与原点的距离,一般地,点A ,B 在数轴上分别表示数a ,b ,那么A ,B 之间的距离可表示为|a-b|,请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上的数x 与1所对应的点的距离为________,数x 与-1所对应的点的距离为________;(2)求|1||1|x x +--的最大值;(3)直接写出|1||2||3||4||1||2||3||4|x x x x x x x x +++++++--------的最大值为______.24.截至2019年,中国铁路营业里程达13.1万千米以上,规模居世界第二,其中高速铁路达3万公里,位居世界第一,现在,在一条东西向的双轨铁路上相向驶来一辆复兴号高速列车AB 和一辆普快列车CD ,两列火车正行驶在途中的某一时刻,如图,以两车之间的某点O 为原点,向右为正方向,1米为一个单位长度画数轴,此时复兴号高速列车头A 在数轴上表示的数是a ,普快列车头C 在数轴上表示的数是c ,且|800|a +与2(1600)c -互为相反数,已知该复兴号高速列车长为200米,速度为100米/秒,普快列车长为400米,速度为50米/秒.(1)求此时刻复兴号高速列车头A 与普快列车尾D 之间相距多少米?(2)从此时刻开始算起,问再行驶多少秒两列火车头相距800米?(3)假设你是复兴号高速列车上的一名乘客,并且从此时开始从复兴号高速列车头A 向列车尾B 走去,速度为1米/秒,请问乘客从列车头A 走到列车尾B 的过程中是否存在一段时间t ,使得乘客到A 、B 、C 、D 的距离之和为一个定值?若存在,请求出时间和这个定值;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2018年中国GDP比2017年增长6.6%,GDP增长率记作:+6.6%,而阿根廷GDP比2017年下降2.51%,GDP 增长率记作()A. 2.51%B. +2.51%C. -2.51%D. 2.51%±【答案】C【解析】【分析】根据题意,明确“正”和“负”所表示的意义,即可得到答案.【详解】解:∵增长6.6%,记作:+6.6%;∴下降2.51%,记作: 2.51%-;故选:C.【点睛】本题主要考查了正数和负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,比较简单.2.(7)(5)--+的结果等于()A. -12B. 12C. 2D. -2【答案】A【解析】【分析】先去括号,然后计算减法运算,即可得到答案.【详解】解:(7)(5)7512--+=--=-;故选:A.【点睛】本题考查了有理数的减法运算,解题的关键是熟练掌握运算法则.3.下列各项是同类项的是()A.与2x yB. 1x与x C. 2rπ与 D. 232p q与233q p【答案】C【解析】【分析】根据同类项的定义,分别进行判断,即可得到答案.【详解】解:A 、与 2x y 不是同类项,故A 错误;B 、1x与x 不是同类项,故B 错误; C 、2r π与是同类项,故C 正确;D 、232p q 与233q p 不是同类项,故D 错误;故选:C.【点睛】本题考查了同类项的定义,解题的关键是熟练掌握同类项的定义:所含字母相同,相同字母的指数也相同.4.下列一元一次方程中,解为3x =的是( )A. 220x +=B. 5772x x +=-C. 6884x x -=-D. 324x x -=+【答案】D【解析】【分析】分别求出每个选项的解,然后进行判断,即可得到答案.【详解】解:A 、220x +=,解得:1x =-;故A 错误;B 、5772x x +=-,解得:0x =;故B 错误;C 、6884x x -=-,解得:2x =-;故C 错误;D 、324x x -=+,解得:3x =;故D 正确;故选:D.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤和方法.5.2018年全年中国GDP 排名世界第二约为900000亿元,用科学计数法表示为( )元A. 129010⨯B. 13910⨯C. 12910⨯D. 140.910⨯ 【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:900000亿=90000000000000=13910⨯;故选:B.【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.一个两位数个位上的数是1,十位上的数是x ,则这个两位数是( )A. 1x +B. 110x +C. 10x +D. 1010x + 【答案】B【解析】【分析】根据题意,十位上的数乘以10,然后相加即可.【详解】解:∵一个两位数个位上的数是1,十位上的数是x ,∴这个两位数是:110x +;故选:B.【点睛】本题考查用代数式来表示数,我们可以利用类比的数学思想,由具体的数入手,可以很好地解答本题.7.下列说法中正确的是( )A. 若||a a =,则0a >B. 若a ,b 互为相反数,则||1a b= C. 若||||a b =,则a=bD. 若0a <,0b <,则||ab ab =【答案】D【解析】【分析】根据绝对值的意义,相反数的定义,对每个选项进行判断,即可得到答案.【详解】解:A 、若||a a =,则0a ≥,故A 错误;B 、若a ,b 互相反数,当0a b 时,a b无意义,故B 错误; C 、若||||a b =,则a b =±,故C 错误;D 、若0a <,0b <,则||ab ab =,故D 正确;【点睛】本题考查了绝对值的意义,相反数的定义,熟练掌握知识点是解题关键.8.关于x ,y 的多项式22233(1)8x kxy k y xy --++-合并同类项后为二次三项式,则k 的值为( ) A. 13 B. 0 C. -1 D. 13- 【答案】A【解析】【分析】先将多项式合并同类项,再根据要求列出关于k 的方程求解即可.【详解】22233(1)8x kxy k y xy --++-=222(13)3(1)8x k xy k y +--+-,∵多项式22233(1)8x kxy k y xy --++-合并同类项后为二次三项式,且210k +≠,∴130k -=,∴k=13, 故选:A【点睛】此题考查多项式的定义,利用一元一次方程解决问题,正确理解多项式的项及次数是解题的关键. 9.以下等式的变形: ①如果1x y =,那么1y x=; ②如果ax b ay b +=+,那么x y =; ③如果11x y a a+=+,那么x y =; ④如果x y =,那么2211x y a a =++. 正确的有( )个A 1B. 2C. 3D. 4【答案】C【解析】【分析】根据等式的性质依次分析即可得到答案. 【详解】∵1x y =,∴x=y ,∴1y x=,故①正确; 等式ax b ay b +=+两边同时减去b 得到ax=ay ,不确定a 是否等于0,故等式两边不能除以a ,故②错误;等式11x y a a+=+同时减去1后再乘以a 得到x y =,故③正确; ∵21a +>0,∴等式x y =两边同时除以21a +得到2211x y a a =++,故④正确, 正确的有①、③、④,故选:C【点睛】此题考查等式的性质,熟记性质定理并运用解题是关键,特别注意在等式的两边除以同一个数或式子时,除以的数或式子不能等于零.10.如图,在边长为1厘米的正方形网格有12个格点,用这些格点做三角形顶点,一共可以连成面积为2平方厘米的三角形个数为( )A. 24B. 32C. 28D. 12【答案】A【解析】【分析】 根据面积等于底乘以高依次分情况分析即可得到三角形的个数.【详解】如图,以AB 为底时,与对边CF 的四个顶点都可以构成面积等于2平方厘米的三角形,类似这样的三角形共有16个,如图,以AC 为底时,与线段BE 上的三个点都可以构成面积等于2平方厘米的三角形,类似这样的三角形共有12个,其中,有四个角的直角三角形是重复的,故三角形的总个数是:16+12-4=24个,故选:A【点睛】此题考查平行线的性质:平行线间的距离处处相等,由此利用同底等高得到面积相等的三角形.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若 a =﹣a,则 a =__________.【答案】0【解析】【分析】相反数等于本身的数只有 0,依此即可求解.【详解】∵a =﹣a,∴a =0.故答案为0.【点睛】此题考查了相反数的性质,熟练掌握这一性质是解答此题的关键.12.在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a ,小正方形的边长是b ,则剩余部分的面积为_________.(用含a ,b 的式子表示)【答案】22a b【解析】【分析】先根据正方形的面积公式分别求出正方形的面积,再利用面积相减的关系得到剩余部分的面积.【详解】由题意得:大正方形的面积为2a ,小正方形的面积是2b ,∴在一个大正方形铁片中挖去一个小正方形铁片剩余部分的面积为22a b -,故答案为:22a b -【点睛】此题考查列代数式表示实际意义,正确理解题意是列代数式的关键.13.把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,则获得一等奖的学生有多少人?设获得一等奖的学生有x 人,依题意列方程得___________________________.【答案】20050(22)1400x x +-=【解析】【分析】根据一等奖的钱数+二等奖的钱数等于奖金总数即可列出方程.【详解】∵一等奖的学生有x 人,共有22名学生,∴二等奖学生有(22-x)人,∴20050(22)1400x x +-=,故答案为:20050(22)1400x x +-=【点睛】此题考查一元一次方程实际应用,正确理解题意是解题的关键.14.若232325322n m x y x y x y -=,则m-n=__________________. 【答案】-1【解析】【分析】 根据等式可得252m x y 与32n x y 是同类项,根据同类项的定义即可得到m 、n 的方程求得m 、n 的值,即可计算m-n . 【详解】由题意得:22n =,m=3, ∴n=4,∴m-n=3-4=-1,故答案为:-1【点睛】此题考查同类项的定义,含有相同的字母并且所含相同字母的指数也分别相同,掌握同类项的特点是解题的关键.15.在一列数:1,2,1,-1,...,其规律是:从第二个数起,每个数都是其前后两个数之和,根据此规律,则第2019个数是_________________.【答案】1【解析】【分析】根据要求依次写成这列数,直到出现规律的数字,由此得到这列数的排列规律,再利用规律得到答案即可.【详解】由题意这列数依次是:1,2,1,-1,-2,-1,1,2,1, ,由此可知:这列数是由1,2,1,-1,-2,-1这六个数循环得到的,∵201963363÷=,∴第2019个数是1,故答案为:1【点睛】此题考查数字的排列规律的探究,根据数字的排列得到排列的规律并运用解题的关键.16.已知a ,b ,c 为非零的实数,则||||||||c ab ac bc c ab ac bc +++的最大值与最小值的差为________. 【答案】6【解析】【分析】分四种情况:三个负数,两个负数,一个负数,三个正数时,根据绝对值的性质化简绝对值,再根据有理数的加法法则求出值进行比较即可得到最大值与最小值,由此求出答案.【详解】①当a ,b ,c 都是负数时,ab>0,ac>0,bc>0,∴||||||||c ab ac bc c ab ac bc +++=-1+1+1+1=2, ②a ,b ,c 有两个是负数时,当a<0,b<0,c>0时,ab>0,ac<0,bc<0,∴||||||||c ab ac bc c ab ac bc +++=1+1-1-1=0, 当a<0,b>0,c<0时,ab<0,ac>0,bc<0,∴||||||||c ab ac bc c ab ac bc +++=-1-1+1-1=-2, 当a>0,b<0,c<0时,ab<0,ac<0,bc>0,∴||||||||c ab ac bc c ab ac bc +++=-1-1-1+1=-2, ③a ,b ,c 中有一个是负数时,当a<0,b>0,c>0时,ab<0,ac<0,bc>0,∴||||||||c ab ac bc c ab ac bc +++=1-1-1+1=0, 当a>0,b<0,c>0时,ab<0,ac>0,bc<0,∴||||||||c ab ac bc c ab ac bc +++=1-1+1-1=0, 当a>0,b>0,c<0时,ab>0,ac<0,bc<0,∴||||||||c ab ac bc c ab ac bc +++=-1+1-1-1=-2, ④当a ,b ,c 都是正数时,ab>0,ac>0,bc>0,∴||||||||c ab ac bc c ab ac bc +++=1+1+1+1=4, ∴最大值是4,最小值是-2,故差为:4-(-2)=6,故答案为:6【点睛】此题考查绝对值的化简,有理数的乘法法则、加法法则,题中注意三个数的符合决定化简的结果,所以应分情况进行讨论求值,这是解题的关键.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)1273-⨯;(2)21133()(24)468-+++⨯-. 【答案】(1)-9;(2)28-【解析】【分析】(1)根据有理数的乘法法则计算即可;(2)先同时计算乘方和乘法分配率,再将结果相加减即可得到答案.【详解】(1)1273-⨯=1(27)93-⨯=-;(2)21133()(24)468-+++⨯- =-9+(-6-4-9)=-9-19= -28 【点睛】此题考查有理数的计算,正确掌握有理数的乘法法则、乘方的计算、乘法分配率的计算是解题的关键.18.解下列方程(1)726x +=;(2)1262x --=. 【答案】(1)x=19;(2)x=-16【解析】【分析】(1)先移项,再合并同类项即可求出方程的解;(2)先移项,再合并同类项,最后将未知数的系数化为1即可求出方程的解.【详解】(1)726x +=,移项,得x=26-7,合并同类项,得x=19;(2)1262x --=, 移项,得1622x -=+, 合并同类项,得182x -=, 系数化为1,得x=-16【点睛】此题考查解一元一次方程,掌握正确的解方程的顺序是解题的关键.19.先化简,再求值(1)325a b a b +--,其中2a =-,1b =(2)2211312()()2323x x y x y --+-+,其中x=-2,23y = 【答案】(1)2a b -+,5;(2)23x y -+,469【解析】【分析】 (1)合并同类项得到结果后将a 、b 的值代入计算即可;(2)先去括号,再合并同类项,再将x 、y 的值代入计算即可得到答案.【详解】(1)325a b a b +--=-2a+b ,∵2a =-,1b =,∴原式=4+1=5;(2)2211312()()2323x x y x y --+-+ =22123122323x x y x y -+-+, =23x y -+,∵x=-2,23y =, ∴原式= 446699+= 【点睛】此题考查整式的化简求值,掌握整式的合并同类项的法则,去括号的法则是解此题的关键. 20.某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍少2公顷,玉米种植面积是水稻种植面积的2倍多5公顷.(1)用a 的式子分别表示水稻和玉米的种植面积;(2)若a=10,求这三种农作物种植面积的和.【答案】(1)()61a +公顷;(2)99公顷【解析】【分析】(1)根据各种植面积的关系即可列式;(2)将三种农作物的种植面积相加,代入a 的值计算即可.【详解】(1)∵小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍少2公顷,∴种植水稻(3a-2)公顷,∵玉米种植面积是水稻种植面积的2倍多5公顷.∴种植玉米2(32)5a -+=()61a +公顷;(2)三种农作物的面积和为:(32)(61)a a a +-++,=(101)a -公顷,∵a=10,∴(101)a -=100-1=99(公顷)【点睛】此题考查列代数式,正确理解三种农作物的面积之间的数量关系是解题的关键.21.2019年10月18日至27日(共10天)武汉军运会期间,从19日起武汉体育中心9天中接收观众人数的变化情况如下表(正数表示比前一天多的人数,负数表示经前一天少的人数):(1)请判断这9天中,游客人数最多和最少的各是哪一天?它们相差多少万人?(2)如果10月18日观众人数为2万人,平均每人门票100元,请问武汉体育中心在军运会这10天期间门票总收入为多少万元?【答案】(1)10月27日人数最多,10月19日人数最少;相差1.2万人;(2)3320万元【解析】【分析】(1)由表格可知10月27日人数最多,10月23日人数最少,设18日有x 万人,用x 分别表示出27日和23日的人数再进行计算;(2)依次求出10月19日至27日的观众人数,再列式计算即可.【详解】(1)10月27日人数最多,10月23日人数最少设18日有x 万人,则27日人数为0.50.70.80.40.60.20.30.50.2x +++--++++= 2.2x +(万人)23日人数为0.50.70.80.40.6x +++--=1x +(万人)( 2.2x +)-(1x +)=1.2万人(2)∵10月18日观众人数为2万人,∴10月19日至27日的观众人数依次是:2.5、3.2、4、3.6、3、3.2、3.5、4、4.2万人,∴这10天期间门票总收入为: (2 2.5 3.24 3.63 3.2 3.54 4.2)1003320+++++++++⨯=(万元)【点睛】此题考查有理数的混合运算的实际应用.22.某小区要在一块长方形的空地上修建三条人行道(阴影部分),其余空地铺设草坪进行美化,设计规划如图所示,长方形空地长为m 米,宽为n 米,且三条人行道宽均为2米.(1)请直接写出草坪面积是多少平方米?(用m ,n 表示)(2)若n=18,且人行道所占面积为整个长方形空地面积的29,则该长方形空地的长为多少米? 【答案】(1)(4)(2)m n --平方米;(2)32米【解析】【分析】(1)利用平移得到草坪的长与宽,即可根据面积公式计算;(2)根据题意列出方程,将n 的值代入计算即可.【详解】(1)由平移得草坪的长是(m-4)米,宽是(n-2)米,∴草坪的面积是(m-4)(n-2)平方米;(2)解:由题意可知,2(4)(2)(1)9m n mn --=-,∵n=18,∴16(4)14m m -=,∴m=32,答:长方形空地的长为32米.【点睛】此题考查一元一次方程的实际应用,图形平移的性质,将图形中的阴影部分利用平移得到规则图形,利用面积公式列式是解题的关键.23.我们知道,||a 的几何意义是数轴上表示数a 的点与原点的距离,一般地,点A ,B 在数轴上分别表示数a ,b ,那么A ,B 之间的距离可表示为|a-b|,请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上的数x 与1所对应的点的距离为________,数x 与-1所对应的点的距离为________;(2)求|1||1|x x +--的最大值;(3)直接写出|1||2||3||4||1||2||3||4|x x x x x x x x +++++++--------的最大值为______.【答案】(1)|x-1|,|x+1|;(2)2;(3)20【解析】【分析】(1)根据题意即可列式解答;(2)由x 的取值范围分三种情况:①当x≤-1时,②当-1≤x≤1时,③当x≥1时,分别化简绝对值,再计算整式的值即可得到答案;(3)根据(2)得到规律,依次进行计算即可.【详解】(1)由题意得到:数轴上的数x 与1所对应的点的距离为1x -,数x 与-1所对应的点的距离为(1)1x x --=+, 故答案为:1x -, 1x +;(2)1x -表示x 到1之间距离,1x +表示x 到-1之间的距离,①当x≤-1时,1x -=1-x ,1x +=-1-x ,∴|1||1|x x +--=(-1-x )-(1-x )=-2;②当-1≤x≤1时,1x -=1-x ,1x +=x+1,∴|1||1|x x +--=(x+1)-(1-x )=2x≤2;③当x≥1时,1x -=x-1,1x +=x+1,∴|1||1|x x +--=(x+1)-(x-1)=2,∴|1||1|x x +--的最大值为2(3)由(2)知:|1||1|x x +--的最大值为2,由此可得: |2||2|x x +--的最大值为4,|3||3|x x +--的最大值是6,|4||4|x x +--的最大值是8,∴|1||2||3||4||1||2||3||4|x x x x x x x x +++++++--------的最大值是2+4+6+8=20【点睛】此题考查有理数的计算,绝对值的性质,数轴上两点间的距离公式.24.截至2019年,中国铁路营业里程达13.1万千米以上,规模居世界第二,其中高速铁路达3万公里,位居世界第一,现在,在一条东西向的双轨铁路上相向驶来一辆复兴号高速列车AB 和一辆普快列车CD ,两列火车正行驶在途中的某一时刻,如图,以两车之间的某点O 为原点,向右为正方向,1米为一个单位长度画数轴,此时复兴号高速列车头A 在数轴上表示的数是a ,普快列车头C 在数轴上表示的数是c ,且|800|a +与2(1600)c -互为相反数,已知该复兴号高速列车长为200米,速度为100米/秒,普快列车长为400米,速度为50米/秒.(1)求此时刻复兴号高速列车头A 与普快列车尾D 之间相距多少米?(2)从此时刻开始算起,问再行驶多少秒两列火车头相距800米?(3)假设你是复兴号高速列车上的一名乘客,并且从此时开始从复兴号高速列车头A 向列车尾B 走去,速度为1米/秒,请问乘客从列车头A 走到列车尾B 的过程中是否存在一段时间t ,使得乘客到A 、B 、C 、D 的距离之和为一个定值?若存在,请求出时间和这个定值;若不存在,请说明理由.【答案】(1)2800米;(2)323或643秒;(3)存在,定值为600,t=400149 【解析】【分析】(1)根据相反数的定义、绝对值和平方的非负性求出a 与c 的值,即可列式求出AD ;(2)设运动时间为t 秒,根据AC 的长度列方程求解即可;(3)设乘客为点P ,运动时间为x 秒,先得到定值为600,再分点P 、C 相遇时和点P 、D 相遇时列出方程求解即可得.【详解】(1)由题意知,∵2|800|(1600)0a c ++-=,又∵|800|0a +≥,2(1600)0c -≥,∴800016000a c +=⎧⎨-=⎩, ∴8001600a c =-⎧⎨=⎩, ∴AC=c-a=2400(米),∴AD=AC+CD=2800(米);(2)设运动时间为t 秒,则点A 表示-800+100t ,点C 表示的数为1600-50t , ∴(160050)(800100)2400150AC t t t =---+=-,∵AC=800, ∴2400150800t -= ∴323t =或643, ∴再行驶323或643秒两列火车头相距800米; (3)设乘客为点P ,运动时间为x 秒,∵P 在线段AB 上运动,∴PA+PB=AB=200,当P 在线段CD 上,PC+PD 为定值,且PC+PD=CD=400,∴PA+PB+PC+PD=600,即这个定值为600,点P 表示的数为-800+99x ,点C 表示的数为1600-50x ,点D 表示的数为2000-50x ,当点P 、C 相遇时,-800+99x=1600-50x ,解得,2400149x =, 当点P 、D 相遇时,-800+99x=2000-50x ,解得,2800149 x=,∴28002400400149149149t=-=(秒)【点睛】本题主要考查了一元一次方程的应用,关键在于理解题意,找出题中的数量关系分类讨论得到方程.。
人教版数学七年级上册《期中测试卷》(附答案)
![人教版数学七年级上册《期中测试卷》(附答案)](https://img.taocdn.com/s3/m/e96a0efa7e192279168884868762caaedd33bac4.png)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12-的相反数是( ) A.B. 2C. 12-D.122.下列有理数的大小比较正确的是( ) A.1123< B. 11||||23->- C. 1123->- D. 11||||23-->-+ 3.下列各组数中的两个数,不相等的是( ) A. ()6++和()6-- B. ()6-+和()6+- C. -6和6-D. -0.2和15-4.有理数a b ,在数轴上的对应的位置如图所示,则下列四个选项正确的是( )A. 0a b +<B. 0a b +=C. 0a b -=D. 0a b ->5.下列计算正确的是( ) A. 2x +3y =5xy B. 2a 2+2a 3=2a 5 C. 4a 2﹣3a 2=1D. ﹣2ba 2+a 2b =﹣a 2b6.对于单项式22r π-的系数、次数分别是( ) A. -2,2 B. -2,3C. -2,2D. -2,37.如果12a 3xb y与–a 2y b 3同类项,则 A. x =–2,y =3B. x =2,y =3C. x =–2,y =–3D. x =2,y =38.下列各式中正确的是( ) A 由213132x x --=-去分母得()()221133x x -=-- B 由 ()()221331x x ---=去括号得42391x x ---= C. 由743x x =-移项得743x x -=D. 由743x x -=-合并同类项,化系数为1得1x =- 9.若关于x 的方程2x+a-4=0的解是x=-2,则a=( ) A. -8B. 0C. 2D. 810.下列等式形式运用正确的是( ) A 若22x y =,则x y = B. 若x ya a=,则x y = C. 若382x -=,则12x =- D. 若axy a =,则1xy =11.已知a b 、互为相反数,是绝对值最小的负整数,mn 、互为倒数,则243a b c mn ++-的值等于( ) A. 1B. 2C. 3D. -312.若2237y y ++的值为8,则2469y y +-的值是( ). A. 2B. -17C. -7D. 7二、填空题(每题3分,满分18分)13.若1260m x -+=是关于x 的一元一次方程,则m 的值为_______.14.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.15.某农户有水稻田6亩,计划每亩施化肥a kg ,有玉米田11亩,计划每亩田施化肥b kg .该农户共应购回化肥__________千克.16.代数式21a +与2a +互为相反数,则a =__________. 17.定义新运算“”,规定bab a a=+⊗,则42-=⊗__________.18.已知关于x y ,的多项式222x axy xy +-与多项式233xy axy y --的和不含项,则的值为__________.三、解答题:共66分.19.有理数的计算 (1)713620-+-+(2)()()()231118533⎛⎫--⨯-+-⨯- ⎪⎝⎭20.整式的化简 (1)22a a -+-(2)()22231253x xy xy x -+--+21.解一元一次方程 (1)()2179x x -=- (2)253164x x---= 22.先化简再求值:已知()2210m n n ++-=,求多项式()231mn mn mn ⎡⎤---⎣⎦的值.23.某检修站,甲小组乘坐一辆汽车,沿东西方向公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:km ): +8,- 2, -13, -1, +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7, +9,- 2, +8,- 6.(1)分别计算收工时,甲,乙两组各在地的哪一边,分别距离地多远? (2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?24.一辆公交车上原来有()66a b -人,中途下去一半,又上来若干人,使车上共有乘客()106a b -人. (1)中途上来了多少乘客?(用含a b 、式子表示) (2)当3a =,2b =时,中途上车的乘客是多少? 25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++ 26.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫=⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.答案与解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12-的相反数是( ) A. B. 2C. 12-D.12【答案】D 【解析】 【详解】因为-12+12=0,所以-12的相反数是12. 故选D.2.下列有理数的大小比较正确的是( ) A.1123< B. 11||||23->- C. 1123->- D. 11||||23-->-+ 【答案】B 【解析】 选项A ,1123>,A 错误;选项B ,1123->-正确;选项C ,1123--<,C 错误;选项D ,11|23---+,D 错误.故选B .3.下列各组数中的两个数,不相等的是( ) A. ()6++和()6-- B. ()6-+和()6+- C. -6和6- D. -0.2和15-【答案】C 【解析】 【分析】先化简再比较两个数,即可判断出答案.【详解】解:A. ()6++和()6--相等,此选项错误; B. ()6-+和()6+-相等,此选项错误;C. -6和6-不相等,此选项正确;D. -0.2和15-相等,此选项错误; 故选:C .【点睛】本题考查的知识点是绝对值以及有理数的加法,比较基础,易于掌握. 4.有理数a b ,在数轴上的对应的位置如图所示,则下列四个选项正确的是( )A. 0a b +<B. 0a b +=C. 0a b -=D. 0a b ->【答案】D 【解析】 【分析】根据数轴可得出101,b a a b -<<<<>,据此逐项分析即可.【详解】解:根据异号相加,去绝对值较大的数的符号,则0a b +>,选项A 错误,选项B 错误; 根据减去一个负数等于加上这个数的相反数,则0a b ->,选项C 错误,选项D 正确. 故选:D .【点睛】本题考查的知识点是数轴,根据数轴得出a ,b 的关系是解此题的关键. 5.下列计算正确的是( ) A. 2x +3y =5xy B. 2a 2+2a 3=2a 5 C. 4a 2﹣3a 2=1 D. ﹣2ba 2+a 2b =﹣a 2b【答案】D 【解析】试题分析:A .2x 和3y 不是同类项,无法合并,错误; B .22a 和32a 不是同类项,无法合并,错误; C .22243a a a -=,错误; D .2222ba a b a b -+=-,正确.故选D .考点:合并同类项.6.对于单项式22r π-的系数、次数分别是( ) A. -2,2 B. -2,3C. -2,2D. -2,3【答案】C 【解析】 分析】根据单项式的系数、次数的定义求解即可.【详解】解:单项式单项式22r π-的系数、次数分别是-2,2. 故选:C .【点睛】此题重点考查学生对单项式系数、次数的把握,抓住次数包含所有未知数的次数是解题关键. 7.如果12a 3xb y与–a 2y b 3同类项,则 A. x =–2,y =3 B. x =2,y =3 C. x =–2,y =–3 D. x =2,y =3【答案】B 【解析】 【分析】根据同类项的定义列出方程组,然后利用代入消元法求解即可. 【详解】∵312x ya b 与23y a b -是同类项, ∴323x y y =⎧⎨=⎩①②, ②代入①得,3x =6, 解得x =2,所以,方程组的解是23.x y =⎧⎨=⎩故选:B.【点睛】考查同类项的概念,所含字母相同并且相同字母的指数也相同的项叫做同类项. 8.下列各式中正确的是( )A. 由213132x x --=-去分母得()()221133x x -=-- B. 由 ()()221331x x ---=去括号得42391x x ---= C. 由743x x =-移项得743x x -=D. 由743x x -=-合并同类项,化系数为1得1x =- 【答案】D 【解析】 【分析】根据解一元一次方程的步骤计算,判断即可得出答案. 【详解】解:A. 由213132x x --=-去分母得()()221633x x -=--,故错误; B. 由 ()()221331x x ---=去括号得42391x x --+=,故错误; C. 由743x x =-移项得743x x -=-,故错误;D. 由743x x -=-合并同类项,化系数为1得1x =-,故正确. 故选:D .【点睛】本题考查的知识点是解一元一次方程以及整式的加减,掌握解一元一次方程的步骤是解此题的关键.9.若关于x 的方程2x+a-4=0的解是x=-2,则a=( ) A. -8 B. 0C. 2D. 8【答案】D 【解析】 【分析】将方程的解x=-2代入方程即可求得答案. 【详解】将x=-2代入方程,得-4+a-4=0, 得a=8, 故选:D.【点睛】此题考查方程的解,一个数是方程的解即可将其代入方程,由此求出方程中其他未知数的值. 10.下列等式形式运用正确的是( ) A 若22x y =,则x y =B. 若x ya a=,则x y =C. 若382x -=,则12x =- D. 若axy a =,则1xy =【答案】B 【解析】 【分析】利用等式的性质对四个选项逐一判断即可.【详解】解:A. 若22x y =,则x y =±,此选项错误;B. 若x ya a =,则x y =,此选项正确; C. 若382x -=,则163x =-,此选项错误;D. 当0a =时不成立,此选项错误. 故选:B .【点睛】本题考查的知识点是等式的性质,熟记等式的性质内容是解此题的关键.11.已知a b 、互为相反数,是绝对值最小的负整数,mn 、互为倒数,则243a b c mn ++-的值等于( ) A. 1 B. 2C. 3D. -3【答案】D 【解析】 【分析】根据相反数的定义可知0a b +=,根据倒数的定义可知1mn =,由绝对值最小的负整数得出1c =-,代入计算即可.【详解】解:由已知条件可得:0a b +=,1c =-,1mn =, ∴241433a b c mn ++-=-=-. 故选:D .【点睛】本题考查了相反数、倒数、有理数的加减运算,理解题意得出0a b +=,1c =-,1mn =,是解此题的关键.12.若2237y y ++的值为8,则2469y y +-的值是( ). A. 2 B. -17C. -7D. 7【答案】C 【解析】【详解】解:由题意知,2y 2+3y=1, 代入4y 2+6y-9得:2(2y 2+3y)-9=2×1-9=-7. 故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2y 2+3y 的值,然后利用“整体代入法”求代数式的值.二、填空题(每题3分,满分18分)13.若1260m x -+=是关于x 的一元一次方程,则m 的值为_______. 【答案】2 【解析】【详解】∵方程2x m-1+6=0是关于x 的一元一次方程, ∴m-1=1, 解得:m=2, 故答案为2.14.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________. 【答案】4.027810⨯ 【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:4 0270 0000用科学记数法表示是4.027×108. 故答案为4.027×108.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.某农户有水稻田6亩,计划每亩施化肥a kg ,有玉米田11亩,计划每亩田施化肥b kg .该农户共应购回化肥__________千克. 【答案】(611)a b + 【解析】 【分析】根据题意水稻田需化肥6a 千克,玉米田需化肥11b 千克,求和即可得出答案.【详解】解:由题意可得,农户共应购回化肥:(611)a b +千克.故答案是: (611)a b +.【点睛】本题考查的知识点是列代数式,比较基础,注意要加括号.16.代数式21a +与2a +互为相反数,则a =__________.【答案】-1【解析】【分析】根据互为相反数的性质可得2a+1+(2+a)=0,解出a 的值即可.【详解】因为代数式21a +与2a +互为相反数,所以2a+1+(2+a)=0,解得a=-1,故答案为-1.【点睛】本题考查的是相反数的意义,根据相反数的意义列式结算是本题的关键.17.定义新运算“”,规定b ab a a =+⊗,则42-=⊗__________. 【答案】12【解析】【详解】解:∵b a b a a=+⊗, ∴()2424441612-⊗=-+-=-+=-故答案为:12.18.已知关于x y ,的多项式222x axy xy +-与多项式233xy axy y --的和不含项,则的值为__________. 【答案】32-【解析】【分析】 将两个多项式相加,得出项的系数,令其为0,即可得出答案.【详解】解:222322323(23)(1+)x axy xy xy axy y x a xy a xy y +=--++--+-∵多项式222x axy xy +-与多项式233xy axy y --的和不含项,∴230a += ∴32a =-.故答案为:32-. 【点睛】本题考查的知识点是整式的加减运算和多项式的项,解题的关键是通过计算得出xy 项的系数.三、解答题:共66分.19.有理数的计算(1)713620-+-+(2)()()()231118533⎛⎫--⨯-+-⨯- ⎪⎝⎭ 【答案】(1)20;(2)12【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)先算乘方运算,再进行乘法运算,最后进行加减运算.【详解】解:(1)71362020-+-+=;(2)()()()231118531215123⎛⎫--⨯-+-⨯-=--+= ⎪⎝⎭ 【点睛】本题考查知识点是有理数的混合运算,掌握运算顺序以及运算法则是解此题的关键.20.整式的化简(1)22a a -+-(2)()22231253x xy xy x -+--+【答案】(1)2a -;(2)39xy -【解析】【分析】(1)合并同类项即可化简;(2)先去括号,再合并同类项即可.【详解】解:(1)222a a a -+-=-(2)()2222231253231106239x xy xy x x xy xy x xy -+--+=-+-+-=-【点睛】本题考查的知识点是整式的加减,掌握去括号法则以及合并同类项法则是解此题的关键. 21.解一元一次方程(1)()2179x x -=-(2)253164x x ---= 【答案】(1)7x =;(2)13x =【解析】【分析】(1)去括号,移项合并同类项,系数化为1即可;(2)方程两边同时乘以12,再去括号,移项合并同类项,系数化为1即可;【详解】解:(1)()2179x x -=-21637x x -=-642x =7x =(2)253164x x ---= 122(25)3(3)x x --=-1241093x x -+=-13x -=-13x =【点睛】本题考查的知识点是解一元一次方程,掌握解一元一次方程的一般步骤是解此题的关键. 22.先化简再求值:已知()2210m n n ++-=,求多项式()231mn mn mn ⎡⎤---⎣⎦的值. 【答案】23mn -;132-【解析】【分析】利用绝对值的非负性以及偶次方的非负性求出m ,n 的值,再将原式化简后代入求解即可.【详解】解:∵210n -=,0m n += ∴12m =-,12n = 原式23mn =- 当12m =-,12n =时原式132=-. 【点睛】本题考查的知识点是整式的化简求值,利用已知条件求出m ,n 的值是解此题的关键.23.某检修站,甲小组乘坐一辆汽车,沿东西方向的公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:km ): +8,- 2, -13, -1, +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7, +9,- 2, +8,- 6.(1)分别计算收工时,甲,乙两组各在地哪一边,分别距离地多远?(2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?【答案】(1)甲在正东方向2km 处,乙在正北方向2km 处;(2)甲:10.2L ,乙:9.6L【解析】【分析】(1)将两组的各数依次相加,结合正负数的含义即可得出结论;(2)将两组数据各数的绝对值相加,得出路程,再乘以油耗即可得出结论.详解】解:甲:()()()()82131102++-+-+-++=乙:()()()7928(6)2-+++-+++-=∴甲在正东方向2km 处乙在正北方向2km 处(2)甲:()82131100.3340.310.2L ++++⨯=⨯=乙:()792860.3320.39.6L ++++⨯=⨯=【点睛】本题考查的知识点是正负数,根据题目理解正负数所表示的含义是解此题的关键.24.一辆公交车上原来有()66a b -人,中途下去一半,又上来若干人,使车上共有乘客()106a b -人.(1)中途上来了多少乘客?(用含a b 、的式子表示)(2)当3a =,2b =时,中途上车的乘客是多少?【答案】(1)73a b -;(2)15【解析】【分析】根根据题意表示出车上原来的人数,将a ,b 的值代入计算即可.【详解】解:(1)由题意得出:()()1106(66)66732a b a b a b a b ⎡⎤-----=-⎢⎥⎣⎦, 即中途上车的人数为:73a b -;(2)当3a =,2b =时, 73732315a b -=⨯-⨯=(人)【点睛】本题考查的知识点是列代数式、代数式求值以及整式的加减,弄清题意是解此题的关键. 25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++【答案】(1)2550;(2)50505150a m +【解析】【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150a m =+【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.26.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.【答案】(1)5,3;(2)有正格数对,正格数对为()26L ,【解析】【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -= ∵,为正整数且为整数∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.。
人教版七年级上册《数学》期中考试卷及答案【可打印】
![人教版七年级上册《数学》期中考试卷及答案【可打印】](https://img.taocdn.com/s3/m/f37f328fcf2f0066f5335a8102d276a200296085.png)
人教版七年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 下列数中,最小的数是()。
A. 1B. 0C. 1D. 22. 如果 a > b,那么 a b 的结果一定()。
A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列式子中,不是同类项的是()。
A. 3xB. 4x^2C. 5xD. 6x^24. 已知 a = 3,b = 2,那么 a + b 的结果是()。
A. 1B. 1C. 5D. 55. 下列数中,是有理数的是()。
A. √2B. √3C. πD. 1/2二、判断题:每题1分,共5分1. 任何两个有理数的和一定是有理数。
()2. 任何两个整数的积一定是整数。
()3. 0 是最小的自然数。
()4. 任何数乘以0都等于0。
()5. 1 是最小的正整数。
()三、填空题:每题1分,共5分1. 如果 a = 5,那么 3a 7 的值是______。
2. 已知 |x 3| = 4,那么 x 的值是______或______。
3. 两个数的和是 15,它们的差是 5,那么这两个数分别是______和______。
4. 如果 a = 2,b = 3,那么 a 2b 的值是______。
5. 下列式子中,同类项是______和______。
四、简答题:每题2分,共10分1. 解释有理数的概念。
2. 举例说明同类项的概念。
3. 解释绝对值的概念。
4. 解释相反数的概念。
5. 解释整除的概念。
五、应用题:每题2分,共10分1. 如果一个数加上8后等于15,那么这个数是多少?2. 如果一个数乘以3后等于18,那么这个数是多少?3. 如果 |x 5| = 7,那么 x 的值是多少?4. 如果 a = 4,b = 2,那么 a + 3b 的值是多少?5. 如果 a = 3,b = 4,那么 a^2 + b^2 的值是多少?六、分析题:每题5分,共10分1. 已知 |x 2| = 3,求 x 的值,并解释解题过程。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
![人教版七年级上册期中考试数学试卷及详细答案解析(共5套)](https://img.taocdn.com/s3/m/4bc45b1fc850ad02de8041bf.png)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
人教版七年级上册《数学》期中测试卷(含答案)
![人教版七年级上册《数学》期中测试卷(含答案)](https://img.taocdn.com/s3/m/857963ccd0f34693daef5ef7ba0d4a7302766caf.png)
七年级上册《数学》期中测试卷(时间:120分钟,满分:120分)一、选择题(本大题共12小题,每小题3分,共36分.下列各题给出的四个选项中,只有一项符合题意)1.下列各题计算正确的个数是( )①(-24)÷(-8)=-3;②(+32)÷(-8)=-4;③(-45)÷(-45)=1; ④(-334)÷(-1.25)=-3. A.1B.2C.3D.4 2.(2020·江苏南通中考)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A.6.8×104B.6.8×105C.0.68×105D.0.68×106 3.下列各对单项式是同类项的是( ) A.-12x 3y 2与3x 3y 2B.-x 与yC.3与3aD.3ab 2与a 2b4.如图,四个有理数m,n,p,q 在数轴上对应的点分别为M,N,P,Q.若n+q=0,则m,n,p,q 四个有理数中,绝对值最大的一个是( )A.pB.qC.mD.n5.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m-n等于()A.2B.3C.4D.无法确定6.下列各式计算正确的是()A.6a+a=6a2B.-2a+5b=3abC.4m2n-2mn2=2mnD.3ab2-5b2a=-2ab27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3km收费7元),3km后每千米1.4元(不足1km按1km算).小明坐车x(x>3)km,应付车费()A.6元B.6x元C.(1.4x+2.8)元D.1.4x元8.下列各数:0.01,10,-6.67,-1,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为3()A.1B.2C.3D.49.若一个多项式加上3x2y-3xy2得x3+3x2y,则这个多项式是()A.x3+3xy2B.x3-3xy2C.x3-6x2y+3xy2D.x3-6x2y-3x2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a11.已知a+b=12,则代数式2a+2b-3的值是( )A.2B.-2C.-4D.-31212.如果一段钢材增加12后是6m,那么这段钢材减少30%后是( )m.A.4B.3.5C.3D.2.8二、填空题(本大题共5小题,每小题4分,共20分)13.若a,b 互为倒数,c,d 互为相反数,且e 是绝对值最小的有理数,则整式-(ab)2+2(c+d)-e 3的值为 .14.在式子xy 2,3x ,a+32,3,m,xy 2+1中,单项式有 个.15.多项式x 3y+2xy 2-y 5-12x 3是 次多项式,它的最高次项是 .16.若有理数a,b 满足|a+3|+(b-2)2=0,则a b 的值为 .17.对于有理数a,b,定义运算“*”:a*b={a 2-ab,a ≥b,a-b,a <b.例如:因为4>2,所以4*2=42-4×2=8,则(-3)*(-2)= .三、解答题(本大题共6小题,共64分)18.(每小题4分,共24分)计算:(1)-4÷23−(-23)×(-30);(2)-20+(-14)-(-18)-13;(3)-22+|5-8|+24÷(-3)×13;(4)(114-56+12)×(-12);(5)-5m2n+4mn2-2mn+6m2n+3mn;(6)2(2a-3b)-3(2b-3a).19.(8分)先化简,再求值:(1)2x+7+3x-2,其中x=2;(2)3x2y-[2xy-2(xy-32x2y+2xy)],其中x=-1,y=2.20.(8分)下表记录的是今年长江某水文站检测的某一周内的水位变化情况,这一周的上周周末的水位已达到警戒水位33m.注:正数表示水位比前一天上升,负数表示水位比前一天下降.(1)本周该水文站哪一天的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末该水文站的水位是上升了还是下降了?上升了或下降了多少米?21.(8分)某移动通信公司开设了两种通信业务:①全球通用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话);②快捷通用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q元.(1)请你分别写出P,Q与x之间的关系;(2)若某用户一个月内通话时间为120分钟,你认为选择哪种移动通信业务较合适?(3)当用户一个月内通话时间为多少分钟时采用两种通信业务所需话费相同?22.(8分)某汽车行驶时油箱中剩余油量Q(单位:kg)与行驶时间t(单位:h)的关系如下表:(1)写出用时间t(2)当t=21时,求剩余油量Q的值.2(3)根据所列式子回答,汽车行驶之前油箱中有多少千克汽油?(4)油箱中原有汽油可供汽车行驶多少小时?23.(8分)我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n·(n-1)·(n-2)·…·2·1;当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!;(2)0!;2!(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.答案:一、选择题1.B2.A3.A根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.A因为n+q=0,所以n,q两数互为相反数,所以N,Q两点的中点位置即为原点.又M,N,P,Q四个点中,点P到原点的距离最远,所以有理数p的绝对值最大.5.B设空白处图形的面积为x,则m=9-x,n=6-x,故m-n=9-6=3.6.D7.C小明坐车x(x>3)km,应付车费=起步价7元+超过3km的收费=7+1.4(x-3)=(1.4x+2.8)元.8.D因为非负整数即为正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数.9.A这个多项式为(x3+3x2y)-(3x2y-3xy2)=x3+3x2y-3x2y+3xy2=x3+3xy2.10.C a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,因为-36<-18<36,所以c<a<b.11.B12.D二、填空题×0=-1. 13.-1;根据题意,得ab=1,c+d=0,e=0,代入整式,得原式=-12+2×0-13,3,m,共3个.14.3;单项式有xy215.五;-y5.16.9;因为|a+3|≥0,(b-2)2≥0,|a+3|+(b-2)2=0,所以a+3=0,b-2=0,即a=-3,b=2, 所以a b=(-3)2=9.17.-1;因为-3<-2,所以(-3)*(-2)=-3-(-2)=-1.三、解答题18.解:(1)-4÷23−(-23)×(-30) =-4×32−23×30=-6-20=-26. (2)-20+(-14)-(-18)-13=-20-14+18-13=(-20-14-13)+18=-47+18=-29.(3)-22+|5-8|+24÷(-3)×13=-4+3+24×(-13)×13=-1-83=-113. (4)(114-56+12)×(-12) =54×(-12)-56×(-12)+12×(-12) =-15+10-6=-11.(5)-5m 2n+4mn 2-2mn+6m 2n+3mn=(-5m 2n+6m 2n)+(-2mn+3mn)+4mn 2=m 2n+mn+4mn 2.(6)2(2a-3b)-3(2b-3a)=4a-6b-6b+9a=(4a+9a)+(-6b-6b)=13a-12b.19.解:(1)2x+7+3x-2=(2x+3x)+(7-2)=5x+5.当x=2时,原式=5×2+5=15.(2)原式=3x 2y-(2xy-2xy+3x 2y-4xy)=3x 2y-2xy+2xy-3x 2y+4xy=4xy. 当x=-1,y=2时,原式=4×(-1)×2=-8.20.解:(1)周一:0.2;周二:0.2+0.8=1;周三:1-0.4=0.6;周四:0.6+0.2=0.8;周五:0.8+0.3=1.1;周六:1.1-0.2=0.9,故该水文站本周五水位最高,位于警戒水位之上.(2)由(1)中计算可知,本周周末该水文站的水位比上周周末的水位上升了,上升了0.9m.21.解:(1)P=50+0.4x,Q=0.6x.(2)当x=120时,50+0.4x=50+0.4×120=98,0.6x=0.6×120=72,因为98>72,所以某用户一个月内通话时间为120分钟时,选择快捷通较合适.(3)当P=Q,即50+0.4x=0.6x,解得x=250,即当用户一个月内通话时间为250分钟时两种通信业务所需话费相同.22.解:(1)Q=48-6t.(2)当t=212时,Q=48-6×212=33. (3)若要求汽车行驶之前油箱中的汽油量,则此时汽车处于静止状态,行驶时间t=0,当t=0时,Q=48.故汽车行驶之前油箱中有48kg 汽油.(4)由题意可知,汽车每小时耗油6kg,48÷6=8(h).故油箱中原有汽油可供汽车行驶8h.23.解:(1)4!=4×3×2×1=24.(2)0!2!=12×1=12. (3)(3+2)!-4!=5×4×3×2×1-4×3×2×1=120-24=96.(4)如当m=3,n=2时,(m+n)!=(3+2)!=120,m!+n!=3!+2!=8,因此(m+n)!≠m!+n!,故等式(m+n)!=m!+n!不恒成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列式子:22131,4,,,5,07ab bc x x a a ++-中,整式个数是( ) A. 6B. 5C. 4D. 3 2.计算23-的结果是( )A. -9B. 9C. -6D. 63.十八大期间,我国农业稳步发展,粮食生产能力达到1200亿斤,“1200亿”用科学计数法表示正确的是( )A. 31.210⨯B. 101.210⨯C. 121.210⨯D. 111.210⨯ 4.下列合并同类项的计算中,正确的是( )A. 3a 2﹣2a 2=a 2B. 3a 2﹣2a 2=1C. 3a 2﹣a 2=3D. 3a 2﹣a 2=2a 5.去括号等于a b c -+是( )A. ()a b c -+B. ()a b c --C. ()a b c +-D. ()a b c ++ 6.一个多项式与x 2﹣2x +1的和是3x ﹣2,则这个多项式为( )A. x 2﹣5x +3B. ﹣x 2+x ﹣3C. ﹣x 2+5x ﹣3D. x 2﹣5x ﹣13 7.在数轴上与3距离等于4的点表示的数是( )A. B. C. 17-或 D. 17-或 8.已知3,2x y m n -=+=,则()()y m x n +--的值是( )A. B. 1 C. D. 59.已知a +b <0,b >0,则下列结论:①a >b >0;②|a |<|b |;③ab <0;④b ﹣a >b +a ,正确的是( )A. ①②B. ②③C. ③④D. ①④10.一动点从数轴上的原点出发,沿数轴的正方向以前进5个单位,后退3个单位的程序运动,已知每秒前进或后退1个单位.设n x 表示第秒点在数轴的位置所对应的数,如4564,5,4x x x ===,则2019x 为( )A. 504B. 505C. 506D. 507二.填空题11.如果上升3米记作+3米,那么下降2米记作_________米.12.已知33m a b -与31n a b +是同类项,则n m -=___________.13.代数式2232x x -+的值为7,则2342x x --的值是__________. 14.若8米长的小棒,第1次截去一半,第二次截去剩下的一半,如此下去,则第6次后一共截去的小棒长_____米.15.已知,,a b c 为非零实数,则a ab ac bc a ab ac bc+++的可能值为__________. 三.解答题16.计算:(1)133232)(2)(8).4545+---+-( (2)13411().8432-÷⨯⨯- (3)15571().2961236-+-÷-() (4)2220191122()272()(1).343-⨯-÷⨯-+- 17.化简:(1)()()225332a b a b ---(2)()()2237427x xy x xy -+--++18.化简求值: (1)已知2,1,x y =-=-求(){}2222252342xy x y xy xy x y ⎡⎤----⎣⎦的值; (2)关于,x y 的多项式22224mx nxy x xy x y +++-++不含二次项,求6212m n --的值. 19.数学成绩好的同学,其计算的准确性一定还可以,七年级某班数学李老师很注重学生的计算过关检测,在学完《有理数》后,对全班同学进行检测过关.下表是这个班的童威同学一周内五天检测过关成绩(以85分为标准,高出部分用“+”表示,低于的部分用“-”表示) 星期 一 二 三 四 五 分数变化5+ 10+ 12- 15+ 3-(1)本周内童威同学哪天的检测成绩最高?是多少?哪天的检测成绩最低?是多少?(2)请计算这5次检测成绩的平均成绩是多少?20.有理数,,a b c 在数轴上的位置如图,化简:2.c b a b a c -++--21.一架直升机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,规定上升为正,下降为负,求:(1)这时直升机的高度是多少米?(2)直升机每上升1米耗油211341210x x -+()毫升,每下降1米耗油271188x x --()毫升(其中1x >),问这架直升机在上升和下降的过程中共耗油多少毫升?(3)若是小于92--()的最大整数,求(2)问中的值.22.历史上数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示(f 可用其它字母,但不同的字母表示不同的多项式),例如f (x )=x 2+3x -5,把x=a 时的多项式的值用f (a )来表示.例如x=-1时多项式x 2+3x -5的值记为f (-1)=(-1)2+3×(-1)-5=-7.已知:g (x )=-2x 2-3x+1,h (x )= ax 3+ x 2-x -10.(1)求g (-3)的值;(2)若h (2)=0,求g (a )的值.23.如图:在数轴上点A 表示数a,点B 表示数b,点C 表示数c,a 是多项式−2x 2−4x+1一次项系数,b 是最小的正整数,单项式−12x 2y 4的次数为c.(1)a=___,b=___,c=___;(2)若将数轴在点B处折叠,则点A与点C___重合( 填“能”或“不能”);(3)点A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,t分钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=___,BC=___(用含t的代数式表示);(4)请问:3AB−BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案与解析一.选择题1.下列式子:22131,4,,,5,07ab bcx xa a++-中,整式的个数是()A. 6B. 5C. 4D. 3 【答案】C【解析】【分析】根据整式的定义:单项式、多项式的统称,紧扣概念作出判断.【详解】解:整式有:2231,,5,07abx x+-共有4个.故选:C.【点睛】主要考查了整式的有关概念.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.注意在整式中除式不能含有字母.2.计算23-的结果是( )A. -9B. 9C. -6D. 6【答案】A【解析】【详解】-32=-9故选A.3.十八大期间,我国农业稳步发展,粮食生产能力达到1200亿斤,“1200亿”用科学计数法表示正确的是( )A. 31.210⨯ B. 101.210⨯ C. 121.210⨯ D. 111.210⨯【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.【详解】将1200亿用科学记数法表示为:111.210⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列合并同类项的计算中,正确的是( )A. 3a 2﹣2a 2=a 2B. 3a 2﹣2a 2=1C. 3a 2﹣a 2=3D. 3a 2﹣a 2=2a【答案】A【解析】【分析】合并同类项时,字母和字母的指数不变,合并的是同类项的系数,据此作答即可.【详解】解:A 、3a 2-2a 2=a 2,此选项正确;B 、3a 2-2a 2=a 2,此选项错误;C 、3a 2-a 2=2a 2,此选项错误;D 、3a 2-a 2=2a 2,此选项错误.故选A .【点睛】本题考查了合并同类项,解题的关键是掌握合并同类项的法则.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.5.去括号等于a b c -+的是( )A. ()a b c -+B. ()a b c --C. ()a b c +-D. ()a b c ++ 【答案】B【解析】【分析】把四个选项按照去括号的法则依次去括号即可.【详解】解:A 、a-(b+c )=a-b-c ,故本选项错误;B 、a-(b-c )=a-b+c ,故本选项正确C 、 a+(b-c )=a+b-c ,故本选项错误;D 、a+(b+c )=a+b+c ,故本选项错误;故选:B .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号. 6.一个多项式与x 2﹣2x +1的和是3x ﹣2,则这个多项式为( )A. x 2﹣5x +3B. ﹣x 2+x ﹣3C. ﹣x 2+5x ﹣3D. x 2﹣5x ﹣13【答案】C【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A +(x 2﹣2x +1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x +1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.7.在数轴上与3的距离等于4的点表示的数是( )A.B. C. 17-或 D. 17-或 【答案】D【解析】【分析】根据题意可以得到这两个数,一个在3的左边,一个在3的右边,从而可以解答本题.【详解】解:∵3−4=−1,3+4=7,∴在数轴上与3的距离等于4的点表示的数是−1或7.故选:D .【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.8.已知3,2x y m n -=+=,则()()y m x n +--的值是( )A.B. 1C.D. 5 【答案】A【解析】【分析】原式去括号变形后,把已知等式代入计算即可求出值.【详解】当x-y=3,m+n=2时,原式=y+m-x+n=-(x-y)+(m+n)=-3+2=-1,故选A .【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.9.已知a +b <0,b >0,则下列结论:①a >b >0;②|a |<|b |;③ab <0;④b ﹣a >b +a ,正确的是( )A. ①②B. ②③C. ③④D. ①④【答案】C【解析】【分析】由于a +b <0,b >0,依据异号两数相加的运算法则得出a <0,且|a |>|b |,据此可判断①、②,再根据乘法法则和加减运算法则可判断③、④.【详解】解:∵a +b <0,b >0,∴a <0,且|a |>|b |,故①错误;②错误;由a <0,b >0知ab <0,③正确;∵b ﹣a >0,b +a <0,∴b ﹣a >b +a ,④正确;故选C .【点睛】本题主要考查有理数的加减运算和乘法运算,解题的关键是掌握有理数的加减运算法则. 10.一动点从数轴上的原点出发,沿数轴的正方向以前进5个单位,后退3个单位的程序运动,已知每秒前进或后退1个单位.设n x 表示第秒点在数轴的位置所对应的数,如4564,5,4x x x ===,则2019x 为( )A. 504B. 505C. 506D. 507 【答案】D【解析】【分析】先解出点P 每8秒完成一个循环,解出对应的数值,再根据规律推导出答案.【详解】解:依题意得,点P 每8秒完成一组前进和后退,前8个对应的数是1、2、3、4、5、4、3、2;9∼16对应的数是3、4、5、6、7、6、5、4;∵2019=8×252+3, 故2019x =252×2+3=507. 故选:D .【点睛】此题主要考查了数轴上点对应数字的规律探索,弄清题中的基本循环规律是解本题的关键.二.填空题11.如果上升3米记作+3米,那么下降2米记作_________米.【答案】-2【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,如果上升3米记作“+3”米,那么下降2米记作-2米.故答案为-2.【点睛】此题考查了正数负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 12.已知33m a b -与31n a b +是同类项,则n m -=___________.【答案】−1【解析】【分析】同类项的定义:所含字母相同,相同字母的指数相同,据此作答即可.【详解】解:由同类项的定义得:m=3,n+1=3,解得:m=3,n=2,则n-m=2−3=−1,故答案为:−1.【点睛】本题主要考查同类项的定义,及代数式求值. 熟记同类项的定义是解决本题的关键.13.代数式2232x x -+的值为7,则2342x x --的值是__________. 【答案】−32【解析】【分析】把223x x -看作一个整体,并代入代数式进行计算即可得解.【详解】解:∵2232x x -+=7,∴223x x -=5, ∴2342x x --=21(23)2x x -−4=52−4=−32. 故答案为:−32. 【点睛】本题考查了代数式求值,是基础题,整体思想的利用是解题的关键.14.若8米长的小棒,第1次截去一半,第二次截去剩下的一半,如此下去,则第6次后一共截去的小棒长_____米. 【答案】638【解析】【分析】 第一次剩下12;第二次剩下(12)2,…,据此即可得到规律,从而判断. 【详解】解:根据题意得:8﹣8×(12)6=8﹣18=638, 则第6次后一共截去小棒长638米; 故答案为638 【点睛】此题考查了有理数的乘方,熟练掌握乘方的意义和变化规律是解本题的关键.15.已知,,a b c 为非零实数,则a ab ac bc a ab ac bc +++的可能值为__________. 【答案】-2、0、2或4【解析】【分析】分a 、b 、c 三个数都是正数,两个正数,一个正数,都是负数四种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【详解】解:①、b 、c 三个数都是正数时,0a >,0ab >,0ac >,0bc >,原式11114=+++=;②、b 、c 中有两个正数时,设为0a >,0b >,0c <,则0ab >,0ac <,0bc <,原式11110=+--=;设为0a >,0b <,0c >,则0ab <,0ac >,0bc <,原式11110=-+-=;设为0a <,0b >,0c >,则0ab <,0ac <,0bc >,原式11112=---+=-;③、b 、c 有一个正数时,设为0a >,0b <,0c <,则0ab <,0ac <,0bc >,原式11110=--+=;设为0a <,0b >,0c <,则0ab <,0ac >,0bc <,原式11112=--+-=-;设为0a <,0b <,0c >,则0ab >,0ac <,0bc <,原式11112=-+--=-;④、b 、c 三个数都是负数时,即0a <,0b <,0c <,则0ab >,0ac >,0bc >,原式11112=-+++=.综上所述,a ab ac bc a ab ac bc+++的可能值2-、0、2或4. 故答案为:-2、0、2或4.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的基础,关键是正确有序地进行分类讨论.三.解答题16.计算:(1)133232)(2)(8).4545+---+-( (2)13411().8432-÷⨯⨯- (3)15571().2961236-+-÷-() (4)2220191122()272()(1).343-⨯-÷⨯-+- 【答案】(1)−5;(2)−1;(3)−7;(4)233-【解析】【分析】(1)利用减法法则变形,再应用加法交换律和加法结合律,计算即可得到结果;(2)先进行绝对值运算,再把除法化为乘法,最后计算乘法运算;(3)先化除法为乘法,再用乘法分配律计算即可;(4)先算乘方,再算乘除,最后算加减;同级运算,从左到右;据此计算即可.【详解】解:(1)133232)(2)(8)4545+---+-(1332=32+2845451332=3+2284455=611=5------ (2)13411()8432-÷⨯⨯- 341=()8432441=()8332=991.÷⨯⨯-⨯⨯⨯-- (3)15571()2961236-+-÷-() 1557=(36)29612-+-⨯-() 1557=(36)(36)(36)(36)29612⨯--⨯-+⨯--⨯- =18+2030+21--=−7.(4)2220191122()272()(1)343-⨯-÷⨯-+-114=4()2721349-⨯-÷⨯- 144=4()271399-⨯-⨯⨯- 416=133--- 23=3-. 【点睛】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.特别注意运算符号.17.化简:(1)()()225332a b a b ---(2)()()2237427x xy x xy -+--++【答案】(1)22+3a b ;(2)273x xy -【解析】分析】(1)原式去括号合并同类项即可得到结果.(2)原式去括号合并同类项即可得到结果.【详解】解:(1)()()225332a b a b --- 22=5336+a b a b --2=2+3a b ;(2)()()2237427x xy x xy -+--++ 22=37+427x xy x xy -+--2=73x xy -.【点睛】本题考查了整式的加减,熟知整式的加减实质上就是去括号和合并同类项.注意去括号时符号的变化.18.化简求值:(1)已知2,1,x y =-=-求(){}2222252342xy x y xy xy x y ⎡⎤----⎣⎦的值; (2)关于,x y 的多项式22224mx nxy x xy x y +++-++不含二次项,求6212m n --的值. 【答案】(1)-8;(2)-2【解析】【分析】(1)先利用去括号法则和合并同类项法则化简,然后把字母的值代入进行计算可得结果;()2先合并同类项,根据多项式不含二次项得出字母的值,然后代入代数式进行计算可得结果.【详解】解:()1原式222222523424xy x y xy xy x y xy =-+-+=,当2x =-,1y =-时,原式8=-;(2)22224mx nxy x xy x y +++-++()()21224m x n xy x y =-+++++,由结果不含二次项,得到10m -=,20n +=,解得:1m =,2n =-,则6212m n --64122=+-=-.【点睛】本题主要考查了整式的化简求值和求代数式的值,关键是熟练掌握去括号及合并同类项法则. 19.数学成绩好的同学,其计算的准确性一定还可以,七年级某班数学李老师很注重学生的计算过关检测,在学完《有理数》后,对全班同学进行检测过关.下表是这个班的童威同学一周内五天检测过关成绩(以85分为标准,高出部分用“+”表示,低于的部分用“-”表示)(1)本周内童威同学哪天检测成绩最高?是多少?哪天的检测成绩最低?是多少?(2)请计算这5次检测成绩的平均成绩是多少?【答案】(1)周四的检测成绩最高,是100分,周三的检测成绩最低,是73分;(2)88分【解析】【分析】)直接利用正负数的意义,结合表格中数据,进而得出答案; ()2利用平均数求法得出答案.【详解】解:()1由表格得:童威同学周四的检测成绩最高,最高分是8515100+=分; 周三的检测成绩最低,最低分是851273-=分.()2这5次检测题平均成绩为:()18551012153885+⨯+-+-=分. 【点睛】此题主要考查了正数与负数,正确理解正负数的意义是解题关键.20.有理数,,a b c 在数轴上的位置如图,化简:2.c b a b a c -++--【答案】a-2b-c【解析】【分析】根据a 、b 、c 在数轴上的位置,进行绝对值的化简,然后合并.【详解】解:由图可得a <0<b <c 且|a|>|b|,原式=(c-b)-(a+b)+2(a-c)=c-b-a-b+2a-2c=a-2b-c.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.21.一架直升机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,规定上升为正,下降为负,求:(1)这时直升机的高度是多少米?(2)直升机每上升1米耗油211341210x x -+()毫升,每下降1米耗油271188x x --()毫升(其中1x >),问这架直升机在上升和下降的过程中共耗油多少毫升?(3)若是小于92--()的最大整数,求(2)问中的值.【答案】(1)210米;(2)()286016080x x --升;(3)13040【解析】【分析】 (1)先求出直升机上升、下降的米数,再根据上升为正,下降为负求解;()2分别求出直升机上升、下降的耗油量,相加即得一共的耗油量;()3小于92⎛⎫-- ⎪⎝⎭的最大整数为4,将4x =代入()2中得到的式子即可求解. 【详解】解:()1直升机上升了20601200(⨯=米),直升机下降了121201440(⨯=米),则这时直升机的高度是45012001440210(+-=米).()2直升机上升的过程中耗油量为:2211112003410034121010x x x x ⎛⎫⎛⎫⨯-+=-+ ⎪ ⎪⎝⎭⎝⎭(升), 直升机下降的过程中耗油量为:2271114405601888x x x x ⎛⎫⎛⎫⨯--=-- ⎪ ⎪⎝⎭⎝⎭(升), 故这架直升机在上升和下降的过程中共耗油为:()222111003456086016080108x x x x x x ⎛⎫⎛⎫-++--=-- ⎪ ⎪⎝⎭⎝⎭(升). ()3x 是小于92⎛⎫-- ⎪⎝⎭的最大整数, 4x ∴=.则当4x =时,2286016080860416048013040x x --=⨯-⨯-=.【点睛】本题考查正数与负数、列代数式及求代数式的值.理解题意是解题的关键.22.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示(f 可用其它字母,但不同的字母表示不同的多项式),例如f (x )=x 2+3x -5,把x=a 时的多项式的值用f (a )来表示.例如x=-1时多项式x 2+3x -5的值记为f (-1)=(-1)2+3×(-1)-5=-7.已知:g (x )=-2x 2-3x+1,h (x )= ax 3+ x 2-x -10.(1)求g (-3)的值;(2)若h (2)=0,求g (a )的值.【答案】(1)-8;(2)-4【解析】【分析】(1)根据举的例子把x=-3代入求出即可;(2)把x=2代入h (x )=ax 3+2x 2-x-12得出一个关于a 的方程,求出a 的值,把a 的值代入g (x )=-2x 2-3x+1即可.【详解】解:(1)g (-3)=-2x 2-3x+1=-2×(-3)2-3×(-3)+1=-2×9-3×(-3)+1=-18+9+1=-8;(2)∵h (2)=0,∴a×23+22-2-10=0,解得:8a=8,即a=1∴g (a )=-2×(1)2-3×1+1 =-2-3+1=-4.考点:整式的代入求值,乘方23.如图:在数轴上点A 表示数a,点B 表示数b,点C 表示数c,a 是多项式−2x 2−4x+1的一次项系数,b 是最小的正整数,单项式−12x 2y 4的次数为c.(1)a=___,b=___,c=___;(2)若将数轴在点B 处折叠,则点A 与点C___重合( 填“能”或“不能”);(3)点A,B,C 开始在数轴上运动,若点C 以每秒1个单位长度速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运功,t 分钟过后,若点A 与点B 之间的距离表示为AB,点B 与点C 之间的距离表示为BC,则AB=___,BC=___(用含t 的代数式表示);(4)请问:3AB −BC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-4, 1, 6;(2)能;(3)t+5,3t+5;(4)10【解析】【分析】(1)根据多项式与单项式的概念即可求出答案.(2)只需要判断A 、C 是否关于B 对称即可.(3)根据A 、B 、C 三点运动的方向即可求出答案.(4)将(3)问中的AB 与BC 的表达式代入即可判断.【详解】(1)∵多项式−2x 2−4x+1的一次项系数是-4,最小的正整数是1,单项式−12x 2y 4的次数为6, ∴a=-4,b=1,c=6;(2)能重合,由于-4与6中点为1,故将数轴在点B 处折叠,则点A 与点C 能重合;(3)由于点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,∴t 秒钟后,AB=3t+1-(-4)-2t=t+5;由于点C以每秒1个单位长度的速度向右运动,∴t秒钟后,BC=2t+6-1+t=3t+5;(4)3AB-BC=3(t+5)-3t-5=3t+15-3t-5=10,∴3AB-BC的值不会随着时间t的变化而改变.【点睛】本题考查实数与数轴,涉及整式的概念,追及问题,列代数式等问题,综合程度较高,属于难题.。