八年级数学上册月考测试

合集下载

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。

(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。

(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。

八年级上册数学第一册月考试卷(含答案)

八年级上册数学第一册月考试卷(含答案)

一、选择题(本大题共12小题,共36.0分)1.如果AD是△ABC的中线,那么下列结论:CB; ②AB=AC; ③S△ABD=S△ACD.其中一定成立的有() ①BD=12A. 3个B. 2个C. 1个D. 0个2.若一个正n边形的每个内角为144∘,则这个正n边形的所有对角线的条数是()A. 7B. 10C. 35D. 703.已知a,b,c是△ABC的三条边长,化简|a+b−c|−|c−a−b|的结果为()A. 2a+2b−2cB. 2a+2bC. 2cD. 04.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形5.把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数不可能是()A. 16B. 17C. 18D. 196.在△ABC中,,则此三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.8.如果三角形的两边长分别为3和5,则周长L的取值范围是().A. 6<L<15B. 6<L<16C. 11<L<13D. 10<L<169.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD//AB交BD于点D,已知∠ACB=34°,则∠D的度数为()A. 30°B. 28°C. 26°D. 34°10.满足下列条件的△ABC中,不是直角三角形的是()A. ∠A=2∠B=3∠CB. ∠B+∠A=∠CC. 两个内角互余D. ∠A:∠B:∠C=2:3:511.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A. 80°B. 90°C. 100°D. 110°12.如图,有一条等宽纸带,按图折叠时(图中标注的角度为40°),那么图中∠ABC的度数等于()A. 70°B. 60°C. 50°D. 40°二、填空题(本大题共5小题,共15.0分)13.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为______.14.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,则S△BEF=.15.如图,小林从P点向西直走8米后,向左转,转动的角度为α,再走8米,如此重复,小林共走了72米回到点P,则α为______.16.已知AH为△ABC的高,若∠B=40°,∠ACH=65°,则∠BAC的度数为______°.17.如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB、CD),这样做的数学道理是__________________________。

2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。

初二上册数学月考试卷

初二上册数学月考试卷

初二上册数学月考试卷一、选择题(每小题3分,共30分)1.下列长度的各组线段中,能构成三角形的是()A. 4cm,5cm,6cmB. 5cm,6cm,12cmC. 2cm,3cm,5cmD. 1cm,2cm,3cm2.下列二次根式中,能与√2合并的是()A. √3B. √6C. √8D. √123.下列计算正确的是()A. √4×√9=6B. √16+√9=7C. √(-4)^2=4D. 3√2-√2=34.下列生活实物中,应用到三角形稳定性的是()A. 自行车的车架B. 圆形锅盖C. 矩形门框D. 拱形桥5.若正比例函数的图象经过点(2,-3),则这个图象必经过点()A. (-3,-2)B. (2,3)C. (3,-2)D. (-2,3)6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()(此题需根据选项中的图像进行判断,由于文本限制无法直接展示图像)7.下列说法正确的是()A. 无限小数是无理数B. 绝对值是它本身的数一定是正数C. 两个无理数的和一定是无理数D. 平方根等于本身的数是0和18.已知△ABC中,∠C=90°,AC=BC,点D为AB中点,∠GDH=90°,∠GDH绕点D旋转,DG、DH分别与边AC、BC交于E、F两点,下列结论中正确的是()A. AE+BF=ABB. AE^2+BF^2=EF^2C. S四边形CEDF=S△ABCD. 以上结论都正确9.下列各数是无理数的是()A. 3.14B. √2C. -√9D. 3/810.在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCO的面积S为()A. 10B. 11C. 12D. 13二、填空题(每小题4分,共24分)11.16的算术平方根是____。

12.一个正数的两个平方根分别是2a-2和a-4,则这个正数是____。

13.已知点P(-2,1),则点P关于x轴对称的点的坐标是____。

数学八年级上册第一次月考试卷

数学八年级上册第一次月考试卷

数学八年级上册第一次月考试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,这个三角形是()A. 直角三角形。

B. 钝角三角形。

C. 锐角三角形。

D. 不确定。

4. 若等腰三角形的顶角为80°,则它的底角度数为()A. 80°.B. 50°.C. 40°.D. 20°.5. 如图,在△ABC中,∠A = 60°,∠B = 40°,则∠C等于()A. 80°.B. 70°.C. 60°.D. 100°.6. 下列图形中具有稳定性的是()A. 正方形。

B. 长方形。

C. 直角三角形。

D. 平行四边形。

7. 在△ABC中,∠A:∠B:∠C = 1:2:3,则∠C的度数为()A. 30°.B. 60°.C. 90°.D. 120°.8. 如图,已知AB = AC,AD = AE,欲证△ABD≌△ACE,须补充的条件是()A. ∠B = ∠C.B. ∠D = ∠E.C. ∠1 = ∠2.D. ∠CAD = ∠DAC.9. 如图,△ABC≌△DEF,若AB = DE,∠B = ∠E,则下列结论错误的是()A. AC = DF.B. ∠A = ∠D.C. BC = EF.D. ∠C = ∠D.10. 已知△ABC≌△A'B'C',且△ABC的周长为20,AB = 8,BC = 5,则A'C'等于()A. 7.B. 8.C. 5.D. 15.二、填空题(每题3分,共15分)11. 三角形的内角和等于______。

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。

人教版八年级上册数学《月考》考试(可打印)

人教版八年级上册数学《月考》考试(可打印)

人教版八年级上册数学《月考》考试(可打印)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3 B.-3 C.5 D.-52.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.已知三角形三边长为a、b、c,且满足247a b-=,246b c-=-,2618c a-=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定5.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩7.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.48.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2109.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若二次根式x1-有意义,则x的取值范围是▲.3.分解因式:2x3﹣6x2+4x=__________.4.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=________°.5.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB ,则∠EBC 的度数为__________.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:(x -1)÷(x -21x x-),其中x =2+13.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、B6、D7、C8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、42、x 1≥.3、2x (x ﹣1)(x ﹣2).4、1055、30°.6、3三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、1+223、则不等式组的解集是﹣1<x ≤3,不等式组的解集在数轴上表示见解析.4、(1)略;(2)25、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:①购买A 型公交车6辆,则B 型公交车4辆;②购买A 型公交车7辆,则B 型公交车3辆;③购买A 型公交车8辆,则B 型公交车2辆;(3)购买A 型公交车8辆,B 型公交车2辆费用最少,最少费用为1100万元.。

八年级上册数学月考_试卷

八年级上册数学月考_试卷

考试时间:90分钟满分:100分一、选择题(每题5分,共25分)1. 下列数中,不是有理数的是()A. -3.14B. 0.5C. √2D. 32. 下列运算中,错误的是()A. -3 + 4 = 1B. -3 - 4 = -7C. -3 × 4 = -12D. -3 ÷ 4 =0.753. 已知方程 2x - 5 = 3,则 x 的值为()A. 4B. 3C. 2D. 14. 在直角坐标系中,点 P(-2,3)关于 x 轴的对称点坐标为()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)5. 若 a > b > 0,则下列不等式中正确的是()A. a + b > 2abB. a - b < 2abC. a - b > 2abD. a + b < 2ab二、填空题(每题5分,共25分)6. 计算:-5 + 3 - 2 + 4 = ______7. 若 m = -3,则 2m - 3 的值为 ______8. 已知 a = -2,b = 5,则a² + b² 的值为 ______9. 在直角坐标系中,点 A(2,-3)到原点的距离为 ______10. 若 a、b、c 是等差数列的前三项,且 a + b + c = 12,则 b 的值为 ______三、解答题(每题10分,共30分)11. 解方程:3x - 2 = 5x + 112. 已知 a、b、c 是等比数列的前三项,且 a + b + c = 24,b² = ac,求 a、b、c 的值。

13. 在直角坐标系中,点 P(3,4)关于 y 轴的对称点坐标为()四、应用题(20分)14. (12分)某学校组织学生参加数学竞赛,共有80名学生参赛。

已知参赛学生中,有40名学生获得一等奖,30名学生获得二等奖,20名学生获得三等奖。

请计算:(1)获得一等奖、二等奖和三等奖的学生人数之比是多少?(2)若设获得一等奖的学生人数为 x,请写出 x 的取值范围。

八年级上册月考试卷数学题

八年级上册月考试卷数学题

考试时间:90分钟满分:100分一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √3B. πC. 0.101001…D. 2.32. 如果一个数的倒数是负数,那么这个数()A. 一定是负数B. 一定是正数C. 一定是零D. 以上都不对3. 下列等式中,正确的是()A. a² + b² = (a + b)²B. a² + b² = (a - b)²C. a² - b² = (a + b)²D. a² - b² = (a - b)²4. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 15. 如果x² - 4x + 3 = 0,那么x的值是()A. 1B. 2C. 3D. 46. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = x²7. 在平面直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)8. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 长方形9. 若m² = 9,那么m的值是()A. ±3B. ±2C. ±1D. ±410. 下列方程中,无解的是()A. 2x + 3 = 7B. 2x + 3 = -7C. 2x = 7D. 2x = -7二、填空题(每题4分,共40分)11. 2/3的倒数是_________。

12. 下列各数中,最小的负数是_________。

13. (-5)²的值是_________。

14. 下列各数中,绝对值最大的是_________。

15. 若a² = 16,那么a的值是_________。

八年级数学上册第一次月考试卷【含答案】

八年级数学上册第一次月考试卷【含答案】

八年级数学上册第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. -3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。

()2. 0是最小的自然数。

()3. 1是最大的质数。

()4. 两条对角线相等的四边形一定是矩形。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 一个数的平方是9,这个数是______。

2. 两个质数相乘的积是35,这两个质数是______和______。

3. 如果一个等腰三角形的底边长是8,腰长是10,那么这个三角形的周长是______。

4. 下列各数中,最大的合数是______。

5. 下列各数中,最小的负整数是______。

四、简答题(每题2分,共10分)1. 请写出2的所有因数。

2. 请写出3的所有倍数,不超过20。

3. 请写出5的所有质因数。

4. 请解释什么是等腰三角形。

5. 请解释什么是因数分解。

五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,请计算这个长方形的面积。

2. 一个正方形的边长是6,请计算这个正方形的周长。

3. 如果一个数的平方是16,请计算这个数的立方。

4. 请计算下列各数的和:2 + 3 + 4 + 5 + 6。

5. 请计算下列各数的差:10 3 2 1。

六、分析题(每题5分,共10分)1. 请分析下列各数中,哪些是偶数,哪些是奇数:1, 2, 3, 4, 5, 6, 7, 8, 9, 10。

2. 请分析下列各数中,哪些是质数,哪些是合数:2, 3, 4, 5, 6, 7, 8, 9, 10, 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
D
BA
A
B
A
B
C
D
第7
八年级上册月考试题测试
一、选择题(本题共9小题,每小题2分,共18分)
1.如图,△ACB ≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
A . 第1题图 20°
B . 第3题图30°
C . 第4 35° 题
D . 图
40° 2判断两个直角三角形全等的方法不正确的 ( )
(A )两条直角边对应相等 (B )斜边和一锐角对应相等 (C )斜边和一条直角边对应相等 (D )两个锐角对应相等 3.如图,OC 是∠AOB 的平分线,
,则∠F=_____,FE=_______cm .
11.如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线对称,则△ABC 中的∠B= .
E C′
A
B C
D
第11题图第13题图第15题图
12.在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=4cm,则AB= cm.
13.如图64、400分别为所在正方形的面积,则图中字母所代表的正方形的面积是.14.若等腰三角形的一个角是,则其底角为。

15 如图,矩形ABCD中,AB=4,BC=8,如果将该矩形沿对角线BD折叠,那么DE=
处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约60°,∠BAC=30°树干AC垂直于地面,那么此树在未折断之前的高度为米
17如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______
18.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.
第16题图第18题图
19.如图:等边△ABC的边长为5,AD是BC边上的中线,M是AD上的动点,E是AC边上一点。

若AE=2,EMCM的最小值为_______________.
三、解答题共45分
20(2222分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C
在小正方形的顶点上
1 在图中画出与关于直线成轴对称的△A'B'C';
2 线段CC'被直线;
(3)△ABC的面积为_______________
C
B A
l
4 在直线上找一点P,使PBPC的长最短。

21.(3分)如图,已知AB=BC=4,∠ABC=0
90,动点P从点A开始沿AC边以每秒1个单位的速度运动,点P运动到点C即止。

在备用图上画出△ABP成为等腰三角形所有的情况并注明腰和底(不用标数据),若备用图不够自己再画。

备用图1 备用图2 备用图3
22.(6分)如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗试试看.
23(6分)一块地各边长如右图所示,且AB⊥BC,求这
块地面积
24(33分)如图,已知∠AEC=∠ADB=90°,
∠C=∠B,CE=BD=3,AE=4,求AD、BE的长度
25.(44分)如图,△ABC 中,BD、CE分别是AC、AB上的高,BD与CE交于点O.BE=CD (1)问△ABC为等腰三角形吗为什么
(2)问点O在∠A的平分线上吗为什么A
C
B
D E
第25题图
26(44分)如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=
27.(223分)如图,正方形ABCD 的边长为6,E 是边BC 上的一点,△ABE 经过逆时针旋转后得到△ADF .
(1)旋转角是 度; (2)直接写出四边形AECF 的面积;
(3)如果点G 在边CD 上,且GAE=450
,试判断GE 、BE 、DG 之间有什么样的数量关系并说明理由。

四、探索研究(2题选做一题共10分)
28.(433分)如图,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE, 连接BD 、CE ,BD
和CE 相交于点F ,若△ABC 不动,将△ADE 绕点A 任意旋转一个角度. (1)如图①,若∠BAC=∠DAE=90°,判断线段BD 与CE 的关系,并说明理由; (2)如图②,若∠BAC=∠DAE=60°,求∠BFC 的度数;
(3)如图③,若∠BAC=∠DAE=,直接写出∠BFC 的度数.不需说明理由
29(343分)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.
(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,
A
B
C
D
E
F
A
B
C
D
E
F
F E
D
C
B
A
① ③

请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇。

相关文档
最新文档