单相逆变器设计

合集下载

单相全桥逆变电路毕业设计

单相全桥逆变电路毕业设计

2008级应用电子技术毕业设计报告设计题目单相电压型全桥逆变电路设计姓名及学号学院专业应用电子技术班级2008级3班指导教师老师2011年05月1日题目:单相电压型全桥逆变电路设计目录第一章绪论1.1整流技术的发展概况 (4)第二章设计方案及其原理2.1电压型逆变器的原理图 (5)2.2电压型单相全桥逆变电路 (6)第三章仿真概念及其原理简述3.1 系统仿真概述 (6)3.2 整流电路的概述 (8)3.3 有源逆变的概述 (8)3.4逆变失败原因及消除方法 (9)第四章参数计算4.1实验电路原理及结果图 (10)第五章心得与总结 (14)参考文献 (15)第一章绪论1.1整流技术的发展概况正电路广泛应用于工业中。

整流与逆变一直都是电力电子技术的热点之一。

桥式整流是利用二极管的单向导通性进行整流的最常用的电路。

常用来将交流电转化为直流电。

从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。

基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。

目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。

系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。

加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。

从而大大提高了通信网运行可靠和通信质量。

高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。

由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。

新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

第二章 设计方案及其原理2.1电压型逆变器的原理图原理框图等效图及其输出波形当开关S1、S4闭合,S2、S3断开时,负载电压u o 为正; 当开关S1、S4断开,S2、S3闭合时,u o 为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o 的波形如上图 (b)所示。

单相逆变器电路设计与仿真multisim

单相逆变器电路设计与仿真multisim

单相逆变器电路设计与仿真multisim【原创实用版】目录1.单相逆变器电路设计2.单相逆变器的建模与仿真3.控制思路与电路拓扑4.负载使用单相桥式整流5.电流内环与电压外环控制6.MATLAB 中的单相全桥逆变器电路建模与仿真7.利用仿真减少逆变器电路设计工时8.单相 LCL 并网逆变器 simulink 仿真9.逆变电路设计过程及仿真实例10.DC/AC:单相方波全桥逆变电路设计原理及实验仿真正文一、单相逆变器电路设计单相逆变器是一种将直流电源转换为交流电源的电路,其主要应用在太阳能发电、风力发电以及电力电子设备中。

在设计过程中,需要考虑电路的拓扑结构、控制策略以及负载特性等因素。

二、单相逆变器的建模与仿真建模是对电路的数学描述,仿真是利用计算机模拟电路的工作过程。

对于单相逆变器,可以使用 MATLAB 或 Multisim 等软件进行建模与仿真,以验证电路的性能指标是否满足设计要求。

三、控制思路与电路拓扑控制部分采用 PI 控制,包含电压外环和电流内环。

电压外环控制输出电压,电流内环控制输出电流。

电路拓扑采用全桥逆变电路,使用 LC 滤波器,负载为单相桥式整流电路。

四、负载使用单相桥式整流在单相逆变器电路中,负载通常使用单相桥式整流电路。

这种整流电路具有结构简单、工作效率高等优点,适合用于电压波形为矩形波的负载。

五、电流内环与电压外环控制电流内环和电压外环是逆变器控制策略的两个重要部分。

电流内环控制电流,电压外环控制电压。

通过这两个环路的联合控制,可以实现逆变器输出电压和电流的高效调节。

六、MATLAB 中的单相全桥逆变器电路建模与仿真在 MATLAB 中,可以通过 Simulink 工具箱搭建单相全桥逆变器电路模型,并进行仿真实验。

仿真结果表明,当同时打开绝缘栅双极型晶体管时,负载两端的电压和电流波形方向相同;当二极管 vd 同时导通时,电压和电流波形方向相反,理论分析与仿真实验结果完全一致。

单相逆变器的软件编程设计

单相逆变器的软件编程设计

单相逆变器的软件编程设计摘要逆变电源技术是电力电子技术的重要组成部分。

逆变电源是一种采用开关方式的电能变换装置, 它从交流或直流输人获得稳压、稳频的交流输出。

衡量逆变电源性能高低的主要指标是输出电压的品质,输出电压品质由以下特性来衡量: 稳压特性、稳频特性、波形特性、动态特性、电压调制特性。

逆变电源之所以能得到广泛应用,是因为它能实现以下功能:逆变电源能将直流电转换为交流电;变频,逆变电源能将市电转换为用户所需频率的交流电;变相,逆变电源能将单相交流电转换为三相交流电, 也能将二相交流电转换为单相交流电。

逆变电源出现于电力电子技术飞速发展的20世纪60年代,逆变电源的发展是和电力电子器件的发展联系在一起的,器件的发展带动着逆变电源的发展。

最初的逆变电源采用晶闸管(SCR)作为逆变器的开关器件,称为可控硅逆变电源。

随着半导体技术和变流技术的发展,自关断的电力电子器件脱颖而出,相继出现了电力晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极型晶体管(IGBT)等等。

自关断器件在逆变器中的应用大大提高了逆变电源的性能。

由于自关断器件的使用,使得开关频率得以提高,从而逆变桥输出电压中低次谐波的频率比较高,使输出滤波器的尺寸得以减小,而且对非线性负载的适应性得以提高。

近十年来发展起来的新型电源控制技术,目前仍在不断地完善和发展之中,使逆变电源的性能有了质的飞跃。

本次是基于MOSFET管构建的逆变器软件编程设计,使用的核心器件为单片机AT89S52及功率驱动集成芯片IR2110。

本课题使用单片机AT89S52通过编程产生50Hz的准正弦方波,为逆变器提供输出功率信号,去推动MOS功率管。

本次设计采用的电路拓扑为单相全桥逆变电路,用两片IR2110驱动全桥电路,每片分别驱动上下MOSFET,其耐压为500V。

IR2110用于驱动全桥逆变器用以控制MOSFET的通断,在IR2110的外围电路使用二极管和齐纳二极管防止MOSFET 的同时导通而击穿。

基于STM32的单相正弦波逆变器设计

基于STM32的单相正弦波逆变器设计

基于STM32的单相正弦波逆变器设计李加升;李稳国;宋歌【摘要】考虑当前光伏发电、风力发电等新能源逆变入网的需要,在比较了现有逆变器的基础上,针对低压小功率的逆变,设计了一种基于STM32的单相正弦波逆变器.该逆变器主要由控制模块、全桥式逆变模块、同步BOOST电路、信号采集与调理模块、信息显示模块、欠压过流保护模块等构成.逆变器采用SPWM正弦脉宽调制,经过IR2104产生两路反相的SPWM波,驱动4个开关管IRF540工作,并利用STM32完成电流/电压采样、调试和液晶显示的数据处理.经实际测式,该逆变器获得了较高的转换效率,较低的输出电压/电流误差.【期刊名称】《湖南城市学院学报(自然科学版)》【年(卷),期】2017(026)003【总页数】4页(P54-57)【关键词】全桥逆变;同步BOOST;SPWM控制【作者】李加升;李稳国;宋歌【作者单位】湖南城市学院信息与电子工程学院,湖南益阳 413000;湖南城市学院信息与电子工程学院,湖南益阳 413000;湖南城市学院信息与电子工程学院,湖南益阳 413000【正文语种】中文【中图分类】TM464在光伏发电、风力发电等新电源被广泛应用的今天,逆变技术的研究被广泛关注,而低压小功率的逆变电源是电子设备必不可少的部分.随着电力电子技术的发展和对电气设备在性能上的要求,以及不同应用领域对电源的技术要求,各行业对逆变电源的要求也在不断提高.在许多的电子设备中,要求逆变电源系统可靠性高、稳定度好、调节特性优良,而且体积小、重量轻[1-2].而控制信号产生电路是逆变器的核心,其性能优劣将直接影响整个逆变器的好坏.正弦波脉宽调制(SPWM)是逆变电路的核心技术,目前SPWM的产生方法有很多种,最基本的方法就是利用分立元件,采用模拟、数字混合电路产生SPWM[3-4].文献[5]提出了一种用数、模硬件电路产生SPWM的方法,此方法硬件电路复杂;文献[6]采用SPWM专用芯片SA828系列与微处理器直接连接生成SPWM,此方法生成的SPWM波形参数受专用芯片限制;文献[7]利用FPGA来生成SPWM波,虽然生成的SPWM波质量性能较好,可以灵活改变输出波形参数,但成本也相对较高.本文采用ARM 公司的32位单片机STM32作为主控芯片对单相正弦波逆变器进行了设计.基于STM32的单相正弦波逆变器方框图见图1.系统主要由STM32主控模块、驱动模块、同步BOOST模块、全桥逆变模块、信息采集模块、欠压过流保护模块及键盘显示模块组成,同步BOOST电路和全桥逆变模块组成系统的主电路.系统由单片机产生一路PWM,经驱动模块功率放大后,变为两路反相带死区的PWM,控制同步BUCK中的两个开关管,实现直流电输出升压.全桥逆变电路由单片机产生的2路反相SPWM波,经过驱动模块后生成的4路SPWM波信号控制.SPWM波控制逆变电路4个开关管的通断,将升压后的直流电转换为交流电[8].系统采用互感采样将交流输出电压电流反馈给单片机进行PID调节,实现稳压功能.将交流电压信号经过过零比较器后得到同频率的方波,再由单片机进行频率采样显示在液晶屏上,并可通过按键设定交流电输出频率,与采样频率比较后,进行PID调节,实现频率可调.通过控制欠压过流保护模块中的继电器通断,可以实现欠压过流保护.控制模块由STM32芯片及外围电路构成的最小系统,主要用于信号的采集和发出控制信号;数据采样模块以ADS1115芯片为核心,电压互感器和电流互感器采集输出端电压电流并通过BOOST输出[9];由过零比较器为主要核心构成的定时器捕获模块是为了得到交流输出频率和功率因子;同步BOOST电路使用开关管取代BOOST电路的续流二极管,并用两路反相的PWM驱动;全桥逆变模块通过单片机产生SPWM波控制4个开关管构成全桥式滤波电路,可提高效率;LCD12864模块显示电源的相关主要参数;过流欠压保护模块用于增强电路的安全性,通过检测电源的电压电流,从而控制继电器对整个电路进行保护.STM32单片机拥有512 KB的系统内可编程Flash、112个的快速I/O端口、11个定时器、实时时钟RTC、2个12位的us级的A/D转换器(16通道)、SPI串行端口,以及3种可以通过软件选择的省电模式.单片机主要起到电流电压采样、功率因数测量、信息显示以及过流欠压保护的作用,STM32最小系统部分由晶振电路、复位电路、显示电路组成.单片机最小系统需晶振电路来产生时钟频率.STM32电路采用8 MHz的晶振,CPU最高工作频率可达72 MHz.LCD12864带中文字库的12864内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块,其分辨率为128×64,内置8 192个16*16点汉字,和128个16*8点ASCII字符集,利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面.可以显示8×4行16×16点阵的汉字,也可完成图形显示.主电路由同步BOOST电路和全桥逆变电路组成,见图2.系统通过单片机产生PWM波控制BOOST电路升压,将BOOOST输出电压输送到逆变电路,同时利用正弦脉宽调制技术产生SPWM波给逆变电路实现DC-AC.STM32单片机产生1路PWM,经过I2104后变为两路反相带死区的PWM,控制同步BOOST电路中开关管的通断,由电感周期性充放电和后级电容滤波,使电压输出升高.利用电阻取样法将输出电压采集,反馈给单片机与设定值比较得到误差值,再根据误差值进行稳压调节.逆变部分则是由单片机产生两路反相的SPWM波,经过驱动芯片IR2104驱动后变成4路SPWM波分别驱动全桥的4个开关管,通过单片机的定时器功能每隔50 us取正弦波对应的1个占空比值,1个正弦波分为400个点,则逆变后的波形的周期T =50 us*400=20 000 us=20 ms,频率为f =1/T =50 Hz.由此可实现固定输出50 Hz的交流电.为了提高输出电压、电流控制精度,信号采集模块选用16位采样芯片ADS1115进行采样.系统首先通过电压互感器和电流互感器分别将输出电压、电流成比例缩小,再输入AD637将交流输出换算为真有效值后,由ADS1115采样后反馈给单片机.AD采样电路图见图3.欠压过流保护采用继电器控制电路的通断实现保护.单片机将反馈的电压值和电流值与设定值相比较,当电压低于20±0.5 V或高于28±0.5 V、电流超过1.7±0.1A时,单片机的PA.2口发出一个电平,通过对继电器开关的控制来实现对电路的保护,通过软件控制欠压过流保护具有自恢复功能.AD及继电器保护电路图如图4所示.开启总电源,系统进入初始化状态.然后,对输入电流、电压进行采样,若输出电压大于28 V或低于20 V、电流值大于1.7 A,则驱动继电器断开主回路,完成过流保护,5 s后控制继电器使电路正常工作.若电压电流值在正常范围内,则进行稳压调节,并通过液晶显示.本系统的主程序流程图如图5所示.在输入直流电压Us=21.5 ~26.5 V的条件下,使用数字万用表测量交流电压输出,用示波器测量输出电压波形及频率,测量结果见表1.负载采用50 Ω/50 W 可调滑线变阻器,在直流输入电压Us=24 V、负载为5 Ω时,调整输出交流电压为36 V,然后将负载电阻为10 Ω,测量输出电压的变化范围,具体数据参见表3,经计算最大变化范围为0.283 V.负载采用50 Ω/50 W,调整输出电压测出输入输出电压和电流,并计算出效率,具体数据见表3.由表3数据可知,输出效率最低时为83.1%.逆变系统设计时,设计的功能是当检测到当电压低于20±0.5 V或高于28±0.5 V、电流超过1.7±0.1 A时,继电器断开,以实现保护的目的.经实际测试,当电流为1.7±0.05 A时,继电器断开,具备过流保护及自恢复功能.本文设计了一种基于STM32的正弦波逆变器,主要通过BOOST升压,经全桥逆变后,结合SPWM的控制转换为交流电,再进行PID调节,实现稳压功能.结合STM32和LCD12864液晶显示器,实现友好的人机交互界面.利用了过流欠压保护技术,为逆变器提供了有力的安全保障.经组装和测试后,该逆变器能够实现输入直流电压Ui=21.5~26.5 V范围时,输出频率为f0=50±0.5 Hz的交流电压U0=36±0.5 V,输出可调频率20~80 Hz,电能转换效率达83%以上,其他各项指标均达到较为满意的效果.【相关文献】[1]王兆安, 刘进军. 电力电子技术[M]. 5版. 北京: 机械工业出版社, 2013.[2]张凯, 王祥. 基于STM32的新型SPWM逆变电源[J]. 电气自动化, 2012, 34(3): 52-54.[3]吕小涛. 基于DSP的正弦波逆变电源研究[D]. 武汉: 武汉理工大学, 2009.[4]王小龙, 陈畅, 龚敏. 一种新型过流保护电路的设计[J]. 电子与封装, 2010, 87(7): 16-19.[5]罗秦. 基于STM32的DC-AC电源设计与研究[D]. 天津: 天津理工大学, 2015.[6]宗荣芳. 基于protel DXP的电路设计仿真[J]. 电子工程师,2005, 31(1): 41-47.[7]江国栋, 徐丽萍. 基于AD型单片机的中功率升压开关稳压电源设计[J]. 南京工业职业技术学院学报, 2009, 9(2): 12-13.[8]高玉峰, 胡旭杰, 陈涛, 等. 开关电源模块并联均流系统的研究[J]. 电子工程, 2011(02): 210-212.[9]付运旭. 高频全桥逆变电源设计与测试[D]. 济南: 山东大学,2012.。

单相桥式PWM逆变器的设计

单相桥式PWM逆变器的设计

单相桥式PWM逆变器的设计单相桥式PWM逆变器是一种常用的电力电子设备,它可以将直流电能转换为交流电能,并通过改变开关器件的开关频率和占空比来实现对输出波形的精确控制。

本文将重点介绍单相桥式PWM逆变器的设计原理、拓扑结构、工作原理以及在实际应用中所遇到的问题及其对策。

一、设计原理单相桥式PWM逆变器的设计基于电力电子技术和控制理论。

其原理是通过开关器件(如晶体管、IGBT等)控制直流侧电压的切换来实现交流输出的电压和频率的控制。

通过调整开关器件的开通和关断时间,可以控制输出波形的形状和振幅。

采用PWM控制策略可以提高输出电压的质量和变换效率。

二、拓扑结构三、工作原理单相桥式PWM逆变器的工作原理是通过控制开关器件的通断,将直流电压切换成一个周期内的脉冲电压,再通过滤波器将其转换为纯正弦交流电压。

在每个半周期内,开关器件的导通和关断时间通过PWM控制器控制,以实现对输出电压的控制。

PWM控制器会根据输入信号和控制策略生成一个PWM信号,通过调整占空比和频率来控制开关器件的工作状态。

四、问题及对策1.开关器件损耗问题:由于开关器件的通断过程会产生较大的功率损耗,需要根据负载情况选择合适的开关器件,并采取散热措施来降低温度。

2.滤波器设计问题:为了获得稳定的输出电压,滤波器的设计需要考虑逆变器的输出频率和负载情况,以提高输出电压的纯度和防止谐波。

3.控制策略问题:逆变器的控制策略需要根据负载类型和要求来选择,如开关频率和占空比调整方式等。

4.过电压和过电流保护问题:逆变器应该设置过电压和过电流保护装置,以防止故障引起的损坏和安全问题。

5.电磁干扰问题:逆变器的高频开关过程会产生电磁干扰,应采取屏蔽措施来降低干扰。

总结:单相桥式PWM逆变器的设计需要考虑拓扑结构、工作原理和控制策略等方面的问题。

通过合理的选择开关器件、滤波器设计、控制策略和保护措施,可以得到高质量、高效率的逆变器输出。

然而,设计过程中还需要考虑如开关器件损耗、滤波器的合理性、控制策略的优化和电磁干扰问题等,并采取相应的对策来解决这些问题,以保证逆变器的正常工作和高效率输出。

基于LCL滤波的单相并网逆变器的设计

基于LCL滤波的单相并网逆变器的设计

基于LCL滤波的单相并网逆变器的设计张朝霞;文传博【摘要】并网逆变器作为发电系统和电网连接的核心装置,直接影响整个并网发电系统的性能,已成为国内外研究的热点.以单相全桥逆变器为研究对象,为更好地减小入网电流的总谐波失真,采用LCL型滤波器,具有更好的高频谐波抑制能力.控制策略使用双电流闭环控制,推导了控制方程,内环控制LCL滤波器中的电容电流,外环控制滤波后的电网侧电流,此控制方法使系统的稳定性和动态性能都得到了很好改善.设计了各元件的取值规则,建立了系统仿真模型,通过Matlab/Simulink仿真,证明了建立的单相并网逆变器可成功实现并网运行.【期刊名称】《上海电机学院学报》【年(卷),期】2019(022)002【总页数】6页(P83-88)【关键词】并网逆变器;滤波器;谐波抑制;双电流环控制【作者】张朝霞;文传博【作者单位】上海电机学院电气学院,上海 201306;上海电机学院电气学院,上海201306【正文语种】中文【中图分类】TM464光伏发电和风力发电等新能源并网是能源可持续发展战略的重要问题。

许多国家都积极研发光伏发电、风力发电等新能源并网发电系统[1-4]。

目前,常用的新能源回馈电网的方案为:先把新能源转化成电能;再把电能调节成满足全桥逆变器所需的直流电压;最后由全桥逆变器将新能源回馈到交流电网。

在整个并网系统中,最核心的环节是逆变器,使用正弦脉宽调制逆变技术(Sinusoidal Pulse Width Modulation, SPWM)。

这种方案采用了较多模拟环节,且其控制方法也比较落后,就使得并网逆变装置的并网效果不那么理想,使其应用受到限制。

针对并网逆变器技术的探索越来越多,面对以往控制技术的不足,人们提出了很多研究方向。

文献[5]将高速的数字信号处理(Digital Signal Processing, DSP)应用到并网逆变器的控制之中,使用数字控制与模拟控制结合实现理想的控制效果;文献[6]根据各系统情况的不同,采用不同的逆变器拓扑结构,如单相、三相、隔离等,且各结构之间可以进行组合,形成各种不同的形式,来满足更多的需求。

毕业设计(论文)-单相逆变器设计与仿真

毕业设计(论文)-单相逆变器设计与仿真

单相逆变器设计与仿真班级学技术要求:逆变器类型:单相逆变器输出额定电压:825V输出额定功率:25KVA输出额定频率:50HZ功率因素:≥0.8过载倍数:1.5⑴、设计主电路参数;⑵、建立数学模型,给出控制策略,计算控制器参数;⑶、建立仿真模型,给出仿真结果,对仿真结果进行分析。

目录一、单相逆变器设计 .....................................................................................................- 4 -1、技术要求 ..........................................................................................................- 4 -2、电路原理图 .......................................................................................................- 4 -3、负载参数计算 ...................................................................................................- 4 -3.1、负载电阻最小值计算 ...............................................................................- 5 -3.2、负载电感最小值计算 ...............................................................................- 5 - 3.3、滤波电容计算..........................................................................................- 5 - 4、无隔离变压器时,逆变器输出电流计算 .............................................................- 6 -4.1、长期最大电流(长)O I ...............................................................................- 6 -4.2、短期最大电流短)(0I .................................................................................- 7 - 5、无隔离变压器时,逆变器输出电流峰值 .............................................................- 7 -5.1、长期电流峰值长)(OP I ...............................................................................- 7 - 5.2、短期电流峰值短)(OP I ...............................................................................- 7 - 6、滤波电感计算 ...................................................................................................- 7 -6.1、滤波电感的作用 ......................................................................................- 7 - 6.2、设计滤波器时应该注意的问题 .................................................................- 7 - 6.3、设计滤波器的要求...................................................................................- 8 - 7、逆变电路输出电压(滤波电路输入电压) .........................................................- 8 -7.1、空载........................................................................................................- 9 - 7.2、 额定负载纯阻性1cos =ϕ .....................................................................- 9 - 7.3、额定负载阻感性8.0cos =ϕ ....................................................................- 9 - 7.4、过载纯阻性1cos =ϕ ............................................................................ - 10 - 7.5、过载阻感性8.0cos =ϕ ......................................................................... - 11 - 8、逆变电路输出电压 .......................................................................................... - 11 - 9、逆变电路和输出电路之间的电压匹配 .............................................................. - 12 - 10、根据开关压降电流选择开关器件.................................................................... - 12 - 11、开关器件的耐压 ............................................................................................ - 13 - 12、单相逆变器的数学模型.................................................................................. - 13 - 13、输出滤波模型................................................................................................ - 14 - 14、单相逆变器的控制策略.................................................................................. - 15 - 14.1、电压单闭环控制系统 ........................................................................... - 15 - 14.2、电流内环、电压外环双闭环控制系统 ................................................... - 16 -二、单相逆变器仿真 ................................................................................................... - 20 -1、输出滤波电路仿真 .......................................................................................... - 20 -2、电压单闭环控制系统仿真 ................................................................................ - 21 -3、电流内环、电压外环双闭环控制系统 .............................................................. - 23 -一、单相逆变器设计1、技术要求输出额定电压:825V输出额定功率:25KVA输出额定频率:50HZ功率因素:≥0.8过载倍数:1.52、电路原理图图1 单相全桥逆变电路设计步骤:(1)、根据负载要求,计算输出电路参数。

单相逆变器设计范文

单相逆变器设计范文

单相逆变器设计范文首先,单相逆变器的设计需要考虑以下几个方面:输出电压波形、输出功率、效率和保护措施。

1.输出电压波形:单相逆变器的输出电压波形应尽可能接近正弦波,以保证输出电能的质量。

常见的设计方法包括:方波逆变器、脉宽调制(PWM)逆变器和多脉泽调制(MPPT)逆变器。

其中,PWM逆变器是最常用的设计方法,通过高频开关器件的开关控制实现。

2.输出功率:逆变器的输出功率决定了其应用范围。

在设计单相逆变器时,需根据具体需求选择适当的功率等级。

输出功率主要受限于逆变器的开关器件和电路拓扑结构。

常用的逆变器拓扑结构有单相桥式逆变器、双半桥逆变器、全桥逆变器等。

选择适合的拓扑结构能提高逆变器的功率密度和转换效率。

3.效率:逆变器的效率对于能量转换非常重要,可以通过优化设计和控制算法来提高效率。

有效的设计方法包括:降低开关器件的导通和开通损耗、降低电路的额定电流和电压降以减少传导损耗等。

此外,合理的散热设计和抑制电磁干扰也能提高逆变器的效率。

4.保护措施:逆变器的保护措施是确保其正常运行和安全性的重要组成部分。

常见的保护措施包括:过电流保护、过温保护、短路保护、过压保护等。

通过添加适当的保护电路和控制算法,可以有效防止逆变器受损或损坏。

设计单相逆变器需要一定的电力电子知识和设计经验。

下面提供一个基本的单相逆变器设计流程作为参考:1.确定输出功率和电压:根据应用需求确定单相逆变器的输出功率和电压等级。

2.选择逆变器拓扑结构:选择适合的逆变器拓扑结构,并进行电路分析和计算。

常见的逆变器拓扑结构包括全桥逆变器和单相桥式逆变器。

3.选择开关器件:根据输出功率和电压确定合适的开关器件,如功率MOSFET、IGBT等。

考虑开关器件的导通和开通特性,以及损耗和成本等因素。

4.控制电路设计:设计适当的控制电路和算法,实现逆变器的开关控制。

常见的控制方法包括PWM调制、电流控制和电压控制等。

5.散热设计:根据逆变器的功率密度和工作条件设计散热系统,确保逆变器在长时间工作时的温度控制和散热效果。

基于STM32的单相逆变器系统的设计和实现

基于STM32的单相逆变器系统的设计和实现

基于 STM32的单相逆变器系统的设计和实现辽宁工业大学电子与信息工程学院 110000摘要:本设计以STM32单片机为主控芯片,采用SPWM双极调制方式,以单相全桥逆变电路为主电路,实现双逆变器并网供电。

提出了一种新的主从控制方法,通过控制主从机SPWM调节的不同速度来实现外电路对内电路电压的电流控制。

提出控制系统软启动和过流后重启的思路,保证系统始终处于安全运行状态,并能快速反应。

两个单片机之间的通信是通过UART来完成的,实现从电路跟随主电路的输出相位,高精度采样系统的设计采用SPI通信方式实现。

关键词:单相逆变;并联均流;STM32;SPWM1引言能源是社会发展的原动力。

目前,传统化石燃料仍是现代社会使用的主要能源材料,但目前已探明的储量和消费水平无法估计长期稳定供应。

因此,化石燃料造成的能源危机和污染使可再生能源研究成为重中之重。

逆变器的工作过程是将光伏板产生的直流电流转换成稳定高效的交流电,可以直接提供给用户。

它由逆变器部分、控制部分和输出滤波部分组成。

这使得光伏逆变器的研究成为利用太阳能解决能源危机不可缺少的环节,其性能直接影响逆变器的效率和逆变器的能源质量。

微型光伏逆变器以其维护方便、安全性高等优点,被广泛应用于分布式单机光伏发电系统中。

此外,光伏转换器因其适应不同条件的能力、扩展方便和成本低而在市场上更具竞争力。

因此,要保证离网光伏发电系统高效稳定运行,开发一种可靠、高效、经济的微型光伏逆变器就显得尤为重要[1]。

2并网逆变器系统硬件设计2.1选择主控芯片本设计采用标准ARM结构、Cortex-M内核的STM32单片机作为主DSP,专为高性能、低成本、低功耗的嵌入式应用而设计,大大提高了信号处理效率。

STM32F103ZET6有60个中断源,可以匹配本系统中的各种外设和控制逻辑。

与其他单片机相比,具有功耗低、频率高、操作简单、调试方便、性能稳定性高等优点。

微控制器内置的UART和SPI通信模块可以满足系统中主从和交流通信的通信需求。

单相桥式逆变器 毕业设计

单相桥式逆变器 毕业设计

目 录中文摘要 (1)英文摘要 (2)1 引言 (3)2 PWM波形工作原理 (4)2. 1 PWM波形的基本原理 (4)2. 2 PWM型逆变电路的控制方式 (6)2. 3 SPWM波形的生成方法 (7)3 单相正弦脉宽调制逆变电源的组成及工作原理 (8)3. 1系统组成 (8)3. 2 工作原理 (8)3. 2. 1 Boost变换器电路原理 (9)3.2.2桥式逆变器基本原理 (10)4 主电路及控制电路设计 (11)4.1主电路拓扑及工作过程 (11)4.2 主电路参数设 (11)4.3控制电路设计 (15)4.3.1控制电路框图 (15)4.3.2控制电路工作过程 (15)4.3.3 SG3524与ICL8038芯片介绍 (16)4.3.4 控制电路参数设计 (18)5 辅助电源设计 (23)6 本文主要工作总结 (25)致 谢 (26)参 考 文 献 (27)摘要:现代开关电源分为直流开关电源和交流开关电源两类,前者输出质量较高的直流电,后者输出质量较高的交流电。

本文设计的小功率单相桥式逆变器电源属于交流电源(即AC—DC—AC)。

采用电压反馈控制,通过中断功率通量和调节占空比的方法来改变驱动电压脉冲宽度来调整和稳定输出电压。

其中主电路构成是用Boost升压电压和全桥电路的组合。

控制电路采用了2片集成脉宽调制电路芯片,一片用来产生PWM波,另一片与正弦函数发生芯片做适当的连接来产生SPWM波,集成芯片比分立元器件控制电路具有更简单,更可靠的特点和易于调试的优点。

本文分析了逆变器的设计过程中器件选择,工作原理以及工作过程,并给出了计算过程中的重要公式。

关键词:逆变器 SPWM波 单相桥式Abstract:The modern switch power supply is divided into the direct current switch power supply and the exchanges switch powersupply , the former outputs higher quality of direct current ,the latter outputs higher quality of alternate current . Thistext introduce a small power single-phase bridge converter ,isa kind of AC power(namely AC-DC-AC).Using the voltagefeedback control, breaking off the power flux and regulating amethod of share the empty ratio to change to driving voltagepulse’ width to adjust the output voltage . Among them, the maincircuit is composing of the Boost circuit and the whole-bridgecircuit. The control circuit adopted two slices of integratedvein breadths chip2, the one is used to produce PWM wave, theother with the sine function occurrence chip do to produce SPWMwave, the integration chip is sample than the single component,more dependable and easy to adjust. This text analyzed the sparepart choice of converter, the work principle and the work process,and gave the important formula of the calculation process. Keywords:converter SPWM wave single-phase bridge1 引言电源有如人体的心脏,是所有电设备的动力。

基于DSP的单相逆变器设计

基于DSP的单相逆变器设计

基于DSP的SPWM单相逆变器的实现M. F. N. Tajuddin,N. H. Ghazali,I. Daut and B. Ismail马来西亚玻璃市大学,电子系统工程学院(马来西亚)摘要本文介绍了从理论和实验方面基于数字信号处理器(DSP)的正弦脉宽调制(SPWM)单相逆变器的实现。

两个互相补充的正弦参考信号与载波信号比较来产生脉宽调制PWM开关信号。

数字正弦脉宽调制算法在数字信号处理器TMS320F2812中,使用根据C2000嵌入式目标库中构造块建立的仿真软件模型来实现。

逆变器的效率高并且产生较少的总谐波失真。

拟建系统通过仿真方式验证且实现原型,实验结果均进行了比较。

关键字:正弦脉宽调制(SPWM) 逆变器数字信号处理器TMS320F28121.绪论脉冲宽度调制(PWM)是最强大的技术,它提供了一种简单的方法来控制处理器的数字输出模拟系统。

数字信号处理器(DSP)芯片的特点是性价比高,并且大部分指令的执行在一个指令周期内,复杂控制算法执行速度快,使得数控逆变器的现场采样率可能达到较高数值[1]。

生成必要的脉冲宽度调制模式的控制方法已经被广泛的讨论过。

讨论可以分为电压控制和电流控制脉冲宽度调制。

这些方法旨在生成一个没有低阶谐波的正弦逆变器输出电压。

如果采样频率相比基本逆变器的输出频率很高,那么生成一个没有低阶谐波的正弦逆变器输出电压是有可能的。

正弦脉宽调制(SPWM)技术是目前广泛使用的方法之一。

它的特征为在每个不同时期的恒幅脉冲有不同的工作周期。

脉冲宽度调制由逆变器输出电压控制和减少其谐波含量[2]。

如今,正弦脉冲宽度调制或正弦脉宽调制是在控制电机和运用逆变器时最受欢迎的方法。

正弦脉宽调制逆变器的控制策略是影响其性能、规模和成本的关键因素之一。

虽然逆变器通常被设计为模拟电路,不过研究者现在更加偏好数字逆变器。

本文介绍了从理论和实验方面基于全数字单相正弦脉宽调制电压调制逆变器的数字信号处理器的实现。

单相桥式逆变器的设计

单相桥式逆变器的设计

单相桥式逆变器的设计如同所有逆变器一样,单相桥式逆变器的基本原理是根据电力电子器件的开关状态来转换电源。

单相桥式逆变器通过一对控制开关来实现这个功能,分别连接直流电源的正极和负极。

控制开关通过交替开关来改变电流在负载中的流动方向,从而产生交流输出。

下面将详细介绍单相桥式逆变器的设计过程:1.规划设计要求:在设计之前,首先需要确定单相桥式逆变器的规模和规格。

这包括输出功率、输出电压以及所需的控制功能。

根据应用需求,确定逆变器的最大功率输出和所需的交流电压等参数。

2.选择逆变器拓扑结构:3.选取电力电子器件:逆变器的设计涉及到选择合适的电力电子器件来实现电能的转换。

主要考虑的电力电子器件包括开关管(如IGBT、MOSFET等)、二极管和滤波电容等。

根据工作电压和电流需求,选择合适的电子器件。

4.控制电路设计:逆变器的控制电路用于控制开关的状态,从而改变电流的流向。

这通常包括一个控制器和一些驱动电路。

控制器可以根据输入信号和反馈信号来控制开关的开关状态,实现逆变器的稳定运行。

5.滤波电路设计:逆变器的输出通常需要通过滤波电路进行滤波,以去除输出中的谐波成分。

这通常包括一个电感器和滤波电容。

电感器用于滤除高频成分,而滤波电容则用于平滑输出波形。

6.保护电路设计:逆变器的设计还需要考虑安全保护功能,防止过电流、过电压和过温等故障。

这包括短路保护、过载保护、过压保护和过温保护等。

保护电路的设计可以采用一些传感器和保护器件来监测逆变器的工作状态,并在故障发生时采取相应的保护措施。

7.PCB设计:最后,逆变器的设计需要进行PCB电路板设计,并进行电路布局和走线。

合理的布局和走线可以降低电磁干扰和噪声,提高逆变器的性能和可靠性。

在完成设计后,进行逆变器的样机制作和测试。

通过测试来验证设计的正确性和性能指标是否满足需求。

如果有需要,可以对设计进行进一步改进和优化。

通过以上的设计步骤,就可以实现单相桥式逆变器的设计。

单相逆变器建模及控制器设计

单相逆变器建模及控制器设计

单相逆变器建模及控制器设计一、逆变器系统建模逆变器是一种将直流电转换为交流电的电力电子设备,广泛应用于分布式发电、无功补偿、有源滤波等领域。

逆变器系统建模是逆变器控制的基础,通过对逆变器系统的数学描述,可以深入理解逆变器的工作原理和动态特性。

二、控制器设计基础控制器是逆变器系统的核心部分,用于实现逆变器的稳态和动态性能。

控制器设计需要综合考虑系统的稳定性、快速性、抗干扰能力和经济性等方面的因素。

常见的控制器设计方法包括:基于传递函数的频域设计法、根轨迹法、基于状态空间的时域设计法等。

三、逆变器数学模型逆变器的数学模型是对逆变器系统的精确描述,用于分析和设计逆变器的控制策略。

根据逆变器的电路拓扑和数学处理方法,可以将逆变器数学模型分为线性模型和非线性模型两类。

线性模型主要采用传递函数和差分方程描述逆变器的动态特性,非线性模型则采用状态方程和微分几何理论等。

四、逆变器状态空间模型状态空间模型是一种描述线性动态系统状态变量的完整和严格的数学表达方式,基于状态空间模型的控制系统设计方法已经成为现代控制理论中的重要组成部分。

在逆变器控制中,状态空间模型可以用于描述逆变器的动态行为,基于状态空间模型的控制系统设计方法也可以应用于逆变器控制系统的设计和优化。

五、控制器设计方法基于状态空间模型的控制器设计方法包括线性二次型调节器(LQR)和最优控制等。

LQR是一种优化控制方法,通过设计状态反馈控制器,使得某种性能指标达到最优。

最优控制则基于动态规划原理,通过求解Hamilton-Jacobi-Bellman(HJB)方程,得到最优控制律。

这些方法均可以在MATLAB/Simulink等仿真软件中实现。

六、PID控制器设计PID控制器是一种简单而实用的控制器,广泛应用于工业控制领域。

在逆变器控制中,PID控制器也被广泛应用。

PID控制器由比例(P)、积分(I)和微分(D)三个环节组成,通过调整三个环节的参数,可以获得较好的控制效果。

关于单相并网lcl型逆变器设计方案的思路

关于单相并网lcl型逆变器设计方案的思路

关于单相并网lcl型逆变器设计方案的思路
随着环境污染和化石能源危机的不断加剧,清洁的可再生能源得到了快速的发展,而在以光伏发电等新能源为代表的分布式发电系统中,并网运行是其中的一种重要运行方式,对于缓解地区电力系统的负荷压力,提高电力系统运行可靠性和经济性具有重要作用。

 以分布式光伏发电系统为例,一般地,单相并网逆变器直流母线电压设为400V,对于一块最大输出功率为200W的太阳电池板,其最大功率点电压为24.3V,因此为了达到逆变器并网要求,至少需要17块上述相同的太阳电池板进行串联,而此时太阳电池阵列输出总的功率为3.4kW。

 当要求逆变器降额运行或光伏发电系统总功率低于3.4kW时,就难以进行太阳电池板的配置实现光伏逆变并网运行。

为此,作为一种可以独立作用于单个光伏组件的功率变换器——光伏微型逆变器,得到了迅速发展和广泛地关注并受到人们的青睐。

 微型逆变器比较成熟的方案主要包括基于高频变压器的单级反激式逆变器和基于高增益DC-DC变换器的多级式逆变器。

多级式微型逆变器电路结构复杂、所需元器件较多且能量转换次数多,整体效率降低,相较而言,单级反激式逆变电路具有结构简单、元器件数量少等优点。

最新-单相正弦脉宽调制逆变器的设计 精品

最新-单相正弦脉宽调制逆变器的设计 精品

单相正弦脉宽调制逆变器的设计摘要论述了单相正弦波逆变器的工作原理,介绍了3524的功能及产生波的方法,对逆变器的控制及保护电路作了详细的介绍,给出了输出电压波形的实验结果。

关键词逆变器;正弦波脉宽调制;场效应管引言当铁路、冶金等行业的一些大功率非线性用电设备运行时,将给电网注入大量的谐波,导致电网电压波形畸变。

根据我们的实验观察,在发生严重畸变时,电压会出现正负半波不对称,频率也会发生变化。

这样的供电电压波形,即使是一般的电力用户,也难以接受,更无法用其作为检修、测试的电源。

同时,在这种情况下,一般的稳压电源也难以达到满意的稳压效果。

为此,我们设计了该逆变电源。

其控制电路采用了2片集成脉宽调制电路芯片3524,一片用来产生波,另一片与正弦函数发生芯片8038做适当的连接来产生波。

集成芯片比分立元器件控制电路具有更简单、更可靠的特点和易于调试的优点。

图1系统主电路和控制电路框图1系统结构及框图图1示出了系统主电路和控制电路框图。

交流输入电压经过共模抑制环节后,再经工频变压器降压,然后整流得到一个直流电压,此电压经过电路进行升压,在直流环上得到一个符合要求的直流电压35050220交流输出时。

变换采用全桥变换电路。

为保证系统可靠运行,防止主电路对控制电路的干扰,采用主、控电路完全隔离的方法,即驱动信号用光耦隔离,反馈信号用变压器隔离,辅助电源用变压器隔离。

过流保护电路采用电流互感器作为电流检测元件,其具有足够快的响应速度,能够在管允许的过流时间内将其关断。

2控制及保护电路为了降低成本,使用两块集成脉冲产生芯片3524和一块函数芯片8038,使得控制电路简洁,易于调试。

213524的功能及引脚图2所示为3524的结构框图和引脚图。

3524工作过程是这样的直流电源从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5基准电压。

+5再送到内部或外部电路的其他元器件作为电源。

基于准PR双环控制的单相逆变器的设计与研究

基于准PR双环控制的单相逆变器的设计与研究
参考文献
[1]毛艳芳,熊旋,陈旭,孙建军,刘飞.单相逆变器双环控制改进策略研究[J]电测与仪表,2014(08):69-74.
[2]徐德鸿.电力电子系统建模及控制[M].机械工业出版社2005:187-193.
[3]徐发喜.SPWM逆变器双环数字控制技术研究[D].[硕士学位论文].南京:东南大学,2014.
4结束语
本文首先介绍了逆变器的作用,以及如今逆变技术存在的问题。对常见单相SPWM逆变器进行了系统的建模与分析,并给出了一种设计LC滤波器参数的方法。在此基础上,引入了电压外环PR控制,电流内环PI控制的双闭环的控制策略。在控制器参数的选取中,采用了极点配置的方法,简化了计算,最终经过参数优化,得到了满意的参数配置。在最后,经过simulink仿真,模拟不同的负载情况,经过分析,整个逆变系统具有良好的稳定性和很快的动态响应以及基本无差的稳态性能,满足了设计的要求。
准PR控制在其设定的频率及其附近的增益很大。其传递函数如式八所示:;内环PI调节器的传递函数如式九所示:。
2.2控制器参数选取
双环控制系统的控制参数的选取需要考虑两个控制器响应速度、带宽的相互影响,如果利用反复试凑法,因为内外环控制器共含有四个参数,其工作量太大。综合考虑下,我们采用极点配置法,有效地配置极点,使其具有满意的动态性能和稳态精度。
在讨论准PR控制器时,由式八可得,其结构过于复杂,不利于参数的求取。但由准PR控制器与PI控制器的伯德图可知,在Kp和Kr参数相同的条件下,两者在中高频段的伯德图重合。对于本文而言,我们需要考虑的是300Hz及其以上的正弦波,因此设计的准PR参数,完全可以用PI的参数替代。
将图5的结构框图进行结构图的化简,并另闭环传函的分母等于0可得,闭环系统的特征方程式为式十:LCs4+(Kp1Kpwm+r)s3+(CKiKpwm+Kp1Kp2Kpwm+1)s2+(KiKp2+Kp1Kr)s+KrKiKpwm=0。将滤波参数L=600μH; C=5μF;r=0.1Ω;Kpwm=200代入上式,并对其极点进行配置。令s1、2=-ξω±jω ; s3、4=-nξω;则期望的闭环特征方程式为式十一;取ξ=0.707;自然振荡频率ω=4500rad/s;n=10;对比式十与式十一并进行参数优化后:Kp1=10;Ki=2500;Kp2=0.2;Kr=250。

48--220单相逆变器仿真设计

48--220单相逆变器仿真设计

单相逆变器仿真研究1 概述随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。

现如今,逆变器的应用非常广泛,在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,就需要逆变。

另外,交流电机调速变频器、UPS、感应加热电源等使用广泛的电力电子装置,都是以逆变电路为核心。

本文以单相DC-AC 逆变器为研究对象,设计了一种基于全桥式结构的SPWM 逆变器。

以TI 公司低功耗16 位单片机MSP30FX169 为核心,根据反馈的电压或电流信号对PWM 波形作出调整,进行可靠的双闭环控制,逆变部分采用MSP430 数字化SPWM 控制技术,以尽可能减少谐波。

为降低开关损耗,防止产生噪声,将开关频率设置为20KHZ。

系统具有短路保护,输入过压和过流保护功能,针对开关管,还完善了抑制浪涌电流,开断缓冲和关断缓冲等功能。

设计的硬件电路主要包括全桥式逆变主电路、控制电路、驱动电路、取样电路、保护电路等。

重点分析了SPWM 控制算法,并给出了软件实现SPWM 波形的过程。

采用无差拍控制和传统的PI 控制方法相结合的复合控制方法,既利用了无差拍控制的快速动态响应特性,又利用了PI 控制具有强的鲁棒性,据此设计的控制器能够使逆变器的输出电压很好地跟踪正弦波,在电容性整流负载下输出电压也具有很好的正弦性,在MATLAB/SIMULINK 下建立了电源系统的仿真模型,完成了控制器的参数设计,并给出电源在不同负载下和主电路滤波器参数变化下的输出电压仿真波形,证明了本方案设计的逆变器能够得到优质的正弦交流电。

2 方案论证2.1 主回路拓扑结构方案选择逆变电源主电路结构的选取应该遵循以下几个原则:选用尽量少的开关器件,这样可以提高系统的可靠性,并且降低成本;尽量减少逆变电源中的电容值、电感值,和减少电容电感元件在逆变电源中的数量,这样可以减小整个逆变电源设备的体积,提高其可靠性,同时也应该降低设备的成本;电路拓扑结构应该有利于逆变电源最终输出电压中谐波的消除,输出电压频率及幅值的调节。

单相桥式逆变器课程设计

单相桥式逆变器课程设计

单相桥式逆变器课程设计一、课程目标知识目标:1. 学生能理解单相桥式逆变器的基本工作原理及其在电力电子技术中的应用;2. 学生能掌握单相桥式逆变器的主电路构成、控制方式及各部分功能;3. 学生能了解单相桥式逆变器在新能源发电、电动汽车等领域的应用。

技能目标:1. 学生能运用所学知识,分析并解决单相桥式逆变器在实际应用中出现的问题;2. 学生能通过实验,掌握单相桥式逆变器的调试方法,提高实际操作能力;3. 学生能运用相关软件,设计简单的单相桥式逆变器控制系统。

情感态度价值观目标:1. 学生通过学习单相桥式逆变器,培养对电力电子技术的研究兴趣,增强科技创新意识;2. 学生在学习过程中,树立团队合作意识,提高沟通与协作能力;3. 学生关注新能源技术的发展,认识到电力电子技术在节能减排中的重要性,增强环保意识。

课程性质:本课程为电子技术专业课程,旨在让学生掌握单相桥式逆变器的工作原理和应用,培养实际操作能力和创新能力。

学生特点:学生具备一定的电子技术基础,对电力电子技术有一定了解,但对单相桥式逆变器的深入学习尚属首次。

教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,培养实际操作能力和创新能力。

在教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。

二、教学内容1. 单相桥式逆变器的基本原理及电路构成- 逆变器的基本概念和工作原理- 单相桥式逆变器的主电路及其各部分功能- 单相桥式逆变器的控制方式2. 单相桥式逆变器的应用领域- 在新能源发电领域的应用- 在电动汽车领域的应用- 在其他电力电子设备中的应用3. 单相桥式逆变器的设计与调试- 逆变器主电路参数计算与选择- 控制策略及电路设计- 调试方法及注意事项4. 实践操作与案例分析- 实验室实践操作,熟悉逆变器的基本操作和调试方法- 分析实际应用中单相桥式逆变器的问题及解决方案- 设计简单的单相桥式逆变器控制系统教学大纲安排:第一周:逆变器基本原理及电路构成第二周:单相桥式逆变器控制方式第三周:单相桥式逆变器应用领域第四周:单相桥式逆变器设计与调试方法第五周:实践操作与案例分析教学内容与教材关联性:本教学内容紧密围绕教材中关于单相桥式逆变器的内容,结合实际应用,注重理论与实践相结合,提高学生的实际操作能力。

单相电压源型逆变器控制系统设计

单相电压源型逆变器控制系统设计

单相电压源型逆变器控制系统设计摘要:大量UPS系统在为许多不允许供电中断的重要用电设备提供不间断供电,研发UPS的关键便是电压源型逆变器,控制输出高质量电压波形,且带非线性负载和负载突变的情况下,仍能保持电压的稳定和高质量。

本文的主要内容是研究单相电压源型逆变器,采用电压电流双环瞬时值反馈控制技术,并详细讨论了基于极点配置的双环PI控制参数的整定。

同时提出单环超前滞后电压瞬时值反馈控制,并做了大量仿真研究,显示这两种控制方式都具有优越的控制性能。

关键词:双环控制;极点配置;超前滞后;电压源型逆变器The control system design of single-phase voltage sourceinverterAbstract:Uninterruptible Power Supply (UPS) systems are widely used for supplying critical equipment which can’t afford utility power failure. The core of a UPS system is a inverter which Control the output voltage waveform with high quality. Even connected with nonlinear load and mutational load, it still can maintain the stability of voltage and the quality. this paper is to study the single-phase voltage source inverter, adopting the instantaneous values of voltage and current double-loop feedback control technology. The dual-loop PI control parameters setting based on pole assignment is discussed in detail. At the same time single-loop instantaneous voltage value with the lead-lag control strategy. And lots of simulation have been achieved.A inverter is the core of a UPS system. To achieve nearly sinusoidal output voltage even with nonlinear loads, many waveform correction techniques have been proposed. This dissertation focuses on the research of the instantaneous feedback technology of PWM inverters. Both control methods show excellent performance.Keywords: dual-loop control;PWM inverter;CVCF;lead-lag control strategy1 引言能源的紧张,让人们越来越重视能源利用的高效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (3)1 概述及设计要求 (4)1.1概述 (4)1.2 设计要求 (4)2 总体设计方案介绍及原理框图 (5)2.1 方案概述 (5)2.2 逆变电路及换流原理介绍 (5)2.3 电压型逆变电路的特点及主要类型 (5)2.4 系统原理框图 (6)3 各电路模块设计 (7)3.1 逆变电路的主电路设计 (7)3.2 驱动电路设计 (7)3.2.1 MOSFET介绍 (7)3.2.2 SG3524及IR2110芯片介绍 (8)3.3保护电路设计 (11)4 心得体会 (13)参考文献 (14)附录摘要本系统是根据无源逆变的实用原理,采用单相全桥逆变电路工作方式,实现把直流电源(48v)转换成交流电(1KVA 220V)。

在本设计电路中,将48V直流电压经逆变器转变为交流电压,再由工频变压器升压,最后通过低频滤波器滤波实现输出为220V 的交流电压。

关键字:单相、全桥、逆变、升压、滤波abstractthis system is according to the practical principle passive inverter, single-phase bridge inverter circuits work method, realize the dc power supply (48 v) convert alternating current (1 KVA 220 v). In this circuit design, 48 V dc voltage inverter into the ac voltage, again by industrial frequency transformer booster, finally through the low frequency filters filter realize output for 220 V ac voltage.key word: single phase, the whole bridge, inverter, and boost, filtering单向逆变器的设计1 概述及设计要求1.1概述逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ 正弦或方波)。

应急电源,一般是把直流电瓶逆变成220V交流的。

通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。

它由逆变桥、控制逻辑和滤波电路组成。

逆变器的日常用途1.汽车上的逆变器所获得的220V电,是220V 50HZ,高档点的是正弦波的,便宜的一般是方波的。

正弦波的那种和接插座上用的电,是一样的,而方波的其实也可以用,只不过如果用风扇等有电机的设备,会有一些噪音,之所以用方波,就是因为这种调制方式成本比较低。

2.接笔记本,电视,碟机之类的东西,只要在他的额定功率下使用,都没问题。

但是需要注意他是接在汽车蓄电池上的,虽然他一般都是11V就自动保护断电,避免电压过低导致车无法启动,但是还是不适宜在引擎不运转的情况下用,所以如果用负载比较大,还是建议启动引擎。

如果是给手机充电道没什么问题。

3.电动车上,有一个叫DC-DC的模块,他也叫直流转换器,这个模块输入48V,输出12V,那么你只要购买一个12V输入的车载逆变器就可以使用。

当然若你能买到48V输入的逆变器更好,但估计很难买到而且,这个模块一般只能提供5A电流,最多不过10A,而且车灯什么的也要用,所以很容易过载,建议,如果可以,多买一个直流转换器,这个转换器专门给你那逆变器供电,然后如果直流转换器只能提供5A,那么逆变器输入就应当小于5A,否则可能会损坏那模块,当然有一些直流转换器电流是很大的,如果修车的地方没有,可以到一些电器店或叫他们修理的给你进一个大电流的,或者多个直流转换器并联也可以,总之,不要让他过载就可以。

1.2 设计要求要求设计一个输入为48V直流电压,输出容量为1KVA,输出电压为220V单相交流电的逆变器。

2 总体设计方案介绍及原理框图2.1 方案概述本次课程设计的主要目标,是设计一个单相桥式逆变电路,且本设计采用电压型逆变器,同时要设计相应的触发电路和过电流过电压保护电路。

根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路模型,在日常生活中有着广泛的应用。

它的电路结构主要是由四个桥臂组成,其中每个桥臂都有一个全控器件MOSFET的导通控制需要触发电路,通过资料的查询,找到相关的触发电路,从中进行选择,最终确定方案。

可以用芯片SG3524及IR2110进行触发,使换流能够实行。

最后设置过电压过电流保护电路,通过查询资料,连出电路图,将触发电路接入,设置参数,根据设置的参数进行计算。

2.2 逆变电路及换流原理介绍与整流电路相比较,把直流电变成交流电的电路称为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变。

在不加说时,逆变电路一般指无源逆变。

逆变电路在生活中有很广泛的应用。

交流电路在工作过程中不断发生电流从一个支路向另一个支路的转移,这称为换流。

换流是实现逆变的基础。

通过控制开关器件的开通和关断来控制电流通过支路,这是实现换流的基本原理。

换流方式有多种,其中主要分为期间换流、电网换流、负载换流、和强迫换流四种方式。

2.3 电压型逆变电路的特点及主要类型根据直流测电源的性质不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的称为电流型逆变电路。

电压型逆变电路有以下特点:1)直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

2)由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关,而交流侧输出电流波形和相位应为负载阻抗的情况不同而不同。

3)当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管,又称为续流二极管。

逆变电路分为三相和单相两大类。

其中,单相逆变电路主要采用桥式接法。

主要有:单相半桥和单相全桥电路。

而三相电压型逆变电路则是由三个单相逆变电路组成。

最常见的是三相桥式逆变电路。

2.4 系统原理框图系统原理框图如下图1所示:路图1 系统原理框图3 各电路模块设计3.1 逆变电路的主电路设计在本次设计中,主要采用单相全桥式逆变电路作为设计的电路。

其主电路结构图如下图2所示:图2 单相全桥逆变电路主电路及升压结构图如上图2所示,单相全桥逆变电路主电路主要有四个桥臂,可以看成由两个半桥电路组合而成。

其中桥臂1、4为一对,桥臂2、3为一对。

每个桥臂有一个可控器件MOSFET 以及一个反并联的二极管组成。

在直流侧接有足够大的电容,负载接在桥臂之间。

它的具体工作过程如下:舍最初时刻t1时,给MOSFET Q1、Q4触发信号,使其导通。

则电流流过桥臂1,负载。

桥臂4构成一个导通回路。

当t2时刻时,给Q2、Q3触发信号,给Q1、Q4关断信号。

但由于负载电感较大,通过它的电流不能突变,所以二极管D2,D3导通进行续流。

当电流逐渐减小为0,桥臂1、4关断,桥臂2、3导通,构成一个回路,从而实现换流。

3.2 驱动电路设计3.2.1 MOSFET介绍MOSFET是一种电压控制的单极性器件,它是由金属氧化物和半导体组成的场效应晶体管,所以也叫绝缘栅型场效应管。

应用VMOSFET工艺,生产出了大功率的产效应管,并在逆变电路中得到广泛应用。

功率场效应管简称VMOSFET,或VMOS,作为开关器件,其常态是阻断状态,即VMOS都是增强型MOSFET。

MOSFET分为N沟道和P沟道两类。

N沟道VMOS 的导通电流的方向是从漏极D 到源极S ;P 沟道MOS 的导通方向是从源极S 到漏极D 。

VMOS 管的工作原理是,源极S 接零电位,漏极D 接正电位,当栅极接正电压时,由于电荷感应,在P 区感应出电子,电子的累积便形成N 沟道。

源极S 和漏极D 之间便产生了电流。

因此,栅极G 上的电压的大小,决定了源极S 与漏极D 之间的电流大小。

N +GS DP 沟道b )N+N -S GD P P N +N+N+沟道a )GS D N 沟道图1-19图3 MOFET 结构图和电气图3.2.2 SG3524及IR2110芯片介绍SG3524采用DIP-16封装,引脚排列如下图4所示。

各引脚功能如下:第1、2脚分别为误差放大器的反相输入端与同相输入端。

第3脚是振荡器输出端。

第4、5脚依次是限流比较器检测端。

第6、7脚分别接定时电阻(R T )和定时电容(C T )。

第8脚为接地端。

第9脚为误差放大器的频率补偿端。

第l0脚为关断电路控制端.改变此脚电位就可控制PWM 的通断。

第11、14脚为输出管E A 、E B 的发射极。

第l2、l3脚为输出管的集电极;第l5脚为电源输入端,接+5V ~+30V 。

第l6脚为+5V 基准电压引出端。

[ 7]图4 SG3524引脚图SG3524引脚功能说明引脚符号功能1 INV 反相输入引脚2 N,INV 同相输入引脚3 OSC 振荡器输出引脚4 +C L检测引脚(+C L)5 –C L检测引脚(–C L)6 R T积分电阻引脚7 C T积分电容引脚8 GND 地线9 COMP 补偿引脚10 SD 关闭(停止)引脚11 E A发射极(A)引脚12 C A集电极(A)引脚13 C B发射极(B)引脚14 E B集电极(B)引脚15 V IN输入电压引脚16 V REF参考电压引脚IR2110是IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,可以实现对MOSFET和IGBT的最优驱动,同时还具有快速完整的保护功能,因而它可以提高控制系统的可靠性,减少电路的复杂程度。

IR2110引脚图如下图5:图5 IR2110引脚图(引脚1):低端输出COM(引脚2):公共端Vcc(引脚3):低端固定电源电压Nc(引脚4): 空端Vs(引脚5):高端浮置电源偏移电压VB (引脚6):高端浮置电源电压HO(引脚7):高端输出Nc(引脚8): 空端VDD(引脚9):逻辑电源电压HIN(引脚10): 逻辑高端输入SD(引脚11):关断LIN(引脚12):逻辑低端输入Vss(引脚13):逻辑电路地电位端,其值可以为0VNc(引脚14):空端IR2110的特点:(1)具有独立的低端和高端输入通道。

(2)悬浮电源采用自举电路,其高端工作电压可达500V。

(3)输出的电源端(脚3)的电压范围为10—20V。

(4)逻辑电源的输入范围(脚9)5—15V,可方便的与TTL,CMOS电平相匹配,而且逻辑电源地和功率电源地之间允许有 V的便移量。

相关文档
最新文档