现代信号处理
现代信号处理方法1_2
1.3.4 核函数的基本性质要求
由(1.3.5)式
( , v)
P(t , f )e j 2 ( vt f ) dtdf Az ( , v) P (t , f )e j 2 ( vt f ) dtdf
则(1.3.1)式化为
1 * 1 j 2f P(t , f ) z (t ) z (t )e d 2 2
(1.3.2)
上式就是著名的Wigner-Ville分布 .
记
上式是一个双线性变换(双时间信号)。关于 时间t作Fourier反变换
k z (t , ) z (t ) z (t ) 2 2
j 2 ( vt f )
如果时-频分布 p (t , 核函数的性质要求.
P (t , f )e z (u 2 ) z (u 2 )e
*
dtdf
(1.3.5)
j 2vu
du
f )有特定性质要求, 由上式可决定对
互时-频分布定义
两个连续信号 x(t ),y(t )的互时-频分布定义为:
P(t , ) 0
在上面的特性中,边缘特性和非负特性保 证了时-频分布准确反映信号的谱能量、瞬 时功率和总能量。边缘特性可以保证信号的 总体量(平均时间、平均频率、时宽和带宽 等)正确给定。非负性则可以进一步保证分 布的条件期望是切合实际的和物理解释。非 负性和边缘特性一起可以保证时-频分布的 强有限支撑。
2 2 * 1 2 z1 , z2 * 2 1 z2 , z1
现代信号处理-现代谱
4. AR模型谱估计的性能 均值: ˆ ( )] P ( ) E[ P
方差:
4 p 2 P ( ), 0, ˆ ( )} N ar{P 2p 2 P ( ) , else N
7.3 功率谱估计的AR模型法
5. 确定AR模型阶数的几种方法 实验方法:观察拟合误差法 算出取各种模型阶数时的白噪声方差2, 以能使2值显著减小的模型阶数的最大值 作为选定的结果。
7.1 引言
AR
(Auto Regressive)系统:
a p 0且 bi 0, i 1,q
ARMA系统:
y( n) x ( n) a i y( n i )
i 1
p
a p 0且bq 0
7.2 ARMA模型
Y ( z ) X ( z )B( z ) [ A( z ) 1] Y ( z )
7.3 功率谱估计的AR模型法
令
R( 1) R(1 p) R( 0 ) R R ( p 1 ) R ( p 2 ) R ( 0 )
R(0) R( 1) R( p) 1 2 R(1) a R ( 0 ) R ( 1 p ) 1 0 R ( p ) R ( p 1 ) R ( 0 ) a p 0
2 * a R ( m i ) a h i x i (k )h(k m i ) i 0 i 0 k 0
p
p
2 h* (k ) ai h(k m i )
k 0 i 0
p
2 * a R ( m i ) h i x (k )bk m i 0 k 0
现代信号处理_完美版PPT
•
测量信号v(n)是均值为零,方差为
2 v
的高斯白噪声;
且v(n)与信号x(n)统计无关,即v(n)不影响信号的谱形状
故有
S y ( y ) S x (x ) v 2 u 2 H () 2 v 2 R u ( m y ) E [ u ( n ) y ( n m ) ] u 2 h ( m )
2
高阶谱估计
➢ 研究的必要性 ➢ 高阶统计量 ➢ 高阶谱 ➢ 高阶累积量和多谱的性质 ➢ 三阶相关和双谱及其性质 ➢ 基于高阶谱的相位谱估计 ➢ 基于高阶谱的模型参数估计 ➢ 多谱的应用
参考:《现代数字信号处理》(184-199;204-205)
3
研究高阶谱的必要性
❖ 关于模型参数估计问题
• 所谓模型参数估计,就是根据有限长的数据序列(如模 型输出端所观测到的信号y(n)来估计图中随机信号模型 的参数,)
i1
i1
即不同ARMA过程具有相同形状的功率谱。这一特性 称为相关函数的多重性或模型的多重性。
9
随机信号的高阶特征(续)
两个具有零均值和相同方差的高斯白色噪声和 指数分布白色噪声显然是不同的随机过程,但它 们的功率谱相同。
用这样两个白色噪声激励同一个ARMA模型,产生的 两个ARMA过程显然是不同的随机过程,但它们的
• 与前面所述不同之处在于:这里考虑了观测过程所引 入的噪声v(n).
v(n)
u(n)
H(z)
x(n) ∑
y(n)
(h(n))
4
研究高阶谱的必要性
❖ 基于二阶统计量的模型参数估计方法的缺陷
• 前述模型参数估计方法中,估计得到的模型参数仅与 信号的自相关函数或功率谱包络相匹配;其功率谱不 含信号的相位特性,亦称盲相。即
清华大学《现代信号处理》课件
现代信号处理(离散随机信号处理)电子工程系本课程要讨论的主要问题:(1)对信号特性的了解随机信号(随机过程,时间序列––随机过程的一个实现)信号模型→参数估计→现代谱估计:参数化谱估计讨论信号模型及模型参数的估计问题,比较参数谱估计方法和周期图方法的优劣。
(2)对统计意义下最优滤波器设计的研究平稳条件下:Wiener滤波器理论非平稳条件下:Kalman滤波理论上的目标,实际算法可达到的最佳结果(3)对环境的自适应,具备“学习能力”的滤波算法自适应均衡、波束形成、线性自适应滤波器(4)更多信息的利用,挖掘(针对非高斯问题)线性系统、功率谱:二阶矩,高斯过程的完全刻划非线性、多谱:高阶量,循环平稳(5)对时间(空间)–––频率关系的适应性:全局特性与局域特性,小波变换,时频分析信号处理算法设计面向的几个主要因素n信噪比n先验知识n雷达n通信系统n电子对抗n对先验知识的利用:统计基础上的假设、学习过程n算法复杂性与性能要求的匹配性一些进展中的课题盲自适应信号处理序列贝叶斯估计、粒子滤波阵列信号处理等等与信号处理紧密关联的学科人工神经网络统计学习理论模式识别等等教材n张旭东,陆明泉:离散随机信号处理,2005年10月,清华大学出版社主要参考书①S. Haykin, Adaptive Filter theory, Third Edition, Prentice-Hall, 1996,//Fouth Edition 2001 (电子工业出版社均有影印本)①S.M. Kay, Modern Spectral Estimation: Theory & Application,Prentice-Hall, 1988①S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, 1993.①S. Mallat, A Wavelet Tour of Signal Processing, Academic press, 1998,Second Edition 1999①扬福生, 小波变换的工程分析与应用, 科学出版社, 2000.① D. G. Manolakis, et,al. Statistical and Adaptive Signal Processing, Mcgraw-Hall, 2000.①J. G. Proakis, et al. Algorithms for Statistical Signal Processing, Prentice hall, 2002①张贤达现代信号处理第2版清华大学出版社课程成绩n平时作业10%n2个Matlab作业40%(布置后2周内提交)n期末开卷考试50%1.1随机信号基础被噪声干扰的初相位是随机值的正弦波信号本质上均是随机的,但将信号作为随机信号处理,还是做为确定信号处理,与我们的应用目标和我们的先验知识有关,一般地,我们总是选择对应用有利的处理方式。
现代信号处理的几个边沿问题
3. 信号分析方法只限于二阶矩特性和傅氏频谱。
4. 傅里叶变换的困境
○ 在信号分析和故障诊断技术等领域中,以前最为普遍
○ 是利用快速傅里叶变换 (FFT) 的频域分析法,这种方法
MATLAB 仿真见图1 。
图1 正弦波与回 声信号叠加的波 形和时谱形状
衬底1
Signal in time domain 1
0.5
0
-0.5
-1
0
0.5
1
1.5
Time/s
Cepstrum of signal 1
0.5
0
-0.5
-1
0
0.5
1
1.5
Time/s
(2) 功率频谱(不是功率时谱)
短时: 小时间 区间。
衬底1
应用举例: 开关电源 传导干扰信号的短时 分形维数模糊控制滤 波
基于短时分形维数的模糊控制滤波方法, 对开关电源传导干扰信号中的噪声进行滤 波。该方法提出了网络分形维数和短时分 形维数的新算法,并讨论了模糊控制滤波 方法中的模糊控制参数的选取算法。基于 虚拟仪器(VI) LabVIEW 6.i平台上对开关 电源传导干扰信号进行实时检测。经过信 号处理,该系统还具有信噪分离、测量传 导干扰功率谱等功能。结果表明,该方法 滤波效果良好。
Tga,t0a 1 f(t)g t at0 dt
1 g t t0 a a
其中小波 是将具有局部特性的小 波函数g(t)通过平移和尺度变换(放大倍数为1/a)而构成的。参
数a具有时间的量纲,也称 为小波尺度;f(t)为被处理的信号。 小波函数g(t)称为小波母函数,有多种,以便 适应各种非平稳信号的检测。当对信号进行小波 变换时,其局部化特性与所选取小波函数有关, 因此,要根据信号的特征选择适当的小波母函数 才能获得满意的检测效果。
最新现代信号处理第1章ppt课件
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展
现代信号处理第八章基于EMD的时频分析方法及其应用
目前EMD方法主要应用于一元信号处理领域,未来研究将拓展其在多元信号处理中的应用,如多 通道信号分析、多维数据融合等。
EMD在复杂系统故障诊断中的应用
复杂系统的故障诊断是信号处理领域的重要研究方向之一,未来研究将探索将EMD方法应用于复 杂系统的故障诊断中,以提高诊断的准确性和可靠性。
01 基于EMD的时频分析方 法概述
EMD方法简介
EMD(Empirical Mode Decomposition)即经验模态分解,是 一种自适应的信号处理方法。
EMD方法能够将复杂信号分解为一系列固有 模态函数(Intrinsic Mode Functions, IMFs),这些IMFs表征了信号在不同时间 尺度上的局部特征。
THANKS FOR WATCHING
感谢您的观看
图像去噪与增强技术
EMD去噪原理
基于经验模态分解(EMD) 的去噪方法通过分解图像信号 为多个固有模态函数(IMF),
有效去除噪声成分。
自适应阈值处理
结合EMD与自适应阈值技术, 实现图像噪声的智能抑制,提
高图像质量。
对比度增强
利用EMD方法对图像进行分 层处理,调整各层对比度,实
现图像整体对比度的增强。
边界效应问题
EMD方法在分解过程中,对信号两端的数据处理存在不确 定性,容易产生边界效应,影响分解结果的精度和可靠性。
发展趋势预测
自适应噪声抑制技术
针对噪声干扰问题,未来研究将更加注重自适应噪声抑制 技术的发展,以提高EMD方法在噪声环境下的性能。
改进EMD算法
为解决模态混叠问题,研究者将致力于改进EMD算法,如引入 掩膜信号、优化筛选过程等,以提高分解的准确性和稳定性。
现代信号处理-胡广书-清华
X ( jΩ)
=
1 2π
<
x(t), e jΩt
>
式中 < x, y > 表示信号 x 和 y 的内积。若 x , y 都是连续的,则
(1.1.5)
< x, y >= ∫ x(t) y*(t)dt
若 x , y 均是离散的,则
< x, y >= ∑ x(n) y*(n)
从时域波形还是从频域波形,我们都很难看出该信号的调制类型及其他特点。和图 1.1.1(c)
一样,图 1.1.2(c)也是 x(n) 的时-频分布表示,由该图可明显看出,该信号的频率与时间成
Line ar sca le
Real part
S ignal in time 1
0
-1 |S TF T|2, Lh=48 , Nf=1 92, lin. scale, co ntour, Thld =5%
gt,Ω (τ ) = g(t − τ )e jΩτ
(1.1.8)
来代替傅立叶变换中的基函数 e jΩt ,则
< x(τ ), gt,Ω (τ ) >=< x(τ ), g(t −τ )e jΩτ >
∫= x(τ )g*(t − τ )e− jΩτ dτ = STFTx (t, Ω)
(1.1.9)
该式称为 x(t) 的短时傅立叶变换(Short Time Fourier Transform, STFT)。式中 g(τ ) 是一窗函
愈多。但由傅立叶变换 X ( jΩ) 看不出在什么时刻发生了此种类型的突变。现举两个例子说
明这一概念。 例 1.1.1 设信号 x(n)由三个不同频率的正弦所组成,即
现代信号处理
现代信号处理一 信号分析基础傅里叶变换的不足:()()1()()2j t j tX j x t e dtx t X j e d π∞-Ω-∞∞Ω-∞Ω==ΩΩ⎰⎰1.不具有时间和频率的“定位”功能;2.傅里叶变换对于非平稳信号的局限性;3.傅里叶变换在分辨率上的局限性。
频率不随时间变化的信号,称为时不变信号(又称为平稳信号),频率随时间变化的信号称为时变信号(又称为非平稳信号),傅里叶变换反映不出信号频率随时间变化的行为,只适合于分析平稳信号。
而我们希望知道在哪一时刻或哪一段时间产生了我们所要考虑的频率,现代信号处理主要克服傅里叶变换的不足,这些方法构成了现代信号处理。
分辨率包括频率分辨率和时间分辨率,含义是指对信号能作出辨别的时域或频域的最小间隔。
分辨率的好坏一是取决于信号的特点,二是取决于信号的长度,三是取决于所用的算法。
克服傅里叶变换不足的主要方法有:方法一:STFT (Short Time Fourier Transform )方法二:联合时频分析Cohen 分布,联合时频分析Wigner 分布 方法三:小波变换方法四:信号的子带分解,将信号的频谱均匀或非均匀地分解成若干部分,每一个部分都对应一个时间信号。
方法五:信号的多分辨率分析,与方法四类似,为了适应在不同频段对时域和频域分辨率的不同要求,可以将信号的频谱做非均匀分解。
明确概念:时间中心、时间宽度、频率中心和频带宽度 信号能量:2221()()()2E x t x t dt X j d π===ΩΩ<∞⎰⎰时间中心:21()()t t x t dt Eμ=⎰ 频率中心:21()()2x d EμπΩ=ΩΩΩ⎰ 时间宽度:22201()()t t t x t dt E ∞-∞∆=-⎰频率宽度:22221=()2X d Eπ∞Ω-∞∆ΩΩΩ-Ω⎰ 时宽和带宽:2,2t T B Ω=∆=∆品质因数=信号的带宽/信号的频率中心。
不定原理:给定信号x(t),若()0t t →∞=,则12t Ω∆∆≥当且仅当x(t)为高斯信号,即2()t x t Ae α-=等号成立。
现代信号处理
R x(y)E {x(t)y*(t)}
互协方差函数
C x(y ) E {x ( [ t)x ]y ( [ t )y ] * } Rxy()x*y
互相关系数
xy()
Cxy()
Cxx(0)Cyy(0)
主要性质
1.对零均值随机信号,相关函数与协方差函数
非平稳即不具有广义平稳。 例1.1.1
随机信号的遍历性
均方遍历:一个平稳信号,其n阶矩及较
低阶的所有矩都与时间无关,对所k 有1, ,n
和所有整数 t1,,tk ,恒有
N l i E m 2 N 1 1t N N x (t t1) x (t tk)(t1, ,tk)2 0
及 ,其k阶矩有界,并满足
( t 1 , ,t k ) ( t 1 , ,t k )
广义平稳(协方差平稳、弱平稳):均值为常 数,二阶矩有界,协方差函数与时间无关。
严格平稳:概率密度函数与时间无关。
3者关系 广义平稳是n=2的n阶平稳; 严格平稳一定广义平稳,反之则不一定;
等价
2. 0 时,自相关函数退化为二阶矩
Rxx(0)E{x(t)2}
3. 0时,协方差函数退化为方差 Cx(x0)Rx(x0)x2
4. R* xx()Rxx() 5. C* xx()Cxx() 6. C x(x)C x(x 0),
R* xy()Ryx()
白噪声
互功率谱密度
定义
P x(yf) Cx(y )ej2fd
互功率谱的实部称为同相谱,虚部称为正交谱。
相干函数
定义 C(f) Pxy(f)
特点
汽车故障诊断技术-现代信号处理方法概论
250
300
0 样本点 n/个
检测出脉冲信号
并实例分析
模拟齿轮的裂纹故障 实验中采样频率为20kHz 转速1500r/min,齿数30 Wf(a,b)2
齿轮振动信号的尺度谱图
t=4ms, a=1.3~1.5
t=44ms, a=1.3~1.5
齿轮振动信号
齿轮振动信号时域图(a=1.3)
x(t)
X
200 a 1
连续小波---运算过程示意图
0
(s,t)
×
Inner product
x(t)
X
200 a 1
连续小波---运算过程示意图
(s,t)
×
Inner product
x(t)
X
0 a 10
连续小波---运算过程示意图
(s,t)
×
Inner product
x(t)
X
50 a 10
小波包
从时域来看小波包分解
每一层的小波包数目比上一层中的小波包数目增加一倍 每个小波包的数据长度比上一层小波包数据长度减半 每个小波包的时域分辨率比上一层小波包的时域分辨率减半
小波包
从频域来看小波包分解
每个小波包数据是原始信号在不同频率段上的成分 小波包的频带相邻,并且带宽相等 分解的层数越多,频率段划分得越细
第5层小波包分解 23号小波包重构
轴的转动周期
一个周期内约有9 个冲击,与理论分 析相符,说明小 波包分解有效
故障诊断中的应用---轴承外圈剥落
最高分析频率
f = fs /2 = 20/2 = 10 KHz 每个小波包的频率带宽为
d = f /32 =312.5 Hz 频谱图中的频率范围
现代信号处理
4.信号的函数表达式为:()()()()sin(2100) 1.5sin(2300)sin(2200)x t t t A t t dn t n t πππ=++++,其中,()A t 为一随时间变化的随机过程,()dn t 为经过390—410Hz 带通滤波器后的高斯白噪声,()n t 为高斯白噪声,采样频率为1kHz ,采样时间为2.048s 。
(1)利用现代信号处理的知识进行信号谱估计;(2)利用现代信号处理知识进行信号的频率提取; (3)分别利用Winner 滤波和Kalman 滤波进行去噪; (4)利用Wigner-Ville 分布分析信号的时频特性。
(1):利用现代信号处理的知识进行信号谱估计:经典谱估计中两种主要的方法为直接法和间接法,其中间接法则先根据N 个样本数据()x n 的样本自相关函数()()()1*01,01N x n R k x n k x n k M N-==+=⋅⋅⋅∑,,,(4.1)其中1M N ≤<,且()()*x x R k R k -=。
计算样本自相关函数的Fourier 变换,得到功率谱()()Mjk x x k MP R k e ωω-=-=∑(4.2)周期图方法估计的功率谱为有偏估计,可通过加窗来减少其偏差。
定义为 ()()()2101N jn x n P x n c n e NWωω--==∑ (4.3)式中()()122112N n W c n C d NNππωωπ--===∑⎰(4.4)式中,()C ω是窗函数()c n 的Fourier 变换。
功率谱估计程序为: clear clcclose all hidden sf=1000;nfft=2048; t=0:1/1000:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,1); f1=390;f2=410;wc1=2*f1/sf; wc2=2*f2/sf; %归一化频率f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重 b=remez(50,f0,B,weigh);%传函分子 D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; a(1,:)=y;a(2,:)=y.*sin(y); x=a(1,:);y=a(2,:)-a(1,:);f=0:sf/nfft:sf/2-sf/nfft;w=boxcar(nfft);%加矩形窗 z=psd(y,nfft,sf,w,nfft/2); nn=1:nfft/2;plot(f(nn),abs(z(nn))); xlabel('频率(Hz)'); ylabel('幅值'); grid on;图4.1 功率谱估计结果图(2).信号频率的提取用离散傅立叶算法离散傅立叶算法程序 clear clcclose all hidden sf=1000;nfft=2048; t=0:1/1000:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,1); f1=390;f2=410; wc1=2*f1/sf; wc2=2*f2/sf;050100150200250300350400450500200400600800频率(Hz)幅值%归一化频率f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1];B=[0 0 1 1 0 0];%设置带通和带阻weigh=[1 1 1 ];%设置带通和带阻权重b=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; t2=(0:nfft-1)/sf;f=(0:nfft-1)*sf/nfft;y1=abs(fft(y));f=f(1:nfft/2);y1=y1(1:nfft/2);plot(t,y);title('原始信号');axis([0 2.047 -6 8]);plot(f,y1);title('fft频率提取');axis([0 500 0 1000]);xlabel('f/Hz');grid on;原信号时间(t)图4.2 原始信号时域图图4.3 信号频谱(3)分别利用Winner 滤波和Kalman 滤波进行去噪;clear all close allM=100;%维纳滤波器阶数 sf=1000;nfft=2048; L=nfft;t=0:1/1000:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,1); f1=390;f2=410; wc1=2*f1/sf; wc2=2*f2/sf; %归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重 b=remez(50,f0,B,weigh);%传函分子 D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; phixx=xcorr(y,y); for i=1:M for j=1:MRxx(i,j)=phixx(i-j+L); end ends=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200); phixs=xcorr(y,s); for i=1:Mrxs(i)=phixs(i+L); endh1=(inv(Rxx))*rxs';2004006008001000fft 频率提取f/Hz%获得理想FIR滤波器系数h1AA=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200); for i=1:Mh(i)=AA(i);end%绘图比较估计滤波器与实际滤波器figurek=1:M;plot(k,h(k),'r',k,h1(k),'b');title('Ideal h(n) & Calculated h(n)');legend('Ideal h(n)',' Calculated h(n)');xlabel('n');ylabel('h(n)');%比较理想输出与实际输出v=D+N;S=conv(h,v);SI(1)=S(1);LL1=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200); for i=2:LSI(i)=LL1(i);endfigurek=1:L;plot(k,s(k),'r',k,SI(k),'b');title('s(n) VS. SI(n)');legend('s(n)','SI(n)',0);xlabel('n');ylabel('Ideal Output');hold onSR=conv(h1,y);figurek=1:L;plot(k,s(k),'r',k,SR(k),'b');title('s(n)VS. SR(n)');legend('s(n)去噪前','SR(n)去噪后',0);xlabel('n');ylabel('Actual Output');图4.4 Winner 滤波去噪图Kalman 滤波程序 clear; clc;Fs=1000; nfft=2048;t1=0:1/Fs:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,2); f1=390;f2=410; wc1=2*f1/Fs; wc2=2*f2/Fs; wc2=2*f2/sf; %归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重 b=remez(50,f0,B,weigh);%传函分子 D=filter(b,1,N);x=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200)+D+N; x1=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200); a1=-1.352;a2=1.338;a3=-0.662;a4=0.240;A=[-a1 -a2 -a3 -a4;1 0 0 0;0 1 0 0;0 0 1 0];%状态转移矩阵 H=[1 0 0 0];%观测矩阵Q=[1 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0];%状态噪声方差 R=1;%观测噪声方差阵X(:,1)=[x(4);x(3);x(2);x(1)];p(:,:,1)=[10 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];%一步预测误差方针 %开始滤波 for k=2:nfftp1(:,:,k)=A*p(:,:,k-1)*A'+Q;%p1(:,:,k)即是一步预测误差的自相关矩阵,它是4*4的矩阵,取不同的k 值就构成了一个三维矩阵K(:,k)=p1(:,:,k)*H'/(H*p1(:,:,k)*H'+R); %K(:,:,k)是增益矩阵,对于固定的k 值它是4*1矩阵,取不同的k 值就是三维矩阵s(n)VS. SR(n)nA c t u a l O u t p u tX(:,k)=A*X(:,k-1)+K(:,k)*[x(k)-H*A*X(:,k-1)]; %X(:,k)是估计值,4*1矩阵p(:,:,k)=p1(:,:,k)-K(:,k)*H*p1(:,:,k);%p(:,:,k)是估计误差的自相关矩阵,4*4矩阵的三维矩阵end%结束一次滤波%绘图t=1:nfft;figure(2);plot(t,x1,'k-',t,x,'r-',t,X(1,:),'b-.');title('卡曼滤波去噪')legend('真实轨迹','观测样本','估计轨迹');grid on;卡曼滤波去噪n图5 Kalman滤波去噪图(4) 利用Wigner-Ville分布分析信号的时频特性MATLAB程序clear;clc;Fs=1000;nfft=2049;t1=0:1/Fs:2.048;A=normrnd(0,1,1,2049);N=wgn(1,2049,2);f1=390;f2=410;wc1=2*f1/Fs;wc2=2*f2/Fs;%归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1];B=[0 0 1 1 0 0];%设置带通或带阻,1为带通,0为带阻weigh=[1 1 1 ];%设置通带和阻带的权重b=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);x=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200)+D+N; figure(8)tfrwv(x');xlabel('时间t');ylabel('频率f');0.50.450.40.350.30.250.20.150.10.05图6 幅频特性图。
现代信号处理ModernSignalProcessing40页PPT
遍历性
若 N li m E 2N 11tN Nx(tt1)Lx(ttk)(t1,L,tk)2 0
则 {x(t)}称 为 均 方 遍 历 信 号 。
2.两个随机信号的二阶统计量
互相关函数
Rxy()@E{x(t)y*(t)}
相同部分相乘(相同符号) 不同(随机)部分相乘 (平均意义上,相互抵消)。
考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、相干信号以及它们的几个典 型应用。
1.信号分类
信号——信息的载体
连 续 时 间 信 号s(t) t 离 散 时 间 信 号s(k) k为 整 数
▪ 时分多址(TDMA: time-division multiple access): 各个用户的信号波形在时域上无重叠 正交(时域正交)
用户1和用户2之间有一个保护时隙
b
a si
(t)s*j (t)dt
0,
i j
共享:整个频带
正交的两个典型应用(续)
▪ 频分多址(FDMA: frequency-division multiple access): 各个用户的信号波形在频域上无重叠 频域正交
E wi 2 qiHqi
im1
im1
由wi qiHx得:E wi 2 E qiHxxHqi qiHE xxH qi qiHRxqi
正交的两个典型应用(续)
M
最优化: min Em min
q
H i
R
x
q
i
im 1
约
束
第1章 现代信号处理 (1)
ψ 若把ψ (t ) 看成一窗函数, (t / a ) 的宽度将随着的不同而不同, 看成一窗函数, 的宽度将随着的不同而不同, Ψ,由此我们可得到不同的 ( aΩ ) 这也同时影响到频域, 这也同时影响到频域,即 a 对应分析信号的高频部分, 时域分辨率和频域分辨率。 时域分辨率和频域分辨率。 小,对应分析信号的高频部分, a 对应分析信号的低频部分。 大,对应分析信号的低频部分。参数 是沿着时间轴的位 b x 尺度 位移” WTx ( a, b) 尺度- 移,所得结果 是信号 的“(t ) -位移”联合分 它也是时-频分布的一种。 析,它也是时-频分布的一种。
第1章 信号分析基础 章
Cohen时 Cohen时-频分布
C x (t , Ω : g ) =
1 2π
x (u + τ ) x * (u − τ ) g (θ ,τ )e − j (θt +Ωτ −uθ ) dudτdθ 2 2 ∫∫∫
Cohen分布即 式中g (θ , τ )是处在平面的权函数若g (θ , τ )=1,则Cohen分布即 变成Wigner-Ville分布,给定不同的权函数,我们可得到同 变成Wigner-Ville分布,给定不同的权函数, Wigner 分布 的时-频分布,统称为Cohen类时-频分布,简称Cohen类 的时-频分布,统称为Cohen类时-频分布,简称Cohen类, Cohen类时 Cohen
第1章 信号分析基础 章
小波变换
小波变换: 希望找到一个基本函 小波变换:对给定的信号 x (t ) ,希望找到一个基本函 数 ψ (t ) ,并记 ψ (t ) 的伸缩与位移
ψ a,b (t) = 1a ψ ( t −b ) a
x 为一族函数, 为一族函数,(t )和这一族函数的内积
现代信号处理
4.信号的函数表达式为:()()()()sin(2100) 1.5sin(2300)sin(2200)x t t t A t t dn t n t πππ=++++,其中,()A t 为一随时间变化的随机过程,()dn t 为经过390—410Hz 带通滤波器后的高斯白噪声,()n t 为高斯白噪声,采样频率为1kHz ,采样时间为2.048s 。
(1)利用现代信号处理的知识进行信号谱估计; (2)利用现代信号处理知识进行信号的频率提取; (3)分别利用Winner 滤波和Kalman 滤波进行去噪; (4)利用Wigner-Ville 分布分析信号的时频特性。
(1):利用现代信号处理的知识进行信号谱估计:经典谱估计中两种主要的方法为直接法和间接法,其中间接法则先根据N 个样本数据()x n 的样本自相关函数µ()()()1*01,01N x n Rk x n k x n k M N-==+=⋅⋅⋅∑,,,(4.1)其中1M N ≤<,且µ()µ()*x x R k R k -=。
计算样本自相关函数的Fourier 变换,得到功率谱()µ()Mjk x x k MP Rk e ωω-=-=∑(4.2)周期图方法估计的功率谱为有偏估计,可通过加窗来减少其偏差。
定义为 ()()()2101N jn x n P x n c n e NWωω--==∑ (4.3)式中()()122112N n W c n C d NNππωωπ--===∑⎰(4.4)式中,()C ω是窗函数()c n 的Fourier 变换。
功率谱估计程序为: clear clcclose all hidden sf=1000;nfft=2048; t=0:1/1000:2.047; A=normrnd(0,1,1,2048); N=wgn(1,2048,1); f1=390;f2=410; wc1=2*f1/sf; wc2=2*f2/sf; %归一化频率f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重 b=remez(50,f0,B,weigh);%传函分子 D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; a(1,:)=y;a(2,:)=y.*sin(y); x=a(1,:); y=a(2,:)-a(1,:);f=0:sf/nfft:sf/2-sf/nfft; w=boxcar(nfft);%加矩形窗 z=psd(y,nfft,sf,w,nfft/2); nn=1:nfft/2;plot(f(nn),abs(z(nn))); xlabel('频率(Hz)'); ylabel('幅值'); grid on;图4.1 功率谱估计结果图(2).信号频率的提取用离散傅立叶算法离散傅立叶算法程序 clear clcclose all hidden sf=1000;nfft=2048; t=0:1/1000:2.047;050100150200250300350400450500200400600800频率(Hz)幅值A=normrnd(0,1,1,2048);N=wgn(1,2048,1);f1=390;f2=410;wc1=2*f1/sf;wc2=2*f2/sf;%归一化频率f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1];B=[0 0 1 1 0 0];%设置带通和带阻weigh=[1 1 1 ];%设置带通和带阻权重b=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; t2=(0:nfft-1)/sf;f=(0:nfft-1)*sf/nfft;y1=abs(fft(y));f=f(1:nfft/2);y1=y1(1:nfft/2);plot(t,y);title('原始信号');axis([0 2.047 -6 8]);plot(f,y1);title('fft频率提取');axis([0 500 0 1000]); xlabel('f/Hz'); grid on;图4.2 原始信号时域图图4.3 信号频谱(3)分别利用Winner 滤波和Kalman 滤波进行去噪;clear all close allM=100;%维纳滤波器阶数0.20.40.60.81 1.2 1.41.61.82原信号时间(t )0501001502002503003504004505002004006008001000fft 频率提取f/Hzsf=1000;nfft=2048;L=nfft;t=0:1/1000:2.047;A=normrnd(0,1,1,2048);N=wgn(1,2048,1);f1=390;f2=410;wc1=2*f1/sf;wc2=2*f2/sf;%归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1];B=[0 0 1 1 0 0];%设置带通和带阻weigh=[1 1 1 ];%设置带通和带阻权重b=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; phixx=xcorr(y,y);for i=1:Mfor j=1:MRxx(i,j)=phixx(i-j+L);endends=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200);phixs=xcorr(y,s);for i=1:Mrxs(i)=phixs(i+L);endh1=(inv(Rxx))*rxs';%获得理想FIR滤波器系数h1AA=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200); for i=1:Mh(i)=AA(i);end%绘图比较估计滤波器与实际滤波器figurek=1:M;plot(k,h(k),'r',k,h1(k),'b');title('Ideal h(n) & Calculated h(n)');legend('Ideal h(n)',' Calculated h(n)');xlabel('n');ylabel('h(n)');%比较理想输出与实际输出v=D+N;S=conv(h,v);SI(1)=S(1);LL1=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200);for i=2:LSI(i)=LL1(i);endfigurek=1:L;plot(k,s(k),'r',k,SI(k),'b');title('s(n) VS. SI(n)');legend('s(n)','SI(n)',0);xlabel('n');ylabel('Ideal Output'); hold onSR=conv(h1,y);figurek=1:L;plot(k,s(k),'r',k,SR(k),'b');title('s(n)VS. SR(n)');legend('s(n)去噪前','SR(n)去噪后',0); xlabel('n');ylabel('Actual Output');图4.4 Winner 滤波去噪图Kalman 滤波程序 clear; clc; Fs=1000; nfft=2048; t1=0:1/Fs:2.047; A=normrnd(0,1,1,2048); N=wgn(1,2048,2); f1=390;f2=410; wc1=2*f1/Fs; wc2=2*f2/Fs; wc2=2*f2/sf; %归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重s(n)VS. SR(n)nA c t u a l O u t p u tb=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);x=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200)+D+N;x1=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200);a1=-1.352;a2=1.338;a3=-0.662;a4=0.240;A=[-a1 -a2 -a3 -a4;1 0 0 0;0 1 0 0;0 0 1 0];%状态转移矩阵H=[1 0 0 0];%观测矩阵Q=[1 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0];%状态噪声方差R=1;%观测噪声方差阵X(:,1)=[x(4);x(3);x(2);x(1)];p(:,:,1)=[10 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];%一步预测误差方针%开始滤波for k=2:nfftp1(:,:,k)=A*p(:,:,k-1)*A'+Q;%p1(:,:,k)即是一步预测误差的自相关矩阵,它是4*4的矩阵,取不同的k值就构成了一个三维矩阵K(:,k)=p1(:,:,k)*H'/(H*p1(:,:,k)*H'+R); %K(:,:,k)是增益矩阵,对于固定的k 值它是4*1矩阵,取不同的k值就是三维矩阵X(:,k)=A*X(:,k-1)+K(:,k)*[x(k)-H*A*X(:,k-1)]; %X(:,k)是估计值,4*1矩阵p(:,:,k)=p1(:,:,k)-K(:,k)*H*p1(:,:,k);%p(:,:,k)是估计误差的自相关矩阵,4*4矩阵的三维矩阵end%结束一次滤波%绘图t=1:nfft;figure(2);plot(t,x1,'k-',t,x,'r-',t,X(1,:),'b-.');title('卡曼滤波去噪')legend('真实轨迹','观测样本','估计轨迹');grid on;卡曼滤波去噪n图5 Kalman滤波去噪图(4) 利用Wigner-Ville分布分析信号的时频特性MATLAB程序clear;clc;Fs=1000;nfft=2049;t1=0:1/Fs:2.048;A=normrnd(0,1,1,2049);N=wgn(1,2049,2);f1=390;f2=410;wc1=2*f1/Fs;wc2=2*f2/Fs;%归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1];B=[0 0 1 1 0 0];%设置带通或带阻,1为带通,0为带阻weigh=[1 1 1 ];%设置通带和阻带的权重b=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);x=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200)+D+N; figure(8)tfrwv(x');xlabel('时间t');ylabel('频率f');0.50.450.40.350.30.250.20.150.10.05图6 幅频特性图。
机械故障诊断中的现代信号处理方法
机械故障诊断中的现代信号处理方法
现代信号处理方法在机械故障诊断中有着广泛的应用。
以下是几种常见的现代信号处理方法:
1. 傅里叶变换(Fourier Transform): 傅里叶变换将时域信号转换为频域信号,可以分析信号的频率成分和能量分布。
在机械故障诊断中,傅里叶变换可以用来检测故障产生的谐波或频率成分的变化。
2. 小波变换(Wavelet Transform): 小波变换可以在时间和频率上同时进行分析,可以更好地捕捉瞬态故障或频率变化的特征。
小波变换在机械故障诊断中常用于检测冲击、噪声和频率模态等问题。
3. 自适应滤波(Adaptive Filtering): 自适应滤波是一种可以自动调整滤波器参数的方法,可以根据信号的特点动态调整滤波器的频率响应。
自适应滤波在机械故障诊断中可以用于降噪和提取故障特征。
4. 统计特征提取(Statistical Feature Extraction): 统计特征提取是通过对信号进行统计分析来提取信号特征的方法。
常见的统计特征包括均值、方差、峰值、峭度等。
统计特征提取可以用来检测信号的变化和异常。
5. 机器学习(Machine Learning): 机器学习是一种可以让计算机自动学习和适应数据模式的方法。
在机械故障诊断中,机器学习可以用来训练模型,识别和分类不同的故障模式。
常见的
机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)和深度学习(Deep Learning)等。
这些现代信号处理方法可以结合使用,以提取和分析机械故障信号中的相关特征,提高故障诊断的准确性和效率。
现代信号处理技术
DWTf DWT (m, n) 2m / 2 f (k ) (2m k n)
k
(11-27)
4 一维Mallat算法 ( x) ,满足尺度方程 设尺度函数为 ( x),对应的小波函数为 ( x) h(n) (2 x n)
信号 f ( x)在尺度j下所平滑的信号 Ad 为 j f
2. Fourier分析的主要内容
从本质上讲,Fourier变换就是一个棱镜(Prism),它把一 个信号函数分解为众多的频率成分,这些频率又可以重构 原来的信号函数,这种变换是可逆的且保持能量不变。
图11-1 傅立叶变换与棱镜
二、小波分析的发展历程
1.小波分析起源与追踪 1981年,Morlet仔细研究了Gabor变换方法,对 Fourier变换与加窗Fourier变换的异同、特点及函数构 造做了创造性研究,首次提出了“小波分析”概念, 建立了以他的名字命名的Morlet小波。 2. 多分辨分析及Mallat算法的建立 Mallat与Meyer创立多分辨分析和Mallat算法。 3. Daubechies小波的提出 Daubechies建立了著名的Daubechies小波,这种小波是 目前应用最广泛的一种小波,不能用解析公式给出, 只能通过迭代方法产生,是迭代过程的极限。
二、短时傅立叶变换(Short Time Fourier
Transform , STFT )
我们将一个信号的STFT定义如下:
1 it (11-1) S ( , t ) e s( )h( t )d 2
其中h(t) 是窗函数. 沿时间轴移动分析窗, 我们可以得到 两维的时频平面。STFT 方法最大的优点是容易实现。 STFT 分析实质上是限制了时间窗长的Fourier分析. STFT只能选定一个固定的窗函数, 且STFT 分析受限于 不确定性原理, 较长的窗可以改善频域解但会使时域解 变糟; 而较短的窗尽管能得到好的时域解, 频域解却会变 得模糊。
现代信号处理完整版.doc
意:正态和白色是两个不同的概念,前者指信号取值 服从的规律,后者指信号不同时刻的相关性 信号的比较与区分——独立性、相关性与正交性(1) 两个随机序列 x(n)和 y(n)是统计独立的,若联合概 率密 度 函 数 f XY x, y 等于 x(n) 的概率密度函数
f X x 与 y(n) 的概率密度函数 fY y 的乘积。即
m q
q
传递函数 H ( z )
q
1 ak z k
k 1
r 0 p
br z r
B( z ) A( z )
结合
S x(z ) 2
m q
q
[ bk m bk ] z m
k 0
q |m|
若 u(n)是一个方差为 2 的白噪声,则 x(n)的功率谱
设 {x(n), n 0,1,2 N 1}为随机序列
f XY ( x, y ) f X ( x) fY ( y );(2)两个随机序列 x(n)和
y(n)是统计不相关的,若对于所有的 m,它们的互协
X (e j ) x(n)e-jm
m 0
N 1
限方差的平稳 ARMA 或 MA 模型都可以表示成唯一的、 阶数可能是无穷大的 AR 模型;同样地任何一个有限 方差的平稳 ARMA 或 AR 模型都可以表示成唯一的, 阶 数可能是无穷大的 MA 模型。
y(n m )] 互相关函数 R xy(m ) E[x(n )
高斯(正态)随机序列
R x( m )
一、
设
1 2 π
π
-π
S x(ej ) ejm d
维纳-辛钦公式 J.Tukey )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代信号处理
现代信号处理是对信号进行数字化处理的一种技术,它使用数字信
号处理算法来分析、修复、增强或压缩信号。
现代信号处理技术广
泛应用于通信、音频处理、图像处理、生物医学工程、雷达和声纳
等领域。
现代信号处理的基本步骤包括信号采集(模拟信号转换为数字信号)、滤波、采样、量化和编码。
滤波可以用于去除信号中的噪声
或不需要的成分,采样和量化将连续的信号转换为离散的数据点,
编码则将离散的数据点转换为数字形式,方便存储和传输。
现代信号处理算法包括傅里叶变换、小波变换、自适应滤波、功率
谱估计以及各种滤波器设计方法等。
傅里叶变换可以将信号从时域
转换为频域,从而可以分析信号的频谱特性;小波变换可以将信号
分解成不同的频率分量,实现信号的多分辨率分析;自适应滤波可
以根据信号的特性自动调整滤波器的参数,以适应不同的环境条件。
1
现代信号处理技术在通信领域广泛应用,例如调制解调、信道编码、多址接入等;在音频处理中,可以实现音频降噪、语音识别和语音
合成;在图像处理中,可以实现图像去噪、边缘检测和数字图像压缩;在生物医学工程中,可以实现生物信号的特征提取、滤波和分析;在雷达和声纳中,可以实现目标检测、目标跟踪和图像重建。
总之,现代信号处理技术为信号分析和处理提供了一种高效、准确
和灵活的方法,为我们获取有用的信息、改善信号质量和实现更复
杂的信号处理任务提供了重要的工具。
2。