2019-2020年高中数学第六章第16课时《简单随机抽样》教案(学生版)苏教版必修3
简单随机抽样 说课稿 教案
重点
分析
具体细化内容和确定依据
(1)理解随机抽样的必要性和重要性
(2)学会简单随机抽样的两种方法
(3)对样本随机性的理解
难点
分析
(1)放回与不放回抽样的区别
(2)学生在运用抽样方法时所有个体被抽到的机会相等的保证
解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径。
解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本。
利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶中是否含有三聚氰胺,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
第一步,先将800袋牛奶编号,可以编为000,001,…,799。
【说明】简单随机抽样必须具备下列特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
பைடு நூலகம்思考?
下列抽样的方式是否属于简单随机抽样?为什么?
高中数学_简单随机抽样教学设计学情分析教材分析课后反思
一、教学目标1.知识与技能(1)理解什么是简单随机抽样,简单随机抽样的特点;(2)能够根据实际问题的需求,深刻理解样本的代表性,选择恰当的抽样方法获取样本数据.2.过程与方法(1)学会从现实生活中提出具有一定价值的问题;(2)在学习中,逐步提升数据分析、数学抽象的素养.3.情感态度与价值观认识“不确定性”,体会统计思维与确定性思维的差异.二、教学重难点重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.难点:理解怎样的抽样是随机抽样,如何抽样才能使样本更好地代表总体.三、教学方法从学生的认知规律出发进行启发、诱导、探索,运用讲授法、讨论法等充分调动学生的积极性,发挥学生的主体作用。
四、教学过程1、提出问题上课开始师先说这样一番话:统计是研究“不确定性”的学科,它的研究对象是数据,核心是数据分析。
主要面对两个问题,第一,这堆数据从哪里来的,就是说,这个现象是真的现象吗?怎样找出“数据”呢?第二,这堆数据在说什么?它对我们的生活有什么意义呢?【设计意图】学生整体感受统计是研究不确定的学科,与前面学习研究函数等确定性学科不一样。
师边读边解释:生还没静下来,不大喜欢听改成:先让学生看总统选举的例子师总结:可见科学、合理的选取有代表性的样本有多么重要。
这就是统计要研究的内容。
第一,这堆数据从哪里来的,就是说,这个现象是真的现象吗?怎样找出“数据”呢?第二,这堆数据在说什么?它对我们的生活有什么意义呢?我们今天就来学习一种收集数据的方法------简单随机抽样板书课题,ppt展示学习目标2、概念引入探究一、统计基本概念某校高中学生有900人,校医务室想对全校高中学生的身高情况作一次调查,为了不影响正常教学,准备抽取50名学生作为调查对象.(1)这个问题涉及调查对象的总体、个体、样本、样本容量分别是什么?生1:总体是全校高中学生师:有不同意见吗?生2:应该是全体学生的身高师:让生2接着回答样本,个体,师补充:总体应该是被考察对象的某一数值指标(2)怎样才能使抽取的样本充分地反映总体的情况?生:抽签、随机抽样、公平的抽取,公正师:公平?换成数学语言就是生:每个个体都有相同的可能性被抽到师:用三个字总结:板书:随机性、均等性3、概念形成在抽样时要保证①每一个个体都可能被抽到(随机性)②每一个个体被抽到的机会是均等的(均等性,什么叫做均等?),满足这样的条件的抽样是随机抽样.思考:检查袋装饼干卫生是否合格要进行抽样,如何做才能满足抽样的随机性和个体被抽取机会的均等性?生:给饼干贴上编号、闭着眼睛、用个不透明的袋子、师:怎么抓?抓一把生:一个个的抓师:抓了再扔回去?生:不放回师:满足这样的抽样就是简单随机抽样,板书:加上不放回【设计意图】(1)了解统计的几个基本概念(总体(这里主要指有限的总体)、样本、样本量)及这些概念与数据分析的关系。
《简单随机抽样》教学设计
《简单随机抽样》教学设计一、教学内容与内容解析1.内容:统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量X i与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,X n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
抽样方法教案(正文)
抽样方法教案()章节一:引言教学目标:1. 让学生了解抽样方法的背景和意义。
2. 让学生掌握随机抽样的概念。
教学内容:1. 抽样方法的定义和作用。
2. 随机抽样的概念和特点。
教学步骤:1. 引入话题:通过实例介绍抽样方法的背景和意义。
2. 讲解抽样方法的定义和作用。
3. 讲解随机抽样的概念和特点。
4. 举例说明随机抽样的应用。
教学评估:1. 课堂讨论:让学生分享对抽样方法的理解和体会。
2. 课后作业:布置相关练习题,让学生巩固所学内容。
章节二:简单随机抽样教学目标:1. 让学生掌握简单随机抽样的方法。
2. 让学生了解简单随机抽样的优点和局限性。
教学内容:1. 简单随机抽样的方法:抽签法、随机数表法。
2. 简单随机抽样的优点和局限性。
教学步骤:1. 讲解简单随机抽样的方法:抽签法、随机数表法。
2. 举例演示简单随机抽样的过程。
3. 讨论简单随机抽样的优点和局限性。
教学评估:1. 课堂演示:让学生参与简单随机抽样的过程。
2. 课后作业:布置相关练习题,让学生巩固所学内容。
章节三:系统抽样教学目标:1. 让学生掌握系统抽样的方法。
2. 让学生了解系统抽样的优点和局限性。
教学内容:1. 系统抽样的方法。
2. 系统抽样的优点和局限性。
教学步骤:1. 讲解系统抽样的方法。
2. 举例演示系统抽样的过程。
3. 讨论系统抽样的优点和局限性。
教学评估:1. 课堂演示:让学生参与系统抽样的过程。
2. 课后作业:布置相关练习题,让学生巩固所学内容。
章节四:分层抽样教学目标:1. 让学生掌握分层抽样的方法。
2. 让学生了解分层抽样的优点和局限性。
教学内容:1. 分层抽样的方法。
2. 分层抽样的优点和局限性。
教学步骤:1. 讲解分层抽样的方法。
2. 举例演示分层抽样的过程。
3. 讨论分层抽样的优点和局限性。
教学评估:1. 课堂演示:让学生参与分层抽样的过程。
2. 课后作业:布置相关练习题,让学生巩固所学内容。
章节五:整群抽样教学目标:1. 让学生掌握整群抽样的方法。
高中数学优质教学设计2:2.1.1 简单随机抽样 教案
2.1.1 简单随机抽样三维目标1.知识与技能理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概论,掌握简单随机抽样的两种方法.2.过程与方法通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力.3.情感、态度与价值观通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质.重点难点1.理解随机抽样的概念;2.掌握简单随机抽样中的抽签法、随机数法的一般步骤;3.学会用简单随机抽样方法从总体中抽取样本.知识掌握1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧抽签法随机数法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.学生已有的认知基础是,初中学习过统计的基础知识,并对总体、样本、个体等知识有了初步的了解,对为什么要进行抽样已有了感性认识,但对如何实施抽样缺乏系统的了解.对简单随机抽样的概念的认识上,学生对抽签法有感性认识,但对抽样过程的科学、合理、使每个个体被抽到的可能性相等的理解存在差异,因而对概念的本质理解也可能有所差异.在利用抽签法进行简单随机抽样时,学生对此方法比较熟悉,但对程序化或流程图式的解决问题模式接触不多,因而可能出现解题过程的不完善.在利用随机数法进行简单随机抽样时,学生在对物件进行标号时由于位数的不一致而可能产生抽样过程的错误,同时在选号的规则上可能带来一些误差.(教师用书独具)教学建议考虑到学生的知识水平和理解能力以及课堂教学的信息量,教师可从信息技术和数学知识的有效整合入手,从实际生活中提炼数学素材,从激励学生探究知识入手,通过直观演示,优化教学,使学生在熟悉的知识背景下探求新知.通过视频片断,实例图片,Excel表格的综合应用,丰富学生的体验,给学生多一点空间和时间,把任务角色还给学生,使学生亲历数学发现、创造的过程,获得对数学价值的认识,通过分层激励,让不同层次的学生获得最大进步.教学流程设置情境,提出问题一锅水饺的味道如何品尝?⇒引导学生结合现实生活中的实际问题,思考讨论得出随机抽样的概念⇒引导学生明确抽样的必要性,掌握抽样的特点及方法突出“等可能性”特征⇒通过例1及变式训练使学生进一步明确随机抽样的特征,明确什么是简单随机抽样⇒通过例2及变式训练使学生掌握抽签法的应用,体会抽签法的“公平性”,突破难点,突出重点⇒通过例3及变式训练使学生掌握随机数法的应用,体会该种方法的科学性与优越性⇒课堂小结,总结升华,让学生对知识有一个系统的认识,突出重点,抓住关键⇒完成当堂双基达标,落实各个知识点,突出重点,强化难点知识1简单随机抽样的概念问题导思1.为了了解高一学生身高的情况,我们找到了某地区高一八千名学生的体检表,从中随机抽取了150张,表中有体重、身高、血压、肺活量等15个数据,那么我们收集的个体数据是什么?提示因为我们了解的是高一学生身高的情况,所以需要收集的个体数据是表中学生的身高的数据.2.要判断一锅汤的味道需要把整锅汤都喝完吗?应该怎样判断?提示不需要.只要将锅里的汤“搅拌均匀”,品尝一小勺就知道汤的味道.3.在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?提示在1936年电话和汽车只有少数富人拥有,仅抽取这些富人作为民意调查的个体,导致样本的代表性不强,所以由样本数据得出的结论可能不正确.4.要用随机抽样的方法从总体中抽出高质量的样本,应对总体做怎样的处理?提示要将总体“搅拌均匀”,即使每个个体有同样的机会被抽中.小结为了使样本具有好的代表性,设计抽样方法时,最重要的是要将总体“搅拌均匀”,即使每个个体有同样的机会被抽中.知识2 简单随机抽样的方法1.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?提示从中抽取一定数量的饼干作为检验的样本.为了获取高质量的样本可以将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取.2.从含有甲、乙的9件产品中随机抽取一件,总体内的各个个体被抽到的机会相同吗?为什么?甲被抽到的机会是多少?提示总体内的各个个体被抽到的可能性是相同的.因为是从9件产品中随机抽取一件,这9件产品每件产品被抽到的机会都是1/9,甲也是1/9.小结简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样.3.根据以上讨论,你认为简单随机抽样有哪些主要特点?提示(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.4.假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选?如何操作?提示用抽签法(抓阄法)确定人选,具体如何操作如下:用小纸条把每个同学的学号写下来放在盒子里,并搅拌均匀,然后随机从中逐个抽出5个学号,被抽到学号的同学即为参加活动的人选.小结一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,然后将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本.5.一般地,抽签法的操作步骤如何?提示第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀.第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.6.你认为抽签法有哪些优点和缺点?提示优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.7.阅读教材,回答当总体个数较多时,怎么抽取质量比较高的样本?提示利用随机数法.小结利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数法,我们仅研究随机数法.8.一般地,利用随机数法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?提示第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.题型一简单随机抽样的判断【例1】下列抽取样本的方式属于简单随机抽样的是().(1)从无限多个个体中抽取100个个体作样本;(2)盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;(3)从8台电脑中不放回地随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取).A.(1) B.(2) C.(3) D.以上都不对[思路探索] 依据简单随机抽样的特点可判断.【解析】(1)不是简单随机抽样.由于被抽取样本的总体的个体数是无限的,而不是有限的.(2)不是简单随机抽样.由于它是放回的.(3)是简单随机抽样.【答案】C规律方法简单随机抽样必须具备下列特点:(1)被抽取样本的总体中的个体数N是有限的;(2)抽取的样本是从总体中逐个抽取的;(3)简单随机抽样是一种不放回抽样;(4)简单随机抽样是一种等可能的抽样.如果四个特征有一个不满足就不是简单随机抽样.【变式1】下面的抽样方法是简单随机抽样的个数是().①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从20个被生产线连续生产的产品中一次性抽取3个进行质量检验;③一儿童从玩具箱中的20件玩具中随意拿出一件玩,玩完放回再拿下一件,连续玩了5次.A.1 B.2 C.3 D.0【解析】①不是,因为这不是等可能的.②不是,“一次性”抽取不是随机抽样.③不是,简单随机抽样抽取是无放回的.【答案】D题型二抽签法的应用【例2】学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.[思路探索] 按抽签法的步骤解决.解第一步,将32名男生从0到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个容器内摇匀,不放回地逐个从中抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.规律方法利用抽签法抽取样本时应注意以下问题(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一不放回抽取.【变式2】要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解应使用抽签法,步骤如下:①将30辆汽车编号,号码是1,2,3, (30)②将1~30这30个编号写到大小、形状都相同的号签上;③将写好的号签放入一个不透明的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录下上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.题型三随机数表法的应用【例3】有一批机器编号为1,2,3…,112,请用随机数表法抽取10台入样,写出抽样过程(见课本本章随机数表).解第一步:将原来的编号调整为001,002, (112)第二步:在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读(见课本本章随机数表).(2分)第三步:从“3”开始向右读,每次取三位,凡不在001~112中的数跳过去不读.(4分)前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.(8分)第四步:对应原来编号为74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象(12分) 【题后反思】在利用随机数表法抽样的过程中注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.【变式3】某校有学生1 200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何进行?解首先将该校学生都编上号码:0 001,0 002,0 003,…,1 200,然后在随机数表中选定一个数,如第5行第9列的数字6,从6开始向右连续读取数字,以4个数为一组,凡不在0 001~1 200中的数跳过去不读,前面已经读过的也跳过去不读,一直取足50人为止.误区警示运用简单随机抽样时方法步骤出错【示例】某单位支援西部开发,现从报名的20名志愿者中选取5人组成志愿小组到新疆工作,请用抽签法设计抽样方案.[错解] 第一步,将20名志愿者编号,号码是01,02,03,…,20;第二步,将号码分成5份:{01,06,11,16},{02,07,12,17},{03,08,13,18},{04,09,14,19},{05,10,15,20},并将每一份中的号码写在一张纸条上,揉成团,制成号签,得5个号签;第三步,在5个号签中随机抽取1个号签,并记录上面的编号;第四步,所得号签对应的5位志愿者就是志愿小组的成员.[正解] 第一步,将20名志愿者编号,号码是01,02,03,…,19,20;第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并搅拌均匀;第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号;第五步,所得号码对应的志愿者就是志愿小组的成员.当堂检测1.为了了解某市高三毕业生升学考试中数学成绩的情况,从参加考试的学生中随机地抽查了1 000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.总体指的是该市参加升学考试的全体学生B.个体指的是1 000名学生中的每一名学生C.样本容量指的是1 000名学生D.样本是指1 000名学生的数学成绩【答案】D2.在简单随机抽样中,某个个体被抽中的可能性是( )A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样【答案】B3.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的 是( )A.总体是240B.个体是每个学生C.样本是40名学生D.样本容量是40【答案】D4.用随机数法从100名学生(男生30人)中抽取10人,则某女生被抽到的可能性为( ) A.1100 B.130 C.170 D.110【答案】D5.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A.a =310,b =29B.a =110,b =19C.a =310,b =310D.a =110,b =110 【答案】D。
《简单随机抽样》示范课教学设计【高中数学教案】
《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。
《简单随机抽样》教案 (公开课获奖)教案 2022青岛版
4.2 简单随机抽样学习目标:1、了解简单随机抽样的概念2、知道简单随机抽样的方法3、知道简单随机抽样经常使用的地方。
4、学习重点:理解和把握简单随机抽样的概念5、学习难点:理解简单随机抽样的方法,并能尝试性的进行简单的操作。
学习过程一创设情境,引入新课交流与发现为了了解本校学生暑期参加体育活动的情况,学校准备抽取一部分学生进行问卷调查,现有四个发放调查问卷的方案,你认为按下面的调查方法取得的结果能放映全校学生的一般情况吗?如果不能,应当如何改进调查方法?方案一:发给学校田径队的30名同学方案二:调查每个班的男同学方案三:从每个班随机抽取1名同学方案四:从每个班抽取一半学生进行调查二合作交流,探索新知1.简单随机抽样的含义为了获取能够客观反映问题的结果,通常按照总体内的每个个体被抽到的机会都相等的原则抽取样本, 则这种抽样方法叫做简单随机抽样.注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素.2.讨论P/88实验与探究,思考:根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.三.例题讲解例1:李大伯为了估计一袋大豆种子中大豆的粒数,先从袋中取出50粒,做上记号,然后放回袋中,将豆粒搅匀,再从袋中取出100粒,,从这100粒中,找出带记号的大豆,如果带记号的大豆有两粒,便可以估计出袋中所有大豆的粒数,你知道他是怎样估计的吗?四实际应用1、某校的黑板报上刊登了一篇题为《大部分学生不吃早餐》的报道,文章说。
“通过对课间学校商品部买小食品的20名同学的调查发现16人是因为没有吃早餐而去买零食,由此判断,我校80%的同学在家不吃早餐”2、在某次篮球赛中,解说员介绍了参加美国职业篮球队的3名中国籍队员的身高,有位观众把这3个人的平均身高与美国人的平均身高进行比较,得出一个结论:“中国人的平均身高比美国人高”。
《简单随机抽样》教案
《简单随机抽样》教案教学目标一、知识与技能1•通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2•了解简单随机抽样的意义;二、过程与方法1•通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2•通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1•使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2•通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
高中数学_简单随机抽样教学设计学情分析教材分析课后反思
2.1.1简单随机抽样教学设计一、教学目标1.知识与技能(1)理解什么是简单随机抽样;会用简单随机抽样从总体中抽取样本;(2)通过学习本小节知识,提高学生对统计的认识,提高学生应用教材知识解决实际问题的能力.2.过程与方法(1)通过自学、实践、研究、归纳、总结形成本章较为科学的知识网,并掌握知识之间的联系.(2)进行数学应用意识教育,提高学习数学的积极性.3.情感与价值观(1)结合教学内容培养学生学习数学的兴趣以及“用数学”的意识,激励学生勇于创新. (2)强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心.二、教学重点难点重点:简单随机抽样的定义、两种抽样方法的实施步骤难点:简单随机抽样的定义和特点、随机数表法的实施步骤三、教学方法读书指导法课堂讨论法实验法四、学法指导自主阅读合作交流五、教学过程2.1.1简单随机抽样学情分析学生在初中阶段已经学习过统计学的知识,知道了它的一些应用.为了让学生更好的了解统计学在科学研究领域的作用,课前学生以小组为单位搜集与统计学有关的故事和案例.学生已经具备一定的小组合作学习能力,自主学习能力.学生对抽签法比较熟悉,能够通过阅读课本和实际操作自己完成步骤的总结.对于随机数表法学生没见过,可能在学习过程中会遇到困难.2.1.1简单随机抽样效果分析为了突出重点突破难点在学习简单随机抽样的定义和特点时采用自主学习,集体朗读,总结特点的方法,并准备了练习题加以巩固,效果良好.抽签法学生比较熟悉,采用了分组实践,在动手操作中总结步骤效果良好.随机数表法学生陌生,学习上会遇到困难。
采用教师讲解与学生自学相结合的方式,学生介绍步骤,教师引导学生发现问题,自我完善,达成共识,完成抽样.用学到的方法解决问题,再次强化步骤,最终学会设计出完美方案.整个随机数表法的学习过程循序渐进,层次分明,学生渐入佳境,很好的达到预期效果.2.1.1简单随机抽样教材分析六、教材地位及作用本节课是人教B版必修三第二章统计第一节第一课时内容.本章内容是在初中“统计初步”的基础上学习的.在数理统计中要研究两个基本问题:一是如何从总体中抽取样本,另一个是如何通过对所抽取的样本进行计算和分析,对总体的相应情况做出推断.本课时就是解决第一个问题——如何抽取样本.“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学”的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础。
高中数学 学案 简单随机抽样
2.1 随机抽样2.1.1 简单随机抽样学习目标核心素养1.理解简单随机抽样的定义、特点及适用范围.(重点) 2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点) 1.通过抽取样本,培养数据分析素养.2.借助简单随机抽样的定义,培养数学抽象素养.1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的方法(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.抽签法和随机数法的特点优点缺点抽签法简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平随机数法操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷1.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是( )A.总体是302名学生B.个体是每1名学生C.样本是30名学生D.样本容量是30D[本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]2.在简单随机抽样中,某一个个体被抽中的可能性( )A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定B[在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]3.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.]4.一个总体共有60个个体,其编号为00,01,02,…,59,现从中抽取一个容量为10的样本,请从随机数表的第8行第11列的数字开始,向右读,到最后一列后再从下一行左边开始继续向右读,依次获取样本号码,直到取满样本为止,则获得的样本号码是________.附表:(第8行~第10行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 7512 86 73 58 07 44 39 52 38 79(第8行)33 21 12 34 29 78 64 56 07 82 52 42 07 44 3815 51 00 13 42 99 66 02 79 54(第9行)57 60 86 32 44 09 47 27 96 54 49 17 46 09 6290 52 84 77 27 08 02 73 43 28(第10行)16,55,19,10,50,12,58,07,44,39 [第8行第11列的数字为1,由此开始,依次抽取号码,第一个号码为16,可取出;第二个号码为95>59,舍去.按照这个规则抽取号码,抽取的10个样本号码为16,55,19,10,50,12,58,07,44,39.]简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(5)一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;[解](1)总体数目不确定、不是简单随机抽样.(2)简单随机抽样要求的是“逐个抽取”本题是一次性抽取,不是简单随机抽样.(3)简单随机抽样是不放回抽样,这里的玩具玩以后又放回,再抽下一件,不是简单随机抽样.(4)从中挑出的50名官兵,是200名中最优秀的,每个个体被抽的可能性不同,不是简单随机抽样.(5)符合简单随机抽样的特点,是简单随机抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.1.判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检查.[解](1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.抽签法及应用【例2】某单位对于支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.思路点拨:抽签法的步骤流程:编号―→制签―→搅匀―→抽签―→取样[解]方案如下:第一步,将18名志愿者编号,号码为:01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.抽签法的应用条件及注意点(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.(2)应用抽签法时应注意以下几点:①编号时,如果已有编号可不必重新编号;②签要求大小、形状完全相同;③号签要均匀搅拌;④要逐一不放回的抽取.2.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法,则是抽签法的序号为________.(1)将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;(2)将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.(1) [(1)满足抽签法的特征,是抽签法;(2)不是抽签法,因为抽签法中所有的号签编号是互不相同的,而其中39个白球无法相互区分.]随机数表法及应用1.什么情况下使用随机数表法抽样?它比抽签法的优势体现在哪里?[提示]当总体中个体数较多时适合用随机数表法,与抽签法相比,可以节约大量的人力和制号签的成本.2.随机数表法和抽签法都要对个体进行编号,它们的编号方法有何不同点?[提示]抽签法和随机数法对个体的编号是不同的,抽签法可以利用个体已有的编号,如学生的学籍号、产品的记数编号等,也可以重新编号,例如总体个数为100,编号可以为1,2,3,…,100.随机数表法编号要看总体的个数,且所编号码数位必须相同,如总体数为100,通常为00,01,…,99.总体数大于100小于1 000,从000开始编起,然后是001,002,….【例3】为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数表法抽取10人作为样本,写出抽样过程.思路点拨:(1)使用药品服用者的已有编号还是再重新编号?(2)使用随机数表时,第一个数字怎样确定?[解]第一步,将120名服药者重新进行编号,分别为001,002,003,…,120;第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.1.(变条件)如果本例改为“从编号1,2,3,…,100的服药者中用随机数表法抽取10人作为样本”.请写出抽样过程.[解]第一步,将100名服药者重新编号,分别为00,01,02, (99)第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3.第三步,从选定的数3开始向右读,每次读取两位数,凡在00~99中的读取出来,前面已读数字跳过不读,依次可得,34,29,78,64,56,07,82,52,42,44.第四步,以上10个号码对应的服药者即是要抽取的对象.2.(设问)本题其他条件不变,若要用抽签法取样,则:(1)要不要对服药者进行重新编号?(2)所选出的10人是不是相同的?[解](1)若运用抽签法取样,对已有编号的个体不用再重新进行编号.(2)用抽签法选出的10人与用随机数表法选出的10人不一定相同,其实既使用相同的方法抽样,不同两次的抽取结果也不一定完全相同.随机数表法抽样的3个步骤(1)编号:这里的所谓编号,实际上是新编数字号码.(2)确定读数方向:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向.(3)获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n 的样本.1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽取、等可能抽取.2.一个抽样试验能否用抽签法,关键看两点:一是制作号签是否方便,二是号签是否容易被搅拌均匀.一般地,当总体容量和样本容量都较少时可用抽签法.3.利用随机数法抽取个体时,关键是先确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.需注意读数时结合编号特点进行读取,编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)抽签时,先抽的比较幸运.( ) (2)抽签法中,“搅拌均匀”是没有必要的. ( ) (3)随机数表法比抽签法好. ( )[答案] (1)× (2)× (3)×2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为( )A .0.4B .0.5C .0.6D .23A [在简单随机抽样中,每个个体被抽到机会相等,即2050=0.4.]3.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )A .①②③④B .①③④②C .③②①④D .④③①②B [由随机数表法的步骤知选B.]4.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.[解] 第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次(不放回抽取),从而得到容量为5的入选样本.。
《简单随机抽样》教案
《简单随机抽样》教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
2019-2020学年苏教版必修三 2.1.1 简单随机抽样 学案
2.1抽样方法2.1.1简单随机抽样1.了解简单随机抽样的必要性和重要性.2.理解简单随机抽样的概念.3.掌握两种简单随机抽样的方法.1.总体与样本(1)总体:统计中所有考察对象的全体叫做总体.(2)个体:总体中的每一个考察对象叫做个体.(3)样本:从总体中抽取的一部分个体叫做样本.(4)样本容量:样本中个体的数目叫做样本容量.2.简单随机抽样(1)定义:一般地,从个体数为N的总体中逐个不放回地取出n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.(2)分类:①抽签法;②随机数表法.3.随机数表与随机数表法(1)随机数表:由数字组成的数表,其中的每个数都是用随机方法产生的(称为“随机数”),这样的表称为随机数表.(2)随机数表法:按一定的规则在随机数表中选取号码的抽样方法.4.抽签法的步骤(1)将总体中的N个个体编号(号码可以从1到N);(2)将这N个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作);(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.这样就得到一个容量为k的样本.对个体编号时,可以利用已有的编号,如从全体学生中抽取样本时,利用学生的学号作为编号.5.随机数表法的步骤(1)将总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过;如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.1.判断(正确的打“√”,错误的打“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最小.()(2)有同学说:“随机数表只有一张,并且读数时只能按照从左向右的顺序读取,否则产生的随机样本就不同了,对总体的估计就不准确了.”()解析:(1)在简单随机抽样中,每个个体被抽到的可能性相等,与第几次抽取无关;(2)随机数表的产生是随机的,读数的顺序也是随机的,不同的样本对总体的估计相差并不大.答案:(1)×(2)×2.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B.逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.3.某校期末考试后,为了分析该校高一年级1 000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1 000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100解析:选D.1 000名学生的成绩是总体,每个学生的成绩是个体,抽取的100名学生的成绩是样本,样本的容量是100.故D正确.4.下列抽样方法是简单随机抽样的是()A.坛子中有一个大球,4个小球,搅拌均匀后,随机取出一个球B.在校园里随意选三名同学进行调查C.在剧院里为抽取三名观众调查,将所有座号写在形状大小相同的纸片上,放入箱子搅匀后逐个抽取,共取三张D.买彩票时随手写几组号解析:选C.A不是.因为球的大小不同,造成机会不均等.B,D不是,因为随意选取,随手写出并不说明对每个个体机会均等.C符合随机抽样的定义,是简单随机抽样.简单随机抽样的概念下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样过程中,从中任取一种玩具检验后再放回;(3)国家跳水队挑出最优秀的10名跳水队员,备战2020年日本东京奥运会.【解】(1)不是简单随机抽样,因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样,因为简单随机抽样要求逐个不放回地抽取.(3)不是简单随机抽样,因为这10名跳水队员是挑选出来的(最优秀的),每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能性”的要求.(1)简单随机抽样有4个特点:①不放回;②总体数量有限;③逐个抽取;④等可能性.(2)“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但一次性抽取不符合简单随机抽样的定义.1.下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,称其质量是否合格;(2)彩民选号,从装有36个大小、形状都相同的号签中的盒子中无放回地逐个抽出6个号签.解:由简单随机抽样的特点可知,(1)不是简单随机抽样.(2)是简单随机抽样.抽签法的应用从30名留守儿童中抽取8人进行安全教育问卷调查,请写出抽取样本的过程.【解】第一步,先将30名儿童进行编号,从1到30.第二步,将编号写在形状、大小相同的号签上.第三步,将号签放到一个不透明的盒子中搅拌均匀,然后从盒子中逐个抽取8个号签.第四步,将与号签上的编号对应的儿童抽出,即得样本.抽签法的一般步骤2.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步,编号,把43名运动员编号为1~43.第二步,制签,做好大小、形状相同的号签,分别写上这43个数.第三步,搅拌,将这些号签放在暗箱中,进行均匀搅拌.第四步,抽签入样,每次从中抽取一个,连续抽取5次(不放回抽取),从而得到容量为5的入选样本.随机数表法某企业要调查消费者对某产品的需求量,要从95户居民家庭中抽选10户居民,请用随机数表法抽选样本.附部分随机数表:853844052748987606021608529971 61279 43021 92980 2776826916 27783 84572 78483 3982061459 39073 79242 20372 2104887088 34600 74636【解】第一步:将95户居民家庭进行编号,每一户家庭一个编号,即01~95.第二步:两位一组的表中,随机确定抽样的起点和抽样的顺序.如假定从第6列和第7列这两列的第1行开始读取,读数顺序从左往右.(横的数列称为“行”,纵的数列称为“列”).第三步:依次抽出10个号码.若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出则跳过,如此继续下去,直到取满为止.得到的样本号码是:40、52、74、89、87、60、21、85、29、16.由此产生10个样本单位号码,编号为这些号码的居民家庭就是抽样调查的对象.随机数表法抽样的步骤(1)编号:这里的所谓编号,实际上是新编数字号码.样本总体是几位数,就按几位数为一组编号.(2)确定读数方向:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向.(3)获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.3.有一批机器,编号为1,2,3,…,112,请用随机数表法抽取10台样本,写出抽样过程(随机数表见教材附表).解:各机器的编号位数不一致,用随机数表直接读数不方便,需将编号进行调整,即抽样过程为:法一:第一步:将原来的编号调整为001,002,003, (112)第二步:在随机数表中任选一数作为开始,任选一方向作为读数方向,比如,选第9行第7个数“3”向右读.第三步:从“3”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步:对应原来编号74,100,94,52,80,3,105,107,83,92的机器就是要抽取的对象.法二:第一步:将原来的编号调整为101,102,103, (212)第二步:在随机数表中任选一数作为开始,任选一方向作为读数方向,比如选第9行第7个数“3”向右读.第三步:从“3”开始,向右读,每次读取三位,凡不在101~212中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到155,134,174,180,165,196,206,105,160,201.第四步:对应原来编号55,34,74,80,65,96,106,5,60,101的机器就是要抽取的对象.简单随机抽样等可能性的应用一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.【解析】因为简单随机抽样过程中每个个体被抽到的可能性均为nN,所以第一个空填310.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为1 10,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18.【答案】31018简单随机抽样,每次抽取时,总体中各个个体被抽到的概率相同,在整个抽样过程中各个个体被抽到的机会也都相等.要区分抽样时每个个体被抽到的可能性与第n次抽到时每个个体的可能性.4.一个总体共有15个个体,用简单随机抽样的方法从中抽取一个容量为5的样本,每个个体被抽到的可能性是( )A.13B.15C.110D.115解析:选A.简单随机抽样具有等可能性,每个个体被抽到的可能性是515=13.1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数表法.2.随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3.简单随机抽样中每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.为了了解参加第27届世界大学生冬运会的2 015名运动员的身高情况,从中抽取100名运动员进行调查,就这个问题,下面说法中正确的序号是________.①2 015名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.【解析】抽样的目的是了解参加冬运会的2 015名运动员的身高情况,故总体应该是2 015名运动员的身高,而不是这2 015名运动员,同理,个体应该是每个运动员的身高,样本应该是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.【答案】④⑤(1)解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.(2)解决此类问题时,关键是明确考察的对象,根据有关的概念可得总体、个体与样本的考察对象是相同的.1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体的个数有限B.从总体中逐个抽取C.它是一种不放回抽样D.每个个体被抽到的机会不一样,与先后有关解析:选D.由简单随机抽样的特点可知D不对.2.下列抽样方法是简单随机抽样的是()A.从100个学生家长中一次性随机抽取10人做家访B.从38本教辅参考资料中有放回地随机抽取3本作为教学参考C.从偶数集中一次性抽取20个进行奇偶性分析D.某参会人员从最后一排20个座位中随机选择一个坐下解析:选D.A选项错在“一次性”抽取;B选项错在“有放回”抽取;C选项错在“一次性”“总体容量无限”.故正确选项为D.3.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后6行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 64 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7132 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 94答案:24,36,59,38,07,53,35,234.在简单随机抽样中,某一个个体被抽到的可能性满足________.①与第几次抽样有关,第一次抽到的可能性最大;②与第几次抽样有关,第一次抽到的可能性最小;③与第几次抽样无关,每一次抽到的可能性相等;④与第几次抽取有关,也与抽取几个样本有关.解析:由简单随机抽样的特点知某个个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.答案:③[A基础达标] 1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A.根据题意,结合总体、样本、个体、样本容量的定义可知,5 000名居民的阅读时间的全体是总体.2.从52名学生中选取5名学生参加全国“希望杯”数学竞赛,若采用简单随机抽样抽取,则每人入选的可能性()A.都相等,且为152B.都相等,且为110C.都相等,且为552D.都不相等解析:选C.根据随机抽样的等可能性可知,每人入选的可能性都相等,且为552,应选C.3.下面抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)解析:选D.A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中挑选50名最优秀的战士,不符合简单随机抽样的等可能性,故错误.4.已知总体的个数为111,若用随机数表法抽取一个容量为12的样本,则下列对总体的编号正确的是()A.1,2,…,111 B.0,1,…,111C.000,001,…,111 D.001,002,…,111解析:选D.在使用随机数表法抽取样本时,必须保证编号的位数一致,同时要规范编号,不能多也不能少,结合所给选项,选D.5.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的为()①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤每个运动员被抽到的机会相等.A.①⑤B.④⑤C.③④⑤D.①②③解析:选B.①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.6.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样方法从中抽出一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为________.解析:总体中带有标记的比例是N M ,则抽取的m 个个体中带有标记的个数估计为mN M. 答案:mN M7.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名学生进行调查.解析:①中样本不具有代表性、有效性,在班级旁画“√”与了解最受欢迎的教师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④8.采用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是________.解析:从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是16,这与第几次抽取无关. 答案:169.用抽签法从某班50名学生中随机选出5名作为参加校学生会的代表.解:法一:第一步:编号.一般用正整数1,2,3,…,50来给总体中所有的个体编号; 第二步:写号码标签.把号码写在形状、大小相同的号签上,号签形式可不限,如小球、卡片等;第三步:均匀搅拌.把上述号签放在同一个不透明的容器内进行均匀搅拌;第四步:抽取.从容器中逐个不放回地抽取5次,得到一个容量为5的样本.法二:如果该班同学已有学号,可以利用学号不必再编号,直接从第二步进行.10.某生产方便面的车间,想从产出的200包方便面中抽取20包进行质量检验,请你用随机数表法帮他们完成检验.解:第一步:将200包方便面编号,分别为000,001,002, (199)第二步:在随机数表中任选一个开始数,例如从第三行第五列开始向右读,得第一个满足条件的数是026,继续读下去,直到20个样本数都取到为止.第三步:把取到的数据与方便面的编号相对应,找到相应的方便面,即将所需方便面抽出.[B 能力提升]1.从一群玩游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A .kn mB .k +m -nC .km nD .不能估计解析:选C.设参加游戏的小孩有x 人,则k x =n m ,x =km n. 2.如下表是随机数表的一部分(第6~10行)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28(1)从个体编号为00,01,…,59的60个个体中抽取10个,请从随机数表的第7行第5个数开始按从左向右再转下行从左向右的规则抽取,则抽到的第3个个体的号码为________.(2)一批编号为010,011,…,099,100,…,500的文件,打算从中抽取容量为6的样本按与第(1)题的相同的规则抽取,则抽到的第3个号码为______.解析:(1)第7行第5个数为1,每两位为一个号码的读取,第1个适合的号码为17,第2个号码为53,第3个号码为31.(2)从第7行第5个数开始每三位作为一个号码,第1个号码为175(适合≤500),第2个号码为331(适合),第3个号码为572(不适合),则第3个合适号码为455.答案:(1)31 (2)4553.在200 000名考生的数学成绩中,抽取1 500名考生的数学成绩,进行分析研究.请你写出总体、样本分别是什么?总体容量、样本容量分别是多少?每个学生的数学成绩被抽到的可能性有多大?解:总体为200 000名考生的数学成绩,样本是1 500名考生的数学成绩.样本容量为1 500,总体容量为200 000,每个学生的数学成绩被抽到的可能性为:1 500200 000=3400. 4.(选做题)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从1到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明的箱子中摇匀,从中抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
高中数学新苏教版精品教案《2.1.1 简单随机抽样》
简单随机抽样江苏省睢宁高级中学高敏【学习目标】1理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法2通过对问题的分析与解决,体验简单随机抽样的科学性,培养分析问题,解决问题的能力3通过对身边事例的研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质【学习重点】抽样的必要性和原则以及会用抽签法和随机数表法抽取样本【学习难点】理解简单随机抽样的科学性,以及由此推断结论的可靠性【问题导引·知识探究】引言在一、二百年前,数学只是供文人雅士们“摆弄”研究的“玩物”,他们被称为“贵族式的经院学派”,堪称“阳春白雪”可是随着时代的进步和社会的发展,数学已经逐步实现了“阳春白雪”与“下里巴人”的兼容,这是一种抗拒不了和不可逆转的普及趋势。
我国著名数学家华罗庚有一段精辟的论述:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学”。
有趣的是,唐代著名诗人在他的作品《》中有名句:“昔日王谢堂前燕,飞入寻常百姓家”。
意思是说,当年豪门檐下的啊,如今已飞进寻常百姓家里。
不是吗,现在电视机、电脑、智能手机等不已经进入千家万户了吗!华罗庚与的精湛论述竟具有异曲同工之妙!今天我们将要研究的“简单随机抽样”就是上至宇宙、下至日用涵盖面极广的数学工具。
对于我们——高中生、准大学生来说,是一群特殊的“”,就应该飞得更高、飞得更远。
1抽样的必要性情景一:买火柴的笑话情景二:今年6月6日是第21个“全国爱眼日”,最新数据统计显示,中国青少年学生的近视患病率已高居世界第一位,小学生、初中生、高中生、大学生视力不良率分别为%,%,%和%问题1:同学们知道这些数据是通过什么方法得到的吗?2抽样的原则情景三:“在1936年美国总统选举前,一份颇有名气的杂志对当时的两位候选人兰顿和罗斯福做了一次民意调查,调查谁将当选下一届总统,调查者通过电话薄和车辆登记薄上的名单给一大批人发了调查表,(注:在1936年电话和汽车只有少数富人拥有).调查结果表明,兰顿拥有57%的支持率,很可能在选举中获胜,但实际结果正好相反,最后罗斯福以高达62%的支持率在选举中获胜.此次抽样调查被称作抽样中的“泰坦尼克事件”.问题2:你认为预测结果出错的原因是什么问题3:我们应该遵循什么样的抽样原则?知识探究(一)简单随机抽样的基本思想思考1:一个口袋里有6个球,依次逐个取出2个球1第一次抽取时,其中任意一个球被抽到的概率是多少第二次抽取时,其中任意一个球被抽到的概率是多少2把依次逐个取出2个球看成一个完整的过程,问每个球被抽到的概率是否相等思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取在这个抽样中,某一件产品被抽到的概率是多少?1简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种方法叫做简单随机抽样.思考3:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
《简单随机抽样》教学设计、导学案、同步练习
《9.1.1 简单随机抽样》教学设计【教材分析】本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.1.1 简单随机抽样》,本节的主要内容包括:统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及两种抽样方法,(1)抽签法,(2)随机数法,这两种种方法的操作步骤和注意事项。
从而发展学生的直观想象、逻辑推理、数学建模的核心素养。
【教学目标与核心素养】【教学重点】:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.【教学难点】:抽签法和随机数法的实施步骤.【教学过程】当的统计图表对数据进行整理和描述,在此基础上用各种统计方法对数据进行分析,从样本数据中提取需要的信息,推断总体的情况,进而解决相应的实际问题.名称定义总体所要的全体叫作总体样本从总体中抽取出的组成的集合叫作总体的一个样本个体总体中的每一个考察对象叫作个体样本样本中个体的叫作样本容量容量考察对象;统计的相关概念;若干个个体;数目[讨论] 样本与样本容量有什么区别?解:样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.人口普查需要花费巨大的财力、物力,因而不宜经常进行,为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查.这种调查是抽取一部分居民进行调查,根据抽取的居民情况来推断总体的人口变动情况.像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量.调查样本获得的变量值称为样本的观测数据,简称样本数据.抽样调查的目的是为了了解总体的情况.例如,抽样调查一批待售袋装牛奶的细菌数是否超标,其目的是要了解整批牛奶的细菌含量超标情况,而不只是局限在抽查到的那几袋牛奶的情况.因此,通过抽样调查了解总体的情况,自然希望抽取的样本数据能很好地反映总体的情况,即样本含有和总体基本相同的信息.假设口袋中有红色和白色共1000个小球,除颜色外,小球的大小、质地完全相同,你能通过抽样调查的方法估计带中红球所占的比例吗?这里袋中所有小球是调查的总体,每一个小球是个体,小球的颜色是所关心的变量.我们可以从袋中随机地摸出一个球,记录颜色后放回,摇匀后再摸出一个球,如此重复n次.根据初中的概率知识可知,随着摸球次数的增加,摸到红球的频率会逐渐稳定于摸到红球的概率,即口袋中红球所占的比例,因此,我们可以通过放回摸球,用频率估计出红球的比例. 在有放回地摸球中,同一个小球有可能被摸中多次,极端情况是每次摸到同一个小球,而被重复摸中的小球只能提供同一个小球的颜色信息,如果我们采用不放回摸球,即从袋中摸出一个球后不再放回袋中,每次摸球都在余下的球中随机摸取,这样就可以避免同一个小球被重复摸中.特别地,当样本量n=1000时,不放回摸球已经把袋中的所有球取出,这就完全了解了袋中红球的比例,而有放回摸球一般还不能对袋中红球的比例作出准确的判断.1.概念:一般地,设一个总体含有N个个体,从中地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会,就把这种抽样方法叫作简单随机抽样,这样抽取的样本,叫作简单随机样本.;简单随机抽样;逐个不放回;都相等不同编号个数等于样本所需要的人数.一般说来,在计算器或计算机软件没有特殊设定的情况下,它们生成的随机数,都是可重复的.为了确认你使用的计算器或计算机软件的情况,可以查阅它的说明书,也可以通过测试它能否生成3个整数随机数1或2来进行判断.(1)用随机试验生成随机数(2)用信息技术生成随机数准备10个大小、质地一样的小球,小球上分别写上数字0,1,2, (9)把它们放入一个不透明的袋中,从袋中有放回摸取3次,每次摸取前充分搅拌,并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个三位随机数.如果这个三位数在1~712范围内,就代表对应编号的学生被抽中,否则舍弃编号. 这样产生的随机数可能会有重复. 进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机数的函数并设置参数,例如RandInt# (1, 712),按“=”键即可生成1~712范围内的整数随机数.重复按“=”键,可以生成多个随机数.这样产生的随机数可能会有重复.①用计算器生成随机数在电子表格软件的任一单元格中,输入“=RANDBETWEEN (1,712)”,即可生成一个1~712范围内的整数随机数.再利用电子表格软件的自动填充功能,可以快速生成大量的随机数(如下图1).这样产生的随机数可能会有重复.②用电子表格软件生成随机数在R软件的控制台中,输入“sample (1: 712, 50, replace=F) ”,按回车键,就可以得到50个1~712范围内的不重复的整数随机数(如下图).③用R统计软件生成随机数R软件是免费的统计软件,该软件具有比较强大数据处理、绘图和分析等统计功能,在统计学研究和学习中被广泛使用.抽签法随机数表法步骤①将总体中的个体编号为1~N;②将所有编号1~N写在形状、大小相同的号签上;③将号签放在一个不透明的容器中,搅拌均匀;④从容器中每次抽取一个号签,并记录其编号,连续抽取n次;⑤从总体中将与抽取到的签的编号相一致的个体取出①将总体中的个体;②在随机数表中数作为开始;③规定一个方向作为从选定的数读取数字的④开始读数字,若不在编号中,则,中,则,依次取下去,直到取满为止只计一次)⑤根据选定的号码抽取样本要点编号、制签、搅匀、抽取、确定样本编号、选起始数、读数、获取样本编号;任选一个;方向;跳过;取出【教学反思】本节从生活中的实际问题出发,引导学生认识统计知识的重要性,理解统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及两种抽样方法,(1)抽签法,(2)随机数法,这两种种方法的操作步骤和注意事项。
《简单随机抽样》示范课教案【高中数学】
《简单随机抽样》教学设计◆教学目标1.通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法;2.掌握用抽签法、随机数表法进行抽样的步骤,了解随机数表的制作方法和思想;3.在简单的实际情境中,能够根据实际问题的特点,设计恰当的抽样方法解决问题.◆教学重难点◆教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:理解等可能性的含义、抽签法和随机数法的实施步骤.◆教学过程一、新课导入情境:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.以下几种抽取方法,你认为可行吗?(1)从戴眼镜的学生中抽取10名进行严查;(2)从没有佩戴眼镜的学生中抽取10名进行检查;(3)从女生中抽取10名进行检查.显然,以上3中抽样方法都具有一定的片面性.那么,怎样抽取样本才是合理的呢?这节课我们就一起来探究!设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会抽样的必要性,为下面的学习做铺垫.二、新知探究问题1:怎样抽取样本,才能使样本更好地代表总体?答案:尽量使样本的分布能近似于总体的分布,例如,在调查学校学生的身高时,若身高在160 cm~170 cm的学生占总体的40%,那么样本中160 cm~170 cm的学生占样本容量的40%,这样得出的结论更准确.因为抽查是由部分来推断总体,所以其结果具有不确定性,在处理这个矛盾的过程中,人们经过长期的实践总结,得出了抽查的基本方法——随机抽样.定义:在抽样调查中,每个个体被抽到的可能性均相同的抽样方法,称为随机抽样.一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法通常叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法,对于不知道某些特别信息的总体,往往采用简单随机抽样.【概念巩固】下面抽取样本的方式是简单随机抽样吗?为什么?1.从无限多个个体中抽取50个个体作为样本.2.箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.3.从50个个体中一次性抽取5个个体作为样本.思路点拨:要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.答案:1.不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的;2.不是简单随机抽样.简单随机抽样是不放回抽样,而它是放回抽样;3.不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.总结:简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会简单随机抽样的特点,提高学生的抽象概括能力和语言表达能力.问题2:在解决实际问题时,怎样才能保证等可能抽取呢?探究:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.答案:将这45名学生进行编号;再做45个编号分别为1~45的“签”(也称“阄”),放入密封的容器或袋中(从外面看不见内部),并充分搅拌;最后从容器或袋中随机抽取10个签,记下10个签的编号,与签的编号相同的学生的视力即组成需要的样本,这种抽样方法称为抽签法.一般地,用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤是:(1)给总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽取1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.追问1:哪些步骤保证每个个体被抽到的可能性是一样的?答案:形状、大小相同的号签;不透明的箱子;搅拌均匀.追问2:抽签法有哪些优点和缺点?答案:优点:简单易行;缺点:总体容量非常大时,费时费力,不容易搅拌均匀,会导致抽样不公平.问题3:当总体中所含个体数较多时,抽签法虽然能够保证样本的代表性,但是制签的过程也比较麻烦,如何简化制签的过程呢?答案:制作一个表,这个表由0,1,2,3,4,5,6,7,8,9这10个数字组成,表中任一位置出现任一数字的概率相同,且不同位置的数字之间是独立的.这样的表称为随机数表,其中的每个数都称为“随机数”,于是,我们只要按一定的规则从随机数表中选取号码就可以了,这种抽样方法叫作随机数表法.抽签法和随机数表法都是简单随机抽样.思考:如何用随机数表法求解本节开头的问题?(1)对45名学生按01,02,03,…,45编号;(2)在随机数表中随机地确定一个数字,如第8行第29列的数字7作为开始,为便于说明,我们将附录中的6~10行摘录如下:(3)从数字7开始向右读下去,每次读两位,凡不在01~45中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到12,07,44,39,38,33,21,34,29,42这10个号码,编号为这10个号码的学生的视力即组成一个容量为10的样本.当随机地选定开始的数后,读数的方向可以向右,也可以向左、向上、向下等.追问:你能总结出用随机数表法抽取样本的步骤吗?答案:(1)对总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.总结:在用随机数法抽取样本时,应注意以下几点:(1)编号位数一致,一是为了便于查找,二是要保证每个个体被抽取的概率相等;(2)抽样时所需的随机数表可临时产生,也可以沿用已有的随机数表;(3)读数的起点、读取方向都是随机的,且事先定好.设计意图:帮助学生了解随机数表,熟悉随机数法抽取样本的过程,进一步积累基本活动经验.三、应用举例例1:(多选)下列关于简单随机抽样的叙述正确的是( )A .一定要逐个抽取B .它是一种最简单、最基本的抽样方法C .总体中的个数必须是有限的D .先被抽取的个体被抽到的可能性要大解析:由简单随机抽样的特点可以得出判断.A 、B 、C 都正确,并且在抽样过程中,每个个体被抽到的可能性都相等,不分先后.答案:ABC .例2:用随机数表法从1000 名学生男生抽取25 人参加某项运动,则某男学生被抽到的概率是_______;将1000名学生分别编号000、001、002……999,从随机数表的第5行(下表为随机数表的第5-8行)第11列开始,向右读取,则抽取的第5个样本的号码是____.5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 1620解析:根据简单随机抽样的特点,每个个体被抽到的概率相同.所以某男生被抽到的概率为25÷1000×100%=2.5%;抽取出的号码分别为668、231、243、884、554,所以第五名被抽取出的学生编号为554.例3:用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310 解析:根据简单随机抽样的定义知个体a 两次被抽到的可能性相同,均为310.答案:D . 四、课堂练习1.下面的抽样方法是简单随机抽样的个数是( )①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从2021生产线连续生产的产品中一次性抽取3个进行质检;③一儿童从玩具箱中的2022个玩具中随意拿出一件玩,玩完放回再拿一件,连续玩了5次.A .1B .2C .3D .02.总体由编号为 01,02,…,19,20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983202 9234 4935 8200 3623 4869 6938 7481A . 08B . 07C .02D .013.某总体容量为M,其中带有标记的有N个,现用简单随机抽样从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为_______.4.下列抽样试验中,适合用抽签法的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验参考答案:1.解析:①不是,因为它不是等可能;②不是,因为它是“一次性”抽取;③不是,因为它是有放回的.答案:D.2、解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.答案:D.3、解析:总体中带有标记的比例是NM ,则抽取的m个个体中带有标记的个数估计为NmM.答案:NmM.4、解析:A中总体容量较大,样本量也较大,不适宜用抽签法;B中总体容量较小,样本量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D中虽然样本量较小,但总体容量较大,不适宜用抽签法.故选B.答案:B.五、课堂小结设计意图:引导学生对本节课所学知识方法有一个全面的认识,培养学生的归纳总结能力,帮助学生深化对知识的理解与掌握,体会研究解决实际问题的思路、途径、方法,为进一步学习打下坚实基础.六、布置作业教材第216页练习第1,2题.。
《简单随机抽样》教学设计
《简单随机抽样》的教学设计课时:1课时,教材版本:人教B版《高中数学》必修三教材内容分析简单随机抽样是人教B版《高中数学》必修三的第二章“统计”的第一节“随机抽样”的第一课时,其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.从知识类型角度分析,“简单随机抽样”属于程序性知识,是一个结构清晰的动手操作程序.对它的学习要求,学生尽可能回忆有关的程序性知识.通过本节内容的学习能促进学生对“用样本估计总体”的统计思想的认识,本节知识既是初中统计知识的延伸,也是学习系统抽样、分层抽样两种抽样方法的知识与思维基础,更是落实数据分析核心素养的重要载体,因此确定本节的教学重点是:对统计思想的认识.抽样方法的提炼与归纳.“课标”的要求是能从现实生活或其他学科中提出具有一定价值的统计问题;结合具体的实际问题情境,理解随机抽样的必要性和重要性;在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本.体现了本节内容的学习要与现实生活.实际问题相联系,在问题解决的过程中获取知识.“课改”则要求教师既要以学生为主体,更要面向全体学生,以学生已有的认知经验为基础,让学生主动地参与新知的探究活动,要求通过学生的自主与合作探究,切实经历知识的发生.发展过程,体会其所蕴含的思维方法,初步形成运用统计的思想和方法来思考问题和解决问题的习惯.从教材编写角度看,本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时,本节课的内容确定为随机抽样单元引入.2.1.1简单随机抽样的教学.通过随机抽样单元引入的教学,让学生认识随机抽样的必要性和重要性,明确随机抽样的意义;通过简单随机抽样的教学,让学生理解简单随机抽样的含义与特点,归纳并掌握抽签法.随机数表法的抽样方法,能根据具体问题的特点合理选择具体的抽样方法,以提升学生的数学能力.教学目标:知识与技能:能独立(或合作)归纳抽样方法,能说明简单随机抽样的意义与特点,知道学习随机抽样的必要性和重要性,能合理选择抽样方法对简单问题进行抽样.过程与方法:通过对实际问题情境的分析体会随机抽样的必要性和重要性,通过抽签法.随机数表法的学习,培养学生的归纳概括能力,通过抽样方法的合理选择培养学生的数学优化意识.情感.态度与价值观:进一步感受统计知识在生产.生活中的广泛应用,体会统计学用样本估计总体的思维策略,强化合作意识.教学重点与难点:教学的重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.学情分析:由于在初中已学过样本.容量.样本容量等概念,因此学生对统计的学习已具有一定的知识基础和思维基础.但是初中没有系统研究具体的抽样方法,且本节是章的起始课,特别是单元的引入内容文字量较大,要给予学生足够的信心去阅读.分析教材,随机抽样的“每一个个体被抽到的机会是均等的”等可能性是很难理解的,应引导学生充分体会.抽签法.随机数表法在教材中并没有较为明确的陈述,是通过对具体问题的解决方式呈现的,即具体的方法蕴含在问题解决的过程中,这需要教师引导学生通过小组合作的方式,逐步的归纳.概括,特别是两种方法的常用选择策略,对学生的能力要求较高,需要教师给予必要的讲解.综上分析确定本节的难点是:对“随机抽样的必要性.重要性及等可能性”的理解,抽签法.随机数表法的归纳.概括与选择.突破策略为:教师引导学生分析多个具体实例;给足时间让学生在独立思考的基础上再充分合作交流;让学生代表展示其思维过程,强化全体学生对思维过程的感悟;教师在学生展示思维过程的基础上再进行提升与点拨.教学策略分析教学中遵循“学生为主体,教师为主导,问题解决为主线”的指导思想,给学生创设自主探究.合作交流的时间与空间,引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.在知识内容的处理方面,增加了三个实际问题情境,通过分析问题的解决策略,让学生重点体会用样本估计总体及随机抽样的必要性和重要性,促进学生的理性思维;对随机抽样的“每一个个体被抽到的机会是均等的”等可能性这一难点,教师给予必要的讲解;通过补充例题.习题,让学生充分理解抽签法.随机数表法的具体操作程序及根据问题特点合理选择具体方法.课堂教学过程中,根据学生的思维水平,首先引导同学们回顾初中所学相关知识,再自主阅读教材内容,引导学生发现学习;其次是在一定的自主探究基础上,让学生们进行充分的合作学习,归纳概括新知识,体验成功的快乐;最后是教师对学生的思维活动进行概括.提升,并对重点与难点进行适当的精讲.点拨,以提高课堂教学效率.教学模式为:情境感悟,引入新课——温故知新,获得新知——例题讲解,内化新知——成果展示,应用新知——归纳总结,完善认知.针对学生中存在的客观差异,我以发挥各数学课堂学习小组中思维水平较好的学生作用为主,尽可能给他们在课堂充分展示的机会;教师在学生自主及合作学习过程中,有针对性的进行指导,努力使全体学生在本节的学习过程中,知识与能力都能得到不同程度的提升.教学过程教学反思与评价:简单随机抽样是生活中最为常用的一种方法,最重要的特点是等可能性,应从每次抽取的个体及整个抽样过程来理解,只有通过实践才可能深入理解.大数据是当今社会出现频率最高的词汇,善于收集数据、整理数据,分析数据是当下社会一位社会人都应具备的素质,因此学好简单抽样是我们获得准确的先决条件。
2019-2020年高中数学必修三 2.1.1 《简单随机抽样》示范教案
2019-2020年高中数学必修三 2.1.1 《简单随机抽样》示范教案现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.本章教学时间约需7课时,具体分配如下(仅供参考):2.1 随机抽样2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.你认为预测结果出错的原因是什么?由此可以总结出什么教训?(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差. 应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.答案:4.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学第六章第16课时《简单随机抽样》教案(学生版)苏教版必修3一、知识结构重点:三种常见抽样方法;总体分布的估计;总体特征数的估计;线性回归。
难点:三种常见抽样方法的区别和特点;频率分布表;频率分布直方图、频率分布折线图、茎叶图的制作方法;平均数、方差、标准差的计算;变量之间的相关关系及线性回归方程的求法。
6.1 抽样方法第16课时6.1.1 简单随机抽样 【学习导航】 1.明白样本、总体、样本容量等基本概念; 2.体会简单随机抽样的的概念及抽签法的基本步骤;3.体会随机数表法也是等可能性抽样,感受用随机数表法进行抽样的基本步骤,并能熟运用。
【课堂互动】自学评价1. 基本概念:总体、个体、样本、样本的容量、总体平均数、样本平均数在统计学里,我们把 叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量. 叫做总体平均数, 叫做样本平均数. 2.统计学的基本思想方法:统计学的基本思想方法是 ,即.因此,样本的抽取是否得当,对于研究总体来说就十分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映总体的情况?下面,我们就通过案例来学习一种常用的基本的抽样:简单随机抽样.案例1 为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查.如何抽取呢?【分析】在这个案例中,总体容量较小,显然可以用同学们最常见的抽签法来抽取样本.关键问题在于:抽签法能使每一个人被抽到的机会均等吗?对每一个人都公平吗?好吧,让我们一起实践一次抽签的过程。
在实践中思考抽签法需要哪些必要的步骤。
3. 抽签法用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤为:(1)将总体中的所有个体编号(号码可以从1到N);(2);(3) ;(4) ;(5)从总体中将与的签的编号相一致的个体取出。
注意:对个体编号时,也可以利用已有的编号,如从全班学生中抽取样本时,利用学生的学号作为编号;对某场电影的观众进行抽样调查时,利用观众的座位号用为编号等。
【小结】用抽签法抽取样本过程中,每一个剩余个体被抽到的机会是的,这也是一个样本是否具有良好的代表性的关键前提.没有每个个体机会均等,就没有样本的公平性和科学性.当然,抽签法简单易行,适用于的情形.在案例1中,还可以用另一种方法——随机数表法来抽取样本,它可以有效地简化抽签法的过程。
先让我们一起体会一下随机数表法抽取样本的过程,再完成下面的空格。
4.随机数表法(random number table)随机数表中的每个数都是用产生的(称为)。
按一定规则到随机数表中选取号码,从而获得样本的方法就称为随机数表法随机数表的制作方法有抽签法、抛掷骰子法、计算机生成法等等。
用随机数表法抽取样本的步骤:(1)对总体中的个体进行编号(每个号码位数一致);(2) ;(3);(4)根据选定的号码抽取样本。
5.简单随机抽样从个体数为N的总体中地取出n个个体作为样本(n<N),每个个体都有被取到,这样的抽样方法叫简单随机抽样。
和都是简单随机抽样(simple random sampling)【经典范例】例1某班共有60个班级,为了调查班级中男女学生所占比例情况,试抽取8个班级组成的一个样本。
【解】例2 总体有8个个体,请用随机数表法从中抽取一个容量为5的样本。
如何操作(随机数表参见教科书41页)【解】例3 某学校的高一年级共有200名学生,为了调查这些学生的某项身体素质达标状况,请使用随机数表法从总体中抽取一个容量为15的样本【解】(完成空格)第一步,将所有学生编号:000,001,002,…,198,199。
第二步,选定随机数表中第一个数1作为开始。
第三步,从选定的数1开始按三个数字一组向右读下去,一行读完时按下一行自左向右继续读,将超过199或重复的三位数去掉,保留下来的三位数直到取足15个为止。
得所要抽取的样本号码是。
点评:1、在随机数表中,每一个位置上出现某一数字是等可能的,这就决定了从总体中抽到任何一个个体的号码也是等可能的。
可见随机数表法属于简单随机抽样。
2、该题在用随机数表选号时,需要剔除大量不在个体编号范围内的号码数,这样挑号码不太方便,能否避免呢?(可以规定所取的三位数中,凡在200~399者,均减200,凡400~599者,均减400…,使所有数组都小于200)例4 假设一个总体有5个元素,分别记为a,b,c,d,e,从中采用不重复抽取样本的方法,抽取一个容量为2的样本,样本共有多少个?写出全部可能的样本。
【解】追踪训练1.某次考试有10000名学生参加,为了了解这10000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:(1)1000名考生是总体的一个样本;(2)1000名考生数学成绩的平均数是总体平均数;(3)10000名考生是总体;(4)样本容量是1000,其中正确的说法有( )A.1种B.2种 C.3种 D.4种2.关于简单的随机抽样,有下列说法:(1)它要求被抽样本的总体的个数有限,以便对其中各个个体被抽取的可能性进行分析;(2)它是从总体中逐个地进行抽取,以便在抽样实践中进行操作;(3)它是一种不放回抽样;(4)它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种方法抽样的公平性.其中正确的命题有()A.(1)(2)(3) B.(1)(2)(4) C.(1)(3)(4) D.(1)(2)(3)(4) 3.从100件电子产品中抽取一个容量为25的样本进行检测,试用随机数表法抽取样本。
【解】4.为了分析某次考试情况,需要从xx份试卷中抽取100份作为样本,如何用随机数表法进行抽取?【解】2019-2020年高中数学第六章第17课时《系统抽样》教案(学生版)苏教版必修3【学习导航】学习要求1.体会系统抽样的的概念及如何用系统抽样获取样本;2.感受系统抽样也是等可能性抽样,是否需要用系统抽样,主要是看总体个数的多少.【课堂互动】自学评价案例某校高一年级有20个班,每班有50名学生.为了了解高一学生的视力状况,从这1000人中抽取一个容量为100的样本进行检查,应该怎样抽样?【解析】这个案例的总体中个体数较多,生活中还有容量大的多的总体,面对这样的总体,采用抽签或随机数表等简单随机抽样方法是不科学的.抽取样本最关键的就是要保证抽样过程的,要保证总体中每个个体被抽到的.在这样的前提下,我们可以寻求更好的抽样方法.系统抽样以简单随机抽样为基础,通过将较大容量的总体分组,只需在某一个组内用简单随机抽样方式来获取一个个体,然后在一定规则下就能抽取出全部样本.1.系统抽样系统抽样的概念:,这样的抽样方法称为系统抽样(systematic sampling) 系统抽样的步骤为:(1)采用随机的方式将总体中的个体编号;(2);(3)在第一段中用确定起始的个体编号L;(4)将编号为的个体抽出.【小结】系统抽样是以简单随机抽样为基础的一种抽样方法,对于容量较大、个体差异不明显的总体通常采用这种抽样方法,在保证公平客观的前提下简化抽样过程.在用系统抽样方法抽取样本时,如果总体个数不能被样本容量整除,可以.【经典范例】例1在1000个有机会中奖的号码(编号为000~999)中,在公证部门监督下随机抽取的方法确定后两位数为88的号码为中奖号码,这是运用哪种抽样方法来确定中奖号码的?依次写出这10个中奖号码?【解】例2 某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查.试采用系统抽样方法抽取所需的样本. 【分析】因为624的10%约为62,624不能被62整除,为了保证“等距”分段,应剔除4人.【解】例3 某制罐厂每小时生产易拉罐10000个,每天生产时间为12小时,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1200个进行检测,请你设计一个抽样方案。
【解】例4 现要从999名报名者中随机选取100名参加某活动,请你用系统抽样法设计一种方案,叙述其步骤。
你能找到另外的抽样方案吗?比较两种方案的合理性和易操作性【解】追踪训练1.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除个体的数目是()(A)2 (B)3(C)4 (D)52.全班有50位同学,需要从中选取7人,若采用系统抽样的方法来选取,则每位同学能被选取的可能性是。
3.一个总体中有100个个体,随机编号为0,1,2, ...,99,依编号顺序平均分成10个小组,组号依次为1,2,3, ...,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为,那么在第组中抽取的号码个位数字与的个位数字相同.若,则在第7组中抽取的号码是____________.4. 要从1003名学生中选取一个容量为20的样本,试叙述系统抽样的步骤。
【解】(完成空格)第一步将1003名学生有随机方式进行编号;第二步从总体中剔除3人(剔除方法可用随机数表法),将剩下的1000名学生重新编号并分成20段;第三步在第一段000、001、002、003、…、049这十个编号中用简单随机抽样确定起始号码,比如013第四步将013逐次加上部分的“长度”(第一部分中个体的个数)的0倍、1倍、2倍、…、19倍得到样本: .。