运筹学1-6章参考答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学(第2版)习题答案

第1章 线性规划 P36~40

第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100

第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页

习题一

1.1 讨论下列问题:

(1)在例1.2中,如果设x j (j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.

(2)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路.

(3)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.

(4)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.

(5)在单纯形法中,为什么说当00(1,2,,)k ik a i m λ>≤=并且时线性规划具有无界解。 1.2 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.

310和130.试建立该问题的数学模型,使每月利润最大.

【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为

1231231

23123123max 1014121.5 1.2425003 1.6 1.21400

150250260310120130,,0

Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨

≤≤⎪⎪≤≤⎪≥⎪⎩

1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:

【解】

设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为

14

1

12342567891036891112132347910121314

min 2300322450

232400

23234600

0,1,2,,14

j

j j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪

++++++≥⎪⎪

++++++≥⎨⎪++++++++≥⎪⎪≥=⎩∑ 用单纯形法求解得到两个基本最优解 X (1)

=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)

=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为

1341314

1234256789103689111213

2347910121314

min 0.60.30.70.40.8230032245023240023234600

0,1,2,,14

j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j =+++++⎧+++≥⎪

++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩ 用单纯形法求解得到两个基本最优解

X (1)

=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)

=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。

1.4某企业需要制定1~6月份产品A 的生产与销售计划。已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。1~

6月份产品A的单件成本与售价如表1-25所示。

(2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。【解】设x j、y j(j=1,2,…,6)分别为1~6月份的生产量和销售量,则数学模型为

(1)

1122334

45566

1

112

11223

1122334

112233445

11223344556

max300350330340320350360

420360410300340

800

800

800

800

800

Z x y x y x y x y x y x y

x

x y x

x y x y x

x y x y x y x

x y x y x y x y x

x y x y x y x y x y x

=-+-+-+-+ -+-+

-+≤

-+-+≤

-+-+-+≤

-+-+-+-+≤

-+-+-+-+-+≤

11

1122

112233

11223344

1122334455

112233445566

800

200

200

200

200

200

200

,0;1,2,,6

j j

x y

x y x y

x y x y x y

x y x y x y x y

x y x y x y x y x y

x y x y x y x y x y x y

x y j

-+≤

⎪-+-+≤

⎪-+-+-+≤

-+-+-+-+≤

⎪-+-+-+-+-+≤

-+-+-+-+-+-+≤

⎪≥=

(2)目标函数不变,前6个约束右端常数800改为1000,第7~11个约束右端常数200改为0,第12个约束“≤200”改为“=-200”。

1.5 某投资人现有下列四种投资机会, 三年内每年年初都有3万元(不计利息)可供投资:方案一:在三年内投资人应在每年年初投资,一年结算一次,年收益率是20%,下一年可继续将本息投入获利;

方案二:在三年内投资人应在第一年年初投资,两年结算一次,收益率是50%,下一年可继续将本息投入获利,这种投资最多不超过2万元;

方案三:在三年内投资人应在第二年年初投资,两年结算一次,收益率是60%,这种投资最多不超过1.5万元;

方案四:在三年内投资人应在第三年年初投资,一年结算一次,年收益率是30%,这种投资最多不超过1万元.

投资人应采用怎样的投资决策使三年的总收益最大,建立数学模型.

【解】是设x ij为第i年投入第j项目的资金数,变量表如下

相关文档
最新文档