圆弧、弦、圆周角的关系

合集下载

圆的确定圆心角圆周角弧弦弦心距之间的关系

圆的确定圆心角圆周角弧弦弦心距之间的关系

儒洋教育学科教师辅导讲义(A)锐角三角形 (B)钝角三角形 (C)直角三角形 (D)等腰三角形4、已知。

0的半径为4 cm, A为线段OP的中点,当0P=6 cm时,点A及。

0的位置关系是( )A、A在。

0内B、A在©0 上C、A在。

0外D、不能确定5、如图所示,有一个破残的圆片,现要制作一个及原圆片同样大小的圆形零件。

请你根据所学知识,设计两种不同的方案确定这个圆的圆心及半径。

第二部分:圆心角、圆周角、弧、弦、弦心距之间的关系一、知识点梳理1、及圆有关的角——圆心角、圆周角圆心角:顶点在圆心的角。

圆周角:顶点在圆上,并且两边都和圆相交的角。

(1)图中的圆心角__________ ;圆周角 _____________(2)____________________________________ 如图,已知ZA0B=50度,则ZACB= 度;2、及圆有关的边一一弦、直径、弦心距、弧(1)直径是一条特殊的弦,并且是圆中最大的弦。

(2)弦心距:从圆心到弦的距离。

(3)优弧、劣弧;同弧、等弧3、圆心角及圆周角的关系.2、在同圆中,弦长为a,b的两弦所对的劣弧长分别为c,d,如果c € d,那么()A、a > bB、 a = bC、 a , bD、 a < b3•圆内接/ABC中,AB=AC,圆心到BC的距离为3cm,圆的半径为7cm,则腰长AB= ____________4、四边形ABCD内接于圆,AB,BC,CD,DA的弧长之比为5: 8: 3: 2则ZABC= __________5、如图,在中,ZB=10°,ZC=25°,则ZA二_______________6、如图,在中,AB为直径,ZACB的平分线交于D,则ZABD二______________ °(第5题)(第6题)(第7题)7、如图,已知AB为的直径,AC为弦,0D丄AC于D, OD = 2cm,求BC的长。

弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

*如果它们中间有一组量不相等,那么其它各组量也分别不等。

圆周角定理

圆周角定理

学科教师辅导讲义学员编号:年级:初三课时数:3学员姓名:辅导科目:数学学科教师:授课类型T(同步知识主题) C (专题方法主题)T (学法与能力主题)授课日期及时段教学内容弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.基本方法归纳:正确理解和使用圆心角、弧、弦三者的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.注意问题归纳:这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.基本方法归纳:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.注意问题归纳:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”---圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.圆周角的概念:【例1】如图,∠BAC是圆周角的是()变式:1、如图,图中哪些角是圆周角,哪些不是圆周角?请说明理由。

圆周角定理:【例2-1】如图,AB是⊙O的直径,∠AOC=110°,则∠D等于()【例2-2】已知圆中一条弦的长度等于它的半径,求此弦所对圆周角的度数。

九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等考点一:圆心角,弧,弦的位置关系二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF . 分析:“弧AE=弧BF”←“∠______=∠______” 把证弧相等转化为证________________. 证明:例2 如图,点O 是∠BPD 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD . 分析:把证明弦相等转化为证明_弦心距_相等.例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 分析: (1)∠ACO=∠______, 而∠______=∠______. (2)在Rt ⊿______中,利用勾股定理列方程求例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE . 分析:把证BE=DE 转化为证∠____=∠____. CDBF E ONMDCB AOEAO DC DA1.如图1,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()2.如图2,BE是半径为6的圆D的14圆周,C点是BE上的任意一点,△ABD 是等边三角形,则四边形ABCD的周长P的取值范围是()2、已知AB^、CD^是同圆的两段弧,且AB^=2CD^,则弦AB与2CD之间的关系为()A、AB=2CDB、AB<2CDC、AB>2CDD、不能确定4、下列语句中正确的是()A、相等的圆心角所对的弧相等B、平分弦的直径垂直于弦C、长度相等的两条弧是等弧D、经过圆心的每一条直线都是圆的对称轴5、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的()6、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()7、如图3,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是()图1图2图38.如图所示,⊙O半径为2,弦,A为弧BD的中点,E为弦AC的中点,且在BD上,则四边形ABCD的面积为9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD^上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.1.如图1,∠A 是⊙O 的圆周角,且∠A =35°,则∠OBC=_____.2.如图2,圆心角∠AOB=100°,则∠ACB= .3:如图3,AB 是⊙O 的直径,点C D E ,,都在⊙O 上,若C D E ==∠∠∠,则A B +=∠∠ º. 4:如图4,⊙O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .图2 图14.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.考点2:圆周角定理1、如图,△ABC 中,∠A=60°,BC 为定长,以BC 为直径的⊙O 分别交AB ,AC 于点D ,E .连接DE ,已知DE=EC .下列结论:①BC=2DE ;②BD+CE=2DE .其中一定正确的有( )2.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为( )3.如图AB 是⊙O 的直径, AC^所对的圆心角为60°, BE^所对的圆心角为20°,且∠AFC=∠BFD ,∠AGD=∠BGE ,则∠FDG 的度数为( )4. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )1题图 2题 3题4题5:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.CBO A O AB C 图3 B C D E O EF C DG O 图46:已知⊙O 中,30C ∠=,2cm AB =,则⊙O 的半径为cm .7.已知:如图等边ABC △内接于⊙O ,点P 是劣弧BC ⋂上的一点(端点除外),延长BP 至D ,使BD AP =,连结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?8.如图AB 是圆O 的直径,C 是圆O 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长9.如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB=40°,∠APD=65°. (1)求∠B 的大小;(2)已知圆心0到BD 的距离为3,求AD 的长._D_B _A_O OAA O C PB 图① AOC PB 图②10.11.如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是12.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD 于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.13.5.圆内接多边形:一个多边形的顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆6.圆内接四边形:圆内接四边形的对角互补如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°7.确定圆的条件:不在同一直线上的三个点确定一个圆.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块 C.第③块D.第④块8.三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.这个三角形叫做圆的内接三角形。

【教案】 圆周角与圆心角、弧的关系

【教案】 圆周角与圆心角、弧的关系

圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数就是圆心角的度数。

解题思路:1.已知圆周角,可以利用圆周角求出圆心角2.已知圆心角,可以利用圆心角求出圆周角3.已知直径和弧度,可以求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,并且两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个基本特征:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个基本特征:练习:判断下列各图形中的是不是圆周角,并说明理由.【2一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去寻找圆心O与∠BAC的关系本题有三种情况:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●如果圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●如果圆心O在∠BAC的内部或外部,那么只要作出直径AD,将这个角转化为上述情况的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

(2).一条弧所对的圆周角等于这条弧所对的圆心角的一半。

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

第14讲圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。

直径等于半径的两倍。

②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB.(2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如 ACB .小于半圆的弧叫做劣弧,如AB 。

(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。

③弦心距:(1)圆心到弦的距离叫做弦心距。

(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。

四者有一个相等,则其他三个都相等。

圆心到弦的垂线段的长度称为这条弦的弦心距。

④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。

⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

如图一,半径为r1与半径为r2的⊙O叫做同心圆。

(图一)(2)等圆:圆心不同,半径相等的两个圆叫做等圆。

圆心角、弧、弦、弦心距之间的关系--知识讲解(基础)

圆心角、弧、弦、弦心距之间的关系--知识讲解(基础)

圆心角、弧、弦、弦心距之间的关系--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.【典型例题】类型一、圆心角、弧、弦之间的关系及应用1.如图,在⊙O中,,求∠A的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.举一反三:【变式】如图所示,中弦AB=CD,求证:AD=BC.【答案】证法1:∵AB=CD,∴(在同圆中,相等的弦所对的弧(同为优弧或同为劣弧)也相等) ∴∴AD=BC(在同圆中,相等的弧所对的弦也相等)证法2:如图,连接OA,OD,OB,OC,∵AB=CD,∴(在同圆中,相等的弦所对的圆心角相等)∴∴AD=BC(在同圆中,相等的圆心角所对的弦也相等)类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】判断圆周角必须同时满足两条:①顶点在圆上;②两边都和圆相交.【答案与解析】(a)∠1顶点在⊙O内,两边与圆相交,所以∠1不是圆周角;(b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD是圆周角.(d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角;(e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3.如图所示,AB为⊙O的直径,动点P在⊙O的下半圆,定点Q在⊙O的上半圆,设∠POA=x°,∠PQB=y°,当P点在下半圆移动时,试求y与x之间的函数关系式.【答案与解析】解法1:如图所示,∵AB为⊙O的直径,∠AOP=x°∴∠POB=180°-x°=(180-x)°又解法2:如图所示,连结AQ,则又∵AB是⊙O的直径,∴∠AQB=90°【总结升华】考查圆周角定理的应用.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】连结AD,易证∠ADB=90°,即AD是等腰三角形△ABC的高.再由三线合一的性质得出BD与CD的大小关系.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.举一反三:【变式】如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()A. 60°B. 100°C. 80°D. 130°【答案】C.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

高中圆形知识点总结

高中圆形知识点总结

高中圆形知识点总结一、圆的基本概念1. 圆的定义:平面上到定点的距离等于定长的点的全体构成的集合称为圆。

2. 圆的要素:圆心、半径、直径、弧、弦、切线、切点等。

3. 周长和面积:圆的周长公式C=2πr,面积公式S=πr^2。

4. 圆的相关概念:扇形、弓形、圆心角、外接角、内切角等。

二、圆的相关定理1. 同圆弧定理:同圆的两条弧所对圆心角相等,弧所对圆心角不相等则弧长不等。

2. 弧长和弧度:弧长公式L=αr,弧度公式α=π/180°。

3. 圆心角与弧度的关系:圆心角的度数除以360°再乘以2π即为对应的弧度。

4. 弦心角定理:弦心角等于弦所对的圆周角的一半。

5. 弦的性质:相等的弧所对的外弧相等、相等的弦所对的内切角相等。

6. 切线定理:有一个点P在圆外,点A、B在圆上,PA、PB是两个切线,则PA=PB。

7. 切线长度的求解:切线长的平方等于弦长乘以弦长所对的外切角的正切值。

三、圆在几何问题中的应用1. 圆的平移和旋转:圆的平移不改变半径和圆心角,圆的旋转角度也不改变半径和圆心角。

2. 圆的相交问题:相交弧的性质以及相交弧与弦、切线的关系。

3. 圆的相似问题:相似条件下相似圆的半径、圆周角、面积的关系。

4. 圆与多边形的结合:圆内接和外接多边形、多边形的内角和外角与圆周角的关系。

四、圆的三角函数1. 弧度制下的三角函数:弧度制下的正弦、余弦、正切、余切的概念和性质。

2. 圆周上三角函数的应用:求角度和弧度、求三角函数值、求角度与弧度的转换等。

综上所述,高中圆形知识点主要涉及圆的基本概念、相关定理、在几何问题中的应用以及圆的三角函数等内容。

掌握这些知识可以帮助学生更好地理解和应用圆的性质,解决各种与圆相关的几何问题。

同时,圆形知识也是数学学科中重要的一部分,对于学生发展数学思维和提高数学素养具有重要意义。

弧弦圆心角之间的关系

弧弦圆心角之间的关系

弧弦圆心角之间的关系
圆心角、弧、弦之间的关系如下:
1、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

2、在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

连接圆上任意两点的线段叫做弦(chord),在同一个圆内最长的弦是直径。

顶点在圆心上的角叫做圆心角。

圆上任意两点间的部分叫做圆弧,简称弧(arc),以“⌒”表示。

相关计算公式:(R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长)
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R 为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。

第08讲 圆心角与圆周角

第08讲 圆心角与圆周角

第08讲圆心角与圆周角(核心考点讲与练)【知识梳理】一.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.二.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.三.相交弦定理(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB、CD交于点P,则P A•PB=PC•PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB是直径,CD垂直AB于点P,则PC2=P A•PB(相交弦定理推论).【核心考点精讲】一.圆心角、弧、弦的关系(共4小题)1.(2021•江北区校级开学)在⊙O中,如果=2.那么弦AB与弦CD之间的关系是()A.AB=2CD B.AB>2CD C.AB<2CD D.无法确定【分析】根据圆周角、弧、弦的关系,三角形的三边关系即可得到结论.【解答】解:取的中点E,连接AE,BE,则=,∵=2,∴==,∴CD=AE=BE,∵AE+BE>AB,∴AB<2CD.故选:C.【点评】本题考查了圆周角、弧、弦的关系,三角形的三边关系,熟练掌握圆周角、弧、弦的关系,三角形的三边关系是解题的关键.2.(2020秋•靖江市期中)已知弦AB的长等于⊙O的半径,弦AB所对的圆周角是30或150度.【分析】在圆中,由半径和弦组成的三角形是等腰三角形,又因为AB的长等于半径,所以由弦和半径组成的三角形是等边三角形,根据等边三角形的性质,弦所对的圆心角为60°,所以弦所对的圆周角为30°或150°.【解答】解:如图示,AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,∴∠ADB=150°.故弦AB所对的圆周角是30或150度.故答案为:30或150.【点评】本题极易漏解,需注意圆中的一条弦对着两个圆周角,它们是互补关系.3.(2021•广州模拟)如图,AB,CD为⊙O内两条相交的弦,交点为E,且AB=CD,求证:AD∥BC.【分析】根据圆心角、弧、弦的关系和平行线的判定定理即可得到结论.【解答】解:∵AB=CD,∴=,∴﹣=﹣,即=,∴∠A=∠B,∴AD∥BC.【点评】本题考查了圆心角、弧、弦的关系,平行线的判定,熟练掌握圆心角、弧、弦的关系是解题的关键.4.(2022春•永嘉县月考)如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.【分析】(1)连接OE、CE,如图,利用=2得到∠COE=2∠AOE=60°,则可判定△OCE为等边三角形,接着证明DE⊥OC,然后根据等边三角形的性质得到结论;(2)先利用勾股定理计算出DE=,然后在Rt△EFD中利用勾股定理计算EF.【解答】(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了等边三角形的判定与性质.二.圆周角定理(共5小题)5.(2022•浦江县模拟)已知:如图,OA是⊙O的半径,若∠BAO=27°,则圆周角∠BDA 的度数是()A.63°B.60°C.58°D.54°【分析】连接OB,可先求出∠AOB的度数,进而根据圆周角定理可得∠BDA的度数.【解答】解:连接OB,∵OA=OB,∠BAO=27°,∴∠BOA=180°﹣2∠BAO=180°﹣54°=126°,∴∠BDA=∠BOA=63°,故选:A.【点评】本题考查圆的性质定理,熟练掌握圆周角定理是解题关键.6.(2021秋•嘉兴期末)如图,AB是⊙O的直径,点C在圆上,若∠ABC=70°,则∠BAC 的度数为()A.70°B.60°C.40°D.20°【分析】由AB是⊙•O的直径,根据直径所对的圆周角是直角,即可求得∠C的度数,又由∠ABC=70°,利用直角三角形中两锐角互余,即可求得∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵∠ABC=70°,∴∠BAC=90°﹣70°=20°,故选:D.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握直径所对的圆周角是直角定理的应用,注意数形结合思想的应用.7.(2022•柯桥区一模)如图,在⊙O中,AD是直径,∠ABC=35°,则∠CAD等于()A.75°B.65°C.55°D.45°【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ADC的度数,又由AD是⊙O的直径,根据直径所对的圆周角是直角,即可求得答案.【解答】解:∵∠ABC=35°,∴∠ADC=∠ABC=35°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°﹣∠ADC=55°.故选:C.【点评】此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意数形结合思想的应用.8.(2022•文成县一模)如图,点A,B,C都在⊙O上,∠AOC:∠BOC=2:5,OA∥BC,则∠ABC=20°.【分析】根据圆周角定理及三角形内角和定理求解即可.【解答】解:∵OA=OB,∴∠A=∠OBA,∵OA∥BC,∴∠A=∠ABC,∵∠AOC=2∠ABC,∠AOC:∠BOC=2:5,∴∠BOC=5∠ABC,∴∠AOB=7∠ABC,在△AOB中,∠A+∠AOB+∠OBA=180°,∴9∠ABC=180°,∴∠ABC=20°,故答案为:20.【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.9.(2021秋•嵊州市期末)已知:如图,在△ABC中,AB=AC,以腰AB为直径作⊙O,分别交BC,AC于点D,E,连结OD,DE.(1)求证:BD=DC.(2)若∠BAC=50°,求∠ODE的度数.【分析】(1)利用等腰三角形的性质得到∠B=∠ODB,∠B=∠C,再判断OD∥AC,然后利用平行线分线段成比例得到BD=DC;(2)利用三角形内角和计算出∠B=∠C=65°,则∠ODB=∠B=65°,再利用圆内接四边形的性质得到∠EDC=∠A=50°,然后利用平角定义可计算出∠ODE的度数.【解答】(1)证明:∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∴==1,∴BD=DC;(2)∵AB=AC,∴∠B=∠C=(180°﹣∠A)=×(180°﹣50°)=65°,∴∠ODB=∠B=65°,∵∠EDC=∠A=50°,∴∠ODE=180°﹣∠ODB﹣∠EDC=180°﹣65°﹣50°=65°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.三.相交弦定理(共2小题)10.(2021秋•东阳市月考)已知四边形ABCD两条对角线相交于点E,AB=AC=AD,AE =3,EC=1,则BE•DE的值为()A.6B.7C.12D.16【分析】由题意可知AB=AC=AD,点D、C、B在以点A为圆心的圆周上运动,由相交弦定理可得,BE•DE=CE•EF即可求出答案.【解答】解:∵AB=AC=AD,∴点D、C、B在以点A为圆心的圆周上运动,AE=3,EC=1,∴AC=AF=AE+CE=3+1=4,EF=AE+AF=3+4=7,由相交弦定理可得,BE•DE=CE•EF=1×7=7,故选:B.【点评】本题考查了相交弦定理,根据圆心和半径构建圆是解题的关键.11.(2021秋•余姚市期中)如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP =4,则CD长为()A.16B.24C.12D.不能确定【分析】由相交线定理可得出AP•BP=CP•DP,再根据AP=6,BP=8,CP=4,可得出PD的长,从而得出CD即可.【解答】解:∵AP•BP=CP•DP,∴PD=,∵AP=6,BP=8,CP=4,∴PD=12,∴CD=PC+PD=12+4=16.故选:A.【点评】本题考查了相交线定理,圆内两条弦相交,被交点分成的两条线段的积相等.【过关检测】一.选择题(共10小题)1.(2021秋•西城区校级期中)如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么所对的圆心角的大小是()A.60°B.75°C.80°D.90°【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到圆心,进而解答即可.【解答】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.连接AQ,CQ,在△APQ与△CQN中,∴△APQ≌△CQN(SAS),∴∠AQP=∠CQN,∠P AQ=∠CQN∵∠AQP+∠P AQ=90°,∴∠AQP+∠CQN=90°,∴∠AQC=90°,即所对的圆心角的大小是90°,故选:D.【点评】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.(2022•富阳区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.则下列结论错误的是()A.∠ADC=∠AGDB.若∠ADC=∠GAD,则=2C.若=,则△ADG是等腰三角形D.若=,则△AGF是等腰三角形【分析】根据圆周角定理求解判断即可.【解答】解:∵AB是⊙O的直径,CD⊥AB,∴=,∴=,∴∠ADC=∠AGD,故A正确,不符合题意;∵∠ADC=∠GAD,∴=,∴=,∵=2,∴=2,故B正确,不符合题意;若=,∴=,∵=,∴=,∴AD=DG,∴△ADG是等腰三角形,故C正确,不符合题意;由=,不能推出△AGF是等腰三角形,故D错误,符合题意;故选:D.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.3.(2022•舟山二模)如图,BC是⊙O的直径,AD⊥BC,∠ABC=25°,则弧CD的度数()A.50°B.25°C.100°D.65°【分析】连接OA,根据圆周角定理可得∠AOC的度数,从而求出的度数,然后再利用垂径定理可得=,即可解答.【解答】解:连接OA,∵∠ABC=25°,∴∠AOC=2∠ABC=50°,∴的度数为50°,∴BC是⊙O的直径,AD⊥BC,∴=,∴弧CD的度数为50°,故选:A.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,垂径定理,熟练掌握圆周角定理,以及垂径定理是解题的关键.4.(2022•西湖区一模)如图,已知AB是⊙O的直径,弦CD与AB交于点E,设∠ABC =α,∠ABD=β,∠AEC=γ,则()A.α+β﹣γ=90°B.β+γ﹣α=90°C.α+γ﹣β=90°D.α+β+γ=180°【分析】连接AC,根据圆周角定理及三角形外角性质求解即可.【解答】解:连接AC,∵AB是⊙O的直径,∴∠ACB=∠BCD+∠ACD=90°,∵∠ACD=∠ABD=β,∴∠BCD=90°﹣β,∵∠AEC=∠ABC+∠BCD=γ,∠ABC=α,∴γ=α+90°﹣β,即γ+β﹣α=90°,故选:B.【点评】此题考查了圆周角定理,熟记“直径所对的圆周角等于90°”是解题的关键.5.(1999•山西)如图,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的长为两根的一元二次方程是()A.x2﹣8x﹣15=0B.x2﹣8x+15=0C.x2+8x﹣15=0D.x2+8x+15=0【分析】如果设AP=a,PB=b;根据相交弦定理:AP×PB=DP×PC;可知ab=15,又根据a+b=AB=8;根据一元二次方程根与系数的关系,可判断谁是正确的.【解答】解:设AP=a,PB=b;则根据相交弦定理可得:AP×PB=DP×PC,∴ab=15,又知:a+b=AB=8;∴根据一元二次方程根与系数的关系可得方程为:x2﹣8x+15=0;故选:B.【点评】本题考查的知识点是相交弦定理和一元二次方程根与系数的关系.6.(2022•鹿城区校级二模)如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°【分析】根据平行线的性质得到∠ADE=46°,进而得到的度数,再用180°减去的度数即可得到答案.【解答】解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.【点评】本题考查了平行线的性质和圆周角定理,解题的关键是先求出的度数.7.(2022•黄岩区一模)如图,△ABC是等边三角形,点A,点B在数轴上,点A表示数﹣2,点B表示数2,以AB为直径作圆交边AC于点P,以B为圆心,BP为半径作弧交数轴于点Q,则点Q在数轴上表示的数为()A.B.2C.2﹣2D.2﹣2【分析】根据题意可得AB=4,利用等边三角形的性质可得∠BAC=60°,由AB是⊙O的直径可得∠APB=90°,由三角形内角和定理可得∠ABP=30°,由此可得AP=2,根据勾股定理可以求得BP的长,进而可以得到点Q表示的数.【解答】解:由题意可得AB=4,∵△ABC是等边三角形,∴∠BAC=60°,∵AB是⊙O的直径,∴∠APB=90°,∴∠ABP=30°,∴AP=AB=2,在Rt△APB中,AB=4,AP=2,∴PB====2,∵BP为半径作弧交数轴于点Q,∴BQ=PB=2.∴点Q表示数为2﹣2.故选:C.【点评】本题主要考查实数与数轴、圆周角定理、勾股定理等知识,解答本题的关键是熟练掌握圆周角定理和勾股定理的运用.8.(2022•永康市模拟)如图,线段AB是⊙O的直径,点C在圆上,∠AOC=60°,点P 是线段AB延长线上的一点,连结PC,则∠APC的度数不可能是()A.30°B.25°C.10°D.5°【分析】连接CB,根据一条弧所对的圆周角等于它所对的圆心角的一半,求出∠ABC的度数,再利用三角形的外角即可解答.【解答】解:连接CB,∵∠AOC=60°,∴∠ABC=∠AOC=30°,∵∠ABC是△PBC的一个外角,∴∠ABC>∠APC,∴∠APC的度数不可能是30°,故选:A.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.(2022•东坡区校级模拟)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10B.13C.15D.16【分析】连接OF,首先证明AC=DF=12,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,=,∵点D是弧AC的中点,∴=,∴=,∴AC=DF=12,∴EF=DF=6,设OA=OF=x,在Rt△OEF中,则有x2=62+(x﹣3)2,解得x=,∴AB=2x=15,故选:C.【点评】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.(2021秋•杭州期末)如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长为()A.6B.7C.8D.9【分析】根据圆周角定理,可证∠C=∠B,又由AD=BD,可证∠B=∠DAB,即得∠DAP =∠C,可证△DAP∽△DCA,得到AD:CD=DP:AD,代值计算即可求CD的长.【解答】解:连接AC,由圆周角定理知,∠C=∠B,∵AD=BD∴∠B=∠DAB,∴∠DAP=∠C∴△DAP∽△DCA,∴AD:CD=DP:AD,得AD2=DP•CD=CD•(CD﹣PC),把AD=4,PC=6代入得,CD=8.故选:C.【点评】本题考查了圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题.二.填空题(共4小题)11.(2021秋•亭湖区期末)如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是51°.【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故答案为:51°.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.12.(2014秋•柯城区校级期中)如图,在⊙O中,弦AB,CD相交于点E,AE=2cm,BE =6cm,DE=3cm,则CE=4cm;学以致用:点P是直径为10的⊙Q中一点且PQ=2,过点P作弦HK,则线段PH与线段PK的积等于21.【分析】根据相交弦定理得AE•BE=CE•DE,然后把AE=2,BE=6,DE=3代入即可计算出CE的长;如图过P点的直径为MN,先计算出PM=QM﹣PQ=3,PN=QN+PQ=7,然后根据相交弦定理进行计算.【解答】解:∵AE•BE=CE•DE,∴2×6=3×CE,∴CE=4;如图,过P点的直径为MN,∵PQ=2,∴PM=QM﹣PQ=5﹣2=3,PN=QN+PQ=5+2=7,∵PH•PK=PM•PN,∴PH•PK=3×7=21.故答案为4;21.【点评】本题考查了相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.13.(2021秋•定海区期末)一块直角三角板的30°角的顶点A落在圆O上,两边分别交圆O于B、C两点,则弧BC的度数为60°.【分析】利用圆周角定理,圆心角、弧、弦的知识解决问题即可.【解答】解:连接OB、OC,∵∠A=30°,又∵∠BOC=2∠A,∴∠BOC=60°,∴弧BC的度数为60°,故答案为:60°.【点评】本题考查圆周角定理,圆心角、弧、弦的关系,解题的关键是求得圆心角的度数.14.(2021秋•温州期末)如图,点A在半圆O上,BC是直径,.若AB=2,则BC的长为.【分析】连接OA,由圆心角,弦,弧的关系可得OA⊥BC,结合等腰直角三角形的性质可求解OB的长,进而可求解BC的长.【解答】解:连接OA,∵,BC是直径,∴OA⊥BC,∵OA=OB,AB=2,∴OA=OB=,∴BC=2OA=.故答案为:.【点评】本题主要考查圆周角,弦,弧的关系,等腰直角三角形的性质,求解OA,OB的长是解题的关键.三.解答题(共6小题)15.(2021秋•淳安县期中)如图,在⊙O中,弦AD=BC,连接AB、CD.求证:AB=CD.【分析】在⊙O中,由弦AD=BC,可得=,根据等式的性质可得+=+,即=,进而得出AB=CD.【解答】解:在⊙O中,∵AD=BC,∴=,∴+=+,即=,∴AB=CD.【点评】本题考查圆心角、弧、弦的关系以及等式的性质,掌握圆心角、弧、弦的关系以及等式的性质是正确解答的关键.16.(2021秋•上城区期中)如图,AD、BC是⊙O的两条弦,且AB=CD,求证:AD=BC.【分析】根据弦和弧的关系,由AB=CD可得,进而得到=,即可证明AD =BC.【解答】证明:∵AB=CD,∴,∴,∴=,∴AD=BC.【点评】本题考查了圆心角、弧、弦之间的关系,掌握圆心角,弧、弦之间的关系定理是解题的关键.17.(2021秋•长兴县期中)如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.求证:MB=MD.【分析】欲证明BM=DM,只要证明=即可.【解答】证明:∵M是的中点,∴=,∵AB=CD,∴=,∴+=+,即=,∴MB=MD.【点评】本题考查了圆心角、弧、弦之间的关系,能熟记圆心角、弧、弦之间的关系是解此题的关键.18.(2021秋•诸暨市期末)如图,O为半圆的圆心,C、D为半圆上的两点,连接CD、BD、AD,CD=BD.连接AC并延长,与BD的延长线相交于点E.(1)求证:CD=DE;(2)若AC=6,半径OB=5,求BD的长.【分析】(1)连接BC,由CD=BD,AB为直径可得∠E=∠ECD,进而求解.(2)由勾股定理求出BC的值,再由△AEB为等腰三角形可得BD=BE,再通过勾股定理求解.【解答】(1)证明:∵AB为直径,∴∠ADB=∠ADE=90°,∵CD=BD,∴∠EAD=∠DAB,∴∠E=∠ABE,连接BC,则∠DCB=∠DBC,∠ACB=∠ECB=90°,∵∠EBC+∠E=90°,∠DCB+∠ECD=90°,∴∠E=∠ECD,∴CD=DE.(2)解:在Rt△ACB中,由勾股定理得BC===8,∵∠E=∠ABE,∴△AEB为等腰三角形,∴AB=AE,BD=DE,∴CE=AE﹣AC=AB﹣AC=10﹣6=4,在Rt△BCE中,由勾股定理得BE===4,∴BD=BE=2.【点评】本题考查圆与三角形的结合,解题关键是掌握圆周角定理,掌握解直角三角形的方法.19.(2021秋•滨江区期末)如图,在⊙O中,AB=CD,弦AB与CD相交于点M.(1)求证:=.(2)连接AC,AD,若AD是⊙O的直径,求证:∠BAC+2∠BAD=90°.【分析】(1)利用圆心角,弧,弦之间的关系解决问题即可;(2)利用圆周角定理,三角形内角和定理,三角形的外角的性质解决问题.【解答】(1)证明:如图,∵AB=CD,∴=,∴+=+,∴=.(2)证明:连接AD.∵=,∴∠ADC=∠BAD,∴∠AMC=∠MAD+∠MDA=2∠BAD,∵AD是直径,∴∠ACD=90°,∴∠CAB+∠AMC=90°,∴∠CAB+2∠BAD=90°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2001•温州)⊙O的两条弦AB,CD交于点P,已知AP=4,BP=6,CP=3,求CD 的长.【分析】求CD,已知了CP的长,关键是求出PD的长.已知了AP,BP的长,可根据相交弦定理来求出PD的长,进而可求出CD的长.【解答】解:∵圆O的弦AB,CD相交于P,∴AP•PB=CP•PD,∵AP=4,BP=6,CP=3,∴PD=AP•PB÷CP=4×6÷3=8,∴CD=CP+PD=3+8=11.即:CD的长是11.【点评】本题主要考查的是相交弦定理的应用,根据相交弦定理求出PD的长是解题的关键.。

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版【本讲教育信息】一、教学内容:弧、弦、圆心角、圆周角之间的关系 1. 圆心角、圆周角的概念. 2. 弧、弦、圆心角之间的关系. 3. 圆周角定理及推论.二、知识要点:1. 弧、弦、圆心角(1)我们把顶点在圆心的角叫做圆心角. (2)弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.如图所示,(1)若∠AOB =∠COD ,则︵AB =︵CD ,AB =CD ;(2)若︵AB =︵CD ,则∠AOB =∠COD ,AB =CD ;(3)若AB =CD ,则∠AOB =∠COD ,︵AB =︵CD.OABCD2. 圆周角(1)顶点在圆上,并且两边与圆都相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.③②①(3)推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三、重点难点:本节重点是圆心角、弦、弧之间的相等关系及圆周角定理. 难点是从圆的旋转不变性出发,得到圆心角、弦、弧之间的相等关系以及圆周角定理的证明.【典型例题】例1. 在⊙O 中,如图所示,∠AOB =∠DOC ,试说明:(1)︵DB =︵AC ; (2)BD =AC.B分析:(1)∵∠DOC =∠AOB ,∴︵DC +︵BC =︵AB +︵BC ,∴︵BD =︵AC. (2)∵在同圆或等圆中,相等的弧所对的弦相等,∴BD =AC.解:(1)∵∠DOC =∠AOB ,∴︵DC =︵AB , ∴︵DC +︵BC =︵AB +︵BC ,即︵BD =︵AC.(2)由(1)得︵BD =︵AC ,∴BD =AC.例2. 如图所示,C 是︵AB 的中点,与∠ADC 相等的角的个数是( ) A. 7个 B. 3个 C. 2个 D. 1个分析:由同弧或等弧所对的圆周角相等知,∠ADC =∠ABC =∠CAB =∠CDB ,故与∠ADC 相等的角共有3个.解:B评析:同弧或等弧所对的圆周角相等常用来证明两角相等;或进行角的转换,将一个圆周角转换为同弧所对的其他圆周角,从而达到题目中的要求.例3. 如图所示,BC 为半圆O 的直径,G 是半圆上异于B 、C 的点,A 是︵BG 的中点,AD ⊥BC 于点D ,BG 交AD 于点E ,请说明AE =BE.分析:在圆中,有关直径的问题常常需要添加辅助线,以便利用直径所对的圆周角是直角的性质,因此,欲说明AE 与BE 相等,可转化为说明∠BAD =∠ABE ,圆周角∠ABE 所对的弧为︵AG ,连结AB 、AC 即可解决问题.C解:连结AB 、AC. ∵︵AB =︵AG ,∴∠ABE =∠ACB. 又∵AD ⊥BC ,∴∠ABD +∠BAE =90°.∵BC 为直径,∴∠BAC =90°,∴∠ABD +∠BCA =90°, ∴∠BCA =∠BAE. ∴∠BAE =∠ABG , ∴AE =BE.例4. 如图所示,在⊙O 中,∠AOC =150°,求∠ABC 、∠ADC 、∠EBC 的度数,并判断∠ABC 和∠ADC 、∠EBC 和∠ADC 的度数关系.分析:解题的关键是分清同弧所对的圆心角和圆周角,如劣弧AC 所对的圆心角是∠AOC ,所对的圆周角是∠ABC ,优弧ABC 所对的圆心角是大于平角的∠α,所对的圆周角是∠ADC.解:∵∠AOC =150°,∴∠ABC =12∠AOC =75°.∵∠α=360°-∠AOC =360°-150°=210°,∴∠ADC =12∠α=105°,∠EBC =180°-∠ABC =180°-75°=105°.∵∠ABC +∠ADC =75°+105°=180°,∠EBC =∠ADC =105°, ∴∠ABC 和∠ADC 互补,∠EBC 和∠ADC 相等. 评析:理解圆周角的概念,分清同弧所对的圆心角和圆周角是熟练运用圆周角性质解题的前提.例5. 如图所示,AB 、CD 是⊙O 的弦,∠A =∠C. 求证:AB =CD.分析:此题的证明方法很多,由于AB 和CD 在圆中,且为弦,可证明AB 和CD 所对的圆心角相等或弧相等,也可直接或间接利用全等证明AB 和CD 相等. 等等.解法一:如图(1)所示,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.∴AB =2AE ,CD =2CF ,∠AEO =∠CFO =90°. 又∵∠A =∠C ,OA =OC , ∴△AOE ≌△COF ,∴AE =CF. ∴AB =CD.(1)解法二:如图(2)所示,连结OB 、OD.∵OA =OB =OC =OD ,∴∠A =∠B ,∠C =∠D. ∵∠A =∠C ,∴∠B =∠D. ∴△OAB ≌△OCD ,∴AB =CD.(2)(3)解法三:如图(3)所示,连结AC. ∵OA =OC ,∴∠1=∠3.又∵∠BAO =∠DCO ,∴∠2=∠4. ∴︵BC =︵AD.∴︵BC +︵BD =︵AD +︵BD ,即︵AB =︵CD , ∴AB =CD.例6. AB 、BC 、CA 是⊙O 的三条弦,O 到AB 的距离OE 等于12AB ,求∠C 的度数.分析:∠C 可能为一个钝角,也可能为一个锐角,要分类画图、分析和解答.BB m解:如图(1)所示,连结AO 、BO.因为OE ⊥AB ,所以EB =AE =12AB.又OE =12AB ,所以EB =OE =AE.所以∠EBO =∠EOB =∠EOA =∠EAO =45°.所以∠C =12∠AOB =12(∠AOE +∠EOB )=12×90°=45°.如图(2)所示,由(1)得∠AOB =90°,所以优弧A m B 所对的圆心角是270°,所以∠C =135°.即∠C 的度数为45°或135°.评析:图(1)中,△ABC 为锐角三角形,圆心在△ABC 内部;图(2)中,△ABC 为钝角三角形,圆心O 在△ABC 外部,两种情形都符合题意,所以本题应有两解.【方法总结】1. 圆不仅是轴对称图形和中心对称图形,实际上,圆绕圆心旋转任意一个角度α,都能与原来的图形重合,这样就把圆和其他的中心对称图形区别开来,即圆不仅是中心对称图形,而且还突破了中心对称图形旋转180°后才能与原来图形重合的局限性,得出圆所特有的性质:圆绕圆心旋转任意一个角度,都能与原来的图形重合,这叫做圆的旋转不变性. 利用这一性质可以推出圆的一些其他性质.2. 在利用圆心角、弧、弦的关系定理解题时,我们应注意:①作圆心到弦的垂线是圆中一种常见的作辅助线的方法;②由圆心到弦的垂线、弧、圆心角的相等来证明弦相等是证明线段相等的一条重要途径.3. 圆周角定理及其推论在证明和计算中应用非常广泛,它是证明角相等、线(弦)相等、弧相等的重要依据,尤其是其推论为在圆中确定直角、构成垂直关系创造了条件,它是圆中的一个很重要的性质,要熟练掌握. 同时它也是证明弦为直径的常用方法,若图中有直径,往往构造直径所对的圆周角形成直角,这也是圆中重要的辅助线.【预习导学案】(点和圆的位置关系)一、预习前知1. 圆可以看作是到__________的距离等于__________的点的集合,也就是说圆上的点到圆心的距离都等于__________.2. 圆的内部可以看作是到__________的距离小于半径的点的集合.3. 圆的外部可以看作是到__________的距离大于半径的点的集合.二、预习导学1. ⊙O 的半径r =5cm ,圆心O 到直线的距离OD =3cm . 点A 、B 、C 在直线l 上,若AD =23cm ,BD =4cm ,CD =5cm . 则点A 在⊙O__________,点B 在⊙O__________,点C 在⊙O__________.2. 下列条件中,可以画一个圆,并且只可以画一个圆的条件是( ) A. 已知圆心 B. 已知半径 C. 已知三点 D. 过直线上两点和直线外一点3. 三角形外接圆的圆心是( ) A. 三内角平分线的交点 B. 三边垂直平分线的交点 C. 三中线的交点 D. 三高线的交点4. 用反证法证明:“在△ABC 中,至少有两个内角是锐角”时,第一步假设__________成立.反思:(1)点和圆有哪些位置关系?(2)经过不在同一直线上的三点画圆的时候,如何确定圆心?(3)反证法的基本思路和一般步骤是怎样的?【模拟试题】(答题时间:50分钟)一、选择题1. 一条弦分圆周为5∶7,这条弦所对的两个圆周角分别为( )A. 150°,210°B. 75°,105°C. 60°,120°D. 120°,240°2. 已知AC 为⊙O 的直径,弦AB =10cm ,∠BAC =30°,那么⊙O 的半径为( )A. 5cmB. 52cmC. 1033cmD. 2033cm3. 如图所示,⊙O 的弦AB 、CD 相交于点E ,已知∠ECB =60°,∠AED =65°,那么,ADE的度数为( )A. 40°B. 45°C. 55°D. 65°*4. 如图所示,劣弧︵AE 所对的圆心角为40°,则∠B +∠D 等于( ) A. 320° B. 160° C. 300° D. 260°D5. 如图所示,AB 为⊙O 的直径,∠ACD =15°,则∠BAD 的度数为( ) A. 75° B. 72° C. 70° D. 65°6. 如图所示,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数为( ) A. 80° B. 100° C. 120°D. 130°**7. 已知⊙O 的半径为6cm ,⊙O 的一条弦AB 的长为63cm ,则弦AB 所对的圆周角是( ) A. 30° B. 60° C. 30°或150° D. 60°或120°二、填空题1. 如图所示,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA ,CE ⊥OB ,CD =CE ,则AC 与CB 弧长的大小关系是__________.2. 如图所示,点A 、B 、C 、E 都在圆周上,AE 平分∠BAC 交BC 于点D ,则图中相等的圆周角是__________.3. 如图所示,AB 是⊙O 的直径,︵BC =︵BD ,∠A =30°,则∠BOD =__________.AB4. 如图所示,已知⊙O 的半径为2,圆周角∠ABC =30°,则弦AC 的长是__________.5. 如图所示,AB 是半圆O 的直径,∠BAC =40°,D 是︵AC 上任意一点,那么∠D 的度数是__________.A**6. 如图所示,A 、B 、C 、D 、E 是⊙O 上顺次五点,且AB =BC =CD ,如果∠BAD =50°,那么∠AED =__________.B三、解答题1. 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F. (1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?︵AB 与︵CD 的大小关系?为什么?∠AOB 与∠COD 呢?BD2. 如图所示,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD =CE ,BE 与CE 的大小有什么关系?为什么?*3. 如图所示,AB 为⊙O 的直径,AC 为弦,P 为AC 延长线上一点,且AC =PC. PB 的延长线交⊙O 于D. 求证:AC =DC.P*4. 如图所示,已知A 、B 、C 、F 、G 是⊙O 上的五点,AF 交BC 于点D ,AG 交BC 于点E ,且BD =CE ,∠1=∠2. 求证:AB =AC.试题答案一、选择题1. B2. C3. C4. B5. A6. D7. D二、填空题 1. 相等2. ∠ABC =∠AEC ,∠ACB =∠AEB ,∠BAE =∠CAE =∠BCE =∠CBE3. 60°4. 25. 130°6. 75°三、解答题1.(1)如果∠AOB =∠COD ,那么OE =OF ,理由是:因为∠AOB =∠COD ,所以AB =CD. 因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD ,所以AE =CF. 又因为OA =OC ,所以R t △OAE≌R t △OCF. 所以OE =OF. (2)如果OE =OF ,那么AB =CD ,︵AB =︵CD ,∠AOB =∠COD ,理由是:因为OA =OC ,OE =OF ,所以R t △OAE ≌R t △OCF. 所以AE =CF ,又因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD. 所以AB =2AE ,CD =2CF. 所以AB =CD. 所以︵AB =︵CD ,∠AOB =∠COD.2. BE =CE. 理由:∵AB 、DE 为⊙O 的两条相交的直径,∴∠AOD =∠BOE ,∴BE =AD ,又∵AD =CE ,∴BE =CE.3. 连结AD ,∵AB 是⊙O 的直径,∴∠ADP =90°,∵AC =CP ,∴CD =12AP. ∴CD =AC =12AP.∴AC =DC.4.∵∠1=∠2,∴⌒BF =⌒CG ,∴BF =CG ,⌒BG =⌒CF ,∴∠FBC =∠GCE. 又BD =CE ,∴△BFD ≌△CGE (SAS ),∴∠F =∠G. ∴⌒AB =⌒AC ,∴AB =AC.。

初中圆周角定理

初中圆周角定理

初中圆周角定理圆周角定理是中学数学中非常有重要的定理之一,它是由欧拉和塔利·布拉斯发现的,被广泛应用于日常生活中和许多学科中,特别是在数学和物理中。

下面我们来详细了解一下圆周角定理。

一、圆周角的定义在一个圆形中,圆心与圆上任意两个点所构成的角称为圆周角。

圆周角的大小是按照它所对应的圆弧长来计算的。

当圆周角的度数等于360°时,它就成为了一个完整的圆周。

1.圆周角等于半圆角:一个圆的直径所对应的半圆角是90 °。

因此,圆周角的度数显然是180°。

2.圆周角的大小只取决于圆弧的长度:在一个圆中,对于任意给定的圆弧,其所对应的圆周角的大小都是唯一确定的。

这就意味着,一旦我们知道了圆周角所对应的圆弧的长度,我们就能够准确地计算出圆周角的大小。

3.在同一条弦上的圆周角相等:当只考虑圆弧时,同一条弦上的圆周角大小是相等的。

4.在相等的圆弧所对应的圆周角也是相等的:如果两个圆弧的长度相等,那么所对应的圆周角大小也是相等的。

三、如何计算圆周角的大小在许多情况下需要计算圆周角的大小,下面我们来介绍一些实用的方法:1.使用弧度制:我们可以把圆周角大小表达成弧度制,其中1弧度对应的是圆弧的长度等于半径的弧长。

因此,我们可以利用圆弧长度和半径的关系简单地计算出弧度数。

2.使用角度制:如果需要在角度制下计算圆周角的大小,我们可以利用公式:圆周角的大小 = 圆弧的长度× 180°/πr。

其中,π是圆周率,r是圆的半径。

3.用正弦、余弦和正切函数来计算:如果我们知道圆周角的一个角度和半径的大小,我们可以使用三角函数来计算圆周角的大小。

我们可以使用下列公式来计算正弦、余弦和正切函数值:sinθ= a/r,cosθ=b/r,tanθ=a/b,其中,a和b是圆周角的两条边的长度,而r是圆的半径。

四、应用圆周角定理在许多应用中都有很大的作用,以下是一些典型的应用:1.在工程学中,圆周角定理有助于计算圆形结构中的挠曲和变形。

四周量的关系

四周量的关系

如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂 足,E是弧BC的中点, 求证:∠OAE=∠EAD.(写出两种以上的证明方法)
如图,△ABC是圆O的内接三角形,且AB≠AC,∠ABC和∠ACB 的平分线,分别交圆O于点D,E,且BD=CE,则∠A等于( )
如图,在△ABC中,∠ACB=90°,∠B=36°,以C为圆心, CA为半径的圆交AB于点D,交BC于点E.求弧AD、DE的度 数.
如图,在⊙O中,∠ACB=∠BDC=60°,AC=2 3 cm. (1)求∠BAC的度数;(2)求⊙O的周长
已知AB是半径为1的圆O的一条弦,且AB=a<1, 以AB为一边在圆O内作正△ABC,点D为圆O上不同于点 A的一点,且DB=AB=a,DC的延长线交圆O于点E,则 AE的长为( )
如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心 O作OD⊥BC交弧BC于点D,连接DC,则∠DCB的度数为 ( )度.
四组量的关系
1、四组量关系
2、圆周角定理及推论
四组量关系:
在同圆或等圆中,在圆心角、圆周角、弦、弧这四组量中,如 果其中有一组量相等,那么其余三组量也相等(知一推三) 注意:其中“等弦对等圆周角”,需是弦的同侧的圆周角
圆周角定理: (1)半圆(或直径)所对的圆周角是直角 (2)90°圆周角所对的弦是直径 确定圆心的方法: (1)弦的垂直平分线过圆心 (2)90°圆周角所对的弦过圆心
如图,圆O的半径OD⊥AB于点C,连接AO并延长交圆O 于点E,连接EC,若AB=8,CD=2,则EC的长________
如图,⊙O中的弦AB=CD,求证:AD=BC
如图所示,以平行边形ABCD的顶点A为圆心,AB为半径作 圆,作AD,BC于E,F,延长BA交⊙A于G,求证:GE=EF

Q9 第9讲 弧、弦、角的关系(学生卷)【B4版】

Q9 第9讲  弧、弦、角的关系(学生卷)【B4版】

第九讲弧、弦、角的关系本课是在学习了圆的半径、直径的基础上,对圆的弦、弧、圆心角等概念以及圆的对称性进行研究,用推理论证的方法研究圆周角与圆心角关系。

它在与圆有关推理、论证和计算中应用广泛,是本章重点内容之一。

★〓知识纵横〓★一、圆心角、弧、弦、弦心距之间的关系1、圆的旋转不变性:把圆绕着圆心旋转角度,都与原来的图形重合,我们把这种性质称为圆的。

则圆是以圆心为对称中心的中心对称图形。

2、圆心角:顶点在的角。

3、弦心距:从圆心到的距离叫作弦心距,弦心距可以说成是圆心到弦的垂线段的长度。

4、圆心角、弧、弦、弦心距之间的关系(即四量定理):在中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个、、或中有一组量相等,那么它们所对应的其余各组量都分别相等.5、1的弧:把顶点在圆心的周角等分成360份时,每1份的圆心角是1的角;把整个圆也被分成360份,我们把每一份这样的弧叫作的弧。

6、圆心角度数定理:圆心角的度数和它所对的弧的度数。

二、圆周角及其相关定理1、圆周角:顶点在圆上,两边和圆相交的角叫圆周角。

注意:圆周角必须具备两个特征:①顶点在圆周上;②角的两边都和圆相交。

如图:2、圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半。

圆周角定理的证明:(添加以圆周角的顶点为端点的直径为辅助线分类讨论)因为在⊙O中,同一弧所对的圆周角和圆心角的位置关系有三种情况:(1)心在圆周角的“一边上”(如图⑴)(2)圆心在圆周角的“内部”(如图⑵)(3)圆心在圆周角的“外部”(如图⑶)3、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等;推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。

★〓考点例题指导〓★考点一:圆心角、弧、弦、弦心距之间的关系的基本理解【例1】判断题:(1)相等的圆心角所对弦相等()(2)相等的弦所对的弧相等()(3)相等弦的弦心距相等()(4)同圆或等圆中,两弦相等,所对弧也相等 ( )【例2】如图,AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠= 。

最新中考数学:圆周角弧弦的关系

最新中考数学:圆周角弧弦的关系

圆周角、弧、弦的关系例1.如图,过⊙O的直径AB上两点M,N,分别作弦CD,EF,若CD∥EF,AC=BF.求证:(1)弧BEC=弧ADF;(2)AM=BN.例2.已知:如图,在⊙O中,弦AB的长是半径OA的3倍,C为弧AB的中点.AB、OC相交于P点,求证:四边形OACB是菱形.例3.如图,AB为半圆的直径,点C、D在半圆上.(2)若点C、D在半圆上运动,并保持弧CD的长度不变,(点C、D不与点A、B 重合).试比较∠DAB和∠ABC的大小.例4.已知:如图,AB、CD是⊙O的两条弦,AB=CD.求证:∠OBA=∠ODC.演练方阵A档(巩固专练)1.(2011•巴中)下列说法中,正确的有()①两边及一内角相等的两个三角形全等;②角是轴对称图形,对称轴是这个角的平分线;③在同圆或等圆中,同弧或等弧所对的圆心角相等;2.(2013•厦门)如图所示,在⊙O中,,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°3.(2008•庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是()A.∠COE=∠DOE B.C E=DE C.O E=BE D.4.(2005•茂名)下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等.其中是真命题的是()A.①②B.②③C.①③D.①②③5.(2013•奉贤区一模)在两个圆中有两条相等的弦,则下列说法正确的是()A.这两条弦所对的弦心距相等B.这两条弦所对的圆心角相等C.这两条弦所对的弧相等D.这两条弦都被垂直于弦的半径平分6.如图,⊙O中,如果=2,那么()A.A B=AC B.A B=AC C.A B<2AC D.A B>2AC7.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC的度数为()A.30°B.40°C.50°D.60°8.(2013•太仓市二模)如图,直尺ABCD的一边与量角器的零刻度线重合,若从量角器的中心O引射线OF经过刻度120°,交AD交于点E,则∠DEF=_________°.9.(2013•南京二模)如图,点A1、A2、A3、A4、A5在⊙O上,且====,B、C分别是A1A2、A2A3上两点,A1B=A2C,A5B 与A1C相交于点D,则∠A5DC的度数为_________.10.如图,AC是⊙O的直径,AB=AC,AB交⊙O于E,BC交⊙O于D,∠A=44°,则的度数是_________度.B档(提升精练)11.如图,AB是半圆的直径,O是圆心,=2,则∠ABC=_________度.12.如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为_________.13.已知半径为5的⊙O中,弦AB=5,弦AC=5,则∠BAC的度数是_________.14.如图,⊙O上B、D两点位于弦AC的两侧,,若∠D=62°,则∠AOB=_________.15.如图,PO是直径所在的直线,且PO平分∠BPD,OE垂直AB,OF垂直CD,则:①AB=CD;②弧AB等于弧CD;③PO=PE;④弧BG等于弧DG;⑤PB=PD;其中结论正确的是_________(填序号)16.如图是两个半圆,点O为大半圆的圆心,AB平行于半圆的直径且是大半圆的弦且与小半圆相切,且AB=24,则图中阴影部分的面积是_________.17.如图,CD是半圆的直径,O为圆心,E是半圆上一点,且∠EOD=93°,A是DC延长线上一点,AE与半圆相交于点B,如果AB=OC,则∠EAD=_________°,∠EOB=_________°,∠ODE=_________.18.(2010•潍坊)如图,AB是⊙O的直径,C、D是⊙O上的两点,且AC=CD.(1)求证:OC∥BD;(2)若BC将四边形OBDC分成面积相等的两个三角形,试确定四边形OBDC的形状.19.(2008•天津)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2;(思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.)(Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.20.(2004•泉州)如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.(1)求证:AC平分∠DAB;(2)若AC=8,AD:BC=5:3,试求⊙O的半径.C档(跨越导练)21.(2001•宁夏)用三种方法证明:如图,已知在⊙O中,半径OA⊥OB,C是OB延长线上一点,AC交⊙O于D,求证:弧AD的度数是∠C的2倍.22.(2007•天河区一模)如图,AB为半圆的直径,点C、D在半圆上.(1)若,求∠DAB和∠ABC的大小;(2)若点C、D在半圆上运动,并保持弧CD的长度不变,(点C、D不与点A、B重合).试比较∠DAB和∠ABC的大小.23.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD.(1)求证:AC=BD(2)若OF⊥CD于F,OG⊥AB于G,问:四边形OFEG是何特殊四边形?并说明理由.24.小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙0中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB 组成⊙0的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,PA.PB组成⊙0的一条折弦,若C是优弧AB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.25.已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.求证:DE=BF.26.如图,已知⊙O的两条半径OA与OB互相垂直,C为上的一点,且AB2+OB2=BC2,求∠OAC的度数.27.如图,四边形ABCD中,AB∥CD,AD=DC=DB=p,BC=q.求对角线AC的长.28.如图,已知圆内接△ABC中,AB>AC,D为的中点,DE⊥AB于E,求证:BD2﹣AD2=AB•AC.29.如图,在☉O中,AB是直径,C、D是圆上两点,使得AD=BC.求证:AC=BD.30.如图,AB为⊙O的直径,弦CD与AB的延长线交于点P,且DP=OB,若∠P=29°,求弧AC的度数.圆周角弧弦的关系参考答案典题探究例1.证明:(1)连接OC、OF,∴OC=OF,OA=OB.∵AC=BF,∴△COA≌△FOB.∴∠CAO=∠OBF,∠ACO=∠BFO.∴AC∥BF.连接CF,则∠BFC=∠ACF,∴弧BEC=弧ADF.(2)∵AC∥BF,∴∠BFC=∠ACF.∵CD∥EF,∴∠EFC=∠DCF.∴∠ACM=∠BFN.又CD∥EF,∴∠CMA=∠BNF.∵AC=BF,∴△ACM≌△BFN.∴AM=BN.例2.例3.例4.证明:过点O分别作OE⊥AB于点E,OF⊥CD于点F.∵AB=CD,∴OE=OF.又∵BO=DO,∴Rt△BOE≌Rt△DOF(HL),∴∠OBA=∠ODC.演练方阵1.解:①因为SSA不能判定三角形全等,故本项错误;②角是轴对称图形,对称轴是这个角的平分线所在的直线,故本项错误;③在同圆或等圆中,同弧或等弧所对的圆心角相等,故本项正确;④无限不循环小数是无理数.此说法遗漏了不循环这个条件,故本项错误.故选A.2.解:∵在⊙O中,,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形内角和定理).故选B.3.解:由垂径定理可知B、D均成立;由圆心角、弧之间的关系可得A也成立.不一定成立的是OE=BE.故选C.4.解:正确的是①②.必须是同圆或等圆中,相等圆心角所对的弧相等,因而③是错误的.故选A.5.解:A、这两条弦所对的弦心距不一定相等,原说法错误,故本选项错误;B、这两条弦所对的圆心角不一定相等,原说法错误,故本选项错误;C、这两条弦所对的弧不一定相等,原说法错误,故本选项错误;D、这两条弦都被垂直于弦的半径平分(垂径定理),原说法正确,故本选项正确;故选D.6.解:取弧AB的中等D,连接AD,DB,∵=2,∴AD=BD=AC,在△ADB中由三角形的三边关系可知AD+BD>AB,∴2AC>AB,即AB<2AC,故选C.7.解:∵∠A=50°,OA=OB,∴∠OBA=∠OAB=50°,∴∠AOB=180°﹣50°﹣50°=80°,∵点C是的中点,OC过O,∴AD=BD,∵OA=OB,∴∠BOC=∠AOB=40°,故选B.8.解:由已知量角器的一条刻度线OF的读数为120°,即∠BOF=120°,∴∠COF=180°﹣∠BOF=60°,∵AD∥BC,∴∠DEF=∠COF=60°,故答案为:60.9.解:∵====,∴每段弧的度数是:=72°,则的度数是:3×72=216°,∴∠A5A1A2=108°.∵在△A1A5B和△A2A1C中,,∴△A1A5B≌△A2A1C(SAS),∴∠A1A5B=∠A2A1C,∴∠A5DC=∠A1A5D+∠A5A1D=∠A5A1D+∠A2A1C=∠A5A1A2=108°.故答案是:108°.10.解:∵AB=AC,∠A=44°∴∠ABC=(180°﹣44°)÷2=68°又∵AC是⊙O的直径∴∠AEC=90°∴∠ECD=90°﹣68°=22°∴的度数为44°.故填44°.B档(提升精练)11.解:∵AB是半圆的直径,O是圆心,∴∠AOB=180°;又∵=2,∴2∠AOC=∠BOC,∴∠BOC=120°;∵OB=OC(⊙O的半径),∴∠OBC=∠OCB(等边对等角);∴∠BOC+∠OBC+∠OCB=2∠ABC+∠COB=180°(三角形内角和定理),∴∠ABC=30°.故答案是:30°.12.解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.解:如图,连接OC,OA,OB.∵OC=OA=AC=5,∴△OAC是等边三角形,∴CAO=60°,∵OA=OB=5,AB=5,∴OA2+OB2=50=AB2,∴△OAB是等腰直角三角形,∠OAB=45°,点C的位置有两种情况,如左图时,∠BAC=∠CAO+∠OAB=60°+45°=105°;如右图时,∠BAC=∠CAO﹣∠OAB=60°﹣45°=15°.14.解:连接OC.∵∠D=∠AOC(同弧所对的圆周角是所对的圆心角的一半);又∵(已知),∴∠AOB=∠BOC(等弧所对的圆心角相等);∴∠AOB=∠D=62°.故答案是:62°.15.解:PO平分∠BPD,OE垂直AB,OF垂直CD,则OE=OF,即弦AB,CD的弦心距相等,因而AB=CD,弧AB等于弧CD,则弧EG等于弧DG,则弧BG等于弧DG;故①、②、④正确;易证△PEO≌△PFO,则PE=PF,根据AB=CD,得到BE=DF,则PB=PD,故⑤正确.16.解:将小圆向右平移,使两圆变成同心圆,如图,连OB,过O作OC⊥AB于C点,则AC=BC=12,∵AB是大半圆的弦且与小半圆相切,∴OC为小圆的半径,∴S阴影部分=S大半圆﹣S小半圆=π•OB2﹣π•OC2=π(OB2﹣OC2)=πBC2=72π.故答案为72π.17.解:设∠A=x,∵AB=OC,∴∠BOA=x,∴∠EBO=2x,(Ⅱ)解:关系式MN2=AM2+BN2仍然成立.(7分)证明:∵将△ACM沿直线CE对折,得△GCM,连GN,∴△GCM≌△ACM.(8分)∴CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM,又∵CA=CB,得CG=CB.∵∠GCN=∠GCM+∠ECF=∠GCM+45°∴∠BCN=∠ACB﹣∠ACN=90°﹣(∠ECF﹣∠ACM)=45°+∠ACM得∠GCN=∠BCN.(8分)又∵CN=CN,∴△CGN≌△CBN.∴GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°﹣∠CAB=135°,∴∠MGN=∠CGM﹣∠CGN=135°﹣45°=90°,∴在Rt△MGN中,由勾股定理,∴MN2=GM2+GN2,即MN2=AM2+BN2.(9分)20.(1)证明:∵OC∥AB∴∠OCA=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠BAC即AC平分∠DAB;(2)解:∵AC平分∠DAB,∴弧CD=弧BC∴CD=BC又AD:BC=5:3∴AD:CD=5:3∵AD是圆的直径,∴∠ACD=90°根据勾股定理,得AD:CD:AC=5:3:4所以AD=10,即圆的半径是5.11.解:∵AB是半圆的直径,O是圆心,∴∠AOB=180°;又∵=2,∴2∠AOC=∠BOC,∴∠BOC=120°;∵OB=OC(⊙O的半径),∴∠OBC=∠OCB(等边对等角);∴∠BOC+∠OBC+∠OCB=2∠ABC+∠COB=180°(三角形内角和定理),∴∠ABC=30°.故答案是:30°.12.解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.解:如图,连接OC,OA,OB.∵OC=OA=AC=5,∴△OAC是等边三角形,∴CAO=60°,∵OA=OB=5,AB=5,∴OA2+OB2=50=AB2,∴△OAB是等腰直角三角形,∠OAB=45°,点C的位置有两种情况,如左图时,∠BAC=∠CAO+∠OAB=60°+45°=105°;如右图时,∠BAC=∠CAO﹣∠OAB=60°﹣45°=15°.14.解:连接OC.∵∠D=∠AOC(同弧所对的圆周角是所对的圆心角的一半);又∵(已知),∴∠AOB=∠BOC(等弧所对的圆心角相等);∴∠AOB=∠D=62°.故答案是:62°.15.解:PO平分∠BPD,OE垂直AB,OF垂直CD,则OE=OF,即弦AB,CD的弦心距相等,因而AB=CD,弧AB等于弧CD,则弧EG等于弧DG,则弧BG等于弧DG;故①、②、④正确;易证△PEO≌△PFO,则PE=PF,根据AB=CD,得到BE=DF,则PB=PD,故⑤正确.16.解:将小圆向右平移,使两圆变成同心圆,如图,连OB,过O作OC⊥AB于C点,则AC=BC=12,∵AB是大半圆的弦且与小半圆相切,∴OC为小圆的半径,∴S阴影部分=S大半圆﹣S小半圆=π•OB2﹣π•OC2=π(OB2﹣OC2)=πBC2=72π.故答案为72π.17.解:设∠A=x,∵AB=OC,∴∠BOA=x,∴∠EBO=2x,而OB=OE,∴∠AEO=2x,∴∠EOD=∠A+∠AEO,而∠EOD=93°,∴x+2x=93°,∴x=31°,∴∠EOB=180°﹣4x=180°﹣124°=56°,∴∠ODE=(180°﹣93°)÷2=43.5°.故答案为31°,56°,43.5°.18.(1)证明:∵AC=CD,∴弧AC与弧CD相等,∴∠ABC=∠CBD,又∵OC=OB(⊙O的半径),∴∠OCB=∠OBC,∴∠OCB=∠CBD,∴OC∥BD;(2)解:∵OC∥BD,不妨设平行线OC与BD间的距离为h,又S△OBC=OC×h,S△DBC=BD×h,因为BC将四边形OBDC分成面积相等的两个三角形,即S△OBC=S△DBC,∴OC=BD,∴四边形OBDC为平行四边形,又∵OC=OB,∴四边形OBDC为菱形.19.(Ⅰ)证明:∵将△ACM沿直线CE对折,得△DCM,连DN,∴△DCM≌△ACM(1分)∴CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A又∵CA=CB,∴CD=CB(2分),∴∠DCN=∠ECF﹣∠DCM=45°﹣∠DCM∠BCN=∠ACB﹣∠ECF﹣∠ACM=90°﹣45°﹣∠ACM=45°﹣∠ACM∴∠DCN=∠BCN (3分)又∵CN=CN,∴△CDN≌△CBN.(4分)∴DN=BN,∠CDN=∠B.∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.(5分)∴在Rt△MDN中,由勾股定理∴MN2=DM2+DN2,即MN2=AM2+BN2.(6分)(Ⅱ)解:关系式MN2=AM2+BN2仍然成立.(7分)证明:∵将△ACM沿直线CE对折,得△GCM,连GN,∴△GCM≌△ACM.(8分)∴CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM,又∵CA=CB,得CG=CB.∵∠GCN=∠GCM+∠ECF=∠GCM+45°∴∠BCN=∠ACB﹣∠ACN=90°﹣(∠ECF﹣∠ACM)=45°+∠ACM得∠GCN=∠BCN.(8分)又∵CN=CN,∴△CGN≌△CBN.∴GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°﹣∠CAB=135°,∴∠MGN=∠CGM﹣∠CGN=135°﹣45°=90°,∴在Rt△MGN中,由勾股定理,∴MN2=GM2+GN2,即MN2=AM2+BN2.(9分)20.(1)证明:∵OC∥AB∴∠OCA=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠BACC档(跨越导练)22.解:(1)∵∴∠BOC=3∠AOD,∠COD=2∠AOD(2分)∵∠BOC+∠COD+∠AOD=180°∴∠AOD=30°,∠BOC=90°,∠COD=60°(4分)∴∠DAB=∠BOD=(∠BOC+∠COD)=75°(5分)∠ABC=∠AOC=(∠AOD+∠COD)=45°(6分)(2)①若,则∠DAB>∠ABC;(8分)②若,则∠DAB=∠ABC;(10分)③若,则∠DAB<∠ABC(12分)23.(1)证明:∵AB=CD,∴=∴﹣=﹣,即=∴AC=BD(2)四边形OFEG是正方形.理由:连接OA、OD.∵AB⊥CD,OF⊥CD,OG⊥AB,∴四边形OFEG是矩形;∵OF⊥CD,OG⊥AB,∴DF=CD,AG=AB,∵AB=CD,∴DF=AG;∵OD=OA,∴Rt△OFD≌Rt△OGA (HL)∴OF=OG,∴矩形OFEG是正方形.24.证明:(1)如图1,连接AD,BD,∵C是劣弧AB的中点,∴∠CDA=∠CDB,∴△ADB为等腰三角形,∵CD⊥AB,∴AE=BE;(2)如图2,延长DB、AP相交于点F,再连接AD,∵ADBP是圆内接四边形,∴∠PBF=∠PAD,∵C是劣弧AB的中点,∴∠CDA=∠CDF,∵CD⊥PA,∴△AFD为等腰三角形,∴∠F=∠A,AE=EF,∴∠PBF=∠F,∴PB=PF,∴AE=PE+PB(3)AE=PE﹣PB.连接AD,BD,AB,DB、AP相交于点F,∵弧AC=弧BC,∴∠ADC=∠BDC,∵CD⊥AP,∴∠DEA=∠DEF,∠ADE=∠FDE,∵DE=DE,∴△DAE≌△DFE,∴AD=DF,AE=EF,∴∠DAF=∠DFA,∴∠DFA=∠PFB,∠PBD=∠DAP,∴∠PFB=∠PBF,∴PF=PB,∴AE=PE﹣PB;25.证明:∵弧CB=弧CD,∴CB=CD,∠CAE=∠CAB,又∵CF⊥AB,CE⊥AD,∴CE=CF,∴Rt△CED≌Rt△CFB,∴DE=BF.26.解:如图,设圆的半径是r,则AO=r,BO=r,作直径BD,作BC⊙O的弦BC,使∠DBC=30°,作BC关于直径BD的对称线段BE,连接EC,BE,ED,AC,在直角△BED中,可以得∠EBD=30°,因为线段BE与线段BC关于直线BD对称,所以BC=BE,所以BD垂直平分线段CE,所以=,所以∠CBD=30°而∠BCA=∠AOB=45°.在三角形ABC中,∠OAC=180°﹣∠ABO﹣∠CBD﹣∠ACB﹣∠BAO=15°.同理,当E为C时,∠OAC=75°.故答案为:15°或75°.27.解:延长CD交半径为p的⊙D于E点,连接AE.显然A、B、C在⊙D上.∵AB∥CD∴.∴BC=AE=q.在△ACE中,∠CAE=90°,CE=2p,AE=q,故AC==.故答案为:.28.证明:在BA上截取BF=CA,连DF,DC,如图,∵D为的中点,∴DB=DC,又∵∠DBF=∠ACD,∴△DBF≌△DCA,∴DF=DA,而DE⊥AB,∴AE=EF,∴BF=BE﹣EF=BE﹣AE=CA,又∵BD2=BE2+DE2,AD2=AE2+DE2,∴BD2﹣AD2=BE2﹣AE2=(BE+AE)(BE﹣AE)=AB•AC,即证.29.证明:∵AD=BC,∴=,∴=,∴AC=BD.30.解:作直径DE.∵OB=OD,OB=PD,∴DO=DP,∵∠P=29°,∴∠DOP=∠DOP=29°=∠AOE,∴弧AE的度数是29°,∠CDE=∠P+∠DOP=58°,∴弧CAE的度数是2×58°=116°,∴弧AC的度数是116°﹣29°=87°.。

初中数学全册——与圆相关的名词概念及其性质

初中数学全册——与圆相关的名词概念及其性质

与圆相关的概念及其定理垂径定理、圆周角定理以及圆心角、弦、弧之间的关系等内容是中考必考的内容,常在圆的半径、弦长的计算中运用。

圆周角的知识常与其他的知识综合在一起考查,题型有选择题、填空题以及简单的解答题或证明题,属于中、低档题。

◆解题必备的干货与圆相关的术语概念圆的相关定理✧垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

如图1所示,CD 为⊙O 的直径,AB 为⊙O 的弦,CD 交AB 于点E ,若CD ⊥AB ,则AE=BE ,=,=注意:(1)垂径定理中的垂径可以是直径、半径或过圆心的直线或线段,其本质是“过圆心”。

(2)垂径定理中的“弦”是直径时,结论仍成立。

✧垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

如图1,AB 为非直径的弦,CD 为直径,若AE=BE ,则CD ⊥AB ,=,=注意:(1)垂径定理的推论中,被平分的弦不能是直径,如果弦是直径,两直径互相平分,结论不成立,如图2,直径CD 平分直径AB ,但AB 不垂直于CD(2)垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了思考的方法和原理依据(3)一条直线如果具有:①过圆心;②垂直于弦;③平分弦(被平分的弦不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧,上述五个条件中的任何两个条件都可推出其他的三条。

✓运用垂径定理解题的方法在应用垂径定理与推理进行计算时,往往要构造如图3所示的直角三角形,根据垂径定理与勾股定理有:2222⎪⎭⎫⎝⎛+=a d r ,根据这个公式,在a ,r ,d 三个量中,知道任意两个量就可以求出第三量。

✧弧、弦、圆心角之间的关系✧定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦也相等。

如图4,在⊙O 中,若∠AOB=∠COD ,则有=,AB=CD图4图1图2图3✧推论1:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等✧推论2:在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等以上的关系可总结为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.✓解题技巧点拨在圆中证明弧相等时往往要证明弧所对的圆心角或弦相等,在证明圆心角或弦相等时常由相应的半径、弦的一半、圆心与弦中点的连接线段构造直角三角形,通过证明三角形全等来解决。

圆周角与弦长的关系

圆周角与弦长的关系
圆周角与弦长的关系
目录
01.
02.
圆周角
弦长
03.
圆周角与弦长的 关系
1
圆周角
圆周角定义
01
圆周角:顶点在圆周上 的角
02
顶点:圆周上的一点
03
边:连接圆心和顶点的 线段
04
圆心:圆周角的顶点在 圆周上,圆心在圆内
05
弦:连接圆周上两点的 线段
06
弦长:弦的长度
圆周角性质
圆周角是顶 点在圆周上 的角

计算结果:弦长 = 30 度 * 1 / 60度 = 0
2
弦长
弦长定义
弦长:连接圆周 上任意两点的线 段长度
01
弦长公式: L=2Rsin(θ/2), 其中R为圆的半径, θ为圆心角
03
弦长与圆心角关 系:弦长与圆心 角成正比,即 L=kθ,其中k为 常数
05
02
弦心距:弦与圆 心的距离
04
弦长定理:圆周 角等于圆心角的 一半,即θ=2α, 其中α为圆心角
04
与弦长的关系进行设计
感谢您的观看
圆周角等于它 所对的弧的度 数
圆周角等于它 所对的弦的弦 长与半径的比
圆周角等于它 所对的弦的弦 心距与半径的 比
圆周角等于它 所对的弦的弦 心距与弦长的 比
圆周角计算方法
圆周角:圆周上两点 之间的部分所对应的
角度
弦长:连接圆周上两 点的线段长度
计算公式:圆周角 = 弦长 / 半径
示例:已知圆周角为 30度,半径为1,求弦
弦长性质
弦长:连接圆上任 意两点的线段长度
弦心距:弦长中点 到圆心的距离
弦长与圆心角关系: 弦长与圆心角成正 比,即圆心角越大,

圆周角,弦,弧的关系

圆周角,弦,弧的关系

圆周角,弦,弧的关系稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊圆周角、弦、弧之间那有趣的关系。

你们知道吗,圆周角可神奇啦!它就像个小精灵,和弦、弧有着千丝万缕的联系。

比如说,如果同一条弧所对的圆周角,那它们可都是相等的哟!就好像一群小伙伴,因为共同喜欢一个玩具,所以都变得很亲密一样。

还有哦,如果一条弦对应的两个圆周角,它们可是互补的呢!这就像一对欢喜冤家,虽然有时候互相闹别扭,但合起来就是完美的一对。

再想想,如果圆周角相等,那么它们所对的弧也是相等的。

这就像是钥匙和锁,一个圆周角找到了它匹配的弧,就完美对上啦!圆周角、弦、弧,它们就像是一个小团队,互相协作,互相影响。

要是其中一个变了,其他的也会跟着有变化。

是不是很有意思呀?咱们在解题的时候,可一定要记住它们之间的这些关系,这样就能轻松搞定难题啦!好啦,今天关于它们的关系就聊到这儿,小伙伴们要好好记住哦!稿子二哈喽呀!今天咱们来唠唠圆周角、弦、弧的那些事儿。

你看哈,圆周角这小家伙,总是和弦、弧有着扯不断的关系。

比如说,在同一个圆里,要是有一条弧,那它所对的圆周角可有规律啦!不管这个角在圆的哪个位置,大小都是一样的。

这就像不管你从哪个角度看一颗星星,它的光芒都不变。

还有哦,弦的长度也会影响圆周角呢。

弦长一些,圆周角可能就大一点;弦短一些,圆周角可能就小一点。

这就好像一根绳子,拉得紧一点松一点,角度就不同啦。

反过来,圆周角也能决定弧的长度。

如果圆周角大,对应的弧就长;圆周角小,对应的弧就短。

是不是很神奇?而且哦,当两条弦相等的时候,它们所对的弧和圆周角也都是相等的。

这就好比两个一模一样的玩具,带来的快乐也是一样多的。

总之呀,圆周角、弦、弧,它们就像好朋友,你离不开我,我离不开你。

咱们在学习数学的时候,搞清楚它们的关系,就能在数学的海洋里畅游啦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:弧、弦、圆心角
【学习目标】
1.能识别圆心角.
2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.
3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.
【学习重点】
探索圆心角、弧、弦之间关系定理并利用其解决相关问题.
【学习难点】
圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.
情景导入生成问题
1.你能举出生活中的圆形商标的实例吗?(至少三个)
宝马车商标:星巴克标志:曼秀雷敦标志:
2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?解:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.
自学互研生成能力
知识模块一圆心角的定义
【自主探究】
阅读教材P83~P84思考,完成下面的内容:
举例讲解:图中的∠AOB,∠COD,∠AOD,∠BOC这几个角的顶点有什么共同特点?
顶点都在圆心上,两边都与圆相交.
归纳:圆心角是指顶点在圆心,两边都与圆相交的角.
圆心角的特征:①顶点是圆心;②角的两边与圆相交.
范例:如图,下列各角是圆心角的是(B)
A.∠ABC B.∠AOB C.∠OAB D.∠OBC
知识模块二圆心角、弧、弦之间的关系定理
【自主探究】
阅读教材P 84思考及例3内容,完成下面的内容:
如图,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么? 根据旋转的性质,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置时,∠AOB =∠A′OB′,射线OA 与OA′重合,OB 与OB′重合.而同圆的半径相等,OA =OA′,OB =OB′,∴点A 与A′重合,B 与B′重合.AB 与A′B′
重合.AB ︵与A ′B ′︵重合.∴AB ︵=A ′B ′︵.
归纳:(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;
(2)在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等;
(3)在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等.
【合作探究】
典例:判断题,下列说法正确吗?为什么?
(1)如图所示:因为∠AOB =∠A′OB′,所以AB ︵=A ′B ′︵.
(2)在⊙O 和⊙O′中,如果弦AB =A′B′,那么AB ︵=A ′B ′︵.
解:(1)、(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.
范例:已知:如图所示,AD =BC.求证:AB =CD.
证明:∵AD =BC ,
∴AD ︵=BC ︵.
∵AC ︵=AC ︵,∴AC ︵+AD ︵=AC ︵+BC ︵.
∴DC ︵=AB ︵.∴AB =CD.。

相关文档
最新文档