Ansys中文帮助-单元详解-SOLID92
ANSYS中单元类型介绍和单元的选择原则
ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)、beam3是2D的梁单元,只能解决2维的问题。
2)、beam4是3D的梁单元,可以解决3维的空间梁问题。
3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。
(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构)2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
ansys中文帮助
Beam3二维弹性单元特性Beam3单元是一种可承受拉、压、弯作用的单轴单元。
单元的每个节点有三个自由度,即沿x,y方向的线位移及绕Z轴的角位移。
本单元更详细的说明见《ANSYS, Inc. Theory Reference》,其它的二维梁单元还有塑性梁单元Beam23及非对称变截面梁Beam54。
假设与限制:梁单元必须位于X-Y平面内,长度及面积不可为0;对任何形状截面的梁等效高度必须先行决定,因为弯曲应力的计算为中性轴至最外边的距离为高度的一半;单元高度仅用于弯曲及热应力的计算;作用的温度梯度假定为沿长度方向线性通过等效高度;若不使用大变形时,转动惯量可为0。
BEAM3在软件各产品中的使用限制:当使用以下产品时,BEAM3单元的使用还要受到以下限制:ANSYS专业版:不能计算阻尼材料.体荷载不能为热流量.能考虑的特性仅限应力硬化及大挠度两项。
Beam4 单元描述Beam4是一种可用于承受拉、压、弯、扭的单轴受力单元。
这种单元在每个节点上有六个自由度:x、y、z三个方向的线位移和绕x,y,z三个轴的角位移。
可用于计算应力硬化及大变形的问题。
通过一个相容切线刚度矩阵的选项用来考虑大变形(有限旋转)的分析。
关于本单元更详细的介绍请参阅《ansys理论手册》,关于渐变的非对称弹性梁的问题应按beam44单元考虑,三维塑性梁应按beam24单元考虑。
(如果省略节点K或Θ角为0度,则单元的Y轴平行于整体坐标系下的X-Y平面)假设与限制:长度及面积不可为0,当不进行大变形分析时惯性矩可以为0;对任何形状截面的梁等效高度必须先行决定,因为弯曲应力的计算为中性轴至最外边的距离为高度的一半;单元高度仅用于弯曲及热应力的计算;作用的温度梯度假定为沿长度方向线性通过等效高度;当使用相容切线刚度矩阵(KEYOPT(2) = 1)时,一定要注意使用切合实际的(即,按比例的)单元实常数。
这是因为相容应力刚度矩阵是基于单元应力计算的,如果人为取过大或过小的截面特性,则计算的应力可能不正确,导致相应的应力刚度矩阵也不正确(相容应力刚度矩阵的某些分量或能变成无穷大)。
Ansys 帮助文档使用说明
ANSYS的帮助文件使用说明很多网友都曾觉得ANSYS使用起来有一定的难度,经常会遇到这样或那样的问题,但市面上的参考书又不尽如人意,那究竟有没有比较好的参数书?有的,个人认为ANSYS的帮助文件就是一本不错的参数书。
接下来就ANSYS在线帮助的使用做一些基本的介绍,希望能对初学者有所帮助。
ANSYS的帮助文件包括所有ANSYS命令解释及所有的GUI解释,还包括ANSYS各模块的分析指南,实例练习等。
一.进入帮助系统可以通过下列三种方式进入:1.进入ANSYS的操作界面后,在应用菜单中选取Help进入;2.在ANSYS程序组中选取Help System进入:Start Menu > Programs > ANSYS XX>Help System;3.在任何对话框中选取Help。
二.帮助系统的内容安排:点击帮助系统的目录,就看到如下的ANSYS帮助系统的整体内容安排:1.前面4个部分是与软件版本,安装,注册相关的信息,只需作相应的了解即可,如下:※Release Notes※ANSYS Installation and Configuration Guide for UNIX※ANSYS Installation and Configuration Guide for Windows※ANSYS, Inc. Licensing Guide2.接下来两个部分是比较重要的部分,ANSYS的命令和单元手册,对用到的命令和单元应作详细的了解和掌握。
※ANSYS Commands Reference※ANSYS Element Reference3.下面四个部分是ANSYS相关的操作手册,说明如下:※Operations Guide 基本界面,操作指南※Basic Analysis Procedures Guide 基础分析指南※Advanced Analysis Techniques Guide 高级分析指南※Modeling and Meshing Guide 建模与分网指南4.以下几个部分则是ANSYS分模块的分析指南,如下:※Structural Analysis Guide 结构分析指南※Thermal Analysis Guide 热分析指南※CFD FLOTRAN Analysis Guide 流体分析指南※Electromagnetic Field Analysis Guide 电磁场分析指南※Coupled-Field Analysis Guide 耦合场分析指南5.为更好的使用ANSYS方便,快捷的解决更多的工程实际问题,建议仔细学习以下几个部分:※APDL Programmer's Guide:APDL操作手册※ANSYS Troubleshooting Guide:ANSYS错误信息指南※Mechanical Toolbar:机械工具栏※ANSYS/LS-DYNA User's Guide:ANSYS/LS-DYNA操作指南※ANSYS Connection Users Guide:接口技术指南6.欲快速掌握ANSYS的使用,莫过于通过实例和练习,而ANSYS 的帮助系统中则提供大量的例题及练习供用户参考,所以以下两个部分是经常光顾的。
ansys中单元类型中的单元都有什么区别?_百度知道
(2)beam(梁)系列:
beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。
单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。
六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。
Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模 拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形 式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。 在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能 力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。
完整版ansys 中文帮助手册----内容与目录
目录第1 章开始使用ANSYS 11.1 完成典型的ANSYS 分析 1 1.2 建立模型 1第2 章加载232.1 载荷概述23 2.2 什么是载荷23 2.3 载荷步、子步和平衡迭代24 2.4 跟踪中时间的作用25 2.5 阶跃载荷与坡道载荷26 2.6 如何加载27 2.7 如何指定载荷步选项68 2.8 创建多载荷步文件77 2.9 定义接头固定处预拉伸78第3 章求解853.1 什么是求解84 3.2 选择求解器84 3.3 使用波前求解器85 3.4 使用稀疏阵直接解法求解器86 3.5 使用雅可比共轭梯度法求解器(JCG)86 3.6 使用不完全乔列斯基共轭梯度法求解器(ICCG)86 3.7 使用预条件共轭梯度法求解器(PCG)86 3.8 使用代数多栅求解器(AMG)87 3.9 使用分布式求解器(DDS)88 3.10 自动迭代(快速)求解器选项88 3.11 在某些类型结构分析使用特殊求解控制89 3.12 使用PGR 文件存储后处理数据92 3.13 获得解答96 3.14 求解多载荷步97 3.15 中断正在运行的作业100 3.16 重新启动一个分析100 3.17 实施部分求解步111 3.18 估计运行时间和文件大小1133.19 奇异解114第4 章后处理概述1164.1 什么是后处理116 4.2 结果文件117 4.3 后处理可用的数据类型117第5 章通用后处理器(POST1) 1185.1 概述118 5.2 将数据结果读入数据库118 5.3 在POST1 中观察结果127 5.4 在POST1 中使用PGR 文件152 5.5 POST1 的其他后处理内容160第6 章时间历程后处理器(POST26)1746.1 时间历程变量观察器174 6.2 进入时间历程处理器176 6.3 定义变量177 6.4 处理变量并进行计算179 6.5 数据的输入181 6.6 数据的输出183 6.7 变量的评价184 6.8 POST26 后处理器的其它功能187第7 章选择和组件190 7.1 什么是选择190 7.2 选择实体190 7.3 为有意义的后处理选择194 7.4 将几何项目组集成部件与组件195第8 章图形使用入门1988.1 概述198 8.2 交互式图形与“外部”图形198 8.3 标识图形设备名(UNIX 系统)198 8.4 指定图形显示设备的类型(WINDOWS 系统)2018.5 与系统相关的图形信息202 8.6 产生图形显示205 8.7 多重绘图技术207第9 章通用图形规范2109.1 概述210 9.2 用GUI 控制显示210 9.3 多个ANSYS 窗口,叠加显示210 9.4 改变观察角、缩放及平移211 9.5 控制各种文本和符号214 9.6 图形规范杂项217 9.7 3D 输入设备支持218第10 章增强型图形21910.1 图形显示的两种方法219 10.2P OWER G RAPHICS 的特性219 10.3何时用P OWER G RAPHICS219 10.4激活和关闭P OWER G RAPHICS220 10.5怎样使用P OWER G RAPHICS220 10.6希望从P OWER G RAPHICS 绘图中做什么220第11 章创建几何显示22311.1 用GUI 显示几何体223 11.2 创建实体模型实体的显示223 11.3 改变几何显示的说明224第12 章创建几何模型结果显示23312.1 利用GUI 来显示几何模型结果233 12.2 创建结果的几何显示233 12.3 改变POST1 结果显示规范235 12.4 Q-S LICE 技术238 12.5 等值面技术238 12.6 控制粒子流或带电粒子的轨迹显示239第13 章生成图形24013.1 使用GUI 生成及控制图240 13.2 图形显示动作240 13.3 改变图形显示指定241第14章注释24514.1 注释概述245 14.2 二维注释245 14.3 为ANSYS 模型生成注释246 14.4 三维注释246 14.5 三维查询注释247第15 章动画24815.1 动画概述248 15.2 在ANSYS 中生成动画显示248 15.3 使用基本的动画命令248 15.4 使用单步动画宏249 15.5 离线捕捉动画显示图形序列249 15.6 独立的动画程序250 15.7 WINDOWS 环境中的动画251第16 章外部图形25316.1 外部图形概述253 16.2 生成中性图形文件254 16.3 DISPLAY 程序观察及转换中性图形文件255 16.4 获得硬拷贝图形258第17 章报告生成器25917.1 启动报告生成器259 17.2 抓取图象260 17.3 捕捉动画260 17.4 获得数据表格261 17.5 获取列表264 17.6 生成报告26417.7 报告生成器的默认设置267 第18 章 CMAP 程序26918.1 CMAP 概述269 18.2 作为独立程序启动CMAP269 18.3 在ANSYS 内部使用CMAP271 18.4 用户化彩色图271第19 章文件和文件管理27419.1 文件管理概述274 19.2 更改缺省文件名274 19.3 将输出送到屏幕、文件或屏幕及文件275 19.4 文本文件及二进制文件275 19.5 将自己的文件读入ANSYS 程序278 19.6 在ANSYS 程序中写自己的ANSYS 文件279 19.7 分配不同的文件名280 19.8 观察二进制文件内容(AXU2)280 19.9 在结果文件上的操作(AUX3)280 19.10 其它文件管理命令280第20 章内存管理与配置28220.1 内存管理282 20.2 基本概念282 20.3 怎样及何时进行内存管理283 20.4 配置文件286第1 章开始使用ANSYS1.1 完成典型的ANSYS 分析ANSYS 软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
ANSYS中单元类型介绍和单元的选择原则
ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)、beam3是2D的梁单元,只能解决2维的问题。
2)、beam4是3D的梁单元,可以解决3维的空间梁问题。
3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。
(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构)2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
ANSYS 中文帮助
file://C:\Documents and Settings\Administrator\Local Settings\Temp\...
2009-7-21
Beam3单元特性
页码,4/64
2、如果KEYOPT(6) = 1; 3、仅在几何中心作*GET的一个项目可用。
“BEAM3项目和序号表”中列出了在后处理中可通过ETABLE命令加参数及数字序号的方法定义可列 表 察 看 的 有 关 变 量 的 细 则。详 细 参 见《ANSYS 基 本 分 析 指 南》中 有 关 “The General Postprocessor (POST1)” 和 “The Item and Sequence Number Table” 部 分。下 面 是 表 格 “BEAM3 项 目 和 序 号 表 (KEYOPT(9)=0)”到“BEAM3项目和序号表(KEYOPT(9)=9)”的一些使用说明: Name 指在“BEAM3单元输出信息表”中的有关变量。 Item 命令ETABLE中使用的参数。 E 单元数据为常数或单值时对应的序号。 I,J 节点I,J所对应的数字序号。 ILN 中间点的的顺序号 BEAM3项目和序号 目和序号表(KEYOPT(9) = 0)
Beam3单元特性
页码,1/64
制作: Ant008
Beam3二 Beam3二维弹性 维弹性单元特性
Beam3单元描述: 元描述: Beam3单元是一种可承受拉、压、弯作用的单轴单元。单元的每个节点有三个自由度,即沿x,y方向的线位 移及绕Z轴的角位移。本单元更详细的说明见《ANSYS, Inc. Theory Reference》,其它的二维梁单元还有塑 性梁单元Beam23及非对称变截面梁Beam54。 Beam3单元几何图形:
ansys单元结构中文
ANSYS分析结构静力学中常用的单元类型PLANE:Plane42 2维实体。
该元素即可用于平面单元(平面应力或平面应变)也可用于轴对称单元。
该元素由4个节点定义,每个节点2个自由度:x,y方向。
具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。
Plane82二维8节点实体。
该元素是plane42的高次形式(higher order)。
它为混合(四边形-三角形)自动网格划分提供了更精确的求解结果,并能承受不规则形状而不会产生任何精度上的损失。
8节点元素具有位移协调形状,适用于模拟弯曲边界。
该元素由8个节点定义,每个节点2个自由度,x,y方向。
可用于平面单元也可用于轴对称单元。
具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。
并提供不同的输出选项。
可以用粗糙的网格划分来取得比较好的精度。
SOLID:Solid453-D实体。
用于3维实体结构模型。
8个节点,每个节点3个自由度,x,y,z三个方向。
该元素有塑性,徐变,膨胀,应力强化,大变形和大应变能力。
提供带有沙漏控制的缩减选项。
各向异性选用solid64.。
solid45的高次形式使用solid95.Solid953维20节点实体。
该元素是solid45的高次形式。
能够用于不规则形状,而且不会在精度上有任何损失。
该元素具有位移协调形状,适用于模拟弯曲边界。
该元素由20个节点定义,每个节点3个自由度:x,y,z方向。
该元素具有空间的任何方向。
并具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。
同时提供多种输出选项。
MESH200是一个仅用来划分网格的单元,它对计算结果毫无影响。
这个单元能被用于以下几种类型的操作:●多步骤的网格划分,例如单元的扩展要求从低一级的单元生成高一级的单元。
●两维或三维空间中有或没有中间节点的线的网格划分。
●三维空间中有或没有中间节点的三角形、四边形、四面体或六面体单元组成的面或体的网格划分。
●当单元分析的物理参数没有指定时用作单元的临时存储。
Ansys 单元介绍
ANSYS单元类型选择方法2009-04-10 11:01最近在学习ANSYS,收集到一些资料,跟大家分享一下:还有心得体会将在后面写出来跟同行们交流!下面是有关ANSYS分析中的单元选择方法:一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D 和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。
ansys单元说明
ANSYS单元说明单元类型决定单元的自由度设置(如:热单元有一个自由度,而结构单元有6个自由度)、单元形状(六面体,三角形等)、维数(二维或三维)、位移形函数(线形及二次函数)。
在ANSYS 数据库中有超过l90种的不同单元类型可供选择。
冈此确定单元类型是很重要的,应根据不同特性的1 程系统选用不同类型的单元型号,并了解单元特性,才能得出正确的结果 J。
本文按单元的特点将结构分析单元分为:线单元、管单元、实体单元、壳单元、接触单元、特殊单元六大类,分类进行介绍。
2.1线单元线单元主要有:杆单元、梁单元。
2.1.1杆单元杆单元主要用于桁架和网格计算。
属于只受拉、压力的线单元pJ。
主要用米模拟弹簧,螺杆,预应力螺杆利薄膜桁架等模型。
其主要的类型有:(1)LINK1是个二维杆单元,可刚作桁架、连杆或弹簧。
(2)LINK8是个三维杆单元,可用作桁架、缆索、连杆、弹簧等模型。
(3)LINK10是个三维仅受拉伸或压缩杆单元,可用于将整个钢缆刚一个单元来模拟的钢缆静力。
2.1.2梁单元梁单元主要用于框架结构计算。
属于既受拉、压力,又有弯曲应力的线单元【3】。
主要用米模拟螺栓,薄壁管件,C型截面构件,角钢或细长薄膜构件。
其主要的类型有:(1)BEAM3是个二维弹性粱单元,可用于轴向拉伸、压缩和弯曲单元。
(2)BEAM4是个三维弹性梁单元,可用于轴向拉伸、压缩、扭转和弯曲单元。
(3)BEAM54是个二维弹性渐变不对称梁单元,可用于分析拉伸、压缩和弯曲功能的单轴向单元。
(4)BEAM44是个三维渐变不对称梁单元,可用_丁分析拉伸、压缩、扭转利弯曲功能的单轴单元。
(5)BEAMl88是个三维线性有限应变梁单元,可用于分析从细长到中等粗短的梁结构。
(6)BEAMl89是个三维二次有限应变梁单元,可刚于分析从细长到中等粗短的梁结构。
2.2管单元(1)PIPE16是三维弹性直管单元,可用于分析拉压、扭转和弯曲的单轴向单元。
ansys单元详解
LINK1单元描述:LINK1单元可用于不同的工程应用中,依具体的应用,该单元可模拟桁架、链杆及弹簧等。
该二维杆单元每个节点的自由度只考虑x,y两个方向的线位移,是一种可承受单轴拉压的单元。
因为只用于铰接结构,故本单元不能承受弯矩作用。
而LINK8单元是这种单元的三维情况。
LINK1输入总结:节点:I, J自由度:UX, UY实常数AREA –横截面面积ISTRN –初始应变材料属性EX, ALPX, DENS, DAMP面荷载:None体荷载:温度 -- T(I), T(J)热流量 -- FL(I), FL(J)特性:塑性蠕变膨胀应力硬化大变形单元生死KEYOPTSNoneLINK10—三维仅受拉或仅受压杆单元LINK10单元说明:LINK10单元独一无二的双线性刚度矩阵特性使其成为一个轴向仅受拉或仅受压杆单元。
使用只受拉选项时,如果单元受压,刚度就消失,以此来模拟缆索的松弛或链条的松弛。
这一特性对于将整个钢缆用一个单元来模拟的钢缆静力问题非常有用。
当需要松弛单元的性能,而不是关心松弛单元的运动时,它也可用于动力分析(带有惯性或阻尼效应)。
如果分析的目的时研究单元的运动(没有松弛单元),那么应该使用类似于LINK10的不能松弛的单元,比如:LINK8或PIPE59。
对于最终收敛结果为绷紧状态的结构,如果迭代过程中可能出现松弛状态,那么这种静力收敛问题也不能使用LINK10单元。
这时候应该采用其它单元或者采用“缓慢动力”技术。
输入数据单元名称:LINK10节点:I,J自由度:UX, UY, UZ(X, Y, Z方向的平动位移)实常数:AREA(横截面面积),ISTRN(初始应变值,如果为负值则为每单位长度间隙)如果ISTRN小于0并且KEYOPT(3) = 0,则表面缆最初是松弛的。
如果ISTRN大于0并且KEYOPT(3) = 1,表面裂口最初是打开的材料特性:EX(弹模), ALPX(热膨胀系数), DENS(密度), DAMP (对于阻尼域的矩阵乘数K)面载荷:无体载荷:温度-- T(I),T(J)特殊特性:非线性、应力刚化、大变形、单元生死KEYOPT(2)0 -- 表示松弛的缆没有刚度1 -- 松弛的缆纵向运动时有分配了小刚度2 -- 松弛的缆纵向运动并且在垂线方向也有运动(仅在应力刚化时适用)时分配了小刚度KEYOPT(3)0 -- 仅受拉(缆)选项1 -- 仅受压(裂口)选项Link11:单元性质:线性激励有效产品:MPMESET<><><><>PPEDLink11单元说明Link11单元用于模拟液压缸和其他大型回转装置。
ANSYS--热力耦合分析单元简介
ANSYS--热力耦合分析单元简介挑选了部分常用的,希望能方便大家的使用,其中自己翻译了一部分,不准确之处还望见谅,大家还可以继续补充哦!:SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。
本单元由8个节点定义,每个节点有6个自由度。
在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。
在结构和压电分析中,具有大变形的应力钢化功能。
与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。
INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。
具有两个节点,每个节点上带有磁向量势或温度自由度。
所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。
使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。
使用热自由度时,只能进行线性稳态分析。
PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。
由4个节点定义,每个节点可达到4个自由度。
具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。
具有大变形和应力钢化功能。
当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。
LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。
每个节点有一个自由度。
可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。
允许形状因子和面积分别乘以温度的经验公式是有效的。
发射率可与温度相关。
如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。
LINK32-二维传导杆用于两节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
可用于二维(平面或轴对称)稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
ansys各种结构单元介绍
一、单元分类MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/EDLINK1—二维杆单元单元描述:LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。
这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。
就象在铰接结构中的表现一样,本单元不承受弯矩。
单元的详细特性请参考理论手册。
三维杆单元的描述参见LINK8。
下图是本单元的示意图。
PLANE2—二维6节点三角形结构实体单元单元描述:PLANE2是与8节点PLANE82单元对应的6节点三角形单元。
单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。
本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。
本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。
本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。
详细特性请参考理论手册。
下图是本单元的示意图。
BEAM3二维弹性梁单元BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。
单元的详细特性请参考理论手册。
其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。
下图是本单元的示意图。
BEAM4三维弹性梁单元单元描述:BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。
本单元具有应力刚化和大变形功能。
在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。
有限元软件ANSYS主要菜单中文解释
ANSYS9.0程序主要菜单中文解释(1) 实用菜单窗口【Utility Menu】实用菜单中的子菜单都是下拉菜单,包括有:【File】文件管理菜单【Select】选择菜单【List】显示菜单【Plot】绘图菜单【PlotCtrls】绘图控制菜单【WorkPlane】工作平面菜单【Parameters】参数控制菜单【Macro】宏管理菜单【MenuCtrls】菜单控制菜单【Help】帮助菜单a. 文件管理菜单【File】【Clear & Start New…】清除或重新启动【Change Jobname…】改变作业名【Change Directory…】改变目录【Change Title…】改变题目【Resum Jobname.db…】取回作业【Resum from…】从目录中取回【Save as Jobname.db】储存作业【Save as…】另存作业【Write DB Log file…】输出.db Log文件【Read Input from…】读入文件【Switch Output to ►】输出结果文件【List ►】显示文件内容【File Options ►】对文件进行重命名、删除和复制等操作【ANSYS File Options…】设定ANSYS文件的属性等【Import ►】导入其他CAD系统的文件【Export…】导出IGES格式的文件【Report Generator…】报告生成器【Exet…】退出b. 选择菜单【Select】【Entites…】选择实体【Component Manager…】组元管理【Comp/Assembly ►】选择组元和集合【Everything】重新激活整个模型【Everything Below ►】激活某类实体c.显示菜单【List】【File ►】显示文件内容【Status ►】显示选取内容的状态【Keypoint ►】显示关键点的属性和相关数据【Lines…】显示线的属性和相关数据【Areas】显示面的属性和相关数据【V olumes】显示体的属性和相关数据【Nodes…】显示节点的属性和相关数据【Elements ►】显示单元的属性和相关数据【Components】显示组元的属性和相关数据【Picked Entities +】显示选中的实体属性和相关数据【Properties ►】显示要查询内容的属性【Loads ►】显示载荷【Results ►】显示求解结果【Other ►】显示模型中其他的一些信息d. 绘图菜单【Plot】【Replot】重新绘制图形窗口中模型【Keypoints ►】在图形窗口中只绘制关键点【Lines】在图形窗口中只绘制线【Areas】在图形窗口中只绘制面【V olumns】在图形窗口中只绘制三维实体【Specified Entities ►】在图形窗口中只绘制指定的图元【Nodes】在图形窗口中只绘制节点【Elements】在图形窗口中只绘制单元【Layered Elements…】在图形窗口中只绘制分层的单元【Materials…】在图形窗口中只绘制材料属性【Data Tables…】在图形窗口中只绘制定义过的材料属性【Array paramentes…】在图形窗口中只绘制参数【Result ►】在图形窗口中只绘制求解结果【Multi-Plots】在图形窗口中只绘制所有图元【Components ►】在图形窗口中只绘制组元e. 绘图控制菜单【PlotCtrls】【Pan Zoom Rotate…】对模型进行移动、缩放和旋转【View Setings ►】模型观察视角的设置【Numbering…】图元编号显示控制【Symbols…】图元窗口中显示符号的控制【Style ►】模型显示风格控制【Font Controls ►】字体显示风格控制【Window Controls ►】图形窗口中的内容显示控制【Erase Options ►】在图形窗口中进行擦除操作【Animate ►】动画显示控制【Annotation ►】注释【Device Options…】设备选择【Redirect plots ►】更改绘图地址【Hard Copy ►】对屏幕进行硬拷贝【Save Plot ctrls…】储存绘图控制【Restore Plotctrls…】恢复绘图控制【Reset Plot ctrls】重新设置绘图控制【Capture Image…】扑捉图形窗口并以位图等文件保存【Restore Image…】恢复扑捉图形窗口【Write Metafile ►】输出材料数据【Multi-plot Controls…】多窗口绘图控制【Multi- Window Layout…】多窗口显示模型【Best Quality Image ►】最好质量扑捉图形窗口f.工作平面菜单【WorkPlane】【Display Working Plane】是否在图形窗口中显示工作平面【Show WP Status】显示工作平面状态【WP Setting…】工作平面参数设置【Offset WP by Increments…】对工作平面进行旋转【Offsets WP to ►】把工作平面移动到指定的图元位置【Align WP with ►】把工作平面按指定方向设置【Change Active CS to ►】更改当前激活坐标系【Change Display CS to ►】更改当前显示的坐标系【Local Coordinage Systems ►】局部坐标系的建立或删除等相关操作g.参数控制菜单【Parameters】h. 宏管理菜单【Macro】i. 菜单控制菜单【MenuCtrls】【Color Selection…】彩色选择【Font Selection…】字体选择【Update Toolbar】更改工具栏窗口【Edit Toolbar…】编辑工具栏窗口【Save Toolbar…】保存更改后的工具栏窗口【Restore Toolbar…】恢复工具栏窗口【Message Controls…】信息控制窗口【Save Menu Layout】保存更改后的菜单布局控制j.【Help】帮助菜单ANSYS的文档都在帮助菜单中,用到时可以查看。
有限元软件ANSYS主要菜单中文解释
ANSYS9.0程序主要菜单中文解释(1) 实用菜单窗口【Utility Menu】实用菜单中的子菜单都是下拉菜单,包括有:【File】文件管理菜单【Select】选择菜单【List】显示菜单【Plot】绘图菜单【PlotCtrls】绘图控制菜单【WorkPlane】工作平面菜单【Parameters】参数控制菜单【Macro】宏管理菜单【MenuCtrls】菜单控制菜单【Help】帮助菜单a. 文件管理菜单【File】【Clear & Start New…】清除或重新启动【Change Jobname…】改变作业名【Change Directory…】改变目录【Change Title…】改变题目【Resum Jobname.db…】取回作业【Resum from…】从目录中取回【Save as Jobname.db】储存作业【Save as…】另存作业【Write DB Log file…】输出.db Log文件【Read Input from…】读入文件【Switch Output to ►】输出结果文件【List ►】显示文件内容【File Options ►】对文件进行重命名、删除和复制等操作【ANSYS File Options…】设定ANSYS文件的属性等【Import ►】导入其他CAD系统的文件【Export…】导出IGES格式的文件【Report Generator…】报告生成器【Exet…】退出b. 选择菜单【Select】【Entites…】选择实体【Component Manager…】组元管理【Comp/Assembly ►】选择组元和集合【Everything】重新激活整个模型【Everything Below ►】激活某类实体c.显示菜单【List】【File ►】显示文件内容【Status ►】显示选取内容的状态【Keypoint ►】显示关键点的属性和相关数据【Lines…】显示线的属性和相关数据【Areas】显示面的属性和相关数据【V olumes】显示体的属性和相关数据【Nodes…】显示节点的属性和相关数据【Elements ►】显示单元的属性和相关数据【Components】显示组元的属性和相关数据【Picked Entities +】显示选中的实体属性和相关数据【Properties ►】显示要查询内容的属性【Loads ►】显示载荷【Results ►】显示求解结果【Other ►】显示模型中其他的一些信息d. 绘图菜单【Plot】【Replot】重新绘制图形窗口中模型【Keypoints ►】在图形窗口中只绘制关键点【Lines】在图形窗口中只绘制线【Areas】在图形窗口中只绘制面【V olumns】在图形窗口中只绘制三维实体【Specified Entities ►】在图形窗口中只绘制指定的图元【Nodes】在图形窗口中只绘制节点【Elements】在图形窗口中只绘制单元【Layered Elements…】在图形窗口中只绘制分层的单元【Materials…】在图形窗口中只绘制材料属性【Data Tables…】在图形窗口中只绘制定义过的材料属性【Array paramentes…】在图形窗口中只绘制参数【Result ►】在图形窗口中只绘制求解结果【Multi-Plots】在图形窗口中只绘制所有图元【Components ►】在图形窗口中只绘制组元e. 绘图控制菜单【PlotCtrls】【Pan Zoom Rotate…】对模型进行移动、缩放和旋转【View Setings ►】模型观察视角的设置【Numbering…】图元编号显示控制【Symbols…】图元窗口中显示符号的控制【Style ►】模型显示风格控制【Font Controls ►】字体显示风格控制【Window Controls ►】图形窗口中的内容显示控制【Erase Options ►】在图形窗口中进行擦除操作【Animate ►】动画显示控制【Annotation ►】注释【Device Options…】设备选择【Redirect plots ►】更改绘图地址【Hard Copy ►】对屏幕进行硬拷贝【Save Plot ctrls…】储存绘图控制【Restore Plotctrls…】恢复绘图控制【Reset Plot ctrls】重新设置绘图控制【Capture Image…】扑捉图形窗口并以位图等文件保存【Restore Image…】恢复扑捉图形窗口【Write Metafile ►】输出材料数据【Multi-plot Controls…】多窗口绘图控制【Multi- Window Layout…】多窗口显示模型【Best Quality Image ►】最好质量扑捉图形窗口f.工作平面菜单【WorkPlane】【Display Working Plane】是否在图形窗口中显示工作平面【Show WP Status】显示工作平面状态【WP Setting…】工作平面参数设置【Offset WP by Increments…】对工作平面进行旋转【Offsets WP to ►】把工作平面移动到指定的图元位置【Align WP with ►】把工作平面按指定方向设置【Change Active CS to ►】更改当前激活坐标系【Change Display CS to ►】更改当前显示的坐标系【Local Coordinage Systems ►】局部坐标系的建立或删除等相关操作g.参数控制菜单【Parameters】h. 宏管理菜单【Macro】i. 菜单控制菜单【MenuCtrls】【Color Selection…】彩色选择【Font Selection…】字体选择【Update Toolbar】更改工具栏窗口【Edit Toolbar…】编辑工具栏窗口【Save Toolbar…】保存更改后的工具栏窗口【Restore Toolbar…】恢复工具栏窗口【Message Controls…】信息控制窗口【Save Menu Layout】保存更改后的菜单布局控制j.【Help】帮助菜单ANSYS的文档都在帮助菜单中,用到时可以查看。
ANSYS的帮忙文件各板块运用解释明白
2021/4/6
4
s Guide:ANSYS/LS-DYNA操作指南※ANSYS Connection Users Guide:接口技术指 南6.欲迅速掌握ANSYS的运用,莫过于经过实际的例子和练习,而ANSYS的帮忙系统 中则供给数量多的例题及练习供用户参照,所以以下两个局部是常常敬辞的。※ANSYS Tutorials:ANSYS用户指南,每个剖析板块都举了一个例子,并附有周密的操作步骤, 可为解决此类问题供给一点帮忙,市面儿一点ANSYS用来参考的书籍所举实际的例子较 多的也出自这个局部。※ANSYS Verification Manual:ANSYS例题练习,例子较多,但 限于篇幅,帮忙系统中仅给出了:问题描写,输入和输出的参变量。7.ANSYS的理论 基础,解决剖析问题的理论支撑。※ANSYS, Inc. Theory Reference:AN
2021/4/6
5
SYS理论手册三.引得和搜索运用ANSYS的帮忙系统供给了引得和搜索功能,可以很便 捷的找到你需查问的内部实质意义,运用较为简单,这处就不再赘述。四.私人经验1. ANSYS的帮忙系统牵涉到内部实质意义较多,要想一着手就所有都掌握不太有可能,所 以应针对自个儿所用到的局部,按部就班的理解和掌握这是可取的。2.对于刚开始学者 有可能感到看英文帮忙艰难、太消耗时间,但学习是这样的一个过程,着手的时刻的确
2021/4/6
3
下几个局部则是ANSYS分板块的剖析指南,如下所述:※Structural Analysis Guide 结 构剖析指南※Thermal Analysis Guide 热剖析指南※CFD FLOTRAN Analysis Guide 流 体剖析指南※Electromagnetic Field Analysis Guide 电磁力场剖析指南※Coupled-Field Analysis Guide 耦合场剖析指南5.为更好的运用ANSYS便捷,敏捷的解决更多的工程
ansys各种单元概述
ansys各种单元概述ansys软件不同于其它的有限元软件(如abaqus、nastran等),因为ansys软件允许用户选择多种单元类型下面简要的介绍了ansys的各种单元,可以帮助初学者初步认识这些单元,如果具体使用时,还应仔细阅读帮助文件线单元线单元主要有:杆单元、梁单元。
1杆单元杆单元主要用于桁架和网格计算。
属于只受拉、压力的线单元pJ。
主要用米模拟弹簧,螺杆,预应力螺杆利薄膜桁架等模型。
其主要的类型有:(1)LINK1是个二维杆单元,可刚作桁架、连杆或弹簧。
(2)LINK8是个三维杆单元,可用作桁架、缆索、连杆、弹簧等模型。
(3)LINK10是个三维仅受拉伸或压缩杆单元,可用于将整个钢缆刚一个单元来模拟的钢缆静力。
2梁单元梁单元主要用于框架结构计算。
属于既受拉、压力,又有弯曲应力的线单元。
主要用于模拟螺栓,薄壁管件,C型截面构件,角钢或细长薄膜构件。
其主要的类型有:(1)BEAM3是个二维弹性粱单元,可用于轴向拉伸、压缩和弯曲单元。
(2)BEAM4是个三维弹性梁单元,可用于轴向拉伸、压缩、扭转和弯曲单元。
(3)BEAM54是个二维弹性渐变不对称梁单元,可用于分析拉伸、压缩和弯曲功能的单轴向单元。
(4)BEAM44是个三维渐变不对称梁单元,可用_丁分析拉伸、压缩、扭转利弯曲功能的单轴单元。
(5)BEAMl88是个三维线性有限应变梁单元,可用于分析从细长到中等粗短的梁结构。
(6)BEAMl89是个三维二次有限应变梁单元,可刚于分析从细长到中等粗短的梁结构。
2.2管单元(1)PIPE16是三维弹性直管单元,可用于分析拉压、扭转和弯曲的单轴向单元。
(2)PIPE17是三维弹性T形管单元,可用于分析拉压、扭转和弯曲T形管单轴单元。
(3)PIPEl8是弹性弯管单元(肘管),可用丁分析拉伸、压缩、扭转和弯曲性能的环形单轴单元。
(4)PIPE20是个塑性直管单元,可用于分析拉压、弯曲利扭转的单轴单元。
ANSYS单元讲解(全)
把收集到得ANSYS单元类型向大家交流下。
Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。
每个自由度的质量和惯性矩分别定义。
Link1可用于各种工程应用中。
根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。
这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。
X,y,方向。
铰接,没有弯矩。
Link8可用于不同工程中的杆。
可用作模拟构架,下垂电缆,连杆,弹簧等。
3维杆元素是单轴拉压元素。
每个点有3个自由度。
X,y,z方向。
作为铰接结构,没有弯矩。
具有塑性,徐变,膨胀,应力强化和大变形的特性。
Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。
对于单向轴拉,如果元素变成受压,则硬度就消失了。
此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。
当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。
该元素是shell41的线形式,keyopt(1)=2,’cloth’选项。
如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。
当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。
但是由于最终局于一点的结果松弛条件也是有可能的。
在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。
Link10每个节点有3个自由度,x,y,z方向。
在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。
具有应力强化和大变形能力。
Link11用于模拟水压圆筒以及其他经受大旋转的结构。
此元素为单轴拉压元素,每个节点有3个自由度。
X,y,z方向。
没有弯扭荷载。
Link180可用于不同的工程中。
可用来模拟构架,连杆,弹簧,等。
此3维杆元素是单轴拉压元素,每个节点有3个自由度。
X,y,z方向。
作为胶接结构,不考虑弯矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元详解SOLID92
3-D 10 节点四面体结构
SOLID92单元描述
SOLID92有二次方位移和能很好划分不规则的网格(譬如由各种各样的CAD/CAM系统生产)。
可以参考SOLID95为20节点砖形状的单元。
此单元由十个点定义,每个节点有三个自由度:节点x、y,和z方向位移。
并且单元有可塑性、蠕动、膨胀、应力钢化,大变形,和大张力的能力。
可以参考SOLID92在《ANSYS理论参考》为关于这个元素的更多细节。
图921.SOLID92几何模型
SOLID92输入数据
这个单元的几何结构、节点位置,和坐标系如上图所示.
在结点旁边,元素输入数据包括正交各向异性材料属性。
正交各向异性方向对应于元素座标方向。
元素坐标系取向是如图所描述.
单元载荷在《结和元素装载》描述.压力也许被输入作为面载荷作用在单元面上,如图中圆内数字.正压力指向单元内。
温度和别的作用也许作用在单元节
点上。
结点I的温度T(I)默认为TUNIF。
如果所有其它温度没有特指,他们也被默认为T(I)。
如果所有壁角结点温度被指定,各个中节点结温度默认为它的毗邻角结点平均温度。
对于其他温度输入模式,非特指的温度默认为TUNIF。
相似的,对于fluence除了零被指定外,缺省为TUNIF。
您能通过ISTRESS或ISFILE命令向这个单元指定初始应力状态。
对于更多信息,可以参考《初始应力加载》在《ANSYS基本的分析指南》.当然也可以,设置KEYOPT(9)=1从用户子程序USTRESS读取初始应力。
更详细的用户子程序介绍,参考《ANSYS用户编程序指南》.
使用SOLCONTROL在几何学非线性分析中,可以包含压力载荷硬化的作用。
压力载荷硬化影响自动包含在线性特征值计算里面。
可以用NROPT,unsym命令在压力载荷硬化中调用一个非对称矩阵。
元素输入摘要见:《"SOLID92输入摘要"》.元素输入的概述见《元素输入》. SOLID92输入摘要
结点:I,J,K,L,M,N,O,P,Q,R
自由程度:UX,UY,UZ
实常数:无
物质属性
EX,EY,EZ,ALPX,ALPY,ALPZ,PRXY,PRYZ,PRXZ(或NUXY、
NUYZ,NUXZ),DENS,GXY,GYZ,GXZ,DAMP
表面装载
压力:
面1(J-I-K),面2(I-J-L),面3(J-K-L),面4(K-I-L)
体装载
温度--
T(I),T(J),T(K),T(L),T(M),T(N),T(O),T(P),T(Q),T(R)
流力--
FL(I),FL(J),FL(K),FL(L),FL(M),FL(N),FL(O),FL(P),FL(Q),FL(R)
特殊性能
KEYOPT(5):额外单元输出:
0--基本的单元打印输出
1--综合点打印输出
2--节点应力打印输出
KEYOPT(6):额外表面产品:
0--基本单元打印输出
4--非零压力表面打印输出
KEYOPT(9):初始应力子程序选项(只可通过KEYOPT命令直接输入):
0--没有用户子程序提供初始应力(缺省)
1--从用户子程序USTRESS读初始应力数据(参见《ANSYS用户编程序指南》SOLID92输出数据
单元求解数据以两种形式输出:
•包括所有的节点解答数据的节点位移
•另外的单元输出如表《"SOLID92输出数据定义"》
图SOLID92应力输出列出了几个栏目。
单元应力方向平行于单元坐标系。
表面应力输出是在表面坐标系中而且可应用于任一表面(KEYOPT(6))。
J-I-K坐标系如图"SOLID92应力输出".其他表面坐标系如表面节点应力描述的相似方向。
只要在《单元解答》描述了的栏目表面应力打印输出才适用。
通用的解答输出描述见《单元解答》.
图922.SOLID92应力输出
单元输出定义表使用如下标识记法:
冒号(:)在命名专栏表明项目可由命令[ETABLE,ESOL]方法获取.在O栏表明项目输出到文件Jobname.OUT。
在R栏表明项目内容输出到结果文件。
在或O或R栏:Y表明,栏目是可获取的,脚注数字表明项目是有条件地获取,和a-表明,项目是不可获取的。
表92.3SOLID92单元输出定义
名字定义O R EL 单元数Y Y NODES 壁角结-I,J,K,L Y Y MAT 材料序号Y Y VOLU 体积Y Y XC,YC,ZC 结果坐标Y 3
Y Y PRES 在结点J,I,K压力P1;在I,J,L压力P2;在J,K,L压力P3;
在K,I,L压力P4
TEMP 温度T(I),T(J),T(K),T(L) Y Y
Y Y FLUEN 流力
FL(I),FL(J),FL(K),FL(L),FL(M),FL(N),FL(O),FL(P),FL(Q),FL(R)
S:X,Y,Z,XY,YZ,XZ 应力Y Y S:1,2,3 主应力Y Y S:INT 应力强度Y Y S:EQV 等效应力Y Y EPEL:X,Y,Z,XY,YZ,XZ 弹性张力Y Y EPEL:1,2,3 主弹性张力Y Y EPEL:EQV 等效弹性张力[4] Y - EPTH:X,Y,Z,XY,YZ,XZ 热张力11
1.非线性解答(单元有非线性材料的输出)
2.表面输出(如果KEYOPT(6)=4并且有非零压力面)
3.只在矩心作为a*得到项目可利用。
4.等效张力使用有效的泊松比:对有弹性和热力的这个值由用户设置(MP,prxy);对塑性和蠕变这个值被设置在0.
5.
SOLID92混合单元输出
1.如果KEYOPT(5)=1,出在每一合化点,
2.如果KEYOPT(5)=2,出在各个端点结。
表"SOLID92项目和顺序编号"名单输出了可通过ETABLE命令获取的栏目。
看见通用后处理器(POST1)在《ANSYS基本的分析指南》并且项目和顺序编号表在这个指南里对于更多信息。
以下记法被使用表"SOLID92项目和顺序编号":
名字:产品数量依照被定义在表"SOLID92单元输出定义"
项目:被预先决定的项目标签为ETABLE命令
I,J,。
..,R:顺序编号为数据在结I,J,。
..,R
表.SOLID92项目和顺序编号
看见表面解答在这个指南里为项目和顺序编号为表面产品为ETABLE命令。
SOLID92假设和制约
•单元不能有零体积。
单元在图:"SOLID92几何模型"或在I-J-K面板下中被编号。
•有一个被去除中点的边缘表示,位移沿那个边缘线性地变化,而不是抛物线地变化。
见二次方单元(中间节点)在ANSYS塑造的和捕捉的指南对于关于对中节点的用途的信息。
SOLID92产品制约
ANSYS专家。
•潮湿的物质不被允许。
•流体载荷不适用。
唯一的特殊性是可以定义应力硬化。