华东师大初中数学七年级上册整式的加减(一)——合并同类项(提高)巩固练习
七级数学上册3.4整式的加减3.4.1同类项跟踪训练含解析新版华东师大版0919177
同类项一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.42.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=24.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣96.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣17.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.28.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.19.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1二.填空题(共7小题)10若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= _________ .11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是_________ .12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________ .13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= _________ .14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= _________ .15.当m= _________ 时,﹣x3b2m与x3b是同类项.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为_________ .三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.23.若单项式的和仍是单项式,求m,n的值.第三章整式加减3.4.1.1同类项参考答案与试题解析一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.4考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.解答:-解:∵﹣5x2y m和x n y是同类项,∴n=2,m=1,m+n=2+1=3,故选:C.点评:-本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.2.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b考点:-同类项.分析:-本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a,a的指数为1,解答:-解:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,故选:A.点评:-考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=2考点:-同类项.分析:-根据同类项是字母相同相同,且相同的字母的指数也相同,可得答案.解答:-解:单项式﹣x a+1y3与x2y b是同类项,a+1=2,b=3,a=1,b=3,故选:A.点评:-本题考查了同类项,相同的字母的指数也相同是解题关键.4.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.解答:-解:由同类项的定义,得,解得.故选C.点评:-同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣9考点:-同类项.分析:-根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可求得a和b的值.解答:-解:根据同类项的定义可知:2a﹣1=5,3a+b=1,解得:a=3把a=3代入到3a+b=1,解得:b=﹣8.故选B.点评:-本题考查同类项定义,判断两个项是不是同类项,一看所含字母是否相同,二看相同字母的指数是否相同.6.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣1考点:-同类项.专题:-探究型.分析:-先根据同类项的定义列出方程组,求出n、m的值,再把m、n的值代入代数式进行计算即可.解答:-解:∵与﹣x3y2n是同类项,∴,解得,∴2010=(﹣1)2010=1.故选C.点评:-本题考查的是同类项的定义,能根据同类项的定义列出关于m、n的方程组是解答此题的关键.7.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.2考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2m﹣n=3,m+2n=4,然后解方程组,再把方程组的解代入m n进行计算即可.解答:-解:∵单项式﹣3x2m﹣n y4与x3y m+2n是同类项,∴2m﹣n=3,m+2n=4,解方程组,得,∴m n=21=2.故选D.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫同类项.8.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.1考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,由同类项的定义可先求得a和b的值,从而求出它们的差.解答:-解:由同类项得定义得,,解得,则a﹣b=2﹣0=2.故选A.点评:-同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1考点:-同类项;解二元一次方程组.分析:-根据同类项的定义即可列出方程组,求出m、n的值即可.解答:-解:依题意,得,将①代入②,可得2(2n﹣3)+3n=8,即4n﹣6+3n=8,即7n=14,n=2.则m=1.故选B.点评:-本题考查的是同类项和方程的综合题目.两个单项式的和为单项式,则这两个单项式必须是同类项.二.填空题(共7小题)10.若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= ﹣5 .考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数也相同,可得m、n的值再根据有理数的乘法,可得答案.解答:-解:2a3b n+2与﹣3a m﹣2b是同类项,m﹣2=3,n+2=1,m=5,n=﹣1,mn=5×(﹣1)=﹣5,故答案为:﹣5.点评:-本题考查了同类项,相同字母的指数也相同是解题关键.11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是 5 .考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.解答:-解:∵单项式2x2y m与﹣3x n y3是同类项,∴m=3,n=2,∴m+n=3+2=5.故答案为5.点评:-本题考查同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.注意:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为 3 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2n=6解得n值即可.解答:-解:∵代数式﹣4x6y与x2n y是同类项,∴2n=6解得:n=3故答案为:3.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= 1 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出m,n的值,再代入代数式计算即可.解答:-解:∵﹣2x m﹣1y3和x n y m+n是同类项,∴m﹣1=n,3=m+n,解得m=2,n=1,所以(n﹣m)2012=(1﹣2)2012=1.故答案为:1.点评:-本题考查了同类项的定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= 13 .考点:-同类项.分析:-本题考查同类项的定义(所含字母相同,相同字母的指数相同),可得:m﹣2=3,n+1=2,解方程即可求得m,n的值,从而求出2m+3n的值.解答:-解:由同类项的定义,可知m﹣2=3,n+1=2,解得n=1,m=5,则2m+3n=13.故答案为:13点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.15.当m= 0.5 时,﹣x3b2m与x3b是同类项.考点:-同类项.专题:-计算题.分析:-利用同类项的定义计算即可求出m的值.解答:-解:由﹣x3b2m与x3b是同类项,得到2m=1,解得:m=0.5,故答案为:0.5点评:-此题考查了同类项,熟练掌握同类项的定义是解本题的关键.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为﹣12a5b2.考点:-同类项;单项式乘单项式.分析:-根据同类项的定义,相同字母的指数相同得到关于m、n的方程组,通过解方程组求得它们的值,然后将其代入两个单项式,利用单项式的乘法法则进行解答即可.解答:-解:∵单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,∴,解得,则这两个单项式是﹣3a b与4b,∴﹣3a b×4b=﹣12a5b2.故答案是:﹣12a5b2.点评:-本题考查了同类项的定义和整式的乘法,根据同类项定义中相同字母的指数相同确定出具体的单项式是解题的关键.三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.考点:-同类项.专题:-计算题.分析:-(1)根据同类项所含字母相同,相同字母的指数相同可得a的值,代入求解即可;(2)利用2mx a y+5nx2a﹣3y=0,得出它们的系数和为0,进而得出答案.解答:-解:(1)∵单项式是同类项,∴2a﹣3=a,∴a=3,∴(7a﹣22)2004=1;(2)∵2mx a y+5nx2a﹣3y=0,2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项,∴2m+5n=0,∴(2m+5n)2005=0.点评:-此题主要考查了同类项,利用同类项定义得出系数关系是解题关键.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数相同,可得m,n的值,根据有理数的加法运算,可得答案.解答:-解:∵3a m•b4与﹣5a4•b n﹣1是同类项,∴m=4,n﹣1=4,n=5,m+n=×4+5=2+5=7.点评:-本题考查了同类项,同类项是字母相同,且相同字母的指数相同.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.考点:-同类项;代数式求值.分析:-利用同类项的定义求出m,n的值,代入代数式求值即可.解答:-解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣1.点评:-本题主要考查了同类项及代数式求值,解题的关键是根据同类项的定义求出m,n的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?考点:-同类项;单项式.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m和n的值,根据合并同类项法则合并同类项即可.解答:-解:由﹣5.1×10m x2y n与3n x m+1y n是同类项,得m=1,﹣5.1×10x2y n+3n x2y n=(﹣51+3n)x2y n,由﹣51+3n>0得n最小是4,即(﹣51+34)x2y4=30x2y4,合并同类项后,单项式的系数是30,次数是6.点评:-本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关,以及合并同类项的法则,难度适中.21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.考点:-同类项.分析:-根据同类项的定义列出方程,求出m的值.(1)将m的值代入代数式计算.(2)将m的值代入2ax m y+5bx2m﹣3y=0,且xy≠0,得出2a+5b=0,即a=﹣2.5b.代入求得的值.解答:-解:单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.m=2m﹣3,解得m=3(1)将m=3代入,(4m﹣13)2009=﹣1.(2)∵2ax m y+5bx2m﹣3y=0,且xy≠0,∴(2a+5b)x3y=0,∴2a+5b=0,a=﹣2.5b.∴=﹣点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.考点:-同类项.分析:-根据(1)小题的解题方法,结合同类项的概念直接进行计算.解答:-解:根据同类项的意义,可知x的指数相同,即:m﹣3n=3.y的指数也相同,即3m+11n=7.所以:(m﹣3n)+(3m+11n)=3+7,即:4m+8n=4(m+2n)=10所以:m+2n=.点评:-本题主要考查了同类项的概念,注意类比方法的运用.23.若单项式的和仍是单项式,求m,n的值.考点:-同类项;解二元一次方程组.专题:-计算题.分析:-由同类项的定义,即相同字母的指数相同,得到关于m、n的方程组,即可求得m和n的值.解答:-解:由同类项的定义,得,解得m=1,n=﹣0.5.故答案为m=1,n=﹣0.5.点评:-本题主要考查同类项的定义这类题目的解题关键是从同类项的定义出发,列出方程(组)并求解.。
合并同类项 华东师大版数学七年级上册素养提升练(含解析)
第3章整式的加减3.4整式的加减3.4.1 同类项3.4.2 合并同类项基础过关全练知识点1同类项的定义1.(2023四川达州达川铭仁园学校期末)下列各组中的两个单项式不是同类项的是()a2cA.-25mn和3mnB.-125和93C.x2y2和-3y2x2D.7.2a2b和122.下列单项式中,与-2a2b是同类项的是()A.2abB.-ab2C.a2b2D.-4a2b3.(2023北京东城期末)单项式5a5b3与2a n b3是同类项,则常数n的值为()A.5B.4C.3D.24.【开放型试题】(2022辽宁鞍山期末)写出单项式2ab2c3的同类项:(写出一个即可).5.【教材变式·P102T1】将如图所示的两个框中的同类项用线连起来.6.【新独家原创】已知x m y3与-y n x2是同类项,求代数式2m-n+2(m-n)2 023的值.知识点2合并同类项7.(2022湖南郴州十八中月考)合并同类项:-4x4-5x4+x4=()A.-8x4B.-9x4C.-10x4D.08.(2023山西临汾期末)下列运算结果正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3y3-2y3=1D.3a2b-3ba2=09.(1)(2022四川达州中考)计算:2a+3a= ;(2)(2023江西赣州定南期中)计算:-3a2b+7a2b= ;(3)(2023广西贺州富川期中)合并同类项:x2+5y-4x2-3y-1= .10.(2023福建泉州期中)化简:(1)4xy-3x2-3xy-2y+2x2;(2)2a2-3ab+4b2-6ab-2b2.11.(2023湖北恩施州期中)已知|a+3|+(b-2)2=0.(1)求a,b的值;(2)求多项式5a2+2ab-3b2-ab+3b2-5a2的值.能力提升全练12.(2022江苏泰州中考,3,★☆☆)下列计算正确的是()A.3ab+2ab=5abB.5y2-2y2=3C.7a+a=7a2D.m2n-2mn2=-mn213.【新考法】(2023山西吕梁汾阳期末,4,★★☆)如图,从标有单项式的四张卡片中找出所有能合并的同类项,若它们合并后的结果为a,则代数式a2+2a+1的值为()A.-1B.0C.1D.214.(2023甘肃陇南成县期中,9,★★☆)如果单项式-x a+1y3与x2y b是同类项,那么(2a-b)2 022的值是()A.2 022B.-2 022C.-1D.115.【方程思想】(2023山东烟台招远期末,5,★★☆)多项式x2+2kxy-3y2+xy-8化简后不含xy项,则k的值为()A.0B.3C.12D.-1216.(2022湖南永州中考,11,★☆☆)若单项式3x m y与-2x6y是同类项,则m= .17.化简下列各式.(1)(2023山东济南高新区期中,21,★☆☆)x2+4-2x2+3x-5-6x;(2)(2023陕西宝鸡陈仓期中,18,★☆☆)14a2b-13ab2-14a2b+23ab2-13a3;(3)(2023广西梧州岑溪期中,22,★☆☆)x2y-6xy-3x2y+5xy+2x2y;(4)(2023湖北黄冈蕲春期中,17(4),★☆☆)-12mn+5mn2-1+13mn-5n2m+1.18.【整体思想】(2022福建泉州晋江一中、华侨中学期中,19,★★☆)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2-5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a-3的值.素养探究全练19.【运算能力】有这样一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a3+6a3b-3a2b-10a3+3a2b的值.小明说:“本题中a=0.35,b=-0.28是多余的条件.”小强马上反对说:“多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?”你同意哪位同学的说法?请说明理由.答案全解全析基础过关全练1.D 根据同类项的定义可知,-25mn和3mn、-125和93、x2y2和-3y2x2都是同类项,7.2a2b和12a2c所含字母不同,因此不是同类项,故选D.2.D 2ab与-2a2b所含字母相同,但相同字母的指数不相同,选项A不符合题意;-ab2与-2a2b所含字母相同,但相同字母的指数不相同,选项B不符合题意;a2b2与-2a2b所含字母相同,但相同字母的指数不相同,选项C不符合题意;-4a2b与-2a2b所含字母相同,并且相同字母的指数也相同,选项D符合题意,故选D.3.A ∵单项式5a5b3与2a n b3是同类项,∴n=5,故选A.4.答案-2ab2c3(答案不唯一)解析只要符合单项式的字母部分为ab2c3即可,故答案可以为-2ab2c3(答案不唯一).5.解析连线如下.6.解析因为x m y3与-y n x2是同类项,所以m=2,n=3,所以2m-n+2(m-n)2 023=2×2-3+2(2-3)2 023=4-3+2×(-1)2 023=4-3-2=-1.7.A -4x4-5x4+x4=(-4-5+1)x4=-8x4.故选A.8.D 3a和2b不是同类项,不能合并,选项A不符合题意;2a3和3a2不是同类项,不能合并,选项B不符合题意;3y3-2y3=y3,选项C不符合题意;3a2b-3ba2=0,选项D符合题意,故选D.9.答案(1)5a(2)4a2b(3)-3x2+2y-1解析(1)2a+3a=5a.故答案为5a.(2)-3a2b+7a2b=(-3+7)a2b=4a2b.故答案为4a2b.(3)x2+5y-4x2-3y-1=(1-4)x2+(5-3)y-1=-3x2+2y-1.故答案为-3x2+2y-1.10.解析(1)原式=(4xy-3xy)+(-3x2+2x2)-2y=xy-x2-2y.(2)原式=2a2+(-3ab-6ab)+(4b2-2b2)=2a2-9ab+2b2.11.解析(1)由题意得a+3=0,b-2=0,∴a=-3,b=2.(2)5a2+2ab-3b2-ab+3b2-5a2=ab,∵a=-3,b=2,∴原式=ab=(-3)×2=-6.能力提升全练12.A A.3ab+2ab=(3+2)ab=5ab,符合题意;B.5y2-2y2=(5-2)y2=3y2,不符合题意;C.7a+a=(7+1)a=8a,不符合题意;D.单项式m2n与-2mn2不是同类项,故不能合并,不符合题意.故选A.13.C 由题意得,a=-12x2y3+23y3x2-16x2y3=0,∴a2+2a+1=1,故选C.14.D ∵单项式-x a+1y3与x2y b是同类项,∴a+1=2,b=3,∴a=1,b=3,∴(2a-b)2 022=(2×1-3)2 022=(-1)2 022=1.故选D.15.D原式=x2+(2k+1)xy-3y2-8,∵多项式x2+2kxy-3y2+xy-8化简后不含xy项,∴2k+1=0,∴k=-12,故选D.16.答案 6解析∵3x m y与-2x6y是同类项,∴m=6.故答案为6.17.解析(1)原式=(x2-2x2)+(3x-6x)+(4-5)=-x2-3x-1.(2)原式=(14−14)a2b+(23−13)ab2-13a3=13ab2-13a3.(3)原式=(1-3+2)x2y+(5-6)xy=-xy.(4)原式=-12mn+13mn+5mn2-5n2m+1-1=-16mn.18.解析(1)3(x+y)2-5(x+y)2+7(x+y)2=(3-5+7)(x+y)2=5(x+y)2.(2)因为a2+2a+1=0,所以2a2+4a-3=2(a2+2a+1)-5=0-5=-5.素养探究全练19.解析同意小明的说法.理由如下:7a3-6a3b+3a3+6a3b-3a2b-10a3+3a2b=(7+3-10)a3+(-6+6)a3b+(-3+3)a2b=0.因为合并同类项后的结果为0,与a,b的取值无关,所以小明的说法正确.。
华师版七年级初一数学上册 3.4整式的加减 3.4.1~3.4.2同类项与合并同类项
3.4 整式的加减
3.4.1~3.4.2 同类项与合并同类项
华师专版·七年级上
2
1.(柳州中考)在下列单项式中,与C2xy是同类项的是( ) A.2x2y2 B.3y C.xy D.4x
2.下列各组中的B 两项,属于同类项的是( ) A.2x2y与-3xy2 B.4a2bc与ca2b C.xyz与2xy D.6a2b与3a2c
C.2a2bc-a2bc=a2bc D.a5-a2=a3
-2x2 6.合并同类项:-x2-x2=____.
9/12/2019
4
9/12/2019
5
9.把2x2-5x+x2+4x+3x2合并同类项后,所A 得的多项式是( ) A.二次二项式 B.二次三项式 C.一次二项式 D.三次二项式
10.将(x+y)+2(x+y)-4(Bx+y)合并同类项得( ) A.x+y B.-(x+y) C.-x+y D.x-y
11.如果关于a,b的代数式7a4-6a2b+5a3+ma2b的值与b无D 关,那么( ) A.a=0 B.b=0 C.m=0 D.m=6
9/12/2019
6
14.先化简,再求值: (1)3x-4x2+7-3x+2x2+6,其中x=2;
解:原式=-2x2+13,把 x=2 代入-2x2+13 中得-2×22+13=5
4.(例题1变式)在代数式4x2-8x+5-3x2+6x-2中,4x2和__-__3_x_2 __是同类项,-8x和_6_x__是同类项
5
,-2和____也x2是-同2x类+项3 ;合并后是________________.
9/12/2019
3
5.(201C7·绥化)下列运算正确的是( ) A.3a+2a=5a2 B.3a+3b=3ab
华东师大版数学-七年级上册-第三章-整式的加减-巩固练习(含答案)
华东师大版数学-七年级上册-第三章-整式的加减-巩固练习一、单选题1.某超市进了一批商品,每件进价为a元,若要获利25%,则每件商品的零售价应定为()A.25%a元B.(1-25%)a元C.(1+25%)a元D.元2.下列代数式中,不是单项式的是()A. B. - C.t D.3a2b3.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有()个.A.50B.90C.99D.1004.定义一种运算☆,其规则为,根据这个规则,计算的值是().A. B. C.5 D.65.下列各组中的两项是同类项的是().A.ab和abcB.a和a3C.5x2y和-2xy2D. -3xy和3yx6.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.(+1)米C.(+1)米D.(+1)米7.已知,则代数式的值为()A.1B.C.D.8.下列各算式中,合并同类项正确的是()A.x2+x2=2x2B.x2+x2=x4C.2x2﹣x2=2D.2x2﹣x2=2x9.下列运算中,错误的是()A.3x4+5x4=8x4B.4x6﹣8x6=﹣4x6C.﹣3x3+5x3=2x3D.4x2﹣8x2=﹣4二、填空题10.已知=0,则7(x+y)﹣20的立方根是________.11.如图,按此规律,第6行最后一个数字是16,第________行最后一个数是88.12.若,则=________13.对于任意不相等的两个数a,b,定义一种运算如下:如,,那么=________.14.若则________.15.若单项式3ab m和﹣4a n b是同类项,则m+n=________16.当x=2时,多项式ax3+bx+3的值为5,则当x=-2时,ax3+bx+3的值为________.17.如图所示,图中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数是________.三、计算题18.先化简,再求值.(1)(4a+3a2)﹣3﹣3a3﹣(﹣a+4a3),其中a=﹣2;(2)3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=13.19.先化简,再求值2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.四、解答题20.已知式子:①a2-2ab+b2;②(a-b)2(1)当a= -3,b= 5时,分别求代数式①和②的值;(2)观察所求的两个式子的值,探索a2-2ab+b2和(a-b)2有何数量关系,并把探索的结果写出来;(3)利用你探索出的规律,求128.52-2×128.5×28.5+28.52的值.21.已知多项式A和B,A=(2m+1)x2+(4n﹣2)xy﹣3x,B=5x2﹣5mxy﹣1,当A 与B的差不含二次项时,求2(m+n)﹣4[mn+(m+n)]+3[2(m+n)﹣3mn]的值.五、综合题22.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:________;(2)根据你发现的规律,请写出第n个等式________;(3)你认为(2)中所写的等式一定成立吗?并说明理由.23.远东二中分为初中部和高中部,两部分别在两个不同的操场上进行广播操,站队时,做到了整齐划一,初中部排成的是一个规范的长方形方阵,每排(3a﹣b)人,站有(3a+2b)排,高中部站的方阵更特别,排数和每排人数都是(2a+b)人.(1)试求该学校初中部比高中部多多少学生?(2)当a=10,b=2时,试求该学校初中部比高中部多多少学生?答案一、单选题1.【答案】C【解析】【分析】根据题意列等量关系式:售价=进价+利润.得解答时按等量关系直接求出售价.【解答】依题意得,售价=进价+利润=进价×(1+利润率),∴售价为(1+25%)a元.故选:C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意售价、进价、利润、利润率之间的数量关系.2.【答案】A【解析】【解答】解:A、是分式,所以它不是单项式;符合题意;B、﹣是数字,是单项式;不符合题意;C、t是字母,所以它是单项式;不符合题意;D、3a2b是数字与字母的积的形式,所以它是单项式;不符合题意.故选A.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.3.【答案】C【解析】【分析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+"=10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.【解答】n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:C.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.4.【答案】A【解析】【解答】∵a☆b=,∴2☆3== ,故选A.【分析】由a☆b= + ,可得2☆3==,则可求得答案.5.【答案】D【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】A、字母不同的项不是同类项,故A错误;B、相同字母的指数不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同且相同字母的指数也相同,故D正确;故选:D.【点评】本题考查了同类项,利用了同类项的定义,注意同类项是字母相同且相同字母的指数也相同,与字母的位置无关6.【答案】B【解析】【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度。
华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)
华东师大版七年级数学上册第三章整式的加减专题训练试题专题(一)整式的化简与求值1.已知有理数a,b,c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()A .a+cB .c-aC .-a-cD .a+2b-c2.有理数a,b 在数轴上的位置如图所示,则化简式子|a+b|+a 的结果是______.3.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x-7的值为______.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a-7b)-(4a-5b);(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);(5)3x 2-[5x-(12x-3)+3x 2].6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;(3)2(a 2b-ab 2)-3(a 2b-1)+2ab 2+1,其中a=2,|b+1|=0.8.若单项式3x 2y 5与-2x1-a y 3b-1是同类项,求下面代数式的值:5ab 2-[6a 2b-3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b<_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b_____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2020.”小明做题时把“x =2020”错抄成了“x =-2020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是()A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是()A.1009+1010+…+3026=20172B.1009+1010+…+3027=20182C.1010+1011+…+3028=20192D.1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.参考答案专题(一)整式的化简与求值1.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是(A)A.a+c B.c-a C.-a-c D.a+2b-c 2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为2.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a-7b)-(4a-5b);解:原式=8a-7b-4a+5b =4a-2b.(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);解:原式=-12x 2y+xy 2+12x 2+13x 2+13x 2y+13xy2=-16x 2y+56x 2+43xy 2.(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);解:原式=2x 3-4y 2-x+2y-x+3y 2-2x 3=-y 2-2x+2y.(5)3x 2-[5x-(12x-3)+3x 2].解:原式=3x 2-(5x-12x+3+3x 2)=3x 2-5x+12x-3-3x2=-92x-3.6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x 2-2x+1+2(2x 2-6x+3)=x 2-2x+1+4x 2-12x+6=5x 2-14x+7.(2)2A-B=2(x 2-2x+1)-(2x 2-6x+3)=2x 2-4x+2-2x 2+6x-3=2x-1.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;解:原式=-x 2+12x-2-12x+1=-x 2-1.当x=12时,原式=-(12)2-1=-54.(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b<0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b<0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2020.”小明做题时把“x=2020”错抄成了“x=-2020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2020和x=-2020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),(10b+a)-(10a+b)=10b+a-10a-b=9b-9a=9(b-a),因为a,b都是整数,所以a-b,b-a也是整数.所以这两个数的差一定是9的倍数.专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n+6D .3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C )A .1009+1010+…+3026=20172B .1009+1010+…+3027=20182C .1010+1011+…+3028=20192D .1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2019个单项式是-4037x2019,第2020个单项式是4039x2020.。
华东师大版七年级数学上册习题课件:3.4 整式的加减 1.同类项 2.合并同类项
18.(导学号 40324145)如果单项式2mxay与-5nx2a-3y是关于x、y的 单项式,且它们是同类项. (1)求(7a-22)2 017的值; (2)若2mxay-5nx2a-3y=0,求(2m-5n)2 016的值. 解:(1)根据题意得a=2a-3,解得a=3. 原式=(7×3-22)2 017=-1. (2)因为2mxay与-5nx2a-3y是同类项且2mxay-5nx2a-3y=0,所以2m -5n=0,所以(2m-5n)2 016=0.
C.-3t与200t D.ab2与-b2a
3.若-2xay6与5x2yb-2是同类项,那么b-a=____.
6
4.若 2x2y2b+3 与12xa+1y23b-1 是同类项,求 a、b 的值. 解:由题意可知:a+1=2,2b+3=23b-1,所以 a=1. 因为 2b+3=23b-1,所以 6b+9=2b-3. 所以 b=-3.即 a=1,b=-3.
7.若4x2mym+n与-3x6y2的和是单项式,则mn=____.
-3
8.合并同类项: (1)3a2-2a+4a2-7a; 解:原式=(3a2+4a2)+(-2a-7a)=7a2-9a. (2)3(x-3y)-2(y-2x)-x; 解:原式=3x-9y-2y+4x-x =(3x+4x-x)+(-9y-2y) =6x-11y.
知识点2:合并同类项
D
5.下列合并同类项正确的是( )
A.3x+2x2=5x3 B.2a2b-a2b=1
C.-ab-ab=0 D.-y2x+xy2=0
6.下列计算中,错误的是( A ) A.8x2+3y2=11x2y2 B.4x2-9x2=-5x2
C.5a2b-5ba2=0 D.3m-(-2m)=5m
北师版七年级数学《整式的加减(一)合并同类项》单元巩固与提高 知识讲解与练习
北师版七年级数学单元讲解和提高练习 知识全面设计合理含答案教师必备 整式的加减(一)合并同类项(基础)【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并;2. 掌握同类项的有关应用;3. 体会整体思想即换元的思想的应用.【要点梳理】【高清课堂:整式加减(一)合并同类项 同类项】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8 【答案与解析】本题应用同类项的概念与识别进行判断:解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥【答案】C2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.【答案与解析】解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【总结升华】考查了同类项定义.同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.举一反三:【高清课堂:整式加减(一)合并同类项 例1】 【变式】已知和 是同类项,试求 的值.【答案】()()21,23223m n m n -=+=∴-+=解:由题意知,且类型二、合并同类项 3.合并下列各式中的同类项: (1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5【答案与解析】解: (1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy=(-2-5)x 2+(-8+4)y 2+(-5+5)x -6xy =-7x 2-4y 2-6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5=(3+5)x 2y+(-4+2)xy 2+(-3+5)=8x 2y -2xy 2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=1【答案】C233m x y --22n xy +()()22m n -+解:3a 和2b 不是同类项,不能合并,A 错误;2a 3+和3a 2不是同类项,不能合并,B 错误;3a 2b ﹣3ba 2=0,C 正确;5a 2﹣4a 2=a 2,D 错误,故选:C .4.已知35414527m n a b pa b a b ++-=-,求m+n -p 的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着352m a b +与41n pa b +是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7解这三个方程得:m =1,n =4,p =9,∴ m+n -p =1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = . 【答案】4,2 .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--【答案与解析】(1)把()p q -当作一个整体,先化简再求值:解: 22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值.解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.【答案】解: (1)原式322981x x x =---+,当2x =时,原式=32229282167-⨯-⨯-⨯+=-.(2)原式22210x xy y =-+,当2x =,1y =时,原式=22222110116⨯-⨯+⨯=. 类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【答案与解析】解:333336242215x x y x x y x --+-+=(6-4-2)x 3+(-2+2)x 3y+15=15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.【总结升华】本题在化简时主要用的是合并同类项的方法,在合并同类项时,要明白:同类项的概念是所含字母相同,相同字母的指数也相同的项不是同类项的一定不能合并. 整式的加减(一)——合并同类项(提高)【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并;2. 掌握同类项的有关应用;3. 体会整体思想即换元的思想的应用.【要点梳理】【高清课堂:整式加减(一)合并同类项 同类项】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断几个项是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法的分配律逆用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中照抄;(2)系数相加(减),字母部分不变,不能把字母的指数也相加(减).【典型例题】类型一、同类项的概念1. 判别下列各题中的两个项是不是同类项:(1)-4a 2b 3与5b 3a 2;(2)2213x y z -与2213xy z -;(3)-8和0;(4)-6a 2b 3c 与8ca 2. 【答案与解析】 (1)-4a 2b 3与5b 3a 2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a 2c 与8ca 2是同类项.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.此外注意常数项都是同类项.2.315212135m n m n x y x y --+-若与是同类项,求出m, n 的值. 【答案与解析】因为315212135m n m n x y x y --+-与是同类项, 所以 315,21 1.m n -=⎧⎨-=⎩ , 解得:2,1.m n =⎧⎨=⎩所以2,1m n ==【总结升华】概念的灵活运用.举一反三:【变式】(2015•石城县模拟)如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2【答案】C解:根据题意得:a+1=2,b=3,则a=1.【答案】6类型二、合并同类项【高清课堂:整式加减(一)合并同类项 例2】3.合并同类项:()221324325x x x x -++--;()2222265256a b ab b a -++-;()2223542625yx xy xy x y xy -+-+++;()()()()()2323431215141x x x x -----+- (注:将“1x -”或“1x -”看作整体)【思路点拨】同类项中,所含“字母”,可以表示字母,也可以表示多项式,如(4).【答案与解析】(1)()()()22232234511x x x x x x =-+-++-=+-=+-原式(2) ()()2222665522a a b b ab ab -+-++=原式=(3)原式=()()222562245x y x y xy xy xy -++-+++2245x y xy =++ (4)()()()()()()223323315121412161x x x x x x ⎡⎤⎡⎤=---+----=----⎣⎦⎣⎦原式 【总结升华】无同类项的项不能遗漏,在每步运算中照抄.举一反三:【变式1】化简:(1) 32313125433xy x y xy x ---+ (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) 【答案】原式3323211231123()()53345334xy xy x x y xy x y =-+--=-+-- 3221.1512xy x y =--- (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b)=(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b)=(1-2)(a-2b)2+(4-1)(a-2b)=-(a-2b)2+3(a-2b).4. (2015•大丰市一模)若﹣2a m b 4与5a 2b n+7的和是单项式,则m+n= ﹣1 .【思路点拨】两个单项式的和仍是单项式,这说明﹣2a m b 4与5a 2b n+7是同类项. 【答案】-1 【解析】解:由﹣2a m b 4与5a 2b n+7是同类项,得,解得. m+n=﹣1,故答案为:﹣1.【总结升华】要善于利用题目中的隐含条件.举一反三:【变式】若35x a b 与30.2ya b -可以合并,则x = ,y = .【答案】3,3±± 类型三、化简求值5. 化简求值:(1)当1,2a b ==-时,求多项式3232399111552424ab a b ab a b ab a b --+---的值. (2)若243(32)0a b b +++=,求多项式222(23)3(23)8(23)7(23)a b a b a b a b +-+++-+的值.【答案与解析】(1)先合并同类项,再代入求值:原式=32391911()(5)52244a b ab a b -++---- =32345a b a b ---将1,2a b ==-代入,得:3233234541(2)1(2)519a b a b ---=-⨯⨯--⨯--=- (2)把(23)a b +当作一个整体,先化简再求值:原式=22(28)(23)(37)(23)10(23)10(23)a b a b a b a b +++--+=+-+由243(32)0a b b +++=可得:430,320a b b +=+=两式相加可得:462a b +=-,所以有231a b +=-代入可得:原式=210(1)10(1)20⨯--⨯-=【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.举一反三:【高清课堂:整式的运算(一)—合并同类项 例4】【变式】3422323323622已知与是同类项,求代数式的值a b xy xy b a b b a b +----+.【答案】 ()()()3422323223323323231,2 4.2, 6.362232624,2,66426228.a b x y xy a b a b b a b b a b b b a b a b b a b a b +--∴+=-=∴=-=--+=-+-+=-∴=-==-⨯-⨯=解:与是同类项,当时,原式 类型四、综合应用6. 若多项式-2+8x+(b-1)x 2+ax 3与多项式2x 3-7x 2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】法一:由已知ax 3+(b-1)x 2+8x-2≡2x 3-7x 2-2(c+1)x+(3d+7) ∴ 2,17,82(1),237.a b c d =⎧⎪-=-⎪⎨=-+⎪⎪-=+⎩ 解得:2,6,5,3.a b c d =⎧⎪=-⎪⎨=-⎪⎪=-⎩∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.法二:说明:此题的另一个解法为:由已知(a-2)x 3+(b+6)x 2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x 取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得解得:【总结升华】若等式两边恒等,则说明等号两边对应项系数相等;若某式恒为0,则说明各项系数均为0;若某式不含某项,则说明该项的系数为0.举一反三:【变式1】若关于x 的多项式-2x 2+mx+nx 2+5x-1的值与x 的值无关,求(x-m)2+n 的最小值. 20,60,2(1)80,(39)0.a b c d -=⎧⎪+=⎪⎨++=⎪⎪-+=⎩2,6,5,3.a b c d =⎧⎪=-⎪⎨=-⎪⎪=-⎩【答案】 -2x 2+mx+nx 2+5x-1=nx 2-2x 2+mx+5x-1=(n-2)x 2+(m+5)x-1∵ 此多项式的值与x 的值无关,∴ 20,50.n m -=⎧⎨+=⎩ 解得: 25n m =⎧⎨=-⎩当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n 有最小值为2.【变式2】若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m+n 的值.【答案】分别计算出各项的次数,找出该多项式的最高此项:因为22m x y -的次数是m ,2m mx y -的次数为1m -,33m nx y -的次数为m ,32m x y --的次数为2m -,又因为是三项式 ,所以前四项必有两项为同类项,显然2233m m xy nx y --与是同类项,且合并后为0,所以有5,10m n =+= ,5(1)4m n +=+-=. 【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ). A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13-6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn7.计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= . 三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值. 16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++- (3)2222630.835m n mn mn n m mn n m --+-- (4)33331()2()()0.5()3a b a b b a a b +-+-+-+ 17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.【答案与解析】一、选择题1. 【答案】B【解析】 (1)0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.(2)4abc 和4ac 所含字母不同.(3)-130和15都是常数,是同类项.(4)-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.2.【答案】B【解析】222223(23)x x x x -=-=-.3.【答案】C4.【答案】C【解析】2x yz -和2xy z -中相同的字母的次数不相同.5.【答案】D【解析】a 与13互为相反数,故13a =-. 6. 【答案】A7. 【答案】B【解析】a 2+3a 2=4a 2.故选B .二、填空题:8. 【答案】32x y (答案不唯一)【解析】只要字母部分为“32x y ”,系数可以是除0以外的任意有理数.9.【答案】0a b +=【解析】,a b 均为x 的系数,要使合并后为0,则同类项的系数和应为0 .10.【答案】1,311.【答案】227x x --【解析】原式=22(31)(87)10327x x x x -+-+-+=--.12.【答案】6xy【解析】此多项式共有五项,分别是:22226,3,4,5,xy x x y yx x ---,显然没有同类项的项为6xy .13.【答案】2100252100,52;4ab -+--14.【答案】1.【解析】:由同类项的定义可知a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.三、解答题15.【解析】解:由a 3b n+1和2a 2m ﹣1b 3是同类项,得,解得.当m=2,n=2时,3m+n=3×2+2=6+2=8.16.【解析】解:(1)原式=2222(67)(54)a b a b ab b a -+-=22a b ab -+(2)原式=2222(32)(32)x y x y xy xy -++-=22x y xy -+(3)原式=222263(3)(0.8)5m n mn n m n m mn mn +-+-+--=22332m n mn mn -- (4)原式=31(120.5)()3a b ---+=311()6a b -+ 17. 【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.【巩固练习】一、选择题1.(2015•广西)下列各组中,不是同类项的是( )A. 52与25B. ﹣ab 与baC. 0.2a 2b 与﹣a 2bD. a 2b 3与﹣a 3b2 2.代数式23323331063672x y x x y x y x y x --++-+-的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关3. 三角形的一边长等于m+n ,另一边比第一边长m -3,第三边长等于2n -m ,这个三角形的周长等于( ).A .m+3n -3B .2m+4n -3C .n -n -3D .2,n+4n+34. 若,m n 为自然数,多项式4m n m n x y +++的次数应为 ( ).A .mB .nC .,m n 中较大数D .m n +5. 已知关于x 的多项式ax bx +合并后的结果为零,则下列关于,a b 说法正确的是 ( ).A .同号B .均为0C .异号D .互为相反数6. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).A .6B .dC .cD .e7.若A 是一个七次多项式,B 也是一个七次多项式,则A+B 一定是( ).A .十四次多项式B .七次多项式C .不高于七次的多项式或单项式D .六次多项式二、填空题1. (1)2_____7xy xy +=;(2)22_____2a b a b --=;(3)22__________32m m m m +++=-2. 找出多项式2222727427ab a b a b ab -++--中的同类项 、 、 。
2022秋七年级数学上册第3章整式的加减3.4整式的加减1同类项2合并同类项课件新版华东师大版
13.若代数式 k2x+y-x+ky+10 的值与 x,y 的取值无关,则 k 的值为( D ) A.0 B.±1 C.1 D.-1
14.若 3xm+5y2 与 x8yn 的和是单项式,则 mn=___6___. 【点拨】由题意得 m+5=8,n=2, 解得 m=3,故 mn=6.
15.如图,在 3×3 的方格内,填写了一些单项式,已知图中各行、 各列及对角线上三个单项式之和都相等,则 x 的值为 __-__1____.
10.合并下列各式中的同类项:
(1)15x+4x-10x; 解:原式=(15+4-10)x=9x.
(2)7a2+3a+8-5a2-3a-8; 原式=(7a2-5a2)+(3a-3a)+(8-8)=2a2.
(3)-10x2+13x3-x+3x4-4x-3+x3. 原式=3x4+(13x3+x3)-10x2+(-x-4x)-3=3x4+14x3-
(2)在解答第二个问题时,马小虎同学把 y=-1 错看成 y=1,可 是他得到的最后结果却是正确的,你知道这是为什么吗?
解:在第一个问题的前提下,代数式为 3x2+8y2, y 的指数为偶数, 故无论 y 的取值为-1 还是 1,y2 的值都恒等于 1,所以马小虎同 学把 y=-1 看成 y=1,却能得到正确的结果.
(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下 面吧!
解:因为 2x2+7xy+3y2+x2-kxy+5y2 =(2x2+x2)+(3y2+5y2)+(7xy-kxy) =3x2+8y2+(7-k)xy, 所以只要 7-k=0,即 k=7,这个代数式中就不含 xy 项. 所以当 k=7 时,代数式中不含 xy 项.
10x2-5x-3.
11.先合并同类项,再求值:3x2+4x-2x2-x+x2-3x-1,其 中 x=-1.
七年级数学上册 3.4 整式的加减 3.4.4.1 整式加减跟踪训练(含解析)(新版)华东师大版-(
整式加减一.选择题(共9小题)1.化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y2.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b3.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm4.化简(2x﹣3y)﹣3(4x﹣2y)结果为()A.﹣10x﹣3y B.﹣10x+3y C.10x﹣9y D.10x+9y5.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7 B.6 C.5 D.46.把四X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm7.化简(﹣2a)2﹣(﹣2a)2(a≠0)的结果是()A.0 B.2a2C.﹣4a2D.﹣6a28.已知有一整式与(2x2+5x﹣2)的和为(2x2+5x+4),则此整式为()A. 2 B.6 C.10x+6 D.4x2+10x+29.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B. 5x+1 C.﹣13x﹣1 D.13x+1二.填空题(共6小题)10.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2= _________ .11.计算:3(2x+1)﹣6x= _________ .12.在数轴上有示a、b、c三个实数的点的位置如图所示化简式子:|b﹣a|+|c﹣a|﹣|c﹣b|= _________ .13.已知A=3x﹣2,B=1+2x,则A﹣B= _________ .14.一个多项式与m2+m﹣2的和是m2﹣2m.这个多项式是_________ .15.化简:(x2+y2)﹣3(x2﹣2y2)= _________ .三.解答题(共6小题)16.化简:3(2x2﹣y2)﹣2(3y2﹣2x2).17.先化简再求值:若A=9a3b2﹣5b3﹣1,B=﹣7a2b3+8b3+2,求A+B+A,3B﹣A的值.18.有理数a、b、c在数轴上的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|+|a﹣b|.19.2(x2﹣x+1)﹣2(﹣2x+3x2)+(1﹣x)20.化简:4xy2﹣3x2y﹣{3x2y+xy2﹣}.21.“小马虎”在计算“M+N”时,误将“M+N”看成“M﹣N”,结果答案为xy﹣yz+5zx,如果N=7xy﹣yz+xz,你能求出正确的结果吗?第三章整式加减.1整式加减参考答案与试题解析一.选择题(共9小题)1.化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=x﹣y﹣x﹣y=﹣2y.故选C.点评:-此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b考点:-整式的加减;列代数式.专题:-几何图形问题.分析:-根据题意列出关系式,去括号合并即可得到结果.解答:-解:根据题意得:2=4a﹣8b.故选B点评:-此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.3.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm考点:-整式的加减;圆的认识.分析:-根据圆的周长公式分别求出半径变化前后的钢丝长度,进而得出答案.解答:-解:设地球半径为:rcm,则地球的周长为:2πrcm,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,故此时钢丝围成的圆形的周长变为:2π(r+16)cm,∴钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm)=102(cm).故选:A.点评:-此题主要考查了圆的周长公式应用以及科学记数法等知识,根据已知得出图形变化前后的周长是解题关键.4.化简(2x﹣3y)﹣3(4x﹣2y)结果为()A.﹣10x﹣3y B.﹣10x+3y C.10x﹣9y D.10x+9y考点:-整式的加减.分析:-先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:-解:(2x﹣3y)﹣3(4x﹣2y)=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点评:-本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.5.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7 B.6 C.5 D.4考点:-整式的加减.专题:-计算题;压轴题.分析:-设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个正方形面积的差.解答:-解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=16﹣9=7,故选A.点评:-本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.6.把四X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm考点:-整式的加减.专题:-压轴题.分析:-本题需先设小长方形卡片的长为a,宽为b,再结合图形得出上面的阴影周长和下面的阴影周长,再把它们加起来即可求出答案.解答:-解:设小长方形卡片的长为a,宽为b,∴L上面的阴影=2(n﹣a+m﹣a),L下面的阴影=2(m﹣2b+n﹣2b),∴L总的阴影=L上面的阴影+L下面的阴影=2(n﹣a+m﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),又∵a+2b=m,∴4m+4n﹣4(a+2b),=4n.故选:B.点评:-本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.7.化简(﹣2a)2﹣(﹣2a)2(a≠0)的结果是()A.0 B.2a2C.﹣4a2D.﹣6a2考点:-整式的加减.分析:-应按照整式运算顺序,先算乘方,再算整式的加减.解答:-解:原式=4a2﹣4a2=0.故选A.点评:-整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.对于本题注意先算乘方,再算整式的加减.8.已知有一整式与(2x2+5x﹣2)的和为(2x2+5x+4),则此整式为()A. 2 B.6 C.10x+6 D.4x2+10x+2考点:-整式的加减.专题:-计算题.分析:-由于一整式与(2x2+5x﹣2)的和为(2x2+5x+4),那么把(2x2+5x+4)减去(2x2+5x﹣2)即可得到所求整式.解答:-解:依题意得(2x2+5x+4)﹣(2x2+5x﹣2)=2x2+5x+4﹣2x2﹣5x+2=6.故选B.点评:-本题考查的是有理数的运算能力.正确理解题意是解题的关键.9.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1考点:-整式的加减.专题:-计算题.分析:-本题涉及多项式的加减运算,解答时根据各个量之间的关系作出回答.解答:-解:设这个多项式为M,则M=3x2+4x﹣1﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1.故选:A.点评:-此题考查了整式的加减运算,解决此类题目的关键是熟练运用多项式的加减运算、去括号法则.括号前添负号,括号里的各项要变号.二.填空题(共6小题)10.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=﹣9 .考点:-整式的加减.专题:-几何图形问题.分析:-先求出正方形的面积,再根据扇形的面积公式求出以A为圆心,2为半径作圆弧、以D为圆心,3为半径作圆弧的两扇形面积,再求出其差即可.解答:-解:∵S正方形=3×3=9,S扇形ADC==,S扇形EAF==π,∴S1﹣S2=S扇形EAF﹣(S正方形﹣S扇形ADC)=π﹣(9﹣)=﹣9.故答案为:﹣9.点评:-本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.11.计算:3(2x+1)﹣6x= 3 .考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=6x+3﹣6x=3.故答案为:3.点评:-此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.12.在数轴上有示a、b、c三个实数的点的位置如图所示化简式子:|b﹣a|+|c﹣a|﹣|c﹣b|= 0 .考点:-整式的加减;数轴;绝对值.专题:-计算题.分析:-由数轴上点右边的数总比左边的数大,判断出a,b及c的大小,进而确定出b﹣a,c﹣a及c﹣b 的正负,利用绝对值的代数意义化简绝对值运算,合并即可得到结果.解答:-解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.故答案为:0点评:-此题考查了整式的加减运算,涉及的知识有:数轴上点的表示,绝对值的代数意义,以及合并同类项法则,判断出绝对值号中式子的正负是解本题的关键.13.已知A=3x﹣2,B=1+2x,则A﹣B= x﹣3 .考点:-整式的加减.分析:-首先表示出A﹣B,然后去括号、合并同类项即可求解.解答:-解:原式=(3x﹣2)﹣(1+2x)=3x﹣2﹣1﹣2x=x﹣3.故答案是:x﹣3.点评:-本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.14.一个多项式与m2+m﹣2的和是m2﹣2m.这个多项式是﹣3m+2 .考点:-整式的加减.专题:-常规题型.分析:-根据一多项式与m2+m﹣2的和是m2﹣2m,利用两多项式的和减去已知多项式求出未知个多项式即可.解答:-解:∵一多项式与m2+m﹣2的和是m2﹣2m.∴这个多项式是:m2﹣2m﹣(m2+m﹣2)=﹣3m+2.故答案为:﹣3m+2.点评:-此题主要考查了整式的加减运算,根据已知得出两多项式的和减去已知多项式求出未知个多项式是解决问题的关键.15.化简:(x2+y2)﹣3(x2﹣2y2)= ﹣2x2+7y2.考点:-整式的加减.分析:-本题考查了整式的加减运算,解答时要先去括号,再合并同类项得出结果.解答:-解:原式=x2+y2﹣3x2+6y2=﹣2x2+7y2.点评:-整式的加减运算,是各地中考的常考点.解决此类题目的关键是去括号法则,注意运用乘法的分配律,不要漏乘括号里的项.三.解答题(共6小题)16.化简:3(2x2﹣y2)﹣2(3y2﹣2x2).考点:-整式的加减.分析:-熟练运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:-解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2.点评:-关键是去括号.①不要漏乘;②括号前面是“﹣”,去括号后括号里面的各项都要变号.17.先化简再求值:若A=9a3b2﹣5b3﹣1,B=﹣7a2b3+8b3+2,求A+B+A,3B﹣A的值.考点:-整式的加减.分析:-根据题意将A,B直接代入进而合并同类项得出即可.解答:-解:∵A=9a3b2﹣5b3﹣1,B=﹣7a2b3+8b3+2,∴A+B+A=9a3b2﹣5b3﹣1﹣7a2b3+8b3+2+9a3b2﹣5b3﹣1=18a3b2﹣7a2b3﹣2b3;3B﹣A=3×(﹣7a2b3+8b3+2)﹣(9a3b2﹣5b3﹣1)=﹣21a2b3﹣9a3b2+29b3+7.点评:-此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.有理数a、b、c在数轴上的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|+|a﹣b|.考点:-整式的加减;数轴;绝对值.分析:-由图知,b>0,a﹣c<0,b﹣c>0,a﹣b<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数可得,|b|+|a﹣c|+|b﹣c|+|a﹣b|=b+c﹣a+b﹣c+b﹣a=3b.解答:-解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=b+c﹣a+b﹣c+b﹣a=3b﹣2a.点评:-本题考查了整式的加减,绝对值与数轴,用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.19.2(x2﹣x+1)﹣2(﹣2x+3x2)+(1﹣x)考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=2x2﹣2x+2+4x﹣6x2+1﹣x=﹣4x2+x+3.点评:-此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.化简:4xy2﹣3x2y﹣{3x2y+xy2﹣}.考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=4xy2﹣3x2y﹣3x2y﹣xy2+2xy2﹣4x2y+x2y﹣2xy2=3xy2﹣9x2y.点评:-此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.“小马虎”在计算“M+N”时,误将“M+N”看成“M﹣N”,结果答案为xy﹣yz+5zx,如果N=7xy﹣yz+xz,你能求出正确的结果吗?考点:-整式的加减.分析:-首先用结果xy﹣yz+5zx加上N=7xy﹣yz+xz,得出M,再进一步算出M+N算得正确的结果.解答: -解:(xy﹣yz+5zx)+(7xy﹣yz+xz)+(7xy﹣yz+xz)=xy﹣yz+5zx+7xy﹣yz+xz+7xy﹣yz+xz=xy+7xy+7xy﹣yz﹣yz﹣yz+5zx+xz+xz=15xy﹣3yz+7zx.正确的结果是15xy﹣3yz+7zx.点评:-此题考查整式的加减运算,根据题意列出算式,进一步利用去括号的方法和合并同类项的方法解决问题.。
(必考题)七年级数学上册第二单元《整式加减》-解答题专项提高练习(培优)
一、解答题1.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 2.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245. 【分析】 (1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭(2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.3.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.4.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.5.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.解析:(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.6.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 7.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.8.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x、y的值,以及掌握整式的混合运算.9.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a,b的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a•b (平方米).故答案为:12ab (平方米).(2)当a=0.5米,b=2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012π×4×450=3660(元).【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.10.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.11.已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x2+4xy﹣3y2+x2+kxy+5y2,=3x2+(4+k)xy+2y2,因为它与多项式3x2+6xy+2y2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.12.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1(1)c=_____.(2)若f(1)=2,求a+b的值;(3)若f(2)=9,求f(﹣2)的值.解析:(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f(x)=ax5+bx3+3x+c,即可解决问题;(2)把x=1,代入f(x)=ax5+bx3+3x+c,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题;详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.13.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.14.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】 (1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.15.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.16.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 17.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.18.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 19.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.20.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.21.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.22.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.23.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.24.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.25.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 26.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.27.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
整式 华东师大版数学七年级上册素养提升练(含解析)
第3章整式的加减3.3整式基础过关全练知识点1单项式的有关概念1.(2023江苏南通海门期末)单项式-43x2y的次数是()A.43B.1C.2D.32.(2023福建南平顺昌月考)代数式52x2-3x,2πx2y,1x,x+y2,a,0中,单项式有()A.3个B.4个C.5个D.6个3.(2023辽宁葫芦岛连山期末)单项式-a2b33的系数和次数分别是()A.13,3 B.-13,5 C.-13,3 D.5,-134.(2023湖北武汉江夏光谷实验中学期末)下列说法中错误的是()A.数字0是单项式B.单项式b的系数与次数都是1C.12x2y2是四次单项式D.-2πab3的系数是-235.(2022四川内江期末)单项式-2πa2b3的系数是,次数是.6.【新独家原创】写出一个含字母x、y,系数为-2 023,次数是 2 023的单项式:.知识点2多项式及整式的有关概念7.(2023吉林长春榆树期末)多项式-5xy+xy2-1是()A.二次三项式B.三次三项式C.四次三项式D.五次三项式8.(2023辽宁大连十四中期末)在多项式-3x2-5x2y2+xy中,次数最高的项的系数为() A.-3 B.5 C.-5 D.19.(2022广东江门二中开学测试)-12mn,m,8,1a,x2+2x+6,2x−y5,x2+4yπ,1y中,整式有()A.7个B.6个C.5个D.4个10.(2023湖北武汉青山期末)下列关于多项式-a3b2+4b3-5的说法中,正确的是()A.它是七次三项式B.它是四次二项式C.它的最高次项的系数是-12D.它的常数项是511.【新独家原创】多项式1-2x+2xy-3xy3的次数与最高次项的系数的和是()A.1B.-1C.0D.412.(2023山东德州禹城期中)4xy3-x2y-y2+9是次项式.13.【方程思想】(2022山西阳泉平定期中)已知关于x,y的多项式x4+(m+2)x n y-xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?知识点3升幂排列与降幂排列14.(2022福建漳州期末)把多项式-1+2x3-3x+5x2按x的降幂排列,正确的是()A.2x3+5x2-3x-1B.-2x3+5x2-3x+1C.-1-3x+5x2+2x3D.-1+3x-5x2+2x315.(2023湖南邵阳新邵期中)多项式3m2n-4m3n2+2mn3-1按m的降幂排列,正确的是()A.-4m3n2+3m2n+2mn3-1B.2mn3+3m2n-4m3n2-1C.-1+3m2n-4m3n2+2mn3D.-1+2mn3+3m2n-4m3n216.(2023吉林长春绿园期末)将多项式3x2-1-6x5-4x3按字母x的降幂排列为.17.【新独家原创】多项式-2 023xy+3x2y3-12x3y2-3x4y4是按字母的升幂排列的,若按字母y的降幂排列,则应为.18.【教材变式·P100练习T2】(2022河南洛阳偃师伊洛中学期中)把多项式a3-b3-3a2b+3ab2重新排列.(1)按a的升幂排列;(2)按b的降幂排列.能力提升全练19.(2022四川攀枝花中考,2,★☆☆)下列各式不是单项式的为()A.3B.aC.ba D.12x2y20.【方程思想】(2023河南南阳唐河期末,8,★★☆)多项式15x2y|m|-(m+1)y+17是关于x,y的三次二项式,则m的值是()A.1B.±1C.-1D.021.(2023福建泉州期中,10,★★☆)如果多项式(a+2)x4+4x b-3x+5是关于x的三次三项式,那么a-b的值是() A.6 B.-6 C.5 D.-522.(2022云南中考,8,★★☆)按一定规律排列的单项式如下:x,3x2,5x3,7x4,9x5,…,第n 个单项式是() A.(2n-1)x n B.(2n+1)x nC.(n-1)x nD.(n+1)x n23.(2023吉林长春绿园新解放学校期末,11,★☆☆)已知单项式-34x2y2的系数为m,次数为n,则mn的值为.24.(2023吉林松原期末,10,★★☆)单项式-a m b的次数与多项式a4+2a3-1的次数相同,则m的值为.25.(2020四川绵阳中考,15,★★☆)若多项式xy|m-n|+(n-2)x2y2+1是关于x,y的三次多项式,则mn= .素养探究全练26.【推理能力】(2022河南洛阳嵩县期中)观察下列单项式的特点:1 2x2y,-14x2y2,18x2y3,-116x2y4,….(1)写出第8个单项式;(2)猜想第n个单项式是什么,并指出它的系数和次数.答案全解全析基础过关全练1.D 单项式-43x 2y 的次数是2+1=3.故选D .2.A 式子52x 2-3x ,x+y 2有加减运算,式子1x 分母中含字母,都不是单项式;根据单项式的定义,2πx 2y ,a ,0是单项式,共3个.故选A . 3.B 单项式-a 2b 33的系数和次数分别是-13,5.故选B .4.D -2πab 3的系数是-2π3,故D 选项说法错误,符合题意.故选D . 5.答案 -2π3;3解析 单项式-2πa 2b 3的系数是-2π3,次数是3,故答案为-2π3;3. 6.答案 -2 023xy 2 022(答案不唯一)解析 答案不唯一,只要单项式符合系数是-2 023,次数是2 023,含字母x 、y 即可. 7.B 多项式-5xy +xy 2-1是三次三项式,故选B .8.C 多项式-3x 2-5x 2y 2+xy 中,最高次项是-5x 2y 2,其系数是-5.故选C . 9.B 整式有-12mn ,m ,8,x 2+2x +6,2x−y 5,x 2+4y π,共6个.故选B .10.C 多项式-a 3b 2+4b 3-5是四次三项式,它的最高次项的系数是-12,常数项是-5.故选C .11.A 多项式的次数是4,最高次项的系数为-3,4+(-3)=1,故选A . 12.答案 四;四解析 4xy 3-x 2y -y 2+9是四次四项式.故答案为四;四.13.解析 (1)因为多项式是五次四项式,所以m +2≠0,n +1=5,所以m ≠-2,n =4. (2)因为多项式是四次三项式,所以m +2=0,n 为任意正整数,所以m =-2,n 为任意正整数.14.A 多项式-1+2x3-3x+5x2按x的降幂排列为2x3+5x2-3x-1,故选A.15.A 多项式3m2n-4m3n2+2mn3-1按m的降幂排列为-4m3n2+3m2n+2mn3-1,故选A.16.答案-6x5-4x3+3x2-1解析多项式3x2-1-6x5-4x3的项依次为3x2,-1,-6x5,-4x3,因此将多项式3x2-1-6x5-4x3按字母x的降幂排列为-6x5-4x3+3x2-1.故答案为-6x5-4x3+3x2-1.17.答案x;-3x4y4+3x2y3-12x3y2-2 023xy解析观察字母x和y的指数的变化情况,得出原多项式是按x的升幂排列的,将多项式按照y的降幂排列为-3x4y4+3x2y3-12x3y2-2 023xy.18.解析(1)多项式a3-b3-3a2b+3ab2按a的升幂排列是-b3+3ab2-3a2b+a3.(2)按b的降幂排列是-b3+3ab2-3a2b+a3.能力提升全练19.C A.3是单项式,故本选项不符合题意;B.a是单项式,故本选项不符合题意;C.ba不是单项式,故本选项符合题意;D.12x2y是单项式,故本选项不符合题意,故选C.20.C ∵多项式15x2y|m|-(m+1)y+17是关于x,y的三次二项式,∴{|m|+2=3,−(m+1)=0,∴m=-1,故选C.21.D ∵多项式(a+2)x4+4x b-3x+5是关于x的三次三项式,∴a+2=0,b=3,∴a=-2,故a-b=-2-3=-5.故选D.22.A 依题意,第1个单项式的系数为1×2-1=1,第2个单项式的系数为2×2-1=3,第3个单项式的系数为3×2-1=5,……,第n个单项式的系数为n×2-1=2n-1;第1个单项式中x的指数为1,第2个单项式中x的指数为2,第3个单项式中x的指数为3,……,第n个单项式中x的指数为n,所以第n个单项式是(2n-1)x n,故选A.23.答案-3解析∵单项式-34x2y2的系数为-34,次数为4,∴m=-34,n=4,∴mn的值为-34×4=-3.故答案为-3.24.答案 3解析∵单项式-a m b的次数与多项式a4+2a3-1的次数相同,∴m+1=4,∴m=3.故答案为3.25.答案0或8解析因为多项式xy|m-n|+(n-2)x2y2+1是关于x,y的三次多项式,所以n-2=0,1+|m-n|=3,所以n=2,|m-n|=2,所以m-2=-2或m-2=2,所以m=0或m=4,所以mn=0或8.素养探究全练26.解析(1)观察单项式:12x2y,-14x2y2,18x2y3,-116x2y4,…,得第n个单项式的系数是(-1)n+1×(12)n,字母部分是x2y n,故第8个单项式为-(12)8x2y8.(2)第n个单项式是(-1)n+1×(12)n x2y n,它的系数是(-1)n+1×(12)n,次数是n+2.。
整式的加减 华东师大版数学七年级上册素养提升练(含解析)
第3章整式的加减3.4整式的加减3.4.4 整式的加减基础过关全练知识点整式的加减1.已知多项式A=x2+2y2-z2,B=-4x2+3y2+2z2,那么A+B= ()A.5x2-y2-z2B.3x2-5y2+z2C.3x2+5y2+z2D.-3x2+5y2+z22.(2023河南许昌禹州期中)多项式2x2-7x+3减去5x2-x-4的结果是()A.-3x2-6x+7B.-3x2-8x-1C.7x2-8x+7D.-3x2-6x-13.【新独家原创】多项式2m+5n与3m+2n的和比它们的差多 ()A.6m+4nB.4m+4nC.6m-4nD.-6m+4n4.(2023湖南郴州永兴期末)一个多项式加上3x2-6x+4得到-7x2+x+1,则这个多项式是.,则5(a2-2ab)-[a2-5.(2023江西宜春丰城中学期中)若a=-3,b=133b+3(ab+b)]= .6.化简:(1)(2023吉林榆树期末)(3a2-a+7)-(-4a2+2a+6);(2)5(3a2b-ab2)-4(-ab2+3a2b).7.【教材变式·P112T8】先化简,再求值.(1)(2023山西阳泉期末)3(a2-4a)-(-2a+4a2),其中a=-1;(2)(2023吉林长春外国语学校期末)2(x2y-2xy)-3(x2y-3xy)+x2y,其中x=-1,y=1;5(3)(2023四川泸州泸县四中期末)(2a2−b2−3ab)-(a2-3ab)-(−a2+12ab),其中a=1,b=-2;2(4)(2023河南南阳唐河期末)2xy-[1(5xy−16x2y2)−2(xy−4x2y2)],其中x=-12,y=4;2(5)(2023重庆九龙坡渝高中学期末)3(xy2-2xy)-2(3y2x-3yx+1)+4xy2,其中x,y满足(x-2)2+|2y+1|=0;(6)(2023北京平谷期末)3(a2b+a-2b)-2(a2b+a)-(a2b-5b-1),其中a、b满足a-b=5.8.【一题多变】(2022河南周口太康朱口一中入学测试)已知A=x2+xy-y2,B=3x2-4xy-2y2.(1)化简2A-(2B-A);(2)若x=-1,y=2,对(1)的化简结果求值.[变式1](2023陕西汉中宁强期末)小明在计算A-B时,误将A-B看成了A+B,结果求出的答案是-2x2-x+3,已知B=4x2-5x-6.请你帮他纠错,正确地算出A-B.[变式2](2023河南南阳第一完全学校期末)已知A=3x2-x+2y-4xy,B=2x2-3x-y+xy. (1)当x+y=-6,xy=-1,求2A-3B的值;7(2)若2A-3B的值与x的取值无关,求2A-3B的值.能力提升全练9.【整体思想】(2023云南昭通绥江期中,11,★☆☆)若x-2y=3,则代数式x-2y-2(y-x)-(x-3)的值为 ()A.-3B.3C.6D.910.【代数推理】(2022四川内江期末,10,★☆☆)如果M=x2-3x+5,N=-x2-3x+2,那么M 与N的大小关系是()A.M<NB.M=NC.M>ND.无法确定11.(2022内蒙古包头中考,17,★☆☆)若一个多项式加上3xy+2y2-8,结果得2xy+3y2-5,则这个多项式为.12.(2023山东济南高新区期末,16,★★☆)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,如下:-x2-4xy+4y2=-x2+3y2,则被捂住的多项式是.13.(2022陕西榆林绥德期末,12,★★☆)王华乘公交车去公园玩,王华上车时,发现车上共有(4x+2y)人,车到中途时,有一半人下车,但又上来若干人,这时公交车上共有(8x-4y)人,则中途上车的有人.14.【数形结合思想】(2023吉林松原前郭期末,19,★★☆)已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:(1)用“>”或“<”填空:a-b0,b-c0,c-a0,b+c0;(2)化简:|a-b|+|b-c|-|c-a|+|b+c|.15.【代数推理】(2023湖北黄石阳新期中,23,★★☆)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)请列式表示这个两位数,并化简;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新两位数与原两位数的和能被22整除.素养探究全练16.【运算能力】(2022四川眉山仁寿期末)已知A=2a2b-3ab2+abc,小明错将“2A-B”看成“2A+B”,算得结果C=2a2b-5ab2+4abc.(1)求B;(2)求2A-B;(3)小明说2A-B的值与c的取值无关,对吗?若a=-2,b=-1,求2A-B的值.答案全解全析基础过关全练1.D A+B=x2+2y2-z2+(-4x2+3y2+2z2)=x2+2y2-z2-4x2+3y2+2z2=-3x2+5y2+z2.故选D.2.A 根据题意知,(2x2-7x+3)-(5x2-x-4)=2x2-7x+3-5x2+x+4=-3x2-6x+7,故选A.3.A 根据题意,得[(2m+5n)+(3m+2n)]-[(2m+5n)-(3m+2n)]=(2m+5n+3m+2n)-(2m+5n-3m-2n)=(5m+7n)-(-m+3n)=5m+7n+m-3n=6m+4n,故选A.4.答案-10x2+7x-3解析根据题意,得这个多项式为-7x2+x+1-(3x2-6x+4)=-7x2+x+1-3x2+6x-4=-10x2+7x-3.故答案为-10x2+7x-3.5.答案49解析5(a2-2ab)-[a2-3b+3(ab+b)]=5a2-10ab-(a2-3b+3ab+3b)=5a2-10ab-a2-3ab=5a2-a2-10ab-3ab=4a2-13ab,当a=-3,b=13时,原式=4×(-3)2-13×(-3)×13=36+13=49.故答案为49.6.解析(1)原式=3a2-a+7+4a2-2a-6=7a2-3a+1.(2)原式=15a2b-5ab2+4ab2-12a2b=3a2b-ab2.7.解析(1)3(a2-4a)-(-2a+4a2)=3a2-12a+2a-4a2=-a2-10a,当a=-1时,原式=-(-1)2-10×(-1)=-1+10=9.(2)2(x2y-2xy)-3(x2y-3xy)+x2y=2x2y-4xy-3x2y+9xy+x2y=5xy,当x=-1,y=15时,原式=5×(-1)×15=-1.(3)原式=2a 2-b 2-32ab -a 2+3ab +a 2-12ab =2a 2+ab -b 2,当a =1,b =-2时,原式=2×12+1×(-2)-(-2)2=2-2-4=-4.(4)原式=2xy -(52xy −8x 2y 2−2xy +8x 2y 2)=2xy -12xy =32xy ,当x =-12,y =4时,原式=32×(−12)×4=-3.(5)原式=3xy 2-6xy -6y 2x +6yx -2+4xy 2=xy 2-2,∵(x -2)2+|2y +1|=0,∴x =2,y =-12, ∴原式=2×(−12)2-2=12-2=-32. (6)3(a 2b +a -2b )-2(a 2b +a )-(a 2b -5b -1)=3a 2b +3a -6b -2a 2b -2a -a 2b +5b +1=a -b +1,∵a -b =5,∴原式=6.8.解析 (1)∵A =x 2+xy -y 2,B =3x 2-4xy -2y 2,∴2A -(2B -A )=2A -2B +A =3A -2B =3(x 2+xy -y 2)-2(3x 2-4xy -2y 2)=3x 2+3xy -3y 2-6x 2+8xy +4y 2=-3x 2+11xy +y 2.(2)当x =-1,y =2时,-3x 2+11xy +y 2=-3×(-1)2+11×(-1)×2+22=-3×1+(-22)+4=-3+(-22)+4=-21.[变式1] 解析 由题意得,A =(-2x 2-x +3)-(4x 2-5x -6)=-2x 2-x +3-4x 2+5x +6=-6x 2+4x +9,则A -B =(-6x 2+4x +9)-(4x 2-5x -6)=-6x 2+4x +9-4x 2+5x +6=-10x 2+9x +15.[变式2] 解析 (1)∵A =3x 2-x +2y -4xy ,B =2x 2-3x -y +xy ,∴2A -3B =2(3x 2-x +2y -4xy )-3(2x 2-3x -y +xy )=6x 2-2x +4y -8xy -6x 2+9x +3y -3xy =7x +7y -11xy ,当x +y =-67,xy =-1时,2A -3B =7x +7y -11xy =7(x +y )-11xy =7×(−67)-11×(-1)=-6+11=5. (2)∵2A -3B =7x +7y -11xy =(7-11y )x +7y ,∴当2A -3B 的值与x 的取值无关时,7-11y =0,∴y =711,∴2A -3B =0+7×711=4911.能力提升全练9.D ∵x-2y=3,∴原式=x-2y-2y+2x-x+3=2x-4y+3=2(x-2y)+3=6+3=9,故选D.10.C 因为M-N=(x2-3x+5)-(-x2-3x+2)=x2-3x+5+x2+3x-2=2x2+3>0,所以M>N.故选C.11.答案y2-xy+3解析由题意得,这个多项式为(2xy+3y2-5)-(3xy+2y2-8)=2xy+3y2-5-3xy-2y2+8=y2-xy+3.故答案为y2-xy+3.12.答案4xy-y2解析由题意得被捂住的多项式是-x2+3y2-(-x2-4xy+4y2)=-x2+3y2+x2+4xy-4y2=4xy-y2.故答案为4xy-y2.13.答案(6x-5y)(4x+2y)=8x-4y-2x-y=6x-5y,则中途上车的有(6x-5y)人.解析根据题意得,(8x-4y)-12故答案为(6x-5y).14.解析(1)根据数轴可知,-1<c<0<b<1<a<2,∴a-b>0,b-c>0,c-a<0,b+c<0,故答案为>;>;<;<.(2)原式=(a-b)+(b-c)+(c-a)-(b+c)=a-b+b-c+c-a-b-c=-b-c.15.解析(1)由题意可得这个两位数为10(a+2)+a=11a+20.(2)由题意可得,新两位数是10a+a+2=11a+2,故新两位数与原两位数的和是11a+2+11a+20=22(a+1),故新两位数与原两位数的和能被22整除.素养探究全练16.解析(1)由题意可知B=C-2A=(2a2b-5ab2+4abc)-2(2a2b-3ab2+abc)=2a2b-5ab2+4abc-4a2b+6ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(2a2b-3ab2+abc)-(-2a2b+ab2+2abc)=4a2b-6ab2+2abc+2a2b-ab2-2abc=6a2b-7ab2.(3)对.当a=-2,b=-1时,原式=6×(-2)2×(-1)-7×(-2)×(-1)2=6×4×(-1)-7×(-2)×1=-24+14=-10.。
华东师大初中七年级上册数学整式的加减(一)——合并同类项(基础)巩固练习(精选)
【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ). A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn7. (2016春•迁安市校级月考)多项式x 2﹣3kxy ﹣3y 2+xy ﹣8化简后不含xy 项,则k 为( )A .0B .﹣C .D .3二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与xa ﹣2y 3是同类项,那么(a ﹣b )2015= .三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a2m ﹣1b 3是同类项,求3m+n 的值. 16.(2016春•东城区校级期中)化简:a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2.17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.【答案与解析】一、选择题1. 【答案】B【解析】 (1)0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.(2)4abc 和4ac 所含字母不同.(3)-130和15都是常数,是同类项.(4)-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.2.【答案】B【解析】222223(23)x x x x -=-=-.3.【答案】C4.【答案】C【解析】2x yz -和2xy z -中相同的字母的次数不相同. 5.【答案】D 【解析】a 与13互为相反数,故13a =-. 6. 【答案】A7.【答案】C【解析】解:原式=x 2+(1﹣3k )xy ﹣3y 2﹣8,因为不含xy 项,故1﹣3k=0,解得:k=.故选C .二、填空题:8. 【答案】32x y (答案不唯一)【解析】只要字母部分为“32x y ”,系数可以是除0以外的任意有理数.9.【答案】0a b +=【解析】,a b 均为x 的系数,要使合并后为0,则同类项的系数和应为0 .10.【答案】1,311.【答案】227x x --【解析】原式=22(31)(87)10327x x x x -+-+-+=--.12.【答案】6xy【解析】此多项式共有五项,分别是:22226,3,4,5,xy x x y yx x ---,显然没有同类项的项为6xy .13.【答案】2100252100,52;4ab -+--14.【答案】1.【解析】由同类项的定义可知,a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1. 三、解答题15.【解析】解:由a 3b n+1和2a2m ﹣1b 3是同类项,得, 解得. 当m=2,n=2时,3m+n=3×2+2=6+2=8.16.【解析】解:a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2=(a 2﹣2a 2)+(﹣2ab+2ab )+(b 2﹣4b 2)=﹣a 2﹣3b 2.17. 【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.。
七年级数学上册 3.4 整式的加减 3.4.1 同类项跟踪训练(含解析)(新版)华东师大版-(新版)
同类项一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.42.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=24.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣96.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣17.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.28.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.19.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1二.填空题(共7小题)10若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= _________ .11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是_________ .12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________ .13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= _________ .14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= _________ .15.当m= _________ 时,﹣x3b2m与x3b是同类项.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为_________ .三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.23.若单项式的和仍是单项式,求m,n的值.第三章整式加减.1同类项参考答案与试题解析一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.4考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.解答:-解:∵﹣5x2y m和x n y是同类项,∴n=2,m=1,m+n=2+1=3,故选:C.点评:-本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.2.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b考点:-同类项.分析:-本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a,a的指数为1,解答:-解:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,故选:A.点评:-考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=2考点:-同类项.分析:-根据同类项是字母相同相同,且相同的字母的指数也相同,可得答案.解答:-解:单项式﹣x a+1y3与x2y b是同类项,a+1=2,b=3,a=1,b=3,故选:A.点评:-本题考查了同类项,相同的字母的指数也相同是解题关键.4.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.解答:-解:由同类项的定义,得,解得.故选C.点评:-同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣9考点:-同类项.分析:-根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可求得a和b的值.解答:-解:根据同类项的定义可知:2a﹣1=5,3a+b=1,解得:a=3把a=3代入到3a+b=1,解得:b=﹣8.故选B.点评:-本题考查同类项定义,判断两个项是不是同类项,一看所含字母是否相同,二看相同字母的指数是否相同.6.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣1考点:-同类项.专题:-探究型.分析:-先根据同类项的定义列出方程组,求出n、m的值,再把m、n的值代入代数式进行计算即可.解答:-解:∵与﹣x3y2n是同类项,∴,解得,∴2010=(﹣1)2010=1.故选C.点评:-本题考查的是同类项的定义,能根据同类项的定义列出关于m、n的方程组是解答此题的关键.7.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.2考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2m﹣n=3,m+2n=4,然后解方程组,再把方程组的解代入m n进行计算即可.解答:-解:∵单项式﹣3x2m﹣n y4与x3y m+2n是同类项,∴2m﹣n=3,m+2n=4,解方程组,得,∴m n=21=2.故选D.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫同类项.8.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.1考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,由同类项的定义可先求得a和b的值,从而求出它们的差.解答:-解:由同类项得定义得,,解得,则a﹣b=2﹣0=2.故选A.点评:-同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1考点:-同类项;解二元一次方程组.分析:-根据同类项的定义即可列出方程组,求出m、n的值即可.解答:-解:依题意,得,将①代入②,可得2(2n﹣3)+3n=8,即4n﹣6+3n=8,即7n=14,n=2.则m=1.故选B.点评:-本题考查的是同类项和方程的综合题目.两个单项式的和为单项式,则这两个单项式必须是同类项.二.填空题(共7小题)10.若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= ﹣5 .考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数也相同,可得m、n的值再根据有理数的乘法,可得答案.解答:-解:2a3b n+2与﹣3a m﹣2b是同类项,m﹣2=3,n+2=1,m=5,n=﹣1,mn=5×(﹣1)=﹣5,故答案为:﹣5.点评:-本题考查了同类项,相同字母的指数也相同是解题关键.11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是 5 .考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.解答:-解:∵单项式2x2y m与﹣3x n y3是同类项,∴m=3,n=2,∴m+n=3+2=5.故答案为5.点评:-本题考查同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.注意:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为 3 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2n=6解得n值即可.解答:-解:∵代数式﹣4x6y与x2n y是同类项,∴2n=6解得:n=3故答案为:3.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= 1 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出m,n的值,再代入代数式计算即可.解答:-解:∵﹣2x m﹣1y3和x n y m+n是同类项,∴m﹣1=n,3=m+n,解得m=2,n=1,所以(n﹣m)2012=(1﹣2)2012=1.故答案为:1.点评:-本题考查了同类项的定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= 13 .考点:-同类项.分析:-本题考查同类项的定义(所含字母相同,相同字母的指数相同),可得:m﹣2=3,n+1=2,解方程即可求得m,n的值,从而求出2m+3n的值.解答:-解:由同类项的定义,可知m﹣2=3,n+1=2,解得n=1,m=5,则2m+3n=13.故答案为:13点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.15.当m= 0.5 时,﹣x3b2m与x3b是同类项.考点:-同类项.专题:-计算题.分析:-利用同类项的定义计算即可求出m的值.解答:-解:由﹣x3b2m与x3b是同类项,得到2m=1,解得:m=0.5,点评:-此题考查了同类项,熟练掌握同类项的定义是解本题的关键.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为﹣12a5b2.考点:-同类项;单项式乘单项式.分析:-根据同类项的定义,相同字母的指数相同得到关于m、n的方程组,通过解方程组求得它们的值,然后将其代入两个单项式,利用单项式的乘法法则进行解答即可.解答:-解:∵单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,∴,解得,则这两个单项式是﹣3a b与4b,∴﹣3a b×4b=﹣12a5b2.故答案是:﹣12a5b2.点评:-本题考查了同类项的定义和整式的乘法,根据同类项定义中相同字母的指数相同确定出具体的单项式是解题的关键.三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.考点:-同类项.专题:-计算题.分析:-(1)根据同类项所含字母相同,相同字母的指数相同可得a的值,代入求解即可;(2)利用2mx a y+5nx2a﹣3y=0,得出它们的系数和为0,进而得出答案.解答:-解:(1)∵单项式是同类项,∴2a﹣3=a,∴a=3,∴(7a﹣22)2004=1;(2)∵2mx a y+5nx2a﹣3y=0,2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项,∴2m+5n=0,∴(2m+5n)2005=0.点评:-此题主要考查了同类项,利用同类项定义得出系数关系是解题关键.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数相同,可得m,n的值,根据有理数的加法运算,可得答案.解答:-解:∵3a m•b4与﹣5a4•b n﹣1是同类项,∴m=4,n﹣1=4,n=5,m+n=×4+5=2+5=7.点评:-本题考查了同类项,同类项是字母相同,且相同字母的指数相同.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.考点:-同类项;代数式求值.分析:-利用同类项的定义求出m,n的值,代入代数式求值即可.解答:-解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣1.点评:-本题主要考查了同类项及代数式求值,解题的关键是根据同类项的定义求出m,n的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?考点:-同类项;单项式.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m和n的值,根据合并同类项法则合并同类项即可.解答:-解:由﹣5.1×10m x2y n与3n x m+1y n是同类项,得m=1,﹣5.1×10x2y n+3n x2y n=(﹣51+3n)x2y n,由﹣51+3n>0得n最小是4,即(﹣51+34)x2y4=30x2y4,合并同类项后,单项式的系数是30,次数是6.点评:-本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关,以及合并同类项的法则,难度适中.21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.考点:-同类项.分析:-根据同类项的定义列出方程,求出m的值.(1)将m的值代入代数式计算.(2)将m的值代入2ax m y+5bx2m﹣3y=0,且xy≠0,得出2a+5b=0,即a=﹣2.5b.代入求得的值.解答:-解:单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.m=2m﹣3,解得m=3(1)将m=3代入,(4m﹣13)2009=﹣1.(2)∵2ax m y+5bx2m﹣3y=0,且xy≠0,∴(2a+5b)x3y=0,∴2a+5b=0,a=﹣2.5b.∴=﹣点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.考点:-同类项.分析:-根据(1)小题的解题方法,结合同类项的概念直接进行计算.解答:-解:根据同类项的意义,可知x的指数相同,即:m﹣3n=3.y的指数也相同,即3m+11n=7.所以:(m﹣3n)+(3m+11n)=3+7,即:4m+8n=4(m+2n)=10所以:m+2n=.点评:-本题主要考查了同类项的概念,注意类比方法的运用.23.若单项式的和仍是单项式,求m,n的值.考点:-同类项;解二元一次方程组.专题:-计算题.分析:-由同类项的定义,即相同字母的指数相同,得到关于m、n的方程组,即可求得m和n的值.解答:-解:由同类项的定义,得,解得m=1,n=﹣0.5.故答案为m=1,n=﹣0.5.点评:-本题主要考查同类项的定义这类题目的解题关键是从同类项的定义出发,列出方程(组)并求解.。
2019华东师大初中七年级上册数学整式的加减(一)——合并同类项(提高)巩固练习
【巩固练习】一、选择题1.(2015•广西)下列各组中,不是同类项的是( )A. 52与25B. ﹣ab 与baC. 0.2a 2b 与﹣a 2bD. a 2b 3与﹣a 3b2 2.代数式23323331063672x y x x y x y x y x --++-+-的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关3. 三角形的一边长等于m+n ,另一边比第一边长m-3,第三边长等于2n-m ,这个三角形的周长等于( ).A .m+3n-3B .2m+4n-3C .n-n-3D .2,n+4n+34. 若,m n 为自然数,多项式4m n m n x y +++的次数应为 ( ).A .mB .nC .,m n 中较大数D .m n +5.(2016•高港区一模)下列运算中,正确的是( )A .3a+2b=5abB .2a 3+3a 2=5a 5C .5a 2﹣4a 2=1D .5a 2b ﹣5ba 2=06. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).A .6B .dC .cD .e7.若A 是一个七次多项式,B 也是一个七次多项式,则A+B 一定是( ).A .十四次多项式B .七次多项式C .不高于七次的多项式或单项式D .六次多项式二、填空题1. (1)2_____7xy xy +=;(2)22_____2a b a b --=;(3)22__________32m m m m +++=-2. 找出多项式2222727427ab a b a b ab -++--中的同类项 、 、 。
3. (2016春•永春县校级月考)若与﹣3ab 3﹣n 的和为单项式,则m+n= . 4.当k = 时,代数式2213383x kxy y xy ----中不含xy 项. 5.按下面程序计算:输入x=3,则输出的答案是 .6.把正整数依次排成以下数阵:1, 2, 4 , 7,… …3, 5, 8,… …6, 9, … …10, … …如果规定横为行,纵为列,如8是排在2行3列,则第10行第5列排的数是____________三、解答题1. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a2m ﹣1b 3是同类项,求3m+n 的值.2.先化简,再求值. (1)323222122357533x x y x x y xy xy -++++-,其中x =-2,12y =; (2)33399111552424ab a b ab a b ab a b --+---.其中a =1,b =-2. 3.试说明多项式3322332233120.5232x y x y y x y x y y x y y -+-+++--的值与字母x 的取值无关.4.要使关于,x y 的多项式323232mx nxy x xy y ++-+不含三次项,求23m n +的值. 【答案与解析】一、选择题1.【答案】D2.【答案】B【解析】合并同类项后的结果为332x --,故它的值只与x 有关.3.【答案】B【解析】 另一边长为323m n m m n ++-=+-,周长为232243m n m n n m m n +++-+-=+-.4.【答案】C【解析】4m n +是常数项,次数为0,不是该多项式的最高次项.5.【答案】D【解析】解:A 、3a+2b 无法计算,故此选项错误;B 、2a 3+3a 2无法计算,故此选项错误;C 、5a 2﹣4a 2=a 2,故此选项错误;D 、5a 2b ﹣5ba 2=0,正确.故选:D .6.【答案】D【解析】题中“?”所表示的单项式与“5e ”是同类项,故“?”所代表的单项式可能是e ,故选D .7.【答案】C二、填空题1. 【答案】225;(3);2,3xy a b m m --2. 【答案】2222772427ab ab a b a b ---+与、与、与 3. 【答案】4. 【解析】解:∵与﹣3ab 3﹣n 的和为单项式,∴2m ﹣5=1,n+1=3﹣n ,解得:m=3,n=1.故m+n=4.故答案为:4.4. 【答案】19- 【解析】合并同类项得:2213383x k xy y ⎛⎫+---- ⎪⎝⎭.由题意得1303k --=.故19k =-. 5. 【答案】12【解析】根据输入程序,列出代数式,再代入x 的值输入计算即可.由表列代数式:(x 3﹣x )÷2∵x=3,∴原式=(27﹣3)÷2=24÷2=12.6. 【答案】101【解析】第10行的第一个数是:1+2+3+…+10=55,第10行的第5个数是:55+10+11+12+13=101.三、解答题1.【解析】解:由a 3b n+1和2a2m ﹣1b 3是同类项,得, 解得. 当m=2,n=2时,3m+n=3×2+2=6+2=8.2.【解析】(1)原式327x x y =++.当2x =-,12y =时,原式=1; (2)原式355a b =--,当1a =,2b =-时,原式=5.3.【答案】5【解析】根据题意得:m ﹣1=2,n=2,则m=3,n=2.故m+n=3+2=5.4.【解析】原式=32(2)(31)m x n xy y ++-+要使原式不含三次项,则三次项的系数都应为0,所以有: 20,310m n +=-=,即有:12,3m n =-= 所以1232(2)333+=⨯-+⨯=-m n .。
初中数学华东师大七年级上册第3章 整式的加减合并同类项
合并同类项教学目标:1.理解同类项的概念,掌握合并同类项的法则,能正确合并同类项,并能利用其求得多项式的值。
2.经历通过抽象、类比数学的运算探究合并同类项法则的过程,从中体会数式通性和类比的方法。
教学重点:熟练地合并同类项,并能运用其求多项式的值.教学难点:理解合并同类项的步骤.教学过程:一、创设情境,导入新课1.引出课题展示图片,引导学生合并不同类水果,发现数量不变,而合并同类水果数量发生了变化.(引出课题:合并同类项)2.复习提问(1)什么是同类项?同类项中的“两相同”“两无关”指什么?(2)每位学生说一个自己组已给定单项式的同类项,组长记录把关.(后面组题用)22223328,,,.x y xy a b ab a b x 第一组,第二组,第三组,第四组第五组,第六组第七组第八组二、探究研讨,发现规律【活动一】:——得出概念1.第一组展示2x y 的同类项,从中挑出两个,组成多项式引导学生化简.例如:2235x y x y +.2.教师再加上一项,问学生如何化简?例如:222354x y x y x y +-3.观察合并前后项数目的变化,总结合并同类项的概念:把多项式中的同类项合并成一项,叫做合并同类项。
(多变一)【活动二】:——得出法则1.观察合并同类项前后,系数发生了什么变化?字母和字母的指数又发生了什么变化?2.学生小组讨论,试着归纳出合并同类项的一般法则.概括合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.(一变二不变)3.法则巩固,引出问题:口答合并同类项:2222(1)32;(2)33;(3)322.x y yx a b a b x x y +-+++师生共同总结出:(1)同类项合并与字母的顺序无关,(2)系数互为相反数的两个同类项合并结果为0,(3)引出不只一种同类项的多项式.三、理解应用、巩固新知【活动三】:——基础训练1. 小组合作,学习例题——找出下列多项式中的同类项,再合并。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】
一、选择题
1.(2015•广西)下列各组中,不是同类项的是( )
A. 52与25
B. ﹣ab 与ba
C. 0.2a 2b 与﹣a 2b
D. a 2b 3与﹣a 3b
2 2.代数式23323331063672x y x x y x y x y x --++-+-的值( ).
A .与x ,y 都无关
B .只与x 有关
C .只与y 有关
D .与x 、y 都有关
3. 三角形的一边长等于m+n ,另一边比第一边长m-3,第三边长等于2n-m ,这个三角形的周长等于( ).
A .m+3n-3
B .2m+4n-3
C .n-n-3
D .2,n+4n+3
4. 若,m n 为自然数,多项式4m n m n x y +++的次数应为 ( ).
A .m
B .n
C .,m n 中较大数
D .m n +
5.(2016•高港区一模)下列运算中,正确的是( )
A .3a+2b=5ab
B .2a 3+3a 2=5a 5
C .5a 2﹣4a 2=1
D .5a 2b ﹣5ba 2
=0
6. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).
A .6
B .d
C .c
D .e
7.若A 是一个七次多项式,B 也是一个七次多项式,则A+B 一定是( ).
A .十四次多项式
B .七次多项式
C .不高于七次的多项式或单项式
D .六次多项式
二、填空题
1. (1)2_____7xy xy +=;(2)22_____2a b a b --=;(3)
22__________32m m m m +++=-
2. 找出多项式2222727427ab a b a b ab -++--中的同类
项 、 、 。
3. (2016春•永春县校级月考)若
与﹣3ab 3﹣n 的和为单项式,则m+n= . 4.当k = 时,代数式2213383
x kxy y xy ----中不含xy 项. 5.按下面程序计算:输入x=3,则输出的答案是 .
6.把正整数依次排成以下数阵:
1, 2, 4 , 7,… …
3, 5, 8,… …
6, 9, … …
10, … …
如果规定横为行,纵为列,如8是排在2行3列,则第10行第5列排的数是____________
三、解答题
1. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a
2m ﹣1b 3是同类项,求3m+n 的值.
2.先化简,再求值. (1)
323222122357533x x y x x y xy xy -++++-,其中x =-2,12
y =; (2)33399111552424
ab a b ab a b ab a b --+---.其中a =1,b =-2. 3.试说明多项式3322332233120.5232x y x y y x y x y y x y y -+-+++--的值与字母x 的取值无关.
4.要使关于,x y 的多项式3232
32mx nxy x xy y ++-+不含三次项,求23m n +的值. 【答案与解析】
一、选择题
1.【答案】D
2.【答案】B
【解析】合并同类项后的结果为3
32x --,故它的值只与x 有关.
3.【答案】B
【解析】 另一边长为323m n m m n ++-=+-,周长为232243m n m n n m m n +++-+-=+-.
4.【答案】C
【解析】4m n +是常数项,次数为0,不是该多项式的最高次项.
5.【答案】D
【解析】解:A 、3a+2b 无法计算,故此选项错误;
B 、2a 3+3a 2无法计算,故此选项错误;
C 、5a 2﹣4a 2=a 2,故此选项错误;
D 、5a 2b ﹣5ba 2=0,正确.
故选:D .
6.【答案】D
【解析】题中“?”所表示的单项式与“5e ”是同类项,故“?”所代表的单项式可能是e ,故选D .
7.【答案】C
二、填空题
1. 【答案】225;(3);2,3xy a b m m --
2. 【答案】2222772427ab ab a b a b ---+与、与、
与 3. 【答案】4. 【解析】解:∵与﹣3ab 3﹣n 的和为单项式,
∴2m ﹣5=1,n+1=3﹣n ,
解得:m=3,n=1.
故m+n=4.
故答案为:4.
4. 【答案】19- 【解析】合并同类项得:2213383x k xy y ⎛
⎫+---- ⎪⎝⎭.由题意得1303
k --=.故19
k =-. 5. 【答案】12
【解析】根据输入程序,列出代数式,再代入x 的值输入计算即可.
由表列代数式:(x 3﹣x )÷2
∵x=3,∴原式=(27﹣3)÷2=24÷2=12.
6. 【答案】101
【解析】第10行的第一个数是:1+2+3+…+10=55,第10行的第5个数是:
55+10+11+12+13=101.
三、解答题
1.【解析】解:由a 3b n+1和2a
2m ﹣1b 3是同类项,得, 解得. 当m=2,n=2时,3m+n=3×2+2=6+2=8.
2.【解析】(1)原式327x x y =++.当2x =-,12y =
时,原式=1; (2)原式355a b =--,当1a =,2b =-时,原式=5.
3.【答案】5
【解析】根据题意得:m ﹣1=2,n=2,则m=3,n=2.故m+n=3+2=5.
4.【解析】原式=32
(2)(31)m x n xy y ++-+
要使原式不含三次项,则三次项的系数都应为0,所以有: 20,310m n +=-=,即有:12,3
m n =-= 所以1232(2)333
+=⨯-+⨯
=-m n .。