2013年武汉理工大学数学建模训练题目

合集下载

2013全国大学生数学建模湖北赛区成绩

2013全国大学生数学建模湖北赛区成绩

数模指导组 李波 教练组 数模指导组 数模指导组 指导教师组 指导教师组 指导教师组 阴小波 左国新 毛树华 指导教师组 指导教师组 数模教练组 高飞 陈彧 指导教师组 数模教练组 数模组 指导教师组 教师组 王防修 数模组 左国新 唐向阳 教练组 指导教师组 指导教师组 潘志斌 教练组 数模组 陈应保 数模组 朱强 指导教师组 指导教师组 指导教师组 陈建业 指导教师组 指导教师组 杨瑞琰 数模组 指导教师组 指导教师组 指导教师组 教师组 指导教师组 数模组 指导教师组 指导教师组 指导教师组 建模指导组 数模组 指导教师组 王邦菊 数模教练组 指导教师组
张颖 胡冠宇 熊忭 陈康洁 胡梦 刘浩 秦一雯 王齐耀 杨梦婷 曾尚志 陈哲 严彪 胡奇 韦屏远 赵守玉 陈阳 朱文意 伏敏杰 杨好学 夏宇婷 丁磊 鲁振国 肖敏 刘丽 余艳 李启睿 石少伟 邹帅 杨苇苇 胡剑文 孙潮旭 曹庆庆 万婷 耿瑞杰 罗奥荣 郭凯 方军 杨叶 田小东 高楠 吴茵岚 孔为达 施帅 郑舒月 王磊 欧阳立鹏 张志敏 陈宜良 伊诗瑶 曾浩 李云飞 谭伟 夏峰 崔树伟 郑树林 夏建设 於辉
管炎俊 吴尚益 谢楠 吴楠祺 尚梦 夏鹏 张生廷 张诚 胡雪枫 金彤 熊凯 夏岳 袁士川 刘旋 高云飞 陈宏宇 张霞 郑小勇 郭林耀 史一飞 王浩 张泽丰 吕娜 彭博旺 陈竹 陈潇麟 殷振平 谭峰 张晨曦 李辉 许哲 朱成龙 杨迎铭 雷梦琦 方继松 望程伟 汪幸 高丽颖 吴念慈 牛秀美 郑俊 杨明亮 杨剑波 周芳 闫思彤 涂齐冲 程平 张旭光 杨康 方舟 吴博源 钟忠社 刘梦源 张佳阳 谭棽元 程德康 张微
省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖

2013年数学建模试卷及答案

2013年数学建模试卷及答案

葡萄酒的评价摘要葡萄酒的评价结果反映了葡萄酒的优劣程度,而葡萄酒的质量是由多种因素综合决定的。

本文综合考虑了评酒员对葡萄酒的品尝评分、酿酒葡萄及葡萄酒的理化指标等因素,建立了相应的数学模型,利用excel软件,C++编程,变量的相关分析及统计学相关知识等对模型求解,并对所得结果分析比较,对葡萄酒进行评价。

针对问题一,根据附件1中两组品酒员对红、白葡萄酒的品尝评分,分别计算出两组品酒员对红、白葡萄酒各酒样品的评分总值及均值,确定出各酒样品的质量。

通过欧式距离公式,计算出两组品酒员的评价结果差异性数据,得出两组品酒员的评价结果都存在显著性差异。

然后通过计算两组品酒员对两种酒的评价总分的方差均值,判断评价结果的稳定性,从而得出第二组的评价结果更可信。

针对问题二,根据附件2中酿酒葡萄和葡萄酒的理化指标,通过聚类算法对红、白两种葡萄进行聚类划分,将酒样品分为4类。

然后根据葡萄酒质量,划分出样品的等级。

再由葡萄酒样品等级,对聚类后的酿酒葡萄进行分级。

针对问题三,根据附件2,可以得出葡萄酒中的一些物质含量相对于葡萄中的一些物质含量有所减少或增加。

在葡萄酒的制作过程中,由于陈酿条件和发酵工艺及条件可能会造成物质的流失,导致酒中物质含量的减少,而葡萄酒中含量相对增加的物质可能是由葡萄中与其不相关的物质转化而形成的。

通过分析葡萄酒中含量增加的指标与葡萄的各理化指标的相关性系数,判断出酿酒葡萄与葡萄酒的理化指标之间的联系。

针对问题四,对葡萄的理化指标与葡萄酒的评价指标进行相关性分析,结合问题三的结论,得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。

根据附件1,可知评价葡萄酒要综合考虑香气、口感等方面,而葡萄和葡萄酒的理化指标主要与口感相关,但并不能决定葡萄酒的质量。

芳香物质与香气有关,在一定程度上也可能会影响葡萄酒的质量。

分别对葡萄和葡萄酒的芳香物质进行聚类分析,将聚类结果与葡萄酒质量等级比较,从而得出结论。

最后,我们就模型存在的不足之处提出了改进方案,并对优缺点进行了分析。

2013年数学建模竞赛练题目港口物流问题

2013年数学建模竞赛练题目港口物流问题

2013年数学建模竞赛训练题目港口物流问题随着我国国民经济的持续增长和对外开放政策的实施,上海、深圳、宁波、青岛、天津等港口货运吞吐量逐年呈不断上升趋势,在运输高峰期,港口货物装卸繁忙,大量货物堆积在码头,由于场地、到货时间以及货物本身等因素,交货期比较早且先期到达的集装箱可能被后送来的集装箱压在下层或堵在相对不方便出货的地方,造成某些批次货物运输的不畅;另一方面,各批次货物又有各自的运输期限要求,物流部门如果处理不当未能在规定期限内将货物运送到客户指定地点,则须向客户付出一定的赔偿。

延误不但给物流公司造成直接经济损失,同时也影响港口的工作效率。

因此,如何组织安排各批次货物的运送时间和运送顺序,提高货运能力和效率,是当前港口物流的一个重大研究课题。

考虑以下物流运送问题:设有货物批次集合I={1, 2,···,n},其中第j批货物的客户重要性等级为wj,无障碍装货时间为pj,第i批货的阻碍造成的装货时间损失为sij,i,j=1,2,···, n。

如果第j批货物完成装货任务的时间为cj,第j批货物在时刻c j<=dj之前完成装货,则该批货物可以按期到达,否则就要延误,延误时间为Lj=Cj-dj,j=1,···,n。

设当前时刻为t=0,建立以下问题的数学模型:问题一:当sij=0,i,j=1,2,···,n时,如何制订各批次货物的装货顺序,才能使最大装货延误时间Lmax=max(1<=j<=n)Lj达到最小?问题二:当Sij=0,j=1,2···,n时,如何制订各批次货物的装货顺序,才能使延误的货物批次总数达到最小?问题三:货物之间的阻碍随时间的变化而发生变化,因此,物流公司需要分时段动态考虑货物阻碍问题。

考虑在Sij不全为零的情况下讨论总装货时间Cmax=max(1<=j<=n)Cj最小化的装货顺序。

2013全国数学建模竞赛题目A-B

2013全国数学建模竞赛题目A-B

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

武汉理工大学数学建模试卷

武汉理工大学数学建模试卷
3.农场经营方案某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1元/人日,秋冬季收入为1.8元/人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元。养奶牛每头需拨出1.5公顷土地种饲草,并占用人工秋冬季为100人日,春夏季为50人日,年净收入每头奶牛400元。养鸡时不占土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入为每只鸡2元。农场现有鸡舍允许最多养3000只鸡,牛栏允许最多养32头奶牛。三种作物每年所需的人工及收入情况如表格3所示.试决定该农场的经营方案,使年净收入最大。
武汉理工大学
考试科目:数学模型
考试时间:
1.科莫多岛的生物系统在马来西亚的科莫多岛上栖居着巨大的食肉爬虫和一些哺乳动物,还生长着丰富的岛生植物。食肉爬虫吃哺乳动物,哺乳动物又吃植物。试分析这三种生物所构成的系统的动态过程及稳定状态。
2.鸟商的试验设一鸟商来到一个有200户的村庄,委托村民们为其养鸟,并规定每户仅养一只。但精明的商人没有告诉村民如何收购的原则。在自然状态下,村民们或养雌鸟,或养雄鸟。这种选择与村民考虑问题角度有关,于是,有的村民各凭自己兴趣选择养什么鸟,有的考虑到鸟的成活率来选择,还有随意的,或跟随自己信任的人来选择,等等。收购时候到了,这个鸟商宣布了自己现场成对收购的原则,即每对鸟按1000元现场当即付款。
(1)若村民养鸟或雌或雄的行为都不是有组织的或协议的行为,而是盲目的、自发的、随机的选择.当村民中有90户养了雌鸟,110户是雄鸟,商人只愿意收购90对鸟,共付9万元收鸟款时,这200户的村民应如何“公平的”分配这批鸟款?

2013数学建模校赛题[精彩]

2013数学建模校赛题[精彩]

2013数学建模校赛题A题最优网购问题网络购物(网购)由于简便快捷,深受网民的喜爱,已成一种购物时尚。

购物网站为了提高知名度和市场占有率等目的,除了常规的打折之外,还推出了名目繁多的促销活动。

这些活动的规则往往有专门的营销团队根据商品的销售和仓储情况以及顾客的消费心理来制定。

然而,对网民而言,最关心的问题是如何充分利用购物网站的折扣和当前的促销活动以便用尽可能少的钱买到自己喜欢的商品。

通常,一个订单的应付费用(应付款)由该订单的货款和一次运费(配送费)组成。

一个订单的货款即该订单中所有商品的售价之和减去该订单的优惠金额。

现仅考虑四个购物网站A、B、C和D,相关的商品的定价、库存情况和折扣见附件1,上述四个购物网站的单个订单的运费分别为5元、10元、10元和15元。

张三、李四和王五分别打算购买附件2、附件3和附件4中的物品(一人对应一个附件)。

问题1. 若购物网站A、B、C和D除了打折之外均无其它促销活动,请你建立一个数学模型帮上述三人分别制定一个尽量省钱的购物方案。

问题2. 最新消息:购物网站A推出了单张订单货款满59元免运费的活动,购物网站B推出了单张订单货款满99元免运费的活动,购物网站C推出了单张订单货款满99元减10元的活动,购物网站D推出了单张订单货款满200元减30元的活动。

以上活动不以此类推。

请你建立数学模型帮上述三人分别制定一个尽量省钱的购物方案。

B题:招聘问题某单位组成了一个五人专家小组,对101名应试者进行了招聘测试,各位专家对每位应聘者进行了打分(见附表),请你运用数学建模方法解决下列问题:(1)补齐表中缺失的数据,给出补缺的方法及理由。

(2)给出101名应聘者的录取顺序。

(3)五位专家中哪位专家打分比较严格,哪位专家打分比较宽松。

(4)你认为哪些应聘者应给予第二次应聘的机会。

(5)如果第二次应聘的专家小组只由其中的3位专家组成,你认为这个专家组应由哪3位专家组成。

数据附表序号专家甲专家乙专家丙专家丁专家戊1 68 73 85 88 862 92 69 74 65 833 88 76 76 70 804 81 73 84 98 945 83 79 95 83 986 84 67 86 56 667 76 76 68 64 868 53 96 65 95 949 * 97 76 87 6410 66 93 80 90 7311 85 95 81 81 6912 78 66 99 90 7113 58 86 72 63 8114 94 84 70 78 8616 93 66 91 74 9717 63 74 90 63 9218 91 79 83 85 8419 94 95 64 96 9520 56 67 91 97 5621 61 80 79 70 6922 86 96 79 84 7523 69 90 65 65 7624 92 85 82 66 6825 68 * 65 84 8726 71 66 61 75 9427 61 74 76 87 7828 63 80 69 76 8429 86 68 95 71 8430 64 83 61 90 9631 60 85 96 67 8732 82 84 97 78 6033 88 92 66 59 9534 60 91 78 78 8135 59 97 75 76 8836 65 87 86 64 9637 84 78 83 61 8538 65 93 62 99 8339 92 99 79 86 9040 84 82 92 95 7641 94 90 65 66 8442 90 79 85 81 5843 67 89 84 75 9344 63 82 65 69 6645 85 97 83 84 7047 88 88 96 80 8748 62 98 74 93 6249 80 93 85 82 7250 87 84 80 93 6451 94 85 94 74 9352 55 75 93 84 6053 90 68 88 92 8354 59 95 69 75 7455 98 63 80 63 8456 93 55 66 84 9657 75 64 65 94 6358 63 94 * 82 7659 71 82 61 57 6160 55 72 95 85 6461 86 55 67 62 8062 51 65 78 94 8063 81 94 73 63 9564 90 63 95 91 8765 60 83 64 79 8366 74 94 96 89 7667 63 74 91 94 8368 58 63 84 84 7269 68 93 91 82 9170 70 83 75 96 7671 86 73 73 75 9472 97 83 97 64 6873 78 81 87 78 6974 63 71 92 86 6875 67 82 87 63 8676 91 73 90 79 7478 87 83 65 91 6879 65 84 73 87 9880 78 64 82 85 9081 81 92 65 77 8282 90 82 92 66 9083 64 73 84 58 7684 78 94 77 67 9585 61 84 75 69 7286 90 93 72 94 7387 93 73 83 90 9088 69 72 88 94 7489 88 63 88 76 6690 76 56 72 75 8291 82 74 94 89 8792 60 65 84 85 7393 75 84 66 70 7594 79 74 78 63 8595 74 64 91 94 7996 70 55 95 83 6997 93 94 74 73 8598 85 83 79 95 7199 81 63 70 79 95100 86 85 92 87 74101 92 78 85 70 93注:*表示专家有事外出未给应聘者打分。

2013年全国大学生数学建模竞赛A题:车辆排队长度与事故持续时间、道路实际通行能力、路段上流流量间的关系

2013年全国大学生数学建模竞赛A题:车辆排队长度与事故持续时间、道路实际通行能力、路段上流流量间的关系

道路上不断增加的交通流经常导致拥挤。

拥挤产生延误、降低流率、带来燃油损耗和负面的环境影响。

为了提高道路系统的效率,国内外许多研究者一直致力于车流运行模型的研究。

Daganzo[1]提出了一种和流体力学LWR 模型相一致的元胞传输模型,这种模型能用来模拟和预测交通流的时空演化,包括暂时的现象,如排队的形成、传播、和消散。

Heydecker 和Addison[2]通过研究车速和密度的因果关系分析和模拟了在变化的车速限制下的交通流。

Jennifer 和Sallissou[3]提出了一种混合宏观模型有效地描述了路网的交通流。

然而,拥挤也会由交通异常事件引起。

交通异常事件定义为影响道路通行能力的意外事件[4],如交通事故、车辆抛锚、落物、短期施工等,从广义角度看,还应包括恶劣天气与特殊勤务等。

异常事件往往造成局部车道阻塞或关闭,形成交通瓶颈,引起偶发性拥挤,这已经逐渐成为高速道路交通拥挤的主要原因[5],越来越多地受到研究者们的重视。

例如M. Baykal-Gursoy[6]等人提出了成批服务受干扰下的稳态M/M/c 排队系统模拟了发生异常事件的道路路段的交通流。

Chung[7]依据韩国高速公路系统监测的准确记录的大型交通事故数据库提出了一种事故持续时间预测模型。

当然,这些研究最终都是为了帮助缓解异常事件引起的交通拥挤。

交通异常事件发生后,事发地段通行能力减小,当交通需求大于事发段剩余通行能力时,车辆排队,产生延误,行程时间增加[8],交通流量发生变化。

本文以高速公路基本路段发生交通事故为例,主要分析了交通事故发生后不同时间段内事故点及其上游下游路段交通流量的变化,用于以后进一步的突发事件下交通流预测工作。

1 交通事故影响时间分析由于从交通事故发生到检测到事故、接警、事故现场勘测、处理、清理事故现场恢复交通,以及恢复交通后车辆排队不再增加都需要一定的时间。

这部分时间主要由三部分构成: 第一部分是事故发生到警察到达现场的时间T1; 第二部分是交通事故现场处理时间T2,由现场勘测、处理到事故族除、恢复交通; 第三部分是交通事故持续影响时间T3,这部分时间从恢复事故现场交通开始,到事故上游车辆排队不再增加,即排队开始减弱[9]。

2013年数学建模题目

2013年数学建模题目

2013年数学建模题目
以下是2013年数学建模竞赛题目:
A题:最佳巧克力蛋糕烤盘
题目要求建立一个模型,描述在不同形状烤盘表面热量的分布情况,以及每个烤盘的面积A。

B题:水,水,无处不在
题目要求建立一个数学模型,来确定满足某国未来用水需求的有效的、可行的、低成本的2013年用水计划,并确定最优的淡水分配计划。

模型必须包括储存、运输、淡化和节水等环节。

C题:地球健康的网络建模
题目要求研究与应用模型来预测地球的生物和环境的健康状况。

D题:变循环发动机部件法建模及优化
题目涉及到变循环发动机的基本构造、工作原理、两种工作模式(涡喷模式和涡扇模式),以及变循环发动机部件建模法的燃气涡轮发动机的特性(可以用实验方法和计算方法获得)。

2013全国大学生数学建模竞赛B题

2013全国大学生数学建模竞赛B题

将008代表的矩阵C8的第二列元素与其它矩 阵的第一列元素进行两两匹配。记录元素相 同的个数,个数除以1980为C8矩阵第二列对 其它矩阵第一列的边缘匹配度,记为:
比较这18个数据,最大的即为与008匹配的 碎纸片。然后以所找到的碎纸片的第二列开 始,求出它与其它矩阵第一列的边缘匹配度, 找出最大的,以此类推把19张碎纸片拼接完 成。
三.问题2的分析
英文碎纸片的分析 通过观察可以发现英文字母的主要的 部分拥有同一上界和同一下界,例如:
将图片中每一行中黑色像素数少于13的及 字母的次要部分转变为二值化矩阵中的0, 将每一行中黑色像素大于等于13的及字母 的主要部分转化为二值化矩阵中的1,这样 得到的新的二值化矩阵 。例如图像转变为 如下图的方式:
二.问题1的分析
步骤一:使用matlab中的imread函数 可以做出图片的灰度矩阵 ,读取每 张图片文件的数据,其目的是将附件 中给的 bmp 格式的碎纸片图以灰度 值矩阵的形式存储。再将灰度值矩阵 转化为 0-1 矩阵,来得到模型的数 据基础;
由于该像素图片转换后为
的矩阵,ቤተ መጻሕፍቲ ባይዱ
论文中无法放置,所以仅简单举例说明:
以纸片000与001为例,匹配方式可能为:
将①②的边缘匹配度相加得到边缘匹配度 之和,将③④的边缘匹配度相加得边缘匹 配度之和,两者的和做出比较。若仅有一 个大于等于1.9,则计算机输出该匹配度, 人工判断是否碎纸片是否匹配;若两者均 大于等于1.9,计算机把两个匹配度之和输 出,人工选择判断碎纸片应是否匹配与如 何匹配;若两者均小于1.9,则计算输出最 大者,人工判断碎纸片是否匹配。这样可 以得到一些在同一横行的碎纸片的拼接。
总体思路
三步走:分行,行内排序,行间排序

2013年数学建模试题

2013年数学建模试题

B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

请讨论以下问题:1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

【数据文件说明】(1)每一附件为同一页纸的碎片数据。

(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。

(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。

(4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。

该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。

【结果表达格式说明】复原图片放入附录中,表格表达格式如下:(1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格;(2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格;(3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格;(4)不能确定复原位置的碎片,可不填入上述表格,单独列表。

数学建模2013年b题

数学建模2013年b题

数学建模2013年b题
一、题目背景介绍
数学建模2013年b题涉及到的背景知识如下:
1.题目背景:题目来源于现实生活中的某个实际问题,需要运用数学知识进行分析和解决。

2.知识点:题目涉及到的数学知识点包括线性规划、微分方程、概率论等。

二、数学建模方法概述
数学建模方法是指运用数学理论与方法对现实问题进行抽象、简化和求解的过程。

在本题中,我们需要根据题目背景,选择合适的数学方法进行建模和求解。

三、解题步骤与方法详解
1.步骤一:阅读题目,理解题意,提炼关键信息。

2.步骤二:根据题目背景和关键信息,选择合适的数学方法进行建模。

3.步骤三:建立数学模型,列写出相应的数学方程。

4.步骤四:求解数学方程,得到模型解。

5.步骤五:检验模型解的合理性,并对模型进行优化。

6.步骤六:根据模型解分析实际问题,撰写论文。

四、模型检验与优化
1.模型检验:检验模型解是否符合实际情况,可以通过与实际数据进行对比来验证。

2.模型优化:根据实际问题的变化,对模型进行调整和改进,以提高模型的准确性和实用性。

五、应用实例与分析
以下是一个与应用实例相关的问题:
某企业在生产过程中,需要对生产流程进行优化,以降低成本、提高效益。

我们可以通过数学建模方法,对企业生产流程进行分析,找到最优的生产策略。

六、总结与展望
1.总结:通过对2013年数学建模b题的分析,我们了解了如何运用数学建模方法解决实际问题,并掌握了线性规划、微分方程等数学知识。

2.展望:未来,我们可以将所学知识应用于更多实际问题,为各行各业提供有益的决策支持。

2013高教社杯全国大学生数学建模真题

2013高教社杯全国大学生数学建模真题

问题2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒 葡萄进行分级。
从附件2可以得知影响酿酒葡萄的因素比较多,分析起来数据比较繁琐,为了结果 的准确性,抓住最主要的因素,之后进行分析,得到简化,从而可以更有力的说明 问题,故我们采用了主成分分析法.得到了主要因子,简化了过程,然后利用各个 所占的比例进行评分。一般情况下,我们可以采用5分制评分标准(见表1)进行 赋值,其中等级程度是相对而言的,最后得到每一个样品的分数。
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
红葡萄酒1 红葡萄酒2
通过比较两种葡萄酒的方差,发现红葡萄酒2比较稳定
图2
标准差
红葡萄酒标准差比较
12 10 8 6 4 2 0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
红葡萄酒1 红葡萄酒2
表2 主要因子
5分 5 4 3 2 1 制
因子 氨 蛋 还 PH 黄
基白原

酸质糖

5分制54321因子氨基酸蛋白质还原糖PH黄酮醇利用 Excel计算,画图分析可以得出:
分数 分数
红葡萄酒评分
4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1
4 3.9
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
利用附件2、3,在每一种理化指标的数据中,有多组数据 的时候,要采用平均值,然后根据对应的含量值建立模型, 就红葡萄酒中的“单宁”为例,令葡萄酒中的含量为,酿 酒葡萄中的含量为,和取表中的平均值,建立模型,其中 是与单位、溶解度、挥发性、沸点等物理化学性质相关的 系数。利用spss软件曲线拟合得出、的值,其他物质含量 可以与此同样的方法得出关系。最后再根据酿酒葡萄与葡 萄酒各个理化指标平均值,求出其线性关系。

2013年武汉大学数学建模选拔赛题目

2013年武汉大学数学建模选拔赛题目

流水线车间调度问题
有一个车间为汽车生产金属管件,该车间有三台机器,分别用于弯折金属管,焊接连接处,以及装配各单元。

此车间需要生产六种加工件,其加工工序需时(分
每个加工件都需要首先进行弯折,然后进行焊接,最后进行装配。

在进入工
序之后,每项加工工序都不允许打断,但在两道工序之间可以等待一段时间。


台机器每次只能处理一个加工件。

假设在等待下一台机器处理时,不允许排在后面的加工件“插队”到前面,
这样如果在一开始为所有加工件建立了一个加工顺序,则在每台机器上都将严格
按照此顺序进行加工,应按怎样的顺序才能使所有加工件完成加工所需的总时间
最短。

2013全国大学生数学建模竞赛C题参考答案

2013全国大学生数学建模竞赛C题参考答案

2013全国大学生数学建模竞赛C题参考答案第一篇:2013全国大学生数学建模竞赛C题参考答案2013高教社杯全国大学生数学建模竞赛C题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

问题1(1)补充1986年和1996年缺失的数据(第13层第5点),可用外推法或几何方法补充数据。

(2)因各层基本处于同一平面内,可先拟合出各层所在平面,将各测量点投影到拟合平面内,然后再用均匀物体的重心公式计算中心坐标。

注:(1)对1986年和1996年第13层,不补充数据,直接用7个点的数据计算中心坐标是错误的。

(2)用各层测量点坐标的平均值作为中心点坐标,不是一种好方法。

问题2(1)倾斜程度:对中心点作线性拟合,中轴线与水平面法向的夹角可作为倾斜程度的度量。

(2)弯曲程度:对中心点作三次样条拟合,三次样条曲线各点曲率的平均值可作为弯曲程度的度量。

也可用离散方法:连接各层的对应点,折线各顶点角度的平均值可作为弯曲程度的度量。

(3)扭曲程度:相邻两个平面的旋转角度可作为扭曲程度的度量。

问题3变形趋势:对问题2中的各种变形,关于时间作拟合,推测出未来几年的变化情况。

第二篇:2006全国大学生数学建模竞赛题目(A题)2006全国大学生数学建模竞赛题目-------A题:出版社的资源配置出版社的资源主要包括人力资源、生产资源、资金和管理资源等,它们都捆绑在书号上,经过各个部门的运作,形成成本(策划成本、编辑成本、生产成本、库存成本、销售成本、财务与管理成本等)和利润。

某个以教材类出版物为主的出版社,总社领导每年需要针对分社提交的生产计划申请书、人力资源情况以及市场信息分析,将总量一定的书号数合理地分配给各个分社,使出版的教材产生最好的经济效益。

事实上,由于各个分社提交的需求书号总量远大于总社的书号总量,因此总社一般以增加强势产品支持力度的原则优化资源配置。

资源配置完成后,各个分社(分社以学科划分)根据分配到的书号数量,再重新对学科所属每个课程作出出版计划,付诸实施。

2013年全国数学建模湖北赛区成绩最终版

2013年全国数学建模湖北赛区成绩最终版
2013年全国大学生数学建模竞赛湖北赛区获奖名单
题目 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 学 校 华中科技大学 武汉理工大学 武汉理工大学 华中农业大学 武汉理工大学 中南民族大学 三峡大学 三峡大学 华中科技大学 华中师范大学 华中农业大学 华中科技大学 解放军海军工程大学 中南财经政法大学 中南财经政法大学 三峡大学 三峡大学 三峡大学 华中农业大学 华中农业大学 华中科技大学 武汉理工大学 中南财经政法大学 中南财经政法大学 华中师范大学 三峡大学科技学院 三峡大学科技学院 中南财经政法大学 中南民族大学 三峡大学 三峡大学 三峡大学 三峡大学科技学院 中南财经政法大学 华中农业大学 中南民族大学 武汉理工大学 湖北经济学院 武汉理工大学 湖北民族学院 武汉工程大学 三峡大学 三峡大学 华中科技大学 华中科技大学 队员1 黄小敏 张随远 关文凯 汪伟平 杨跃强 刘 琴 池晓霞 徐彬昭 王天成 徐一鸣 何文豪 秦元龙 李 腾 唐瑞颖 李飞鹏 孙 倩 韩 潇 宋开胜 王 宁 万印康 周绍祥 张 博 李斯特 龚集豪 李欣沅 胡世伟 童潮标 穆 彤 马骁俊 田莉莉 华成普 邬丰羽 刘京京 曹 敏 黄媛媛 马俊明 陈 千 王 璐 赵彦鹏 范汝汉 刘 倩 曾志强 张涵涛 万鑫瑞 吕鹏原 队员2 黄 程 徐佳恒 刘东飞 白 婷 庞子媛 亓晓同 袁 芳 杜雨濛 梁金鑫 张万川 李博文 赵 晴 孙鹏鹏 陈弄祺 张 桓 易恒如 詹晓燕 余若明 陈 鹏 王笑云 李梦雨 靳彦霞 潘意文 陈智娟 吴 涛 周 茜 胡德祥 谷 迪 刘 足 李兴华 秦 瑶 凌雯文 方 涛 杨 旺 刘迈克 黄 亨 文 聪 吴 笛 唐水晶 方代康 朱芳平 余 振 陈 竹 熊纪海 林志凯 队员3 王 露 江泽武 梁棋钰 刘凌览 彭艳蓉 黄 强 杜于飞 冷 珊 尹言竹 刘彩华 赵孟雅 汪 卓 郭志科 李 智 黄 齐 刘 栋 刘永琦 蒋博宇 王 君 张珍珍 罗 培 李喜艳 刘宗函 吴 思 叶丽莎 王 天 胡谭越子 卞梦妍 金 硕 田亚超 王 京 肖三婷 田 甜 任雅楠 白轩晔 沈瑶涵 高 辉 叶 敏 宋志国 车海珍 秦翠玉 王 磊 周向苑 李阳阳 戴 蕾 指导老师 指导教师组 文江辉 童仕宽 牛晓辉 胡 荣 教练组 指导教师组 指导教师组 指导教师组 李 波 胡学海 指导教师组 数模组 数模指导组 数模指导组 指导教师组 指导教师组 指导教师组 朱 强 谭劲英 指导教师组 赵华玲 数模指导组 数模指导组 阴小波 指导教师组 指导教师组 数模指导组 教练组 指导教师组 指导教师组 指导教师组 指导教师组 数模指导组 汪晓银 教练组 吴永红 数模教练组 向建林 教练组 何敏华 指导教师组 指导教师组 指导教师组 指导教师组 获奖等级 全国一等奖 全国一等奖 全国一等奖 全国一等奖 全国一等奖 全国一等奖 全国一等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 全国二等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省二等奖 省二等奖 省二等奖 省二等奖

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B 题-答案2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

2013全国大学生数学建模竞赛B题参考答案

2013全国大学生数学建模竞赛B题参考答案

2013高教社杯全国大学生数学建模竞赛B题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题要求对数据提取合适的特征、建立合理有效的碎纸片拼接复原模型。

可以考虑的特征有邻边灰度向量的匹配、按行或按列对灰度求和、行距等。

关于算法模型,必须有具体的算法过程(如流程图、算法描述、伪代码等)及设计原理。

虽然正确的复原结果是唯一的,但不能仅从学生提供的复原效果来评定学生解答的好坏,而应根据所建的数学模型、求解方法和计算结果(如复原率)三方面的内容做出评判。

另一方面,评判中还需要考虑人工干预的多少和干预时间节点的合理性。

问题1. 仅有纵切文本的复原问题由于“仅有纵切”,碎纸片较大,所以信息特征较明显。

一种比较直观的建模方法是:按照某种特征定义两条碎片间的(非对称)距离,采用最优Hamilton路或最优Hamilton圈(即TSP)的思想建立优化模型。

关于TSP的求解方法有很多,学生在求解过程中需要注意到非对称距离矩阵或者是有向图等特点。

还可能有种种优化模型与算法,只要模型合理,复原效果好,都应当认可。

本问题相对简单,复原过程可以不需要人工干预,复原率可以接近或达到100%。

问题2. 有横、纵切文本的复原问题一种较直观的建模方法是:首先利用文本文件的行信息特征,建立同一行碎片的聚类模型。

在得到行聚类结果后,再利用类似于问题1中的方法完成每行碎片的排序工作。

最后对排序后的行,再作纵向排序。

本问题的解法也是多种多样的,应视模型和方法的合理性、创新性及有效性进行评分。

例如,考虑四邻近距离图,碎片逐步增长,也是一种较为自然的想法。

问题3. 正反两面文本的复原问题这个问题是问题2的继续,基本解决方法与问题2方法相同。

但不同的是:这里需要充分利用双面文本的特征信息。

该特征信息利用得好,可以提升复原率。

在阅卷过程中,可以考虑学生对问题的扩展。

例如,在模型的检验中,如果学生能够自行构造碎片,用以检验与评价本队提出的拼接复原模型的复原效果,可考虑适当加分。

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B题-答案

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1题:箱子的摆放策略某省内知名企业生产的产品用形状为长方体的箱子包装,使用叉车将这些箱子从生产车间运输至仓库。

这些箱子叠放在叉车的正方形底板上,如下图所示,叉车置放箱子的底板是一个边长为1.1米的正方形。

箱子的规格是统一的(所有箱子的长方形底面的尺寸相同)。

通常在一次运输中,箱子像下图中这样横着放,或者竖着放。

下图所示的便是一种可行的摆放方法,但不一定是最优的。

现在这家企业需要你们帮助建立一个通用的优化模型,使得给定长方形箱子的长和宽之后,利用这个模型就能算出该如何摆放箱子(不需考虑箱子的高度,即只考虑摆放一层箱子),才能使得一次摆放的箱子数量最多。

问题1 如果不允许箱子超出叉车底板(如上图所示情形),也不允许箱子相互重叠,建立一个优化模型,考虑如何摆放这些箱子,才能使摆放的箱子数量最多?利用你们构建的模型,分别计算出对于下表中型号1、型号2和型号3的箱子,最多可以摆放多少个?该如何摆放?如果你们能画出摆放示意图,那么将有助于这家企业更快地理解你们的方法。

问题2 假设箱子的密度都是均匀的,允许箱子在正方形底板的上方,左边,右边部分超出底板(下方紧靠叉车壁,不能超出),但不至于掉落出叉车底板。

对于这种情况,重新建立优化模型,并针对上表中三种型号的箱子, 分别计算最多可以摆放多少个箱子?该如何摆放?画出摆放示意图。

问题3在不允许箱子相互重叠的条件下,你们是否还能另外设计出一种摆放方案?并将你们设计的方案与上图中的摆放方案的优劣性进行比较。

第2题:高校教师课堂教学的评价问题目前多数高校都建立了学生对教师的评价系统。

系统中,全体学生对自己的所有任课教师打分,综合评价该教师的教学情况。

教师的评价分值一定程度上能够反映该教师的教学情况,但也存在其分值在全校中的排序和实际教学能力地位不相符的情形。

问题1:附录1为我校学生对教师课堂教学评价的调查问卷,试从各项评价指标中,找出其中相关度较高的部分,将其整合为一个指标;对调查问卷中你认为不合理的部分,说出你的理由,并给出相应的处理方法。

附录2为评价结果的计算公式,请对其合理情况进行评价。

如果其中有不合理的部分,请加以修正,并说明理由。

问题2:教师之间除了自身的教学能力存在差异外,还有一些客观因素会使得教师的分值存在差异,比如同一名教师讲授两门不同的课程,由于课程讲授的难易程度不同,该教师所得的两个评价分值可能会有较大的差异,而这种差异很大程度上源于课程的原因,但是评价分值没有客观的反映这种差异。

请尽可能多的找出造成这种差异的因素,说明缘由,并利用附录3中的部分数据检验你的猜想。

问题3:上述差异会造成教师评价分值客观上存在不同,但为了在同一种标准下衡量教师的教学能力,需要消除此差异,同时保证分值能客观反应该教师的教学水平,建立数学模型解决此问题。

问题4:完整的给出一份课堂教学评价方案,包括修正后的调查问卷和详细的计算公式。

问题5:所提出的评价方案是否还有缺陷,如果有,则指出这些不足,并提出修改意见。

第3题:大型超市“购物篮”分析作为超市的经理,经常关心的问题是顾客的购物习惯。

他们想知道:“什么商品组或集合顾客多半会在一次购物时同时购买?”。

现在假设你们是某超市的市场分析员,已经掌握了该超市近一个星期的所有顾客购买物品的清单和相应商品的价格,需要你们给超市经理一个合理的“购物篮”分析报告,并提供一个促销计划的初步方案。

问题1 附件1中的表格数据显示了该超市在一个星期内的4717个顾客对999种商品的购买记录,表格中每一行代表一个顾客的购买记录,数字代表了其购买商品的超市内部编号。

试建立一种数学模型,该模型能定量表达超市中多种商品间的关联关系的密切程度。

问题2 根据你们在问题1中建立的模型,寻找一种快速有效的方法能从附件1中的购买记录中分析出哪些商品是最频繁被同时购买的。

超市经理希望得到尽可能多的商品被频繁同时购买的信息,所以你们找到的最频繁被同时购买的商品数量越多越好。

例如:如果商品1、商品2、商品3 在4717个购物记录中同时出现了200次,则可以认为这三个商品同时频繁出现了200次,商品数量是3。

问题3 附件2给出了这999中商品的对应的利润,试根据你们在问题1、问题2中建立的模型,给出一种初步的促销方案,使超市的效益进一步增大。

第4题:禽流感病毒传播问题2013年中,H7N9是网上的热点,尤其是其高致死率,引起了人们的恐慌,最近又有研究显示,H7N9有变异的可能.现在假设有一种未知的病毒潜伏期为1a --2a 天,患病者的治愈时间为3a 天,假设该病毒可以通过人与人之间的直接接触,例如握手、拥抱传播,患者每天接触的人数为r ,因接触被感染的概率为λ (λ为感染率) .为了控制疾病的传播与扩散,将人群分成五类,患者、疑似患者、治愈者、死亡者、正常人.潜伏期内的患者被隔离的强度为p (为潜伏期内患者被隔离的百分数).在合理的假设下建立该病毒扩散与传播的控制模型.利用你所建立的模型对如下数据进行模拟:1231,10,30,10,40%,50%a a a r p λ======, 初始发病人数900,疑似患者2100,患者2天后入院,疑似患者2天后被隔离.由上面的数据请给出患者人数随时间变化的曲线,并分析所给结果的合理性.隔离强度改为30%和60%,患者人数将有何变化.请据此模型,给出控制H7N9传播的建议.第5题:物资的配送某物流中心拥有一支货运车队,每台货运车辆的载重量(吨)相同、平均速度(千米/小时)相同,该物流中心用这样的车为若干个客户配送物资,物流中心与客户以及客户与客户之间的公路里程(千米)为已知。

每天,各客户所需物资的重量(吨)均已知,并且每个客户所需物资的重量都小于一台货运车辆的载重量,所有送货车辆都从物流中心出发,最后回到物流中心。

物流中心每天的配送方案应当包括:当天出动多少台车?行驶路径如何?由此形成的当天总运行里程是多少?一个合格的配送方案要求送货车辆必须在一定的时间范围内到达客户处,早到达将产生等待损失,迟到达将予以一定的惩罚;而一个好的配送方案还应该给出使配送费用最小或总运行里程最短的车辆调度方案。

该物流中心希望你们:1. 建立送货车辆每天总运行里程最短的一般数学模型,并给出求解方法。

2. 具体求解以下算例,并给出你们实际使用的软件名称、命令和编写的全部计算机源程序。

〔算例〕载重量为 Q =8 吨、平均速度为 v =50千米/小时 的送货车辆从物流中心(i =0)出发,为编号是 i =1,2,…,8 的8个客户配送物资。

某日,第i 个客户所需物资的重量为i q 吨(i q Q <),在第i 个客户处卸货时间为i s 小时,第i 个客户要求送货车辆到达的时间范围 [],i i a b 由表1给出。

物流中心与各客户以及各客户间的公路里程(单位:千米)由表2给出。

问当日如何安排送货车辆(包括出动车辆的台数以及每一台车辆的具体行驶路径)才能使总运行里程最短。

第6题:基金公司投资问题为什么有的人整天忙忙碌碌,却赚不到钱,而有的人赚到了大钱,却又没有余下多少钱。

虽然各人有各人不同的原因,但是最关键的还是没有学会投资理财,研究亿万富翁们的发迹史可以发现,他们不仅会赚钱,更重要的还是他们也会投资理财。

一位世界富豪是这样坦诚地忠告那些想富而未富者的:假如这些年来,你们过的仅是够糊口的生活,那是因为你们还未学会理财之道,或者还未掌握理财的窍门。

俗话说:你不理财,财不理你,如果有效地利用每一分钱?如何及时地把握每一个投资机会?理财的要诀就是开源和节流。

所谓开源,便是争取资金收入;所谓节流,便是计划消费,预算开支。

成功的理财可以增加收入,减少不必要的支出,改善个人或家庭的生活水平,从而使你走上富裕的道理。

而利用理财致富又是人人办得到的,也是人人应该做的。

国际著名投资大师彼得林奇说:长期而言,你将来的财富不只取决于你目前赚了多少钱,而是你能拿多少钱去投资。

这句话意味着深长,应该认真思考,正因为这个道理,才有这么一个格言:花一分钟时间赚钱,花两分钟时间理财。

财富就像一棵树,是从一粒粒小小的种子开始长起来的,你所存的第一个块钱就是种子。

而在种子长成大树的过程中,你还需要精心地浇水,施肥,治虫等,这就是理财。

只播种不培养,种子是难以长成大树的,因此,你越快播下种子,越认真地培育树苗,就会越快让钱数长大,你就越快能在树荫下乘凉,越快采摘到丰硕的果实。

理财的目的是为了增加财富,成功的理财必须具备两个条件:一是回报高,而是风险低。

生财容易守财难,你对这句话是怎么看待的?经过生财的艰苦创业的人,一般都知道守财的重要。

因为财还能生财,无形的财和有形的财还能相互转化。

没有经过生财的艰苦创业的人,往往不重财,守不好财。

这是社会现实中存在的一种较为普遍的现象。

有了财,人的欲望和贪心也会随之膨胀,社会因为知道你有财也会通过各种各样的形式给予你一些诱惑。

稍不注意,辛苦创造的财富就会化为乌有。

守财,并不是要你每天抱着钱罐子不放,而是要你时时注意来自各方面的破财诱惑。

其实是提醒你不要赌钱,不要借高利贷,不要做不熟悉不了解的行业的投资。

在用财时量力而行,留有余地,不到万不得已时不能放弃你的守财原则,这样你就会慢慢地由贫穷变为富有. 某基金管理公司现有50000万元于2013年1月1日投资附表1中列出的50种股票,于2013年12月31日之前全部卖出所持有的股票。

请你为该基金公司提出投资方案。

公司经理要求回答以下问题:1. 以我国经济形势与行业变化的分析为背景,从附表所罗列的50种股票寻中寻找一个你认为最有投资价值的股票做一估值报告。

2. 从附表所罗列的50种股票选出10种股票进行投资,请你预估这10种股票2013年的上涨幅度或者通过其他途径获取这10种股票2013年的上涨幅度。

3. 通过建立数学模型确定最优投资组合的决策,也就是确定在选出的10种股票的分别投资多少万元?投资组合的总风险是多少?4. 基金公司经理要求至少获得25%预期收益,最小风险是多少?5. 请你为基金公司经理撰写一份投资报告。

相关文档
最新文档