高中物理电磁学综合复习 题集附答案
高考物理电磁学练习题库及答案
高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。
4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。
4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。
五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。
2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。
3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。
4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。
5. 请简述电阻、电容和电感的区别与联系。
答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。
2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。
2023高中物理电磁学复习 题集附答案
2023高中物理电磁学复习题集附答案本文为2023高中物理电磁学复习题集,附带答案。
以下是一些常见的物理电磁学习题,希望能够帮助你巩固相关知识点。
1. 第一题:一个电荷为+5μC的粒子静止在坐标原点上,它周围的电场强度是多少?答案:+5μC电荷在原点产生的电场强度为0。
2. 第二题:一个电子静止在坐标轴上的点A,电子自A点开始沿x轴正方向移动2m,求此过程中的电势变化。
答案:电子受到电场力的作用,沿着电场力方向移动,即x轴正方向,因此电势变化为正。
根据公式ΔV = -Ed,其中ΔV为电势变化量,E为电场强度,d为位移。
根据题目给出的信息,可知电场强度E与电子电量q的比值恒定,即E = kq/r²,其中k为电场常量,q为电子电量,r为距电子的距离。
由于电场力的方向与电场强度的方向相反,所以ΔV = E × d = -kd。
3. 第三题:一个有限长直导线,导线均匀带有电荷密度λ,求解导线上某一点P的电场强度。
答案:根据导线的电荷分布,可以将线密度λ看作一个线元,电元dE对点P的电场强度为dE = kdλ/r,其中r为点P到线元的距离。
将所有的线元叠加起来,可以得到整个导线上点P的电场强度为E = ∫dE =∫kdλ/r。
4. 第四题:一半径为R的均匀充电球,带电量为Q,求球外面的电场强度。
答案:球外点P与球心O连线与球面相交,沿着球面上的一小段圆周弧元的电场强度相等,符合位矢叠加原理。
设球面元的电荷量为dQ,球面元上的电场强度为dE,由于球面元带电体均匀,因此整个球面上的电场强度大小相等,方向指向球心。
球外一点的电场强度可以看作是球面上所有电场强度的叠加,因此球外点的电场强度为E = kQ/r²,其中k为电场常量,Q为球的总电量,r为球心到点P的距离。
5. 第五题:一个电子从电势为V1的地方沿着电场力线方向到电势为V2的地方,求电子所受的电场力做功。
答案:根据题意,电子从电势为V1的地方到电势为V2的地方,说明在此过程中电势降低,因为电势差ΔV = V2 - V1 < 0。
2023高考物理电磁学复习 题集附答案
2023高考物理电磁学复习题集附答案1. 计算题(1) 题目:一根长直导线与一均匀磁场垂直。
当导线上通过电流I时,该导线受到的磁力为F。
若电流增加到2I,导线受到的磁力变为几倍?答案:根据洛伦兹力公式 F = BIL,磁力与电流I成正比。
当电流增加到2I时,磁力也变为原来的两倍。
(2) 题目:一根长直导线和一个圆形线圈位于同一平面内。
导线与线圈无电流通过时,导线上的电流为I1时,线圈不受任何力的作用。
若导线上的电流变为I2(I2 > I1),线圈受到的磁力的方向如何?答案:根据安培环路定理,通过圆形线圈的磁感应强度与线圈内的电流方向相同。
由于导线和线圈位于同一平面内且导线上电流方向为I1,所以线圈受到的磁力方向与导线相反。
2. 简答题题目:什么是电磁感应?请举一个与电磁感应相关的实例,并说明原理。
答案:电磁感应是指导体中的电荷在磁场的作用下产生电流的现象。
一个与电磁感应相关的实例是发电机的工作原理。
发电机通过旋转导线圈在磁场中产生感应电动势,从而将机械能转化为电能。
发电机工作的原理如下:当导线圈旋转时,由于导线移动时与磁力线斜交,导线内部的自由电子受到洛伦兹力的作用,从而在导线中产生电流。
这时,导线两端的电势差就会推动工作电荷的流动,形成一个电流回路。
由于导线圈在旋转时可以保持与磁场的相对运动,因此电流的产生是连续不断的,实现了电能的转换。
3. 应用题题目:一个带电粒子以速度v进入一个垂直磁场,受到的洛伦兹力为F。
如果将该带电粒子的速度翻倍,磁场保持不变,受到的洛伦兹力将会如何变化?答案:根据洛伦兹力的公式 F = qvB,洛伦兹力与粒子速度v成正比。
当将带电粒子的速度翻倍时,其受到的洛伦兹力也会翻倍。
4. 计算题题目:一根长度为L的导线,电流I以时间t的速率匀速地变化。
在导线附近的某点处,磁感应强度B随时间的变化率为d|B|/dt = k,其中k为常数。
求在这个点的感应电场强度E。
答案:根据法拉第电磁感应定律,感应电场强度E与磁感应强度的变化率成正比。
电磁学考试题库及答案高中
电磁学考试题库及答案高中电磁学是物理学中的一个重要分支,它研究的是电荷、电场、电流、磁场以及它们之间的相互作用。
以下是一份高中电磁学考试题库及答案,供同学们学习和练习。
一、选择题1. 电荷间的相互作用遵循以下哪条定律?A. 牛顿第一定律B. 牛顿第二定律C. 库仑定律D. 欧姆定律答案:C2. 以下哪个单位是用来测量电流的?A. 伏特(V)B. 安培(A)C. 欧姆(Ω)D. 法拉(F)答案:B3. 一个电路中,电阻为10Ω,通过它的电流为0.5A,根据欧姆定律,该电路两端的电压是多少伏特?A. 2VB. 5VC. 10VD. 20V答案:B4. 电磁波的传播速度在真空中是多少?A. 299,792,458 m/sB. 300,000 km/sC. 3×10^8 m/sD. 3×10^11 m/s答案:C5. 法拉第电磁感应定律表明什么?A. 电流的产生与磁场的变化有关B. 电流的产生与电场的变化有关C. 磁场的产生与电流的变化有关D. 电场的产生与磁场的变化有关答案:A二、填空题6. 电场强度的定义式是 \( E = \frac{F}{q} \),其中 \( E \) 表示电场强度,\( F \) 表示电荷所受的电场力,\( q \) 表示电荷量。
答案:电场强度7. 电流的国际单位是安培,用符号 \( A \) 表示。
答案:安培8. 一个闭合电路的总电阻为 \( R \),电源的电动势为 \( E \),电路中的电流 \( I \) 可以通过欧姆定律计算,即 \( I = \frac{E}{R} \)。
答案:欧姆定律9. 电磁波的三个主要特性包括:波长、频率和速度。
答案:波长、频率10. 法拉第电磁感应定律表明,当磁场变化时,会在导体中产生感应电动势。
答案:感应电动势三、简答题11. 简述电磁波的产生原理。
答案:电磁波是由变化的电场和磁场相互作用产生的,它们以波的形式向外传播,不需要介质,可以在真空中传播。
高考物理电磁学大题练习20题Word版含答案及解析
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
高中物理电磁学基础练习题及答案
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
高中物理电磁学常考题总结(带答案解析)
高中物理电磁学常考题总结(带答案解析)姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、综合题(共60题;共0分)1.如图所示,厚度不计的圆环套在粗细均匀、长度为0.8m的圆柱顶端。
圆环可在园柱上滑动,同时从静止释放,经0.4s圆柱与地相碰,圆柱与地相碰后速度瞬间变为0,且不会倾倒。
(1)求静止释放瞬间,圆柱下端离地的高度(2)若最终圆环离地的距离为0.6m,则圆环与圆柱间的滞动摩擦力是圆环重力的几倍?(3)若圆环速度减为0时,恰好到达地面,则从静止释放时圆环离地的高度为多少?2.如图所示,ABCD是游乐场中的滑道,它位于竖直平面内,由两个半径分别为R1=10m和R2=2m的1/4光滑田弧,以及长L=10m、动摩擦因数=0.1的水平滑连组成,所有滑道平滑连接,D点恰好在水面上。
游客(可视为质点)可由AB弧的任意位置从静止开始下滑,游客的质量为m=50kg。
(1)若到达AB弧的末端时速度为5m/s,此时游客对滑道的压力多大?(2)若要保证游客能滑入水中,开始下滑点与B点间网弧所对应的圆心角要足什么条件。
(可用三角函数表示)(3)若游客在C点脱离滑道,求其落水点到D点的距离范围。
3.如图1所示是某质谱仪的模型简化图,P点为质子源,初速度不计的质子经电压加速后从O点垂直磁场边界射入,在边界OS的上方有足够大的垂直纸面的匀强磁场区域,B=0.2T。
a、b间放有一个宽度为L ab =0.1cm的粒子接收器S,oa长度为2m。
质子的比荷,质子经电场、磁场后正好打在接收器上。
(1)磁场的方向是垂直纸面向里还是向外?(2)质子进入磁场的角度范围如图2所示,向左向右最大偏角,所有的质子要打在接收板上,求加速电压的范围(结果保留三位有效数字,取cos80=0.99, )。
(3)将质子源P换成气态的碳I2与碳14原子单体,气体在P点电离后均帯一个单位正电(初速度不计),碳12的比荷C/kg,碳14的比荷保持磁感应强度不变,从O 点入射的角度范围不变,加速电压可以在足够大的范围内改变。
高三物理电磁学练习题及答案
高三物理电磁学练习题及答案一、选择题1. 带电粒子在磁场中受力的大小与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 粒子所受磁场的大小D. 粒子所受磁场的方向2. 一个导线以匀速矩形轨道绕一个垂直于轨道面的固定轴旋转。
导线的两端接有电源,通过导线的电流大小和方向在转过一个周期后是:A. 大小不变,方向也不变B. 大小不变,方向相反C. 大小相反,方向不变D. 大小相反,方向相反3. 两个平行的长直导线之间通过电流会发生什么现象?A. 两导线之间会产生吸引力B. 两导线之间会产生斥力C. 两导线之间会发生磁场D. 两导线之间电流大小会发生变化4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为I,导线所在的平面与磁场之间夹角为θ。
则导线所受力的大小为:A. IθB. Iθ/2C. Iθ^2D. Iθ^2/25. 在变化磁场中一个回路内的感应电动势的大小与以下哪个因素无关?A. 磁场的变化速率B. 回路面积的大小C. 回路的形状D. 磁场的方向二、填空题1. 两根平行导线之间的距离为0.2 m,通过第一根导线的电流为2 A,第二根导线与第一根导线的角度为30°,则在第二根导线上的磁感应强度为_____ T。
2. 一根长直导线通过电流3 A,产生的磁场的磁感应强度为____ T。
3. 一个圆形回路的半径为0.2 m,它所在的平面与一个磁场垂直,磁感应强度为0.5 T,磁场持续变化,则回路内感应电动势的大小为_____ V。
4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为4 A,导线所在的平面与磁场之间夹角为60°。
则导线所受力的大小为_____ N。
三、计算题1. 一条长直导线通过电流I,产生的磁场与另一根平行导线距离为d,并在两导线之间产生一个力作用。
当其中一根导线的电流大小为2I时,两导线之间的力变为原来的几倍?2. 一个包围面积为0.2 m^2的圆形回路,其平面与磁场成60°角,磁感应强度为0.4 T,磁场变化的速率为5 T/s,计算回路中感应电动势的大小。
电磁学考试题库及答案详解
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
高考物理电磁感应现象压轴题综合题含答案
高考物理电磁感应现象压轴题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
(完整版)电磁学试题库试题及答案
电磁学试题库 试题3一、填空题(每小题2分,共20分)1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。
(2)若两球壳之间的电压是U ,其电流密度( )。
5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( )6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,若可动边的长度为L ,滑动速度为V ,则回路中的感应电动势大小( ),方向( )。
7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a<r<b )的任一圆柱面的总位移电流是( )。
8、如图,有一均匀极化的介质球,半径为R ,极 化强度为P ,则极化电荷在球心处产生的场强 是( )。
9、对铁磁性介质M B H、、三者的关系是( ) )。
10、有一理想变压器,12N N =15,若输出端接一个4Ω的电阻,则输出端的阻抗为( )。
一、选择题(每小题2分,共20分) 1、关于场强线有以下几种说法( ) (A )电场线是闭合曲线(B )任意两条电场线可以相交(C )电场线的疏密程度代表场强的大小(D )电场线代表点电荷在电场中的运动轨迹R I O a b vPzRLI2、对某一高斯面S ,如果有0=⋅⎰S S d E则有( ) (A )高斯面上各点的场强一定为零 (B )高斯面内必无电荷 (C )高斯面内必无净电荷 (D )高斯面外必无电荷3、将一接地的导体B 移近一带正电的孤立导体A 时,A 的电势。
高一物理电磁学练习题及答案
高一物理电磁学练习题及答案一、选择题1. 下列哪个不是静电力的体现?A) 雷电 B) 磁力 C) 压电效应 D) 聚会球2. 电流的方向与下列哪个因素无关?A) 电动势的大小 B) 导线截面积 C) 电阻的大小 D) 连接电路的方式3. 带电粒子在电场中受到力的性质与下列哪个性质无关?A) 电荷大小 B) 电场强度 C) 电荷的正负 D) 粒子质量4. 电磁感应定律是由谁提出的?A) 奥斯特 B) 法拉第 C) 费尔马 D) 爱因斯坦5. 阻抗与哪个量的倒数成正比?A) 电感 B) 电容 C) 电阻 D) 功率二、填空题1. 一根导线的长度为0.5m,电阻为5Ω,则该导线的电阻率为______Ω·m。
2. 若两个点电荷之间的距离减小为原来的1/2,电场强度将增大为原来的______倍。
3. 按照右手定则,导线周围的磁场方向是______。
4. 一个电感为0.2H的线圈中,通过的电流变化率为0.5A/s,则在线圈中产生的感应电动势为______V。
5. 如果一台发电机的绕组中占主导地位的是电磁感应,那么它属于______发电机。
三、解答题1. 请解释电荷守恒定律。
(参考答案)电荷守恒定律是指在一个孤立系统中,电荷的总量是不变的。
即,电荷既不能被创建也不能被破坏,只能通过分配或转移来改变。
2. 什么是磁感线?(参考答案)磁感线是用于表示磁场的线。
它们是从磁南极到磁北极的有方向的曲线,其方向被定义为一个点磁针指向的方向。
磁感线的密度取决于磁场的强度,磁感线越密集,说明磁场越强。
3. 请解释毕奥-萨伐尔定律。
(参考答案)毕奥-萨伐尔定律是电磁学的基本定律之一,它描述了通过一条导线的电流产生的磁场的大小和方向。
该定律表明,当电流通过导线时,所产生的磁场的大小与电流的强度成正比,与导线到观察点的距离成反比;磁场的方向由右手螺旋定则决定。
四、综合题某电源的电动势为12V,电源内阻为2Ω。
一个负载电阻为4Ω的电路接在这个电源上,求电路中的电流大小。
高考物理专题电磁学12道精选题附答案
选择题:第一道电场中能的性质1.(2017·全国卷Ⅲ,21,6分)一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图5所示,三点的电势分别为10 V、17 V、26 V.下列说法正确的是()图5A.电场强度的大小为2.5 V/cmB.坐标原点处的电势为1 VC.电子在a点的电势能比在b点的低7 eVD.电子从b点运动到c点,电场力做功为9 eV2.(2017·全国卷Ⅰ,20,6分)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r的关系如图4所示.电场中四个点a、b、c和d的电场强度大小分别为E a、E b、E c和E d.点a到点电荷的距离r a与点a的电势φa已在图中用坐标(r a,φa)标出,其余类推.现将一带正电的试探电荷由a点依次经b、c点移动到d点,在相邻两点间移动的过程中,电场力所做的功分别为W ab、W bc和W cd.下列选项正确的是()图4A.E a∶E b=4∶1 B.E c∶E d=2∶1C.W ab∶W bc=3∶1 D.W bc∶W cd=1∶33.(多选)(2019·全国Ⅱ卷·20)静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小B.在M、N两点间,粒子的轨迹一定与某条电场线重合C.粒子在M点的电势能不低于其在N点的电势能D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行参考答案与解析1.【解析】 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79,所以d 点的坐标为(3.5 cm,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势.由几何关系可得,cf的长度为3.6 cm ,电场强度的大小E =U d =(26-17) V 3.6 cm=2.5 V/cm ,故选项A 正确;因为Oacb 是矩形,所以有U ac =U Ob ,可知坐标原点O 处的电势为1 V ,故选项B 正确;a 点电势比b 点电势低7 V ,电子带负电,所以电子在a 点的电势能比在b 点的高7 eV ,故选项C 错误;b 点电势比c 点电势低9 V ,电子从b 点运动到c 点,电场力做功为9 eV ,故选项D 正确.2.【解析】 由图可知,a 、b 、c 、d 到点电荷的距离分别为1 m 、2 m 、3 m 、6 m ,根据点电荷的场强公式E =k Q r 2可知,E a E b =r 2b r 2a =41,E c E d =r 2d r 2c =41,故A 正确,B 错误;电场力做功W =qU ,a 与b 、b 与c 、c 与d 之间的电势差分别为3 V 、1 V 、1 V ,所以W ab W bc =31,W bc W cd =11,故C 正确,D 错误.3.答案 AC解析 在两个同种点电荷的电场中,一带同种电荷的粒子在两电荷的连线上自M 点(非两点电荷连线的中点)由静止开始运动,粒子的速度先增大后减小,选项A 正确;带电粒子仅在电场力作用下运动,若运动到N 点的动能为零,则带电粒子在N 、M 两点的电势能相等;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,可知若粒子运动到N 点时动能不为零,则粒子在N 点的电势能小于在M 点的电势能,即粒子在M 点的电势能不低于其在N 点的电势能,选项C 正确;若静电场的电场线不是直线,带电粒子仅在电场力作用下的运动轨迹不会与电场线重合,选项B 错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,可知粒子在N 点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D 错误.第二道 带电粒子在匀强磁场中的运动:半径和周期公式1.(2019·全国Ⅲ卷·18)如图1,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )图1A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB2.(2017·全国卷Ⅱ,18,6分)如图4,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场,若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则v 2∶v 1 为( )图4A.3∶2B.2∶1C.3∶1 D .3∶ 2参考答案与解析1.答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力有q v B =m v 2R 、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.2.【解析】 当粒子在磁场中运动半个圆周时,打到圆形磁场边界的位置距P 点最远,则当粒子射入的速率为v 1,轨迹如图甲所示,设圆形磁场半径为R ,由几何知识可知,粒子运动的轨道半径为r 1=R cos 60°=12R ;若粒子射入的速率为v 2,轨迹如图乙所示,由几何知识可知,粒子运动的轨道半径为r 2=R cos 30°=32R ;根据轨道半径公式r =m v qB可知,v 2∶v 1=r 2∶r 1=3∶1,故选项C 正确.甲 乙第三道右手螺旋定则(磁场的叠加)和左手定则1.(2017·全国卷Ⅰ,19,6分)如图3,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反.下列说法正确的是()图3A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶ 3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3∶3∶1参考答案与解析1.【解析】同向电流相互吸引,反向电流相互排斥.对L1受力分析,如图甲所示,可知L1所受磁场作用力的方向与L2、L3所在的平面平行,故A错误;对L3受力分析,如图乙所示,可知L3所受磁场作用力的方向与L1、L2所在的平面垂直,故B正确;设三根导线间两两之间的相互作用力的大小为F,则L1、L2受到的磁场作用力的合力大小均等于F,L3受到的磁场作用力的合力大小为3F,即L1、L2、L3单位长度所受的磁场作用力大小之比为1∶1∶3,故C正确,D错误.第四道带电粒子在复合场中的受力和运动1.(2017·全国卷Ⅰ,16,6分)如图1,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c电荷量相等,质量分别为m a、m b、m c,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动.下列选项正确的是()图1A.m a>m b>m c B.m b>m a>m cC.m c>m a>m b D.m c>m b>m a参考答案与解析1.【解析】设三个微粒的电荷量均为q,a在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即m a g=qE①b在纸面内向右做匀速直线运动,三力平衡,则m b g=qE+q v B②c在纸面内向左做匀速直线运动,三力平衡,则m c g+q v B=qE③比较①②③式得:m b>m a>m c,选项B正确.第五道 法拉第电磁感应定律,电荷量Q=It1.(2018年全国1卷)如图1,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,QM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( )图1A.54B.32C.74 D .22.(交变电流有效值计算)(2018年全国3卷)一电阻接到方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交流电源上,在一个周期内产生的热量为Q 正.该电阻上电压的峰值均为u 0,周期均为T ,如图1所示.则Q 方∶Q 正等于( )图1A .1∶ 2B.2∶1 C .1∶2 D .2∶1参考答案与解析1.答案 B解析 在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B ⎝⎛⎭⎫12πr 2-14πr 2Δt 1根据闭合电路欧姆定律,有I 1=E 1R且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2Rq 2=I 2Δt 2又q 1=q 2,即B ⎝⎛⎭⎫12πr 2-14πr 2R =(B ′-B )12πr 2R所以B ′B =32. 2.答案 D解析 由有效值概念知,一个周期内产生热量Q 方=u 20R ·T 2+u 20R ·T 2=u 20R T ,Q 正=U 2有效R T =(u 02)2RT =12·u 20RT ,故知,Q 方∶Q 正=2∶1.第六道法拉第电磁感应定律,右手定则,左手定则1.(2017·全国卷Ⅱ,20,6分)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图6(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是()图6A.磁感应强度的大小为0.5 TB.导线框运动的速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N2.电磁感应定律和动量守恒(多选)(2019·全国Ⅲ卷·19)如图1,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图1参考答案与解析1.【解析】 由Et 图象可知,导线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2m /s =0.5 m/s ,选项B 正确;由图象可知,E =0.01 V ,根据E =Bl v 得,B =E l v =0.010.1×0.5T =0.2 T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A, 所受的安培力大小为F =BIl =0.2×2×0.1 N =0.04 N ,选项D 错误.2.答案 AC解析 棒ab 以初速度v 0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab 受到与v 0方向相反的安培力的作用而做变减速运动,棒cd 受到与v 0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv =v 1-v 2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab 和棒cd 的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.实验题部分第七道测电阻伏安特性1.(2017·全国卷Ⅰ,23,10分)某同学研究小灯泡的伏安特性,所使用的器材有:小灯泡L(额定电压3.8 V,额定电流0.32 A);电压表(量程3 V,内阻3 kΩ);电流表(量程0.5 A,内阻0.5 Ω);固定电阻R0(阻值1 000 Ω);滑动变阻器R(阻值0~9.0 Ω);电源E(电动势5 V,内阻不计);开关S;导线若干.(1)实验要求能够实现在0~3.8 V的范围内对小灯泡的电压进行测量,画出实验电路原理图.(2)实验测得该小灯泡伏安特性曲线如图7(a)所示.图7由实验曲线可知,随着电流的增加小灯泡的电阻______(填“增大”“不变”或“减小”),灯丝的电阻率________(填“增大”“不变”或“减小”).(3)用另一电源E0(电动势4 V,内阻1.00 Ω)和题给器材连接成图(b)所示的电路,调节滑动变阻器R的阻值,可以改变小灯泡的实际功率.闭合开关S,在R的变化范围内,小灯泡的最小功率为________ W,最大功率为________ W.(结果均保留两位小数)2.二极管的伏安曲线(2019·全国Ⅱ卷·23)某小组利用图1(a)所示的电路,研究硅二极管在恒定电流条件下的正向电压U与温度t的关系,图中V1和V2为理想电压表;R为滑动变阻器,R0为定值电阻(阻值100 Ω);S为开关,E为电源.实验中二极管置于控温炉内,控温炉内的温度t由温度计(图中未画出)测出.图(b)是该小组在恒定电流为50.0 μA时得到的某硅二极管U-t关系曲线.回答下列问题:图1(1)实验中,为保证流过二极管的电流为50.0 μA ,应调节滑动变阻器R ,使电压表V 1的示数为U 1=________ mV ;根据图(b)可知,当控温炉内的温度t 升高时,硅二极管正向电阻________(填“变大”或“变小”),电压表V 1示数________(填“增大”或“减小”),此时应将R 的滑片向________(填“A ”或“B ”)端移动,以使V 1示数仍为U 1.(2)由图(b)可以看出U 与t 成线性关系.硅二极管可以作为测温传感器,该硅二极管的测温灵敏度为|ΔU Δt|=________×10-3 V/℃(保留2位有效数字).参考答案与解析1.【解析】(1)电压表量程为3 V,要求能够实现在0~3.8 V的范围内对小灯泡的电压进行测量,需要给电压表串联一个定值电阻扩大量程,题目中要求小灯泡两端电压从零开始,故滑动变阻器用分压式接法,小灯泡的电阻R L=UI=3.80.32Ω=11.875 Ω,因R LR A<R VR L,故电流表用外接法,实验电路原理图如图所示.(2)由IU图象知,图象中的点与坐标原点连线的斜率在减小,表示灯泡的电阻随电流的增大而增大,根据电阻定律R=ρlS知,灯丝的电阻率增大.(3)当滑动变阻器的阻值最大为9.0 Ω时,电路中的电流最小,灯泡实际功率最小,由E=U +I(R+r)得U=-10I+4,作出图线①如图所示.由交点坐标可得U1=1.78 V,I1=221 mA,P1=U1I1≈0.39 W;当滑动变阻器电阻值R=0时,灯泡消耗的功率最大,由E=U+I(R+r)得,I=-U+4,作出图线②如图所示.由交点坐标可得,U2=3.70 V,I2=315 mA,最大的功率为P2=U2I2≈1.17 W.2.答案(1)5.00变小增大B(2)2.8解析(1)实验中硅二极管与定值电阻R0串联,由欧姆定律可知,定值电阻两端电压U1=IR0=50.0 μA×100 Ω=5.00 mV;由题图(b)可知,当控温炉内温度升高时,硅二极管两端电压减小,又题图(b)对应的电流恒为50.0μA,可知硅二极管的正向电阻变小,定值电阻R0两端电压增大,即电压表V1示数增大,应增大滑动变阻器接入电路的阻值以减小电路中的电流,从而使电压表V 1示数保持不变,故应将R 的滑片向B 端移动.(2)由题图(b)可知⎪⎪⎪⎪ΔU Δt =0.44-0.3080-30V/℃=2.8×10-3 V/℃.第八道电表改装及校准1.(2019·全国Ⅰ卷·23)某同学要将一量程为250 μA的微安表改装为量程为20 mA的电流表.该同学测得微安表内阻为1 200 Ω,经计算后将一阻值为R的电阻与微安表连接,进行改装.然后利用一标准毫安表,根据图1(a)所示电路对改装后的电表进行检测(虚线框内是改装后的电表).图1(1)根据图(a)和题给条件,将图(b)中的实物连线.(2)当标准毫安表的示数为16.0 mA时,微安表的指针位置如图2所示,由此可以推测出改装的电表量程不是预期值,而是________.(填正确答案标号)图2A.18 mA B.21 mAC.25 mA D.28 mA(3)产生上述问题的原因可能是________.(填正确答案标号)A.微安表内阻测量错误,实际内阻大于1 200 ΩB.微安表内阻测量错误,实际内阻小于1 200 ΩC.R值计算错误,接入的电阻偏小D.R值计算错误,接入的电阻偏大(4)要达到预期目的,无论测得的内阻值是否正确,都不必重新测量,只需要将阻值为R的电阻换为一个阻值为kR的电阻即可,其中k=________.2.(2019·全国Ⅲ卷·23)某同学欲将内阻为98.5 Ω、量程为100 μA的电流表改装成欧姆表并进行刻度和校准,要求改装后欧姆表的15 kΩ刻度正好对应电流表表盘的50 μA刻度.可选用的器材还有:定值电阻R0(阻值14 kΩ),滑动变阻器R1(最大阻值1 500 Ω),滑动变阻器R2(最大阻值500 Ω),电阻箱(0~99 999.9 Ω),干电池(E=1.5 V,r=1.5 Ω),红、黑表笔和导线若干.图1(1)欧姆表设计将图1中的实物连线组成欧姆表.欧姆表改装好后,滑动变阻器R接入电路的电阻应为________ Ω;滑动变阻器选________(填“R1”或“R2”).(2)刻度欧姆表表盘通过计算,对整个表盘进行电阻刻度,如图2所示.表盘上a、b处的电流刻度分别为25和75,则a、b处的电阻刻度分别为________、________.图2(3)校准红、黑表笔短接,调节滑动变阻器,使欧姆表指针指向________ kΩ处;将红、黑表笔与电阻箱连接,记录多组电阻箱接入电路的电阻值及欧姆表上对应的测量值,完成校准数据测量.若校准某刻度时,电阻箱旋钮位置如图3所示,则电阻箱接入的阻值为________ Ω.图3参考答案与解析1.答案 (1)连线如图所示(2)C (3)AC (4)9979解析 (1)量程为250 μA 的微安表改装成量程为20 mA 的电流表,量程扩大了80倍,需要将定值电阻与微安表并联,然后根据题图(a)的原理图连线.(2)当标准毫安表示数为16.0 mA 时,对应的微安表读数为160 μA ,说明量程扩大了100倍,因此所改装的电表量程是25 mA ,选项C 正确.(3)根据I g R g =(I -I g )R 得:I =I g R g R+I g 出现该情况可能是微安表内阻测量错误,实际电阻大于1 200 Ω,或者并联的电阻R 计算错误,接入的电阻偏小,选项A 、C 正确.(4)设微安表的满偏电压为U ,则对并联的电阻R 有U =(25-0.25)×10-3RU =(20-0.25)×10-3kR解得k =9979. 2.答案 (1)如图所示 900 R 1(2)45 5 (3)0 35 000.0解析 (1)由题知当两表笔间接入15 kΩ的电阻时,电流表示数为50 μA ,由闭合电路欧姆定律有I g 2=E R g +r +R x +R 0+R,代入数据解得R =900 Ω,所以滑动变阻器选择R 1.(2)欧姆表的内阻R g ′=R g +r +R 0+R =15 kΩ,当电流为25 μA 时,有I g 4=ER g ′+R x ′可得R x ′=45 kΩ;当电流为75 μA 时,有3I g 4=ER g ′+R x ″可得R x ″=5 kΩ.(3)红、黑表笔短接,调节滑动变阻器,使欧姆表指针指向0 kΩ处.题图中电阻箱读数为35 000.0 Ω.第九题多用表的使用1.(2017·全国卷Ⅲ,23,9分)图7(a)为某同学组装完成的简易多用电表的电路图.图中E是电池;R1、R2、R3、R4和R5是固定电阻,R6是可变电阻;表头的满偏电流为250 μA,内阻为480 Ω.虚线方框内为换挡开关,A端和B端分别与两表笔相连.该多用电表有5个挡位,5个挡位为:直流电压1 V挡和5 V挡,直流电流1 mA挡和2.5 mA 挡,欧姆×100 Ω挡.图7(1)图(a)中的A端与________(填“红”或“黑”)色表笔相连接.(2)关于R6的使用,下列说法正确的是________(填正确【答案】标号).A.在使用多用电表之前,调整R6使电表指针指在表盘左端电流“0”位置B.使用欧姆挡时,先将两表笔短接,调整R6使电表指针指在表盘右端电阻“0”位置C.使用电流挡时,调整R6使电表指针尽可能指在表盘右端电流最大位置(3)根据题给条件可得R1+R2=________Ω,R4=________Ω.(4)某次测量时该多用电表指针位置如图(b)所示.若此时B端是与“1”相连的,则多用电表读数为__________;若此时B端是与“3”相连的,则读数为________;若此时B端是与“5”相连的,则读数为____________.(结果均保留3位有效数字)参考答案与解析1.【解析】(1)当B端与“3”连接时,内部电源与外部电路形成闭合回路,电流从A端流出,故A端与黑色表笔相连接.(2)在使用多用电表之前,调整表头螺丝使电表指针指在表盘左端电流“0”位置,选项A错误;使用欧姆挡时,先将两表笔短接,调整R6使电表指针指在表盘右端电阻“0”位置,选项B正确;使用电流挡时,电阻R6不在闭合电路中,调节无效,选项C错误.(3)根据题给条件可知,当B端与“2”连接时,表头与R1、R2组成的串联电路并联,此时为量程1 mA的电流挡,由并联电路两支路电流与电阻成反比知,R gR1+R2=1-0.250.25=31,解得R1+R2=160 Ω.当B端与“4”连接时,表头与R1、R2组成的串联电路并联后再与R4串联,此时为量程1 V 的电压挡,表头与R1、R2组成的串联电路并联后再与R4串联,此时为量程1 V的电压挡,表头与R1、R2组成的串联电路并联总电阻为120 Ω,两端电压为0.12 V,由串联电路中电压与电阻成正比知:R4两端电压为0.88 V,则R4电阻为880 Ω.(4)若此时B端是与“1”连接的,多用电表作为直流电流表使用,量程为2.5 mA,读数为1.47 mA.若此时B端是与“3”连接的,多用电表作为欧姆表使用,读数为11×100 Ω=1.10 kΩ.若此时B端是与“5”连接的,多用电表作为直流电压表使用,量程为5 V,读数为2.94 V.计算题部分第十道带电粒子在变化磁场中的匀速圆周运动1.(2017·全国卷Ⅲ,24,12分)如图8,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0 区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)图8(1)粒子运动的时间;(2)粒子与O点间的距离.2.(2019·全国Ⅰ卷·24)如图1,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求图1(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x轴的时间.参考答案与解析1.【解析】 (1)在匀强磁场中,带电粒子做圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R2.由洛伦兹力公式及牛顿运动定律得 qB 0v 0=m v 20R 1①qλB 0v 0=m v 20R 2②粒子速度方向转过180°时,所需时间t 1为 t 1=πR 1v 0③粒子再转过180°时,所需时间t 2为 t 2=πR 2v 0④联立①②③④式得,所求时间为 t =t 1+t 2=πm B 0q (1+1λ)⑤ (2)由几何关系及①②式得,所求距离为 d =2(R 1-R 2)=2m v 0B 0q (1-1λ)⑥2.答案 (1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33 解析 (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33⑦第十一道带电粒子在匀强电场的类平抛运动1.(2019·全国Ⅱ卷·24)如图1,两金属板P、Q水平放置,间距为d.两金属板正中间有一水平放置的金属网G,P、Q、G的尺寸相同.G接地,P、Q的电势均为φ(φ>0).质量为m,电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸面水平射入电场,重力忽略不计.图1(1)求粒子第一次穿过G时的动能,以及它从射入电场至此时在水平方向上的位移大小;(2)若粒子恰好从G的下方距离G也为h的位置离开电场,则金属板的长度最短应为多少?2.(2017·全国卷Ⅰ,25,20分)真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变.持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点.重力加速度大小为g.(1)求油滴运动到B点时的速度大小;(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t1和v0应满足的条件.已知不存在电场时,油滴以初速度v0做竖直上抛运动的最大高度恰好等于B、A两点间距离的两倍.参考答案与解析1.答案 (1)12m v 02+2φd qh v 0mdhqφ(2)2v 0mdh qφ解析 (1)PG 、QG 间场强大小相等,均为E .粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有E =2φd ①F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有 qEh =E k -12m v 02③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有h =12at 2④l =v 0t ⑤联立①②③④⑤式解得 E k =12m v 02+2φd qh ⑥l =v 0mdhqφ⑦ (2)若粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短.由对称性知,此时金属板的长度为L =2l =2v 0mdhqφ⑧ 2.【解析】 (1)设该油滴带正电,油滴质量和电荷量分别为m 和q ,油滴速度方向向上为正.油滴在电场强度大小为E 1的匀强电场中做匀速直线运动,故匀强电场方向向上.在t =0时,电场强度突然从E 1增加至E 2时,油滴做竖直向上的匀加速运动,加速度方向向上,大小a 1满足qE 2-mg =ma 1① 油滴在t 1时刻的速度为 v 1=v 0+a 1t 1②电场强度在t 1时刻突然反向,油滴做匀变速直线运动,加速度方向向下,大小a 2满足 qE 2+mg =ma 2③油滴在t 2=2t 1时刻的速度为 v 2=v 1-a 2t 1④由①②③④式得 v 2=v 0-2gt 1⑤(2)由题意,在t =0时刻前有 qE 1=mg ⑥油滴从t =0到t 1时刻的位移为 x 1=v 0t 1+12a 1t 21⑦油滴在从t 1时刻到t 2=2t 1时刻的时间间隔内的位移为 x 2=v 1t 1-12a 2t 21⑧由题给条件有v 20=2g ×2h =4gh ⑨ 式中h 是B 、A 两点之间的距离. 若B 点在A 点之上,依题意有 x 1+x 2=h ⑩由①②③⑥⑦⑧⑨⑩式得 E 2=[2-2v 0gt 1+14(v 0gt 1)2]E 1⑪为使E 2>E 1,应有 2-2v 0gt 1+14(v 0gt 1)2>1⑫即当0<t 1<(1-32)v 0g⑬ 或t 1>(1+32)v 0g⑭ 才是可能的;条件⑬式和⑭式分别对应于v 2>0和v 2<0两种情形. 若B 在A 点之下,依题意有 x 2+x 1=-h ⑮由①②③⑥⑦⑧⑨⑮式得 E 2=[2-2v 0gt 1-14(v 0gt 1)2]E 1⑯为使E 2>E 1,应有 2-2v 0gt 1-14(v 0gt 1)2>1⑰即t 1>(52+1)v 0g⑱ 另一解为负,不符合题意,舍去.第十二道 带电粒子在组合场中的运动:电场中类平抛运动,磁场中的匀速圆周运动1.(2018年全国1卷)(20分)如图1,在y >0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y <0的区域存在方向垂直于xOy 平面向外的匀强磁场.一个氕核11H 和一个氘核21H 先后从y 轴上y =h 点以相同的动能射出,速度方向沿x 轴正方向.已知11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场.11H 的质量为m ,电荷量为q .不计重力.求:图1(1)11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)21H 第一次离开磁场的位置到原点O 的距离.2.(轨迹的对称性)(2018年全国2卷)(20分)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图1所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行.一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.图1(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N 点的时间.。
高三物理电磁学试题答案及解析
高三物理电磁学试题答案及解析1.如图甲所示,空间存在一有界匀强磁场,磁场的左边界如虚线所示,虚线右侧范围足够大,磁场方向竖直向下.在光滑绝缘水平面内有一长方形金属线框,线框质量m=0.1kg,在水平向右的外力F作用下,以初速度v=1m/s一直做匀加速直线运动,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)线框cd边刚进入磁场时速度v的大小;=0.27J,则在此过程中线框产生的焦耳热Q为多少?(2)若线框进入磁场过程中F做功为WF【答案】(1)2m/s (2)0.12J【解析】(1)当后,对线框:解得:又解得:(2)根据功能关系得:解得:【考点】功能关系;牛顿定律的应用.2.如图所示,在xoy平面第一象限里有竖直向下的匀强电场,电场强度为E。
第二象限里有垂直于纸面向外的匀强磁场,磁感应强度为B。
在x轴上-a处,质量为m、电荷量为e的质子以大小不同的速度射入磁场,射入时速度与x轴负方向夹角为。
不计空气阻力,重力加速度为g。
求:(1)在-x轴上有质子到达的坐标范围;(2)垂直于y轴进入电场的质子,在电场中运动的时间;(3)在磁场中经过圆心角为2的一段圆弧后进入电场的质子,到达x轴的动能。
【答案】(1)(2)(3)【解析】(1)设-x轴的第一个坐标点为x1(2)质子垂直进入电场时距x轴的距离:(3)在磁场中运动情景如图所示。
由牛顿定律可知:由动能定理:【考点】带电粒子在磁场中的运动;动能定理.3.如图在xoy坐标系第Ⅰ象限,磁场方向垂直xoy平面向里,磁感应强度大小为B=1.0T;电场方向水平向右,电场强度大小为E=N/C.一个质量m=2.0×10﹣7kg,电荷量q=2.0×10﹣6C的带射入第Ⅰ象限,恰好在xoy平面中做匀速直线运动.0.10s后改正电粒子从x轴上P点以速度v变电场强度大小和方向,带电粒子在xoy平面内做匀速圆周运动,取g=10m/s2.求:大小和方向;(1)带电粒子在xoy平面内做匀速直线运动的速度v(2)带电粒子在xoy平面内做匀速圆周运动时电场强度E′的大小和方向;(3)若匀速圆周运动时恰好未离开第Ⅰ象限,x轴上入射P点应满足何条件?【答案】(1)2m/s,方向斜向上与x轴正半轴夹角为60°;(2)1N/C,方向竖直向上.(3)0.27m【解析】(1)如图粒子在复合场中做匀速直线运动,设速度v与x轴夹角为θ,依题意得:解得所以:θ=60°即速度v大小2m/s,方向斜向上与x轴正半轴夹角为60°(2)带电粒子在xOy平面内做匀速圆周运动时,电场力F电必须与重力平衡,洛伦兹力提供向心力:解得E′=1N/C,方向竖直向上.(3)如图带电粒子匀速圆周运动恰好未离开第1象限,圆弧左边与y轴相切N点;PQ匀速直线运动,PQ=vt="0.2" m洛伦兹力提供向心力:,得R=0.2m由几何知识得:OP=R+Rsin60°-PQcos60°OP==0.27m故:x轴上入射P点离O点距离至少为0.27m【考点】带电粒子在复合场中的运动;4.图中L为自感系数足够大的理想电感,C是电容量足够大的理想电容,R1、R2是阻值大小合适的相同电阻,G1、G2是两个零刻度在中央的相同的灵敏电流表,且电流从哪一侧接线柱流入指针即向哪一侧偏转,E是可以不计内阻的直流电源.针对该电路下列判断正确的是( )A.电键S闭合的瞬间,仅电流计G1发生明显地偏转B.电键S闭合的瞬间,两电流计将同时发生明显的偏转C.电路工作稳定后,两电流计均有明显不为零的恒定示数D.电路工作稳定后再断开电键S,此后的短时间内,G1的指针将向右偏转,G2的指针将向左偏转【答案】BD【解析】电路接通瞬间,由于自感系数足够大,所以有电流通过R1,直流电不能通过电容器,则有电流通过R2,所以电键S闭合的瞬间,两电流计将同时发生明显的偏转,故A错误,B正确;L为理想电感,电路温度后,R1被短路,则没有电流通过,示数为零,故C错误;电路工作稳定后再断开电键S,此后的短时间内,电容器放电,电流从右端通过R1,从左端通过R2,则G1的指针将向右偏转,G2的指针将向左偏转,故D正确.故选BD.【考点】自感现象.【名师】此题考查自感以及电容器问题;解决本题的关键知道电感器对电流的变化有阻碍作用:当电流增大时,会阻碍电流的增大,当电流减小时,会阻碍其减小,而电阻没有此特点,当K断开电阻、电容构成一回路,电容器可以储存电荷。
高中物理《电磁学》练习题(附答案解析)
高中物理《电磁学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁学综合复习题集附答案高中物理电磁学综合复习题集附答案
一、选择题
1.下列说法中,关于静电场的描述正确的是:
A. 静电场只存在于导电体表面
B. 静电场无法通过真空传播
C. 静电场是由带电粒子形成的
D. 静电场是一种宏观电现象
答案:B
2.下列哪个物理量不是电场强度的量纲?
A. N/C
B. V/m
C. C/V
D. N·m/C
答案:D
3.一匀强电场的电场强度大小为E,两个面积分别为S1和S2的平行金属板之间的电势差为U。
若将电容器接入电源恒流充电,在充电过程中两板间的电势差和电场强度的关系是:
A. U一定,E增大
B. U增大,E一定
C. U增大,E也增大
D. U和E都不变
答案:A
4.下列哪个说法关于电位移矢量D的描述是正确的?
A. D在导体内的路径无关紧要,只与导体的几何形状有关
B. D只存在于介质中,不存在于真空中
C. D的方向与电场强度E的方向相同
D. D的方向指向电场正传播的方向
答案:D
5.下列哪个物理量与电感的量纲相同?
A. H/m
B. V·s/A
C. J/C
D. N/A
答案:A
二、简答题
1.电路中的欧姆定律是什么?写出它的数学表达式并说明其中各个
符号的含义。
答:欧姆定律是指在一些电阻均匀分布的导体内,电流和电压之间
满足线性关系的规律。
其数学表达式为:I = U/R,其中I表示电流强度,U表示电压,R表示电阻。
电流强度与电压成正比,与电阻成反比。
2.什么是磁感应强度?它的单位是什么?
答:磁感应强度是指单位面积垂直于磁感应线的平面上,单位长度
磁感应线通过该面积时的磁通量。
它的单位是特斯拉(T)。
三、计算题
1.一根长度为L的导线匀速以v速度穿过一个与导线垂直且大小为
B的磁感应强度的匀强磁场,导线两端之间的电压为多少?
答案:由电磁感应定律可知,导线两端的电压与导线长度、磁感应
强度、导线速度之间的关系为:U = BvL。
所以导线两端的电压为BvL。