电子电路基础入门

合集下载

电子电路--从入门到精通

电子电路--从入门到精通

--从入门到精通创E工作室编学习电子技术快速入门一、弄懂电子技术常用名称、概念、图形及文字符号、单位制等,初学者必须弄懂电子技术常用的名称、概念,比如什么是电流、电压、电阻,什么是直流电、交流电,什么是串联、并联、串并联,什么是频率、周期、波长、振幅、相位,什么是阻抗、容抗、感抗,什么是磁场、磁力线、磁通,什么叫耦合、负载、电功率,什么是通路、开路、短路,什么是自感、互感、串联谐振、并联谐振,什么是导体、绝缘体、半导体等等,这些也就是最起码的初中物理知识。

对一些容易混淆的名称概念,如电压、电压降、电位、电位差、电动势等,要弄清它们的区别,还要知道它们的文字符号、单位及换算。

二、学会电子元器件的识别与检测,要认识常用电子元器件的外形,了解它们的结构和标识,知道它们的功能和技术参数,并学会对它们的检测。

应有一块较好的万用表,并学会使用它。

单纯地去学元件测量是比较乏味,可以在学习理论的同时开始拆修简单的电器,如收音机,可以边修边学习理论。

三、从基本电子单元电路起步,学会识图、读图、绘图,学会分析基本电路工作原理。

电子设备按其基本功能来分,可大致分为放大、整流、开关和振荡四种。

还有缓冲、滤波、波形整形以及分频、倍频等等,都可归到上述四大类中,即模拟电路基础。

所以只要很好地掌握这四种基本电路的工作原理,其他各种变形的电路就比较容易掌握了。

方框图大多由原理图简化而来,它组合灵活,可简可繁,清晰明了,便于记忆,是学习电路原理图的得力工具,它可以把电路分成部分和级,让你清楚地了解各部、级的功能和它们之间的联系等。

例如一个整流稳压电路,可以按交流输入、整流滤波、稳压输出分成三个部分。

分析电路要沿信号路径,从输入到输出,进行逐级分析;要弄清电路关键点处包含有什么信号,要知道它们的正常波形、幅度和电压、工作频率;还要弄清各级电路的功能及每一个元器件在电路中的作用。

四、必须边学边用,学用结合,动手制作,动手维修理论在于实践,脱离了实践,理论是无法掌握的。

电子电路知识入门基础教学

电子电路知识入门基础教学

电子电路知识入门基础教学电子电路是指由一个或多个电子元器件,如电阻、电容、电感、半导体(如晶体管、集成电路)等,连接起来构成的电路。

它是一种由若干个电子元件组成的电路,通过控制、调节电路中电流的流动来达到预期的功能。

它的作用是使电子元件之间能够对信号进行有效地检测、处理和传输,以满足系统的要求。

二、电子电路的基本原理电子电路的运行原理是电子元件之间有因果关系,互相影响,从而形成电力能量的传输。

当电子元件上的电流变化时,它就会产生电压变化,然后被其它元件感知并发生变化。

在电路中,每一部分的电子元件都起着一定的作用,形成了一个完整的系统,有效实现了电子信号的传输和处理。

三、电子电路常见元件电子电路中最常见的元件有电阻、电容、电感、晶体管、集成电路、光耦合器和变压器等。

1、电阻:电阻是电路中最常见的一种电子元件,它能阻抗电流流动,阻碍电路中的电流通过,从而实现对电流的控制。

2、电容:电容是一种电子元件,它能储存电荷,电荷的多少可以控制电压的变化,从而实现对电压的控制。

3、电感:电感是一种电子元件,它能在电路中形成电磁耦合,从而实现对电流及电压的控制。

4、晶体管:晶体管是一种电子元件,它能像开关一样控制电流的通断,从而实现信号的控制。

5、集成电路:集成电路是一种电子元件,它是由大量晶体管和其他元件集成在一块半导体基材上,可以实现特定功能,从而实现芯片功能。

6、光耦合器:光耦合器是一种电子元件,它能将电路中的电能转换为光能,然后再将光能转换为电能,从而实现信号的传输和处理。

7、变压器:变压器是一种电子元件,它能将输入电磁能量转换为输出电能,从而实现电压的变化,这样可以满足系统的电压需求。

四、电子电路设计原则1、设计原则:在电子电路设计中,应遵循“精确、简洁、熟悉、安全”的原则,即在设计过程中,要考虑电路的有效性和安全性,让电路可以有效地发挥作用,从而获得良好的实际效果。

2、电路的结构:在电子电路的设计中,应当考虑电路的结构,使电路简单易懂,便于系统的维护和后期的升级。

电子电路基础知识入门

电子电路基础知识入门

电子电路基础知识入门电子电路是电子技术的基础,它涉及到电子元件的组合和连接,以产生特定的电信号。

如果你对电子电路的了解还很有限,不用担心,本文将为你介绍电子电路的基础知识和入门步骤。

一、什么是电子电路- 电子电路是利用导电材料和电子元件来实现特定功能的电路系统。

它由多个电子元件组成,包括电阻、电容、电感、二极管、三极管等。

二、了解电子元件1. 电阻- 电阻是电子元件中的一种,用于限制电流流动的大小。

它的单位是欧姆(Ω),常用的有固定电阻和可变电阻。

2. 电容- 电容是电子元件中的一种,用于存储电荷。

它的单位是法拉(F),常用的有固定电容和可变电容。

3. 电感- 电感是电子元件中的一种,利用磁场储存能量。

它的单位是亨利(H),常用的有固定电感和可变电感。

4. 二极管- 二极管是电子元件中的一种,它只允许电流在一个方向上通过,具有整流的功能。

5. 三极管- 三极管是电子元件中的一种,它可以放大电流和电压信号。

三、电路基础知识1. 电路的分类- 电路可以分为模拟电路和数字电路两种。

- 模拟电路是用来处理模拟信号的电路,它可以处理连续变化的信号。

- 数字电路是用来处理数字信号的电路,它处理离散的信号。

数字电路常用于计算机、通信等领域。

2. 电路中的电流和电压- 电路中的电流表示电荷的流动,单位是安培(A)。

- 电路中的电压表示电荷的能量,单位是伏特(V)。

3. 电路图的表示方法- 电路图用来表示电子元件之间的连接关系以及其对电流和电压的影响。

- 电路图中使用符号来表示电子元件,例如电阻用矩形表示,电容用两条平行线表示。

四、学习电子电路的步骤1. 学习电子电路的基础理论知识- 了解电子元件的分类、特性以及在电路中的作用。

- 学习电流、电压、功率等基本概念。

- 掌握电路分析的方法和技巧。

2. 进行实验- 实验是学习电子电路的重要手段。

- 首先,准备实验所需的电子元件和仪器设备。

- 按照电路图的要求,连接电子元件,观察实验现象。

电子电路知识入门基础教学

电子电路知识入门基础教学

电子电路知识入门基础教学电子电路是现代工业的基础技术,具有重要的应用价值,它也成为了学习者最头痛的问题。

本文介绍了基本的电子电路知识入门及应用,帮助学习者快速掌握电子电路学习,发挥自己的创新潜力。

首先,介绍电子电路知识入门,主要涉及四个方面:电路分析、仪器仪表、电子元件、电路设计。

1、电路分析:电路分析是根据电路中的电学特性分析出电路的功能,从而得出电路的行为模型,以及电路的工作原理。

电路分析方法主要有芯片分析、静态电路分析、时域分析、频域分析、网络分析等。

建议学习者以电路分析为起点,以深入理解电子电路中各种电学特性为主要任务,依次学习常用的电路分析方法,并以实物实验为辅,熟练掌握这些技能。

2、仪器仪表:仪器仪表主要是用来测量、监控和控制电子电路的状态,是电子电路学习过程不可缺少的工具,它有助于正确理解电路的运行情况。

学习者需要学习如何使用各种仪器的测量原理,如万用表、脉冲发生器、示波器等,以及熟悉在实验中的使用方法,掌握仪器仪表的使用技巧,从而实现准确快速的测量。

3、电子元件:电子元件是电子电路的基本单元,包括电阻、电容、电感等各种电子元件。

学习者需要学习各种电子元件及其工作原理,掌握常用电路中所有元件的标号,学习熟悉每种元件的特性,以及它与其它元件的互动原理,以此建立起自己的电子元件知识体系。

4、电路设计:电路设计是根据功能需求,将电子元件和仪器仪表等功能块连接拼装成符合要求的电路,达到设计目标。

学习者要学会用计算机进行电路设计,具备良好的电路规划、技术文档制作以及结构拼接能力,完成自己的电路设计。

电子电路的应用是多方面的,可以用于远程传感器、智能控制、自动测试、通讯、机器人等方面,也可以应用到电源驱动、汽车控制、嵌入式系统、安全防范系统、环境监测等方面。

因此,学习者在知识入门学习时,不仅要掌握电子电路的基本知识,还要关注最新的应用发展动态,积极学习最新的技术,开拓创新,将自己的思维和实际技能应用到实际项目中。

(完整word版)电子电路基础版

(完整word版)电子电路基础版

通信电子电路基础第一章半导体器件§1-1 半导体基础知识一、什么是半导体半导体就是导电能力介于导体和绝缘体之间的物质。

(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)二、半导体的导电特性本征半导体――纯净、晶体结构完整的半导体称为本征半导体。

硅和锗的共价键结构。

(略)1、半导体的导电率会在外界因素作用下发生变化•掺杂──管子•温度──热敏元件•光照──光敏元件等2、半导体中的两种载流子──自由电子和空穴•自由电子──受束缚的电子(-)•空穴──电子跳走以后留下的坑(+)三、杂质半导体──N型、P型(前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。

•N型半导体(自由电子多)掺杂为+5价元素。

如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。

载流子组成:o本征激发的空穴和自由电子──数量少。

o掺杂后由P提供的自由电子──数量多。

o空穴──少子o自由电子──多子•P型半导体(空穴多)掺杂为+3价元素。

如:硼;铝使空穴大大增加原理:Si──+4价B与Si形成共价键后多余了一个空穴。

B──+3价载流子组成:o本征激发的空穴和自由电子──数量少。

o掺杂后由B提供的空穴──数量多。

o空穴──多子o自由电子──少子结论:N型半导体中的多数载流子为自由电子;P型半导体中的多数载流子为空穴。

§1-2 PN结一、PN结的基本原理1、什么是PN结将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

2、PN结的结构分界面上的情况:P区:空穴多N区:自由电子多扩散运动:多的往少的那去,并被复合掉。

留下了正、负离子。

(正、负离子不能移动)留下了一个正、负离子区──耗尽区。

由正、负离子区形成了一个内建电场(即势垒高度)。

方向:N--> P大小:与材料和温度有关。

(很小,约零点几伏)漂移运动:由于内建电场的吸引,个别少数载流子受电场力的作用与多子运动方向相反作运动。

电子电路基础知识

电子电路基础知识
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等
例如:R T 1 1 型普通碳膜电阻a1}
二、电阻器的分类
1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
1.5 金属膜电位器
金属膜电位器的电阻体可由合金膜、金属氧化膜、金属箔等分别组成。特点是分辩力高、耐高温、温度系数小、动噪声小、平滑性好。
1.6 导电塑料电位器
用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑压在绝缘基体的凹槽内形成的实心体作为电阻体。特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可*性极高、耐化学腐蚀。用于宇宙装置、导弹、飞机雷达天线的伺服系统等。
氧化物湿敏电阻性能较优越,可长期使用,温度影响小,阻值与湿度变化呈线性关系。有氧化锡,镍铁酸盐,等材料。
7.3、光敏电阻
光敏电阻是电导率随着光量力的变化而变化的电子元件,当某种物质受到光照时,载流子的浓度增加从而增加了电导率,这就是光电导效应。
7.4、气敏电阻
利用某些半导体吸收某种气体后发生氧化还原反应制成,主要成分是金属氧化物,主要品种有:金属氧化物气敏电阻、复合氧化物气敏电阻、陶瓷气敏电阻等。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数
1、标称阻值:电阻器上面所标示的阻值。

电子电路--从入门到精通

电子电路--从入门到精通

--从入门到精通创E工作室编电子技术——从入门到精通学习电子技术快速入门一、弄懂电子技术常用名称、概念、图形及文字符号、单位制等,初学者必须弄懂电子技术常用的名称、概念,比如什么是电流、电压、电阻,什么是直流电、交流电,什么是串联、并联、串并联,什么是频率、周期、波长、振幅、相位,什么是阻抗、容抗、感抗,什么是磁场、磁力线、磁通,什么叫耦合、负载、电功率,什么是通路、开路、短路,什么是自感、互感、串联谐振、并联谐振,什么是导体、绝缘体、半导体等等,这些也就是最起码的初中物理知识。

对一些容易混淆的名称概念,如电压、电压降、电位、电位差、电动势等,要弄清它们的区别,还要知道它们的文字符号、单位及换算。

二、学会电子元器件的识别与检测,要认识常用电子元器件的外形,了解它们的结构和标识,知道它们的功能和技术参数,并学会对它们的检测。

应有一块较好的万用表,并学会使用它。

单纯地去学元件测量是比较乏味,可以在学习理论的同时开始拆修简单的电器,如收音机,可以边修边学习理论。

三、从基本电子单元电路起步,学会识图、读图、绘图,学会分析基本电路工作原理。

电子设备按其基本功能来分,可大致分为放大、整流、开关和振荡四种。

还有缓冲、滤波、波形整形以及分频、倍频等等,都可归到上述四大类中,即模拟电路基础。

所以只要很好地掌握这四种基本电路的工作原理,其他各种变形的电路就比较容易掌握了。

方框图大多由原理图简化而来,它组合灵活,可简可繁,清晰明了,便于记忆,是学习电路原理图的得力工具,它可以把电路分成部分和级,让你清楚地了解各部、级的功能和它们之间的联系等。

例如一个整流稳压电路,可以按交流输入、整流滤波、稳压输出分成三个部分。

分析电路要沿信号路径,从输入到输出,进行逐级分析;要弄清电路关键点处包含有什么信号,要知道它们的正常波形、幅度和电压、工作频率;还要弄清各级电路的功能及每一个元器件在电路中的作用。

四、必须边学边用,学用结合,动手制作,动手维修理论在于实践,脱离了实践,理论是无法掌握的。

电子电路知识入门基础教学

电子电路知识入门基础教学

电子电路知识入门基础教学电子电路技术是电子技术和电子产品设计、制造等领域的基础理论和实践技术,它涉及一系列技术和方法,广泛应用于电子设备的研发、生产、使用以及维护等。

由于电子电路技术的广泛涉及,其学习难度也极高,成为入门和学习电子领域的必修课程。

下面就电子电路知识入门基础教学进行介绍,供大家参考。

一、电子电路基础知识(1)电子电路组成元件:电路组成元件可分为控制元件、驱动元件、接口元件和保护元件4大类。

其中控制元件是电路的核心,包括电子器件、电子元件,如晶体管、集成电路以及数字电路、模拟电路等;驱动元件用于提供负载电压,可用于改变信号的幅值和频率,如三极管、可控硅、开关电源等;接口元件用于连接输入输出,通常由按钮、拨码开关、插座、接线柱等组成;保护元件用于保护电路不受外部潮流、电压等损害,常用保护元件有电容、电感、湿式、熔断器等。

(2)电子电路基本知识:电子电路的基本知识包括电路分类、电路定律、电路结构、电路分析及对应电子器件等内容。

这些知识是学习电子电路技术的基础,也是入门时必须掌握的基础知识。

二、电子电路原理及常用技术(1)电路原理:电路的基本原理是一系列的电力学、电磁学和信号分析理论。

学习电子电路时首先要了解电荷、电流、电压、电阻、电容、电感等基本概念和它们之间的相互关系,以及运用这些基本概念构成的电路的规律。

(2)电子电路常用技术:电子电路常用技术包括测试技术、安装技术和维护技术等。

其中测试技术可以用于检测电子电路的状态,如可以采用电气测试仪、仪表和电路分析仪等方法对电路中的信号及电源的状态进行检测;安装技术可以用于在电路板上安装和更换电子元件,采用焊接方式,用螺丝钉和水晶胶固定电子元件等;维护技术可以用于电子电路维护和维修,一些复杂的工作可以使用故障排除等软件进行排错检测。

三、电子电路设计技术(1)设计流程:电子电路的设计一般应遵循需求分析和具体设计两个步骤。

需求分析时进行需求定义、设计概要以及设计约定等;而具体设计时则要完成电路原理图、电路板布局及电路代码等。

电子电路基本知识及应用

电子电路基本知识及应用

电子电路基本知识及应用电子电路是电子技术的基础,广泛应用于各种电子设备和系统中。

本文将从电子电路的基本知识和应用两个方面展开阐述。

一、电子电路的基本知识1. 电子电路的基本组成元件:电子电路主要由三个基本组成元件构成,即电源、电阻和电容。

- 电源:提供电路所需的电能,常见的电源有干电池、直流电源和交流电源。

- 电阻:控制电流的流动,通过阻碍电流的流动来消耗电能。

电阻的单位是欧姆(Ω)。

- 电容:储存电荷和能量,具有暂存电荷和放电的功能。

电容的单位是法拉(F)。

2. 电路分类:电子电路可分为模拟电路和数字电路。

- 模拟电路:处理连续信号,不仅能表示0和1两种状态,还可以表示其中间的无限个状态。

常见的模拟电路包括放大电路、滤波电路等。

- 数字电路:处理离散信号,信号只有两种状态,即0和1。

常见的数字电路包括逻辑门电路、计数器电路等。

3. 电路基本定律:电子电路的行为受到一些基本定律的约束。

- 欧姆定律:描述了电流、电压和电阻之间的关系。

根据欧姆定律,电流等于电压与电阻之比。

Ι=U/R。

- 基尔霍夫定律:描述了电流和电压在闭合电路中的分布。

基尔霍夫定律包括电流定律和电压定律。

- 突击定律:描述了电容器的充放电过程。

突击定律指出,电容器两端电压的变化率等于电容器所连接的电路中的电流。

二、电子电路的应用1. 通信电子电路:通信电子电路是现代通信系统中的核心部分,用于处理和传输各种信号。

常见的通信电子电路包括调制解调器、射频放大器等。

2. 数字电子电路:数字电子电路广泛应用于计算机系统、数字通信系统以及数字音频设备等。

数字电路的主要任务是处理和存储数字信号。

3. 家庭电子电路:家庭电子电路主要应用于家庭电器,例如电视机、音响系统、电脑等。

家庭电子电路主要涉及音频放大、视频处理、信号控制等方面。

4. 汽车电子电路:汽车电子电路是现代汽车中的重要组成部分,用于管理和控制车辆的各种功能。

常见的汽车电子电路包括发动机控制单元、车载娱乐系统等。

电子电路入门基础知识

电子电路入门基础知识

电子工程师必备基础知识(七)
早在两千多年前,人们就发现了电现象和磁现象。我国早在战国时期(公元前475一211年)就发明了司南。而人类对电和磁的真正认识和广泛应用、迄今还只有一百多年历史。在第一次产业革命浪潮的推动下,许多科学家对电和磁现象进行了深入细致的研究,从而取得了重大进展。人们发现带电的物体同性相斥、异性相吸,与磁学现象有类似之处。 1785年,法国物理学家库仑在总结前人对电磁现象认识的基础上,提出了后人所称的“库仑定律”,使电学与磁学现象得到了统一。 1800年,意大利物理学家伏特研制出化学电池,用人工办法获得了连续电池,为后人对电和磁关系的研究创造了首要条件。 1822年,英国的法拉第在前人所做大量工作的基础上,提出了电磁感应定律,证明了“磁”能够产生“电”,这就为发电机和电动机的原理奠定了基础 1837年美国画家莫尔斯在前人的基础上设计出比较实用的、用电码传送信息的电报机,之后,又在华盛顿与巴尔的摩城之间建立了世界上第一条电报线路。 1876年,美国的贝尔发明了电话,实现了人类最早的模拟通信。英国的麦克斯韦在总结前人工作基础上,提出了一套完整的“电磁理论”,表现为四个微分方程。这那就后人所称的“麦克斯韦方程组”。麦克斯韦得出结论:运动着的电荷能产生电磁辐射,形成逐渐向外传播的、看不见的电磁波。他虽然并未提出“无线电”这个名词,但他的电磁理论却已经告诉人们,“电”是能够“无线”传播的。
电子工程师必备基础知识(五)
二极管的作用和功能用四个字来说:“单向导电。”二极管常用来整流、检波、稳压、钳位、保护电路等。在随身听的供电回路中串上一只整流二极管,当直流电源接反时,不会产生电流,不会损坏随身听。给二极管(硅资料)加上低于0.6V的正向电压,二极管基本上不产生电流(反向就更加不能产生电流啦),这个电压就叫死区电压、门槛电压、门限电压、导通电压等。三极管的作用和功能因为四个字来完成:“电阻可变。”由于三极管等效成的电阻值能够无限制的变化,所以三极管能够用来设计开关电路、放大电路、震荡电路。三极管的集电极电流等于基极电流乘以放大倍数,当基极电流大到一定水平时,集电极的电流由于各种原因不可能再增大了,这时集电极电压已经等于或接近发射极电压了,相当于电阻值变成0欧姆。确信三极管的放大状态绝招:发射结正偏,集电结反偏。三极管是电流控制型器件,场效应管是电压控制型器件。场效应管性能优量,但在分立元件中,低电源电压适应性比三极管要差。场效应管是电压控制型器件,很容易被静电损坏,所以,场效应管中大多都有保护二极管。 可控硅实际上是一个高速的、没有机械触点的电子开关,这个开关需要用一个小电流去掌握。这个开关具有自锁功能,即导通后撤走掌握电流仍能维持导通,而一旦截止后,又能维持截止状态。

电子电路设计入门

电子电路设计入门

电子电路设计入门电子电路设计是电子工程中非常重要的一项技术,它涉及到电路原理、元器件选择、电路设计方法等方面的知识。

对于初学者来说,掌握电子电路设计的基本原理和方法是非常关键的。

本文将介绍电子电路设计的入门知识,并探讨一些实用的设计技巧。

一、电子电路基础知识在学习电子电路设计之前,我们首先需要了解一些基础知识。

电子电路是由电子元器件(如电阻、电容、电感等)组成的,通过这些元器件可以实现信号的处理和控制。

同时,电子电路中也会涉及到各种信号源和信号处理器件,例如放大器、滤波器等。

在电子电路设计中,我们需要了解以下几个基本概念:1. 电压(Voltage):电路中的电势差,用于表示电路中的电子能量变化情况。

2. 电流(Current):电子在电路中的流动状态,用于表示电子在电路中的数量变化情况。

3. 电阻(Resistance):阻碍电流流动的物理特性,用于限制电流的大小。

4. 电容(Capacitance):存储电荷的能力,用于实现信号的延时和滤波。

5. 电感(Inductance):通过电磁感应作用产生感应电动势,用于存储磁场能量。

二、电子电路设计流程在进行电子电路设计时,我们通常会按照以下流程进行:1. 确定需求:明确电路设计的功能和性能要求,例如放大、滤波、控制等。

2. 元器件选择:根据需求选择合适的电子元器件,例如放大器、运算放大器、滤波器等。

3. 电路设计:根据所选元器件的特性和需求,设计出符合要求的电路框图。

4. 电路模拟:使用电路模拟软件对设计的电路进行仿真,以验证其性能和功能。

5. 电路实现:根据设计结果,制作实际的电路板并进行焊接和组装。

6. 电路测试:对实际制作的电路进行测试,验证其性能和功能是否符合设计要求。

7. 优化调试:根据测试结果对电路进行优化和调试,以达到更好的性能和稳定性。

8. 文档记录:对电路设计和测试结果进行详细的记录,方便以后的参考和改进。

三、电子电路设计实例为了更好地理解电子电路设计的过程和方法,我们可以通过一个实例来进行说明。

电子基础知识

电子基础知识

电⼦基础知识电⼦基础知识第⼀章电⼦电路基础概念⼀、电⼦电路的定义电⼦电路是指由电阻、电感、场管、线圈、电容等电⼦元器件通过适当的组合⽽构成,并且能够实现某些特定功能的电路。

如电源供电电路、逻辑处理电路、接⼝电路等。

电⼦电路可分为分⽴元件电路和集成电路两种:分⽴元件电路是指将单个电⼦元件连接起来组成的电⼦电路,其特点是功耗⼤、可靠性差;集成电路指把分⽴元件电路做到⼀个很⼩的硅⽚的电路,成本低、体积⼩、重量轻、功耗低、可靠性⾼。

⼆、电流由于导体本⾝带有电荷,这些电荷会在电场的作⽤下从⼀端流向另⼀端,进⽽形成电流。

换句话说,电流是指电荷的定向移动。

电流的⼤⼩称为电流强度即电流量,简称电流。

电流量是指单位时间内通过导线某⼀截⾯的电荷量。

可⽤下式表⽰:I=Q/TI——电流量Q——电荷量T——单位时间在国际单位制中电流的单位为安培(A),常⽤的还有:毫安(mA)、微安(µA)换算⽅法:1A=1000mA1mA=1000µA1KA=1000A正常⼯作的⼿机电流⼀般⼩于500mA,正常⼯作的电脑电流⼀般在0.8A~1.5A之间。

三、电压电压,也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产⽣的能量差的物理量。

换句话说,电压是指使导体流过电流的压⼒差。

电压⼀般⽤“U”来表⽰。

在国际单位制中电压的单位为伏特(V),常⽤的还有千伏(kV)、兆伏(mV)、毫伏(mV)等,其换算关系:1千伏(kV)=1000伏(V)1伏(V)=1000毫伏(mV)千伏⼤于伏特⼤于毫伏,进率为1000。

1伏(V)=1000000微伏(µv)1兆伏(MV)=1000000伏(V)四、电阻导体对电流的阻碍作⽤就叫该导体的电阻。

电阻⼩的物质称为电导体,简称导体。

电阻⼤的物质称为电绝缘体,简称绝缘体。

在物理学中,⽤电阻来表⽰导体对电流阻碍作⽤的⼤⼩。

导体的电阻越⼤,表⽰导体对电流的阻碍作⽤越⼤。

不同的导体,电阻⼀般不同,电阻是导体本⾝的⼀种性质。

电子线路基础知识

电子线路基础知识

电子线路基础知识广西广播电视技术中心詹家金2012年4月目录基础知识基础知识一、交流电基本知识二、晶体三极管基本知识三、阻抗匹配及等效电路转换四、一些常用专业知识基础电路基础电路——滤波器一、对滤波器的基本要求二、滤波器的分类三、T型和π型滤波器的传通基础电路——放大器一、放大器及分类二、放大器的工作状态三、晶体管放大器四、晶体管放大电路的几种基本接法及其性能比较五、场效应管放大电路基础电路——振荡器一、振荡器的分类二、LC正弦波振荡器的工作原理三、半导体管LC振荡器一、交流电基本知识:1、交流电的功率(1)瞬时功率电压瞬时值u 和电流瞬时值I 的乘积p=ui(2)有功功率P=UIcos = I 2R , 为电压与电流之间的相位差,R 为负载阻抗的电阻分量。

(3)无功功率Q=UIsin = I 2X , 为电压与电流之间的相位差,X 为负载阻抗的电抗分量。

(4)视在功率交流电压有效值与电流有效值的乘积S=UI= I 2Z, Z 为负载阻抗。

视在功率也可表示为:S=cos =P/S=P/(UI),称为功率因数,tg =Q/P提高功率因数的必要性:a 、发挥供电设备(发电机、变压器)的潜力供电设备的额定电压U 与额定电流I 是一定的,如果负载的功率因数高,输出的有功功率越大;b 、当负载消耗的有功功率P 和电压为一定时,功率因数越高,负载电流I=P/(Ucos ) 就会越小,输电线上功率损耗越小。

交流电基本知识2、三相电路:(1)基本关系交流电基本知识交流电基本知识5、关于直流电源(1)、单相半波与全波整流电路交流电基本知识(2)单相桥式整流电路交流电基本知识(3)三相桥式整流电路(4)12相整流电路交流电基本知识交流电基本知识(5)二倍压整流电路经过整流在输出端能得到高于输入端二倍的直流电压,这种整流电路叫二倍整流电路,如图所示。

当电源电压为正半周时,二极管D1导通,电源对C1充电,C1两端电压可充到。

电子电路基础

电子电路基础

2022 电路原理一、 绪论1.1 EECS:1.2 电路的组成:源(发电厂,光电池,麦克风等),负荷(电动机,扬声器,屏幕等),能量和信号处理电路(变压器,放大器等),导线与开关(输电线路,电路板等). 1.3 电路的变量:1.3.1 电流current:电荷的时间变化率(单位时间内从A 到B 的正电荷量)I =dQ dt1.3.2 电压voltage:电场力移动单位电荷做的功(电场力将正电荷从A 移动到B 所作的功)(电位的降低)Uab =dW abdq=−Uba =φa −φb1.3.3电位potential:从某点到参考节点的电压参考点(reference point)的电位是零.两点间的电压等于两点之间的电位差.两点间的电压与参考节点的选取无关.1.3.4 电动势eletromotive force:非电场力将单位正电荷从B 移动到A 所作的功(电位的升高)e BA =dW BAdq=φA −φB1.4 变量的大小写:不变的量大写,可能变化的量小写. 1.5 电压和电流的参考方向:电压或电流的方向未知;电压或电流的方向随时间变化.表示电流参考方向的两种方法:箭头;双下标(i AB )-参考方向从A 指向B二端元件上电压参考方向和电流参考方向之间的关系关联参考方向associated reference directions:u =Ri 均正端流入,负端流出非关联参考方向non-associated reference directions:u =−Ri1.6 电路的功率Power:单位时间内从A 到B 所做的功(元件吸收)P =dw dt =dw dq dq dt=ui1.6.1功率的计算:或全部按关联方向进行计算电阻总是吸收功率,电源可能吸收也可能发出功率.电路中被吸收功率之和一定等于发出功率之和.1.7总结:电压,电流都是参考方向;电动势是电源的本质参数;电压-电流有关联/非关联两种情况—功率有两种计算方法二、 电阻电路的基本分析方法:2.1 电阻器(Resistor): 2.1.1 电阻符号:2.1.2 G 电导(Conductance):G =1RUnit:S(西)(Siemens 西门子) 2.1.3 欧姆定律:电压电流采用关联参考方向:u =RiR- resistence Unit-Ω(欧姆)电压电流采用非关联参考方向:u =−Ri or i =−Gu2.1.4 开路与短路:当R=0(G=∞),视其为短路.u=0,i 由外电路决定; 当R=∞(G=0),视其为开路,i=0,u 由外电路决定电阻消耗的功率:p 吸=ui =i 2R =u2RP 发=ui =(−Ri )i =u(−u R )=−i 2R =−u2R阻值和功率是电阻器最重要的两大指标.R =ρL S2.2 独立电源(independent source):2.2.1 理想独立电压源(ideal independent voltage source):电路符号:特性:独立电压源两端的电压与电路其余部分无关.独立电压源的电流由外电路决定直流:u s为常数(Us)正弦交流:u s随时间变化,可以表示为u s=U m sinϖtu-i特性:零值电压源等效于零值电阻,等效于短路线.2.2.2理想独立电流源(independent current source):电路符号:特性:流经独立电流源的电流与电路的其余部分无关电流源上的电压由外电路决定直流:i s为常数(Is)正弦交流:i s随时间变化,可以表示为i s=I s sinωtu-i特性:零值电流源等效于零值电导(无穷大电阻),等效于开路线.2.2.3独立电源的短路和开路:理想电流源不能被开路(Is=C(C≠0));理想电压源不能被短路(Us=C=C(C≠0)).2.2.4独立电源的功率:先算支路量(电压U,电流I),再算功率(P).2.2.5实际电源:2.3受控元件:2.3.1受控电阻:开关:端口(port):端口由两个接线端构成,且满足如下条件:从一个接线端流入的电流等于从另一个接线端流出的电流二端元件自然构成一端口理想开关的u-i特性:一个压控电阻的实例:MOSFETU DS较小时,MOSFET等效为电阻;U DS较大时,MOSFET等效为电流源.2.3.2受控电源(Dependent source):定义:受控电压源:该电压源的电压由电路中某电压或电流控制.受控电流源:该电流源的电流由电路中某电压或电流控制.线性受控源的分类:压控电流源(Voltage Controlled Current Source(VCCS)):流控电流源(Current Controlled Current Source(CCCS)):流控电压源(Current Controlled Voltage Source(CCVS)):压控电压源(Voltage Controlled Voltage Source(VCVS)):进一步讨论:受控源不是二端元件;独立源电压/电流由电源本身决定,而受控源电压/电流直接由控制量决定独立源是真正电路中的”源”,受控源在电路中是能量或信号处理元件. 2.4基尔霍夫定律(Kirchhoff’s Laws):2.4.1术语:支路(branch):若干元件无分叉地首尾相连构成一个支路(b)节点(node):3个或更多支路的连接点(n)路径(path):两个节点间包含的支路回路(loop):由支路组成的闭合路径(l)网格(mesh):平面电路中不与其余支路相交的回路也有教材认为:二端元件构成一个支路;两个元件之间的接线端构成一个节点2.4.2Kirchhoff’s Current Laws(KCL):∑i(t)=0流出节点的电流的代数和为零/流入节点的电流的代数和为零∑i in(t)=∑i out(t)注意事项:只适用于集总参数电路;对有参考方向的电流仍然有效广义KCL:2.4.3Kirchhoff’s Voltage Laws(KVL):∑u(t)=0回路中所有电压(降)的代数和为零两种方向:顺时针/逆时针∑u drop(t)=∑u rise(t)广义KVL:电路中任意两点间的电压等于两点间任意一条路径经过的各元件电压的代数和U AB(沿l1)=U AB(沿l2)电压的唯一性:U AB=U2+U3U AB=U s1+U1−U S2−U4对于外部电路而言,电流源串联元件与否无影响2.52b法求解电路:b各独立元件约束,n-1个独立KCL,b-n+1个独立KVL;三、电路的等效变换:3.1电阻等效变换:3.1.1串并联可能改变的量应当以斜体表示.二端网络:与外部只有两个接线端相连的网络.无独立源二端网络:网络内部没有独立源的二端网络一个无独立源二端电阻网络可以用端口的入端电阻来等效:两个电路等效:两个电路u-i关系的形式和参数均一样电阻元件串联(无分叉的首尾相接):等效电阻Req:等效的相对性:除了选定电路之外的电路来说,这两个电路是等效的(相同的u-i形式和参数),对于被等效的两个电路内部来说,并没有什么关系.串联电阻元件的分压:电阻越大,压降越大.Us:电压形式表示的信号源负载电阻R L相对越大,负载上得到的信号越大电压源内阻R S相对越小,为负载提供信号的能力越强(带载能力强) 并联电阻元件(元件共用两个接线端):并联电阻器的分流:电导越大(电阻越小),电流越大Is:电流形式表示的信号源负载电阻R L相对越小,负载上得到的信号越大电流源内阻R S相对越大,为负载提供信号的能力越强串并联的判断:方法1:节点的移动,元件的拉伸方法2:去掉已知(串联短路,并联开路)3.1.2平衡电桥等电位点:A-B间(开路)电压为0等电位点间接任意电阻(含开短路)不影响电路的电压电流分布3.1.3Y-∆变换∆倾向于使用广义KCL,Y倾向于使用广义KVL来进行判断.化成相同的形式,比较对应的参数用∆参数表示Y:用Y参数表示∆:总结:∆型,Y型网络的变形:3.1.4含受控源二端网络的入端电阻求入端等效电阻—求端口上的电压电流关系—加压求流/加流求压加压求流:等效于把理想电压源短路进行运算加流求压:等效于把理想电流源开路进行计算3.1.5总结3.2电源等效变换3.2.1理想独立源等效变换理想独立源的串联:和电流源串联的任何元件(在不违背KCL和KVL的前提下)都对外等效为电流源,仅改变电流源的电压/功率理想独立源的并联:和电压源并联的任何元件(在不违背KCL和KVL的前提下)都对外等效为电压源,仅改变电压源的电流/功率3.2.2实际独立源等效变换实际独立电压源:i与u是非关联:i从正端流出,负端流入;u从正端至负端存在压降/将Us与Rs看成单个元件进行判断实际独立电流源:电源等效变换:例子:和电流源串联等效于电流源—电压源转换成电流源—电流源叠加—均分电流电流源转换成电压源—KVL电阻匹配四、运算放大器4.1运算放大器(Operational Amplifier)及其外特性4.1.1电路符号:a:反相输入inverting input, u-b:同相输入noninverting input, u+u d=u+-u-;o:输出output,u o±V CC:供电电压working voltageA:开环电压增益open-loop voltage gain, 10^5~10^8Op Amp需要直流电源供电才能工作本质上说就是将u d放大A倍输出为u o对于图二,省略供电模块,使用KCL时要加上供电端4.1.2运算放大器外特性:在可接受的误差范围内,常常将非线性化为线性进行分析分三个区域:线性工作区:|u d |<U ds ,则u o =Au d 正向饱和区: u d >U ds ,则u o =U sat 反向饱和区: u d <−U ds ,则u o =−U sat运算放大器消耗的功率一般小于W 运算放大器的输入和输出电阻:MΩ和Ω4.1.3 电压型信号处理电路3个最重要的性质:电压放大倍数:A u =u o u i输入电阻:从u 1两端向输出端看的等效电阻(接或不接负载)( MΩ级) 输出电阻:从u o 两端向输入端看的等效电阻(u s 短路)( Ω级)4.1.4 电路模型:模型抽象化:Ri:运算放大器两输入端间的输入电阻(MΩ) Ro:运算放大器的输出电阻(Ω)工程观点:与运算放大器连接的电阻保持在KΩ级:输入电阻(KΩ)很大--∞;输出电阻(Ω)很小—0负反馈电路:工程观点:A 足够大u 0u i =−R f R i原有的直接接在信号源与负载间的问题:ui 的取值范围太小—允许输入电压范围小不同的Op Amp 的A 差别很大—设计好的放大器只能针对某个Op Amp 使用 Op Amp 的A 随温度变化较大—设计好的放大器只能在某个温度下使用 三个问题全被解决4.2理想运算放大器(Ideal Op Amp)及其外特性4.2.1电路符号:4.2.2电压转移特性(外特性):在线性放大区,将运放电路作如下的理想化处理:A→∞:u0为线性区(如10V)→u0=A u d→u d→0→(虚短):负相输入端与正相输入端等电位.R i→∞从输入端看进去,元件相当于开路(虚断):负相输入端与正相输入端无电流4.3负反馈理想运算放大器电路分析4.3.1电压跟随器:分析:虚短→A点电位为ui→B点电位为ui→C点电位为ui(uo)(放大倍数) 将运算放大器改画:输入电阻:从ui两端向输出端看的等效电阻→开路→无穷大(则无所谓接/不接负载) 输出电阻:从uo两端向输入端看的等效电阻→电压源置零→加流求压→uo=0综上,其参数指标:电压放大倍数:1输入电阻:无穷大输出电阻:0应用:要满足:u 2=R 2R 1+R 2u 1需要使用电压跟随器:从A-B 往电压跟随器看,其电阻无穷大,则分压由R2决定;从C 往电压跟随器看,其输出电阻为0,则负载获得R2全部分压.说明:电压型信号处理电路的输入电阻越大越好:因为电压跟随器从前级采样电压,其输入电阻越大,对前级的影响越小(1/∞为0,不影响前级分压);电压型信号处理电路的输出电阻越小越好,当输出电阻小至0时,不受任何负载影响,亦即不会与负载进行分压4.3.2反相比例放大器:信号接在反相输入端与地,反馈Rf接在反相输入端,形成负反馈虚短:u+=u−=0虚断:i−=0,i+=0,i2=i1i1=u1R1,i2=−u oR f因此:u o=−R f R1u i注意:当Rf和R1确定后,为使uo不超过饱和电压(即保证工作在线性区),对ui有一定的限制Rf接在输出端和反相输入端,称为负反馈负反馈的噪声抑制作用:输出端有微小正扰动→u-端有微小正扰动→u+-u-变小→输出值变小4.3.3同相比例放大器:信号接在同相输入端,反馈Rf接在反相输入端,形成负反馈虚断:i+=i−=0虚短:由于i+=0,因此u+=u i,u−=u+由于i−=0,因此A点以上无分压,则A点电压为:u i=u A=R2R1+R2u ou o=(1+R1R2)u i4.3.4反相加法器:虚短:i+=i−=0虚断:u C=u B=u A=0对C点使用KCL:i1+i2+i3=i f,又因为uc为零,因此u1 R1+u2R2+u3R3=−u oR fu o=−(R fR1u1+R fR2u2+R fR3u3)4.3.5改进的减法器:在同相输入端加装一个简单分压器分析:u=R fR1+R fu2u1−u R1=u−u oR f即:u o=−R fR1(u1−u2)4.3.6电流源:分析:由于没有电流,因此u A=u B=u c=u i,也即i=u iR1,因此流过负载R L的电流完全由ui决定,与R L的值无关i=u i R14.3.7负电阻:负反馈电路:u2=−Ri2欧姆定律u1=u2虚短R1i1=R2i2虚短,虚断,KVL因为虚短,A,B,C三点可看成一点;从ABC三点其中一点到D运用KVL进行求解即:R1=u1i1=−R1R2R五、二端口网络(Two-Port Network):5.1二端口网络的参数和方程(根据给定电路求二端口参数):5.1.1定义:端口(port):端口由两个接线端构成,且满足如下条件:从一个接线端流入的电流等于从另一个接线端流出的电流(端口条件)二端口(two-port):当一个电路与外部电路通过两个端口连接时称此电路为二端口网络.二端口网络的两个端口之间一般不能有支路直接相连,否则可能破坏端口条件导致二端口不能成立回忆一端口网络的电压电流关系:应当用两个电压电流关系方程来描述二端口网络,用两个物理量来表示另外两个物理量5.1.2 用电压表示电流:G 参数和方程i 1=G 11u 1+G 12u 2 i 2=G 21u 1+G 22u 2即:i 1i 2=G 11G 12G 21G 22 u 1u 2G 参数的实验测定:一侧接电源,另一侧短路G 11=i 1u 1|u 2=0 自电导G 12=i 1u 2|u 1=0 转移电导G 21=i 2u 1|u 2=0 转移电导G 22=i 2u 2|u 1=0 自电导G 为短路电导参数矩阵5.1.3互易二端口:激励无论加在哪侧,另一侧产生的响应都一样因此,互易二端口网络四个参数中只有三个是独立的.由线性电阻组成的二端口→互易定理→互易二端口例子:u1直接接在Gb上,形成非关联流入节点的电流等于流出节点的电流G =[G a +G b−G b−G b G b +G c]对于A,B 两点,运用KCL 和KVL 进行求解i 1=u 1G a +(u 1−u 2)G b KCL(A),KVL(A →B)i 2=u 2G c +(u 2−u 1)G b5.1.4 对称二端口:两个端口的外特性完全一样对称二端口只有两个参数是独立的 结构对称的二端口→对称二端口5.1.5含受控源的二端口网络:求解G11时,对A点进行KCL;求解G21时,对B点进行KCL;求解G12与G21时,零值电流源等效于开路等效于G=0;5.1.6用电流表示电压:R参数和方程称R为开路电阻参数矩阵R参数的实验测定:一端加电流源,另一端开路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子电路基础入门
电子电路是现代科技的基石,涉及到我们生活中的各个方面,从手机到电视,从汽车到家电。

学习电子电路的基础知识可以帮助我们更好地理解和应用这些电子设备。

在本文中,我将介绍一些基础的电子电路知识以及学习电子电路的步骤。

一、电子电路的基本概念和分类
1.1 电子电路的基本概念
电子电路由电子器件组成,通过电流和电压的相互作用来实现信息的传输和处理。

1.2 电子电路的分类
电子电路可分为模拟电路和数字电路两类。

模拟电路处理连续信号,数字电路处理离散信号。

二、学习电子电路的步骤
学习电子电路需要系统地掌握一系列的理论知识,并通过实践加深理解。

下面是学习电子电路的基本步骤:
2.1 掌握基本的电路理论基础
了解电流、电压、电阻、电感和电容等基本概念,掌握欧姆定律、基尔霍夫定律、瞬态分析和频率响应等基本理论。

2.2 学习电子器件的基本原理和特性
学习并理解二极管、晶体管、场效应管等常见电子器件的原理、特性以及应用。

2.3 学习电路分析和设计的方法
学习基本的电路分析方法,包括节点分析法、支路电压法和基尔霍夫定律等。

同时,学习电路设计的基本流程,包括需求分析、电路拓扑设计、元器件选型和电路仿真等。

2.4 进行电路实验实践
通过搭建实际电路并进行实验验证,加深对理论知识的理解,并培养动手能
力和解决问题的技巧。

2.5 学习电路设计工具的使用
学习使用相关的电路设计工具,如仿真软件、布局设计软件和印制电路板制
作软件等,提高电路设计和制作的效率。

2.6 深入学习特定领域的电子电路知识
根据个人兴趣和需求,进一步学习特定领域的电子电路知识,如信号处理、
功率电子和微电子等。

三、学习电子电路的注意事项
学习电子电路需要一定的耐心和细心,在学习过程中需要注意以下几点:
3.1 多做习题和实验
通过多做习题和实验,巩固所学知识,并培养解决问题的能力。

3.2 注意实际应用场景
学习电子电路时,要结合实际应用场景来理解知识,增强实际应用的能力。

3.3 多与他人交流和研讨
与他人交流和研讨可以帮助我们更好地理解和应用电子电路知识,同时也可
以了解到不同的思路和技巧。

3.4 遵循安全规范
在进行电路实验和设计时,要遵循安全规范,确保自身和他人的安全。

通过系统学习电子电路的基础知识,我们可以更好地理解和应用电子设备,并有能力进行一定级别的电路设计和分析。

希望本文介绍的电子电路的基础知识和学习步骤能够帮助初学者更好地入门电子电路领域。

相关文档
最新文档